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Abstract
The rapid growth of the airline industry has resulted in the availability of a large number
of flights, however this can also create a paralyzing problem. Flight information on
all airlines across the world can be obtained via the Internet. Today, passengers trend
to be interested in user personalized service. How to effectively find a passenger’s
most preferred air travel plan, which might include multiple transfers frommillions of
possible choices with certain constraints, such as time and price, is a critical challenge.
This paper presents an efficient air travel planning approach, which can find a number
of air travel plans by invoking the APIs offered by airline companies. At the same
time, these plans also best match the customer’s preference based on an analysis of
historical orders. An algorithm to extract user preference features is introduced and
heuristic rules to speed up the K path search process under constraints are presented.
The experiment results show that the proposed model finds optimal air travel plans
efficiently on a real-world dataset.
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1 Introduction

The airline industry has developed very quickly in recent years. Passengers have to
search for flights from a multiple of choices which can be difficult when there is no
direct flight. Therefore, passengers need air travel planning services. Many online
travel agencies (OTAs) and travel booking websites provide these services. However,
developing an efficient trip planning service poses huge challenges:

1. The search space is extremely large There are thousands of flights between a pair
of cities. If every possible route is taken into consideration, there will be many
stop choices and the number of possible travel plans will increase exponentially.

2. Information changes dynamically The availability of airline tickets constantly
changes and at the same time, airlines adjust their ticket prices dynamically relying
on their yield management systems.

3. Passengers have different preferencesAir travel plan preferences vary from person
to person. For example, passengers with a higher price sensitivity prefer cheaper
tickets and are willing to transfer several times for the sake of saving money.
Although OTAs provide different filters to help passengers search for flights which
meet their personal requirements, even if these filters are set correctly, often too
many results are returned which makes the choice difficult.

Addressing the challenges associated with generating personalized air travel plans
needs costly computations and also many invocations to access real-time ticket infor-
mation. Currently, air travel planning services offered by OTAs or travel booking
websites rely on several techniques to reduce computation and communication costs,
such as filtering some flights in advance based on rules and using static information
rather than real-time information.Moreover, most of them do not provide personalized
air travel plans automatically.

The goal of this paper is to develop an efficient approach to find personalized air
travel plans in real time. As shown in Fig. 1, airline companies provide up-to-date
air ticket information through web APIs. These APIs from a large number of airline
companies form an API cloud. In order to speed up the search process, a flight network
is maintained between cities in advance. In this network, the nodes are cities and the
edges are air tickets.The properties of a ticket include airline, flight class and price.
We search for paths that satisfy the given constraints, such as ticket price and flight
time, and which also match the users’ preferences. Due to changes in the availability
of tickets and prices from time to time during the search process, the edges need to
be updated by invoking APIs.Since there are so many flights, the size of this network
is very large and the search time together with the invocation time is huge if we use
the original network. Therefore, we need to find heuristics to reduce the search space.
The network search problem with multiple constraints has been studied for many
years [1–3], however, there is a need to investigate how to find personalized air travel
plans. Also, recommender systems have been widely studied and applied [4–6] but
unfortunately, it is not possible to generate all plans in advance, which is a necessary
condition for traditional recommender systems.

Therefore, this paper proposes an approach to address the personal air travel plan-
ning problem on a large-sized flight network. The contributions include:
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Api Service
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Fig. 1 The air travel planning problem

1. To learn a user’s inherent preferences from their historical orders, a metric called
UPS (User Preference Score) is proposed to quantify how much an air travel plan
matches a user’s preferences. Each path in the network has a UPS value, and the
paths with the best UPS values are those that best meet the customer’s needs.

2. A ticket price lowest bound estimation approach based on historical data is
designed to reduce the search space.

3. A heuristic path searching algorithm calledKBFP (k Best Flight travel Plan search-
ing algorithm) is proposed, which can find the k paths with best UPS values under
the given constraints, such as time and price, in flight networks.

