
International Journal of Parallel Programming (2020) 48:119–136
https://doi.org/10.1007/s10766-019-00647-w

Message Passing Optimization in Robot Operating System

Ziyue Jiang1 · Yifan Gong1 · Jidong Zhai2 · Yu-Ping Wang2 ·Wei Liu1 ·
Hao Wu1 · Jiangming Jin1

Received: 5 August 2019 / Accepted: 4 November 2019 / Published online: 16 November 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
With the development of deep learning, autonomous robot systems grow rapidly
and require better performance. Robot Operating System 2 (ROS2) has been widely
adopted as the main communication framework in autonomous robot systems. How-
ever, the performance of ROS2 has become the bottleneck of these real-time systems.
From our observations, we find that it can take a large amount of time to serialize
complex message in communication, especially for some high-level programming
languages, including Python, Java and so on. To address this challenge, we propose a
novel technique, called adaptive two-layer serialization algorithm, which can achieve
good performance in communication for different kinds of messages. Experimental
results show that our algorithm can achieve significant performance improvement
over traditional methods in ROS2, up to 93% improvement in our framework. We
have successfully applied our proposed techniques in a real autonomous robot system.

Keywords Robot operating system ·Message passing · Communication performance

B Ziyue Jiang
ziyue.jiang@tusimple.com

Yifan Gong
yifan.gong@tusimple.com

Jidong Zhai
zhaijidong@tsinghua.edu.cn

Yu-Ping Wang
wyp@tsinghua.edu.cn

Wei Liu
wei.liu@tusimple.com

Hao Wu
hao.wu@tusimple.com

Jiangming Jin
jiangming.jin@tusimple.com

1 Tusimple, Beijing, China

2 Tsinghua University, Beijing, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-019-00647-w&domain=pdf


120 International Journal of Parallel Programming (2020) 48:119–136

1 Introduction

Autonomous robot system, which is very sensitive to communication latency, has long
been a very hot topic. As a mainstream communication framework, Robot Operating
System (ROS [1]), which provides publish/subscribe transport, multiple libraries, and
tools to help software developers create nomous robot applications [2], is placed
high hopes in such systems (e.g. Apollo [3]). Its fundamental function is to provide
modularity and passing message between nomous robot applications.

However, there are two main problems in ROS: high latency in communication
and low extensibility of the framework. For high latency, the performance of ROS
is limited by its high-latency serialization method and socket communication with
TCP/UDP, which brings many times of memory copy during the process of message
passing. For low extensibility, ROS couples tightly and tackles applications in dif-
ferent programming language with an incompatible way, which makes it difficult to
do general optimization for all the language. Furthermore, it is impossible to write
customized plug-in to replace the traditional function, for example the serialization
tools and communication protocols.

Robot Operating System 2 (ROS2), as an upgrade from ROS community, replaces
the old framework to provide extensibility. It supports different programming lan-
guage applications with a compatible way. In ROS2, there is a programming language
interface layer for each of the programming languages and all these languages share
the same lower layer, called ROS2 middleware layer, in the bottom. It means that
if we do some general optimization in ROS2 middleware layer, all the applications
implemented by different programming languages can share the benefits. Furthermore,
ROS2 middleware layer, which adopts Data Distribution Service (DDS [4]) for mes-
sage definition and serialization, is pluggable and customized from the users. It can
be easily replaced by another user-defined plug-ins.

Although ROS2 removes the drawbacks of low extensibility from ROS, these new
features bring new problems to the performance, which leads to even higher latency.
The reason is that: in communication, the original messages from different program-
ming languages need to be converted in ROS2 middeware layer, which entails large
extra overhead.

In order to improve the performance of ROS2, a new efficient method from convert-
ing between different programming languages is required. Based on our observation
for different types ofmessages from different programming languages, we find that the
structure of the original message largely affects the converting efficiency and the more
complex of themessagewill lead to larger converting overhead. However, reducing the
complexity of the original message is very challenging. First, it will change the struc-
ture of the converted message after converting, which will affect the serialization effi-
ciency. Second, the reduction will also lead to some extra overhead and how to achieve
a good balance between the reduction and converting needs to be carefully designed.

To address the above challenges, we propose a novel technique, called adaptive two-
layer serialization algorithm (denoted as ATSA), which can adaptively move parts
of the serialization to the programming language interface layer instead of ROS2
middleware layer to reduce the complexity. It can achieve a good balance between
serialization and converting for different types of message. We implement our opti-

123



International Journal of Parallel Programming (2020) 48:119–136 121

Fig. 1 ROS2 architecture

mization and realize a plug-in in ROS2 for both CPP and Python applications, and
utilize the real workflow from autonomous robot system to evaluate the performance
improvement. Experimental results show that our optimization can get up to 93%
performance improvement over traditional methods in ROS2.

2 Preliminary and Background

2.1 Data Distribution Service

The DDS specification [5] is a group of definitions and standardized APIs for
a publish/subscribe data-distribution system, defined and managed by the object
management group (OMG). The details of implementation are out of the OMG’s
responsibility. Many vendors have provided different DDS implementations. The core
of DDS is a data-centric publish-subscribe (DCPS) model designed for efficient data
transport among processes in distributed platforms. In DDS, each process that pub-
lishes or subscribes is called a participant. A global data space in the DCPS model
allows read and write operations from any participants with proper interfaces.

2.2 ROS2 Framework

Figure 1 illustrates the architecture of ROS2. We simplify the architecture into two
layers. (1) The upper layer is called Programming Language Interface Layer, which is

123



122 International Journal of Parallel Programming (2020) 48:119–136

Fig. 2 Message passing process in ROS2

composed of several interfaces from different programming language, including CPP,
Python, Java and so on. (2) The lower layer is ROS2 Middleware Layer. It provides
some APIs (application programming interfaces) to the upper layer, and these APIs
are required to be implemented by those who are preparing to realize the user-defined
plugins. ROS2 utilizes DDS to realize the APIs provided by ROS2 Middleware Layer
and users do not need to be aware of DDS due to the abstraction layer. This layer also
allows ROS2 to have high level configurations and optimizes the utilization of DDS.

2.3 Message Passing Process in ROS2

ROS2usesnodes to organize key components in a distributed system.Nodes inROS2
applications are composed of independent computing processes, corresponding to a
participant inDDS.Nodes contribute to rapid development, fault isolation,modularity,
and code reusability. A publish/subscribe model is adopted for communication among
nodes. In this model, nodes transmit messages through a topic to communicate. A
message is defined by a .msg file with a simple data format (much like C structs).The
topic name indicates the content of the message. A node publishes a message to a
topic, and then the message is available for another node subscribing to the topic.

Figure 2 shows a detailed process ofmessage publishing inROS2.Weutilize Python
message as an example. The originalmessage, used by the users, comes from program-
ming language interface layer of Python. Then the message will be passed to ROS2
Middleware Layer, and converted into the convertedmessage to satisfy DDS’s require-
ments. After that, the message will be serialized by the serialization module and send
to another node through socket by TCP/UDP protocol. Subscribing is the dual process,

123



International Journal of Parallel Programming (2020) 48:119–136 123

Fig. 3 Communication in autonomous robot systems

which contains three steps: (1) receiving message from socket, (2) deserializing and
(3) de-converting to Python.

Figure 3 shows the communication in a typical autonomous robot system. Sensor
nodes publish camera figures to the Image topic, GPS information to the Novatel
topic and lidar information to the Lidar topic. The localization node subscribes to
the Image and Lidar topic and then publishes position to the Pose topic. The
perception node generates messages for the Obstacle topic through Novatel
topic. The planning node