The rest of the paper is structured as follows. Section 2 introduces the related
work. In Sect. 3, the method to learn a user’s preferences is introduced and a metric to
measure howwell a path satisfies the user’s preference is proposed. Section 4 presents a
heuristic algorithm to find the best k paths in amultiple constrained network and verify
its rationality and efficiency by comparing it with other general algorithms. Section 5
provides amethod to estimate the lowest bound of the ticket price for pruning the paths
in the network. The experiment results to evaluate the performance of KBFP and its
counterparts are introduced in Sect. 6 and finally, conclusions are drawn in Sect. 7.

2 RelatedWork

The network search problemwithmultiple constraints has been studied for many years
[1–3]. As previously mentioned, the path searching and planning problem on flight
networks can be regarded as such a problem. The Tabu Search, a heuristic search
strategy employing local search methods for mathematical optimization, has been
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applied to solve vehicle routing and scheduling problemswith timewindowconstraints
[7–9]. Constraints are often introduced into flight travel planning problems so that
they can be modeled as QoS-aware network problems. Heuristic algorithms have been
designed to find paths with theminimum cost in a QoS-aware networkwith constraints
[2,3,10]. Many researchers have also studied bio-inspired algorithms to solve QoS-
aware network problems [11,12].Other researchers focused on the constrained shortest
path with uncertainties. The work in [13] describes an algorithm for the stochastic
shortest path problemwhere path costs are aweighted sumof the expected cost and cost
standard deviation. The work in [14] studies the robust optimization methodology and
stochastic optimization techniques to deal with the constrained shortest path problem,
in which the transit times are subject to uncertainty.

Research on personalized travel services has attracted much attention in recent
years [4–6]. For example, a tourist-area-season topic model was introduced to find
users’ preferences [15], in which a model to extract the contents of the travel packages
and the interests of the tourists was proposed. Context information and the footprints
of users are used to model the interests of tourists [16,17]. Researchers have ana-
lyzed Flickr data to find the relations between users’ preferences and locations [18].
Complex models, such as Bayesian networks, are used to extract user preferences. A
Bayesian personalized ranking algorithm is used to find the probability distribution
of each user’s interest in each item according to the rankings [6,19]. A tensor factor-
ization method is used to recommend flights according to the attributes learned from
historical data in several domains [20]. The work in [21] also uses tensor factorization
to solve point-of-interest recommendation problems. Several metrics have been intro-
duced to evaluate the performance of recommendation systems [22,23]. Furthermore,
some researches has been applied to the airline industry. The work in [24] established
a heterogeneous information network (HIN) to analyze the travel behaviors and pat-
terns of air passengers. The work in [25] proposes a way in which techniques such
as collaborative filtering, content based filtering, etc can be hybridized to generate
recommendations for the airline industry. The Average Rank Score (ARS) represents
the average rankings of the items on the recommendation list which is given by the
recommendation system. A smaller ARS value indicates a better system. The coverage
rate shows how often the recommended items are actually chosen.

Although path searching algorithms and personalized travel service models have
been studied, they have not yet been integrated together. The method proposed in
this paper efficiently searches personalized paths using the UPS value to prune the
search space. The proposedmethodmeets personal requirementswhile simultaneously
ensuring search efficiency.

3 User PreferenceModeling

This section introduces the features selected to represent a user’s preferences for
flight travel plans. Then, an algorithm to calculate the users’ preferences based on
collaborative filtering is introduced since there is often not enough data on many
users. Finally, a metric called UPS is proposed to measure how well an air travel plan
fits a given user’s preference model.
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Fig. 2 Distribution of ticket price

3.1 Feature Selection

According to the historical orders and other studies [26], three features are most
important in measuring a person’s preference for a flight:

1. Airlines represents the user’s favorite airlines and can be denoted by a vector in
which each dimension represents one airline and the value represents the degree
to which the user prefers this airline.

2. Flight class represents a user’s preferred flight class. In our experiments, class is
divided into economy, business and commercial.

where phigh and plow represent the highest and the lowest price for the same flight,
respectively. p denotes the price of the ticket the user selects.

3. Price represents a user’s price sensitivity. Prices vary on different flights which
means this cannot indicate a person’s preference. Herewe introduce ametric called
price-sensitivity to show towhat extent a person prefers cheaper tickets. For a given
pair of departure and arrival cities, price-sensitivity is calculated as follows:

sen = phigh − p

phigh − plow
(1)

Figure 2 shows the distributions of ticket price while Fig. 3 shows the distributions
of price-sensitivities of users on selected air lines. It can be observed from Figs. 2
and 3 that the distribution of price sensitivity on different airlines is similar, which
implies price sensitivity is a better model of users’ price preferences compared
with the original ticket price.
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Fig. 3 Distribution of ticket price sensitivity

3.2 Preference Representation

In this section we discuss how tomodel a user’s preference from their historical orders.
We define Pr fu =< Au,Cu, pu > as the preference representation of user u. The

airline preference is represented as:

Au = [a1, a2, a3, . . . , an] s.t . 0 ≤ ai ,
n∑

i=1

ai = 1 (2)

where n equals the number of different airlines appearing in the historical orders. Class
preference is defined as:

Cu = [c1, c2, c3, . . . , cm] s.t . 0 ≤ vi ,

m∑

i=1

ci = 1 (3)

wherem equals the number of different classes appearing in the historical orders. Price
preference pu is a real number between 0 and 1.

We denote each order as Ordo =< Ao,Co, po >. Ao is an n dimensional vector
indicating the airline information in this order and when the i th airline is responsible
for this order, then the i th element is 1 otherwise it is 0. Co is anm dimensional vector
indicating class information in this order. When the j th class ticket is selected in this
order, then the j th element is 1 otherwise it is 0. po is sensitivity to price which is
calculated using Eq. 1. We denote Ou as the order set which was previously placed
by user u. To model user u’s preferences from the historical orders, we calculate their
preferences as follows:
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Pr fu =< Au,Cu, pu >

s.t . Au =
∑

o∈Ou
Ao

|Ou |
Cu =

∑
o∈Ou

Co

|Ou |
pu =

∑
o∈Ou

po

|Ou |

(4)

Two problems persist during preference modeling:

1. Cold start problem This is a common problem in recommender systems. If a user
has very few or even no historical orders, this user’s preferences cannot bemodeled
in a reliable way.

2. Sparsity problem This occurs when the users’ historical orders do not cover all the
options, or even most options. For example, the orders show a user prefers certain
airlines, but this doesn’t mean that he has no interest in those airlines which he
hasn’t used.

We take advantage of the idea of collaborative filtering to solve these two problems.
For each user, we find other users with a high similarity to him, and we migrate these
users’ preference information to the current user. For user ux and uy , we define their
similarity as:

Sim(ux , uy) = (Aux · Auy + Cux · Cuy + (1 − |pux − pux |))
3

(5)

For a given user ux , we first find a set of users with the highest similarity. Then we
denote these users as set Uux and the feature vector of user ux can be calculated as:

A
′
ux =

∑
y∈Uux

Sim(ux , uy) · Auy∑
y∈Uux

Sim(ux , uy)

C
′
ux =

∑
y∈Uux

Sim(ux , uy) · Cuy∑
y∈Uux

Sim(ux , uy)

p
′
ux =

∑
y∈Uux

Sim(ux , uy) · puy∑
y∈Uux

Sim(ux , uy)

(6)

In order to verify the effectiveness of the adjustments of the preference information,
the passengers are clustered into five groups according to their similarity. From Fig. 4,
it can be seen that by using Eqs. (5) and (6), the similarities between users in the
same group increase, and the variance decreases which means the sparsity problem is
lightened to some degree.
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Fig. 4 The distribution of
similarities of users in the same
group

3.3 User Preference Score

In order to find an air travel plan which fits a user’s preferences most, we propose a
metric called User Preference Score (UPS) to measure the degree to which a user’s
preferences are satisfied.

An air travel plan is denoted as p and each transfer is an edge in this path. Therefore,
p consists of a set of sequentially connected edges. We denote e(w, v) as the edge
between city w and v and it represents a direct flight ticket between these two cities.
Ae(w,v), Ce(w,v), pe(w,v) are the airline feature, class feature and price feature of this
ticket. The representations are the same as those of the orders. For user ux , with his
preference defined in the previous section, we define UPS as:

U PS(ux , p) =
∑

e(w,v)∈p

(Δ(Aux , Ae(w,v)) + Δ(Cux ,Ce(w,v)) + |pux − pe(w,v)|)

where Δ(X ,Y ) = 1 − X · Y
(7)

The UPS has two characteristics:

1. Additive This characteristic enables us to design the KBFP algorithm (detailed the
next section).

2. Monotonic The smaller the UPS, the better the path. This characteristic enables us
to find k paths with a minimum UPS score using the KBFP algorithm.

4 KBFP Algorithm

A flight network is dynamic as the attributes of the edges change from time to time.
When a search starts, in a case where the current flight information is not known, an
API invocation is needed to retrieve up-to-date information. For brevity, we omit the
description of the API invocation to obtain flight information.
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4.1 Problem Definition

Finding an air travel plan in a flight network is similar to the QoS (Quality of Service)
routing problem. Finding the k shortest constrained paths in the network is a commonly
discussed problem, defined as follows:

Suppose the entire network is represented by a graph G = (V , E), where V =
{v1, v2, v3, . . . , vn} represents the set of vertexes, and E = {e(vi , v j )|vi , v j ∈ V }
represents all the edges in graph G.

The weight of each edge is a vector of R dimensions, representing multiple
attributes. The r th attribute of the weight is denoted as:

Wr (e(vi , v j )), r = 1, 2, . . . , R (8)

We denote the cost of an edge as:

W0(e(vi , v j )) = f (W1(e(vi , v j )),W2(e(vi , v j )), . . . ,WR(e(vi , v j )), θ) ≥ 0 (9)

and f is a cost function where θ represents the possible parameters in f .
Starting from point vs , a path to vt consists of a set of sequentially connected

edges and is denoted by p(vs, vs+1, . . . , vt ). Given two paths p(va, va+1, . . . , vb)

and p(vc, vc+1, . . . , vd), suppose va = vc and vb = vd , if any two m-th edges
from two paths are equal, thenp(va, va+1, . . . , vb) = p(vc, vc+1, . . . , vd). Two
paths p(va, va+1, . . . , vb) and p(vc, vc+1, . . . , vd) can be connected if and only if
vb = vc, and the result is also a path from va through vb to vd , which is denoted as
p(va, va+1, . . . , vc, vc+1, . . . , vd) = p(va, va+1, . . . , vb) + p(vc, vc+1, . . . , vd).

The total cost and the attribute value of the total weight of a path can be calculated
as follows:

Wr (p(vx , vx+1, . . . , vy)) =
∑

e(vi ,v j )∈p(vx ,vx+1,...,vy)

Wr (e(vi , v j ))

r = 0, 1, 2, . . . , R

(10)

For points vi , v j , vs in G, suppose there exists three paths, i.e., p(vi , . . . , vs, . . . v j ),
p(vi , . . . , vs) and p(vs, . . . , v j ). If p(vi , . . . , vs, . . . , v j ) = p(vi , . . . , vs) +
p(vs, . . . , v j ), we have:

Wr (p(vi , . . . , vs, . . . , v j )) = Wr (p(vi , . . . , vs)) + Wr (p(vs, . . . , v j )) (11)

Now we can describe the problem in a more mathematical way.
Given a graph G = (V , E), a starting point vs and a termination point vt , and the

upper bound constraint Cr on the r th attribute of the weight (r = 1, 2, . . . , R), we
need to find k paths which satisfy:

Wr (p(vs, . . . , vt )) ≤ Cr , r = 1, 2, . . . , R (12)

with minimum cost W0(p(vs, . . . , vt )).
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4.2 Necessary Concepts

Before introducing KBFP, we first introduce the following concepts which are the key
parts of the algorithm:
Feasible Path Set
For graph G, given a starting point vs , an end point vt , and a set of upper bound
constraints on each attribute of the weight of all paths starting from vs and ending at
vt , i.e., C(vs, vt ) = {Cr (vs, vt )}, r = 1, 2, . . . , R, the feasible path set is:

F(vs, vt ,C(vs, vt )) = {p(vs, . . . , vt )|Wr (p(vs, . . . , vt ))

≤ Cr (vs, vt ), r = 1, 2, 3, . . . , R} (13)

The Lowest Distance Bound
The lowest bound Lr (vs, vt ,C(vs, vt )) is the minimum value of the r th attribute of
all paths in the feasible path set and is defined as follows:

Lr (vs, vt ,C(vs, vt )) = minWr (p(vs, . . . , vt ))

f or ∀p(vs, . . . , vt ) ∈ F(vs, vt ,C(vs, vt )), r = 1, 2, . . . , R
(14)

Minimum Heuristic Distance
Given graphG, a path starts from vs , goes through vx and ends at vt , and the constraint
setC(vs, vt ), theminimum heuristic distance Hr (p(vs, . . . , vt )) is defined as follows:

Hr (p(vs, . . . , vt )) = Wr (p(vs, . . . , vx )) + Er (vx , vt ,C
′
r ) (15)

such that

C ′
r (vx , vt ) = Cr (vs, vt ) − Wr (p(vs, . . . , vx ))

Er (vx , vt ,C
′
r (vx , vt )) ≤ Lr (vx , vt ,C

′
r (vx , vt ))

r = 1, 2, 3, . . . , R

(16)

where Er (vx , vt ,C ′
r (vx , vt )) is the estimated lowest bound of Wr of different paths

from vx to vt .
In the search process, we start from the starting point, and add every possible edge

into our search space. In fact, each time we add an edge, we can judge whether we
can prune this branch by using the minimum heuristic distance. Since the definitions
confirm that if the minimum heuristic distance is larger than constraint Cr , the paths
cannotmeet the constraints anymore.On the other hand, calculating the lowest distance
bound is rather complex since we have to traverse all possible paths on all attributes of
the weight to get the results. However, estimating Er (vx , vt ,Cr (vx , vt )) will be much
easier as we only focus on one attribute of the weight at a time and fortunately, quite
a few algorithms can be applied for this task.

Lemma 1 Each path p ∈ F(vs, vt ,C(vs, vt )) will not be pruned by the minimum
heuristic distance rule.
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Proof If there exists a path p ∈ F(vs, vt ,C(vs, vt )), and it is pruned by the minimum
heuristic distance rule at point vx , then we have p(vs, . . . , vt ) = p(vs, . . . , vx ) +
p(vx , . . . , vt ) and for at least one r , Hr (p(vs, . . . , vx )) > Cr (vs, vt ).

This means Wr (p(vs, . . . , vx )) + Er (vx , vt ,Cr (vs, vt ) − Wr (p(vs, . . . , vx )) >

Cr (vs, vt ) so that Wr (p(vs, . . . , vx )) + Wr (p(vx , . . . , vt )) > Cr (vs, vt ).
This means path p cannot satisfy the constraints, which leads to a contradiction. ��

4.3 Pseudo Code of KBFP

The pseudo-code of the KBFP algorithm is shown in Algorithm1 as follows:

Algorithm 1 K BFP(G, vs, vt ,C(vs, vt ), K )

n ⇐ 0, Wr (p(vs , vs )) = 0, Paths = p(vs , vs ) is a heap, Result ⇐ ∅
Calculate the dijkstra for each point regarded as metrics D
while Paths �= ∅ and k ≤ K do

p(vs , . . . , vx ) ⇐ heappop(Paths)
if x = t then

Result ⇐ Result.Add(p(vs , . . . , vx )) k = k + 1
else

edges ⇐ {e(vx , vz)|vz ∈ V and e(vx , vz) ∈ E}
while edges �= ∅ do

e(vx , vy) ⇐ edges.dequeue
if vy /∈ p(vs , . . . , vx ) then

p(s, y) ⇐ p(vs , . . . , vx ) + e(vx , vy)
for all r , Wr (p(vs , . . . , vy)) = Wr (p(vs , . . . , vx )) + Wr (p(vx , . . . , vy))
if for all r , Hr (p(vs , . . . , vy)) ≤ Cr (vs , vt ) then

Paths.heappush(p(vs , . . . , vy))
end if

end if
end while

end if
end while
return Result
Paths is a minimum heap sorted by W0(p(vs , . . . , vx ))

4.4 KBFP Algorithm Characteristics

Next, we analyze some characteristics of the KBFP algorithm:

1. Completeness This can be proven by lemma 1.
2. Optimality The K paths returned by the algorithm have a smaller costW p

o than any
other path. Let’s assume that path u and v are two feasible paths. If KBFP finds
path u is better than path v, this means there are two paths in the heap, path u from
vs to vt and path v from vs to vx . KBFP chooses path u because W0(u) < W0(v).
Meanwhile, path v may be expanded later which means the final cost of path v

will be even larger. Thus, its optimality is proven.
3. Algorithm complexity analysis Suppose the KBFP algorithm generates k feasible

paths, R is the number of constraints in the path search, M is the total number of
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paths in the heap paths, H is the maximum number of edges in the k paths, and
d is the maximum number of degrees in graph G. The space complexity of the
algorithm is O(M) and the time complexity is O(dM(R + H + logM)).

Now we discuss how to use the KBFP searching algorithm to solve the personalized
flight recommendation problem by combining the UPS function. The flight network is
also represented asG = (V , E). Each edge e(vd , va) represents a direct flight between
city vd (departure city) and va (arrival city). The weight attributes for edge e(vd , va)
include:

1. W1(e(vd , va)): flight-time
2. W2(e(vd , va)): ticket-price
3. W3(e(vd , va)): airline feature
4. W4(e(vd , va)): class feature
5. W5(e(vd , va)): price sensibility

The cost function is defined as:

W0(e(vd , va)) = Δ(Aux ,W3(e(vd , va))

+Δ(Cux ,W4(e(vd , va)) + |pux ,W5(e(vd , va))| (17)

W0 satisfies Eq. (9), and the KBFP algorithm retrieves k paths that satisfy Eq. (11).
This means these k transfer plans satisfy the time andmoney constraints. Furthermore,
these k paths have minimal W0(p(vs, . . . , vt )) such that:

W0(p(vs, . . . , vt )) =
∑

e(vw,vv)∈p

(Δ(Aux , Ae(vw,vv))

+ Δ(Cux ,Ce(vw,vv)) + |pux − pe(vw,vv)|)
= U PS(ux , e(vw, vv))

(18)

which implies that the k paths found have the minimal UPS values.

5 Estimation of the Lowest Bounds of the Ticket Prices

Using heuristic distance (Dijkstra distance) for pruning paths is the key component of
the KBFP algorithm and can improve the search efficiency greatly. However, deter-
mining the ticket price heuristic distance is difficult since information on every ticket
needs to be collected. Querying APIs to obtain all ticket prices is necessary if we want
to calculate the Dijkstra distance. As mentioned in the introduction, querying APIs
takes a huge amount of time so it is impossible to query all ticket information for every
user’s query. We need a more efficient method to calculate the heuristic distance in
terms of the price constraints.

It is obvious that a given airline’s air ticket price for travel between a pair of
cities will not be lower than a value. The air travel planning service will be called
repeatedly, which means we can estimate the lowest bound based on the latest ticket
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price information. We propose a ticket price lowest bound estimation algorithm using
the Poisson distribution with a confidence interval.

Suppose, for a given pair of cities and corresponding airlines, the ticket prices we
have collected are P = {pi |i = 1, 2, 3 . . . n}. It is assumed the ticket prices follow

the Poisson distribution Pt(X) = λX e−λ

X ! , as shown in Fig. 2.
We sample the data using a sampling method with a confidence interval. Suppose,

N is the size of the data, σ is the standard deviation, d represents the absolute error
bound and 1 − α for the confidence interval. d and α are decided according to the
requirements. The sampling data size n satisfies:

1

n
= 1

N
+ d2

Z α
2
2σ 2 (19)

Afterwe sample enough data,we can use amaximum-likelihood estimation to estimate
λ. The log likelihood probability is:

lnPt(P; λ) = ln
n∏

i=1

λpi ∗ e−λ

pi !

=
n∑

i=1

−λ + pi lnλ − ln(pi !)

∂lnPt(P; λ)

∂λ
= −n +

∑n
i=1 pi
λ

(20)

which implies:

λ =
∑n

i=1 pi
n

(21)

After we calculate the distribution, we can obtain the lowest price bound estimation
based on the percentage of this distribution.

6 Performance Evaluation

6.1 Dataset and Experiment Settings

We estimate the performance including search time, API query times, coverage and
average ranking which are useful metrics, as previously mentioned. We use the flight
data crawled on the Internet from 2017.01.01 to 2017.06.31 for the 50 most popular
cities which includes information on a total of 21,076,167 air tickets. We also use
another data set from an OTA that contains 8000 real orders over the same period. The
reason why we selected the 50 most popular cities is given in the next section.

The constraints are defined as follows: flight time is no longer than 10 hours and
total ticket price is not higher than 10,000 Yuan. We use the UPS function (KBFP-
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UPS), total flight time (KBFP-Time) and total ticket price (KBFP-Cost) as the cost
function respectively. This means that the algorithms will find the travel plans with the
minimum UPS value, ticket price or total flight time. Heuristic distance in KBFP is
calculated based on the estimated ticket lowest bound with a percentile of 10%. Each
algorithm recommends 50 air travel plans at most for each query. In the experiment,
each time the travel path is broadened, an API invocation is needed to retrieve the
ticket information for the given pair of cities. To make the experiment more realistic,
we invoke the real APIs from ctrip.com and the average query time is 0.33s.

6.2 Flight Network Optimization

The original flight network is incredibly large as there are thousands of flights and
billions of paths. To represent and process this will be expensive in terms of time and
memory space. However, many air travel plans are never accepted in practice. For
example, if we fly from Shanghai to New York, we may transit in Peking, but we
would never fly to Brazil and then to New York .

Therefore, under such an assumption, we can reduce the flight network as follows:

1. Reduce the number of transit cities
As shown in Fig. 5a, in all the historical orders, there are 940 different departure
and arrival city pairs and the top ten pairs with the highest frequency account for
89% of all flight plans, and the top 20 city pairs account for nearly 95%. Regarding
these cities, the distribution of the occurrence of cities in orders is very similar to
the distribution of the city pairs. The top ten most visited cities account for 93%
of the total number of visits to all 175 cities while the top 20 account for nearly
97% as shown in Fig. 5b. As a result, in our experiment, we only select the most
popular 50 cities and the flights between them.
To include unpopular cities in the network, onemethod is to attach them to nearby

popular cities. This strategy is a common practice when we manually search the
plan.

2. Limit the times of transfer
On most occasions, travellers will not organize an air flight plan which has too
many different flights.In our experiment, we limit the number of transits to less
than 5. This conclusion is also supported by the historical orders.

6.3 Personalized Flight Travel Plan Search Performance

100 users’ historical orders were selected randomly from the testing order dataset. For
each user, a search query with a given departure and arrival time and the other settings
is generated. Furthermore, the size of the network is changed indirectly by changing
the time span between the departure and arrival time.
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(a) Proportion of the top n city pairs in the users’
historical orders

(b) Proportion of the top n cities in the users’

historical orders

Fig. 5 Proportion of the top n cities and pairs in the users’ historical orders

Figure 6 shows the search time needed for all algorithms which increases linearly,
although the KBFP algorithms increase much more slowly than DFS. Figure 7 shows
that KBFP with the UPS algorithm needs the least time to query the APIs.

Figures 8 and 9 show that KBFP-UPS has much better performance than the oth-
ers in personalized travel plan recommendation in terms of coverage and ARS. The
performance degradation speed of KBFP-UPS is almost the same as the others.
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Fig. 6 Efficiency of the different algorithms

Fig. 7 API queries needed for the different algorithms

Table 1 shows the total computation cost of each algorithm during the different
time spans in the personalized airline planning service. It can be observed that the
KBFP-UPS is faster than the other algorithms.

6.4 The Performance of KBFP with the Lowest Bound Estimations

Experimentswere conducted to verify the performance ofKBFPwith the lowest bound
estimations for ticket prices. We choose d = 100 (error bound of the estimated price
is 100 yuan in RMB) and 1− α = 0.95 which implies Z α

2
= 1.96. Table 2 shows the
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Fig. 8 Coverage for different algorithms

Fig. 9 Recommended path rankings for different algorithms

ARS and average API query time when using the UPS-KBFP algorithm whereas we
use the actual lowest ticket price obtained from the dataset and the estimated lowest
ticket price as the heuristic distance, respectively. It should be noted that in reality,
we do not have the actual lowest price as it is impossible to maintain real-time price
information on all tickets.

It can be observed from Table 2 that the estimation-based method has almost the
same performance compared with the actual price-based one. This indicates the lowest
bound estimated is very close to the actual one. Furthermore, ARS becomes worse and
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Table 1 Total time cost of the
planning service

Time Span(h) Total time cost(s)
1 2 3 4

DFS(s) 3.42 6.23 8.80 11.26

KBFP-UPS(s) 2.87 4.92 6.66 8.33

KBFP-Time(s) 3.08 5.22 7.07 8.93

KBFP-Cost(s) 3.27 5.75 7.84 9.80

Time Span(h) 5 6 7 8

DFS(s) 13.47 15.44 17.09 18.82

KBFP-UPS(s) 9.92 11.26 12.45 13.72

KBFP-Time(s) 10.48 11.77 12.96 14.26

KBFP-Cost(s) 11.65 13.34 14.38 15.78

Table 2 KBFP Performance
using the lowest bounds based
on actual and estimated ticket
prices

Span(h) ARS Query Time(s)
Actual 10% 30% Actual 10% 30%

1 6.33 6.48 7.66 2.80 2.80 2.79

2 7.58 7.58 8.99 4.84 4.84 4.79

3 9.09 9.10 10.63 6.53 6.67 6.52

4 11.33 11.33 11.6 8.17 8.25 8.18

5 11.65 11.65 11.92 9.74 9.78 9.70

6 13.29 13.29 13.65 11.06 11.06 10.98

7 13.97 13.97 14.37 12.24 12.35 12.11

8 14.95 14.95 15.35 13.48 13.48 13.38

the query time becomes shorter when the percentile rises, which indicates the higher
the lowest bound, the more paths that are pruned.

7 Conclusions

This paper proposes an approach which efficiently finds the optimal flight travel plans
satisfying a user’s preferences. The approach is composed of a user preference mod-
eling phase and a heuristic search process. The heuristic algorithm named KBFP finds
the paths with the minimum cost in a multiple constrained network and its efficiency
is due to its powerful pruning process. The user preference modeling process provides
a way to calculate user preferences from historical data. The UPS metric proposed in
this paper is used in the KBFP algorithm and finds the best flight travel plans. The
combination of the preference model and KBFP finds flight travel plans efficiently by
pruning unnecessary branches. Furthermore, this paper proposes a method to predict
the ticket price lower bound and significantly decreases the time spent on querying
web services while maintaining performance. The proposed model outperforms the
others on a real-world dataset.)
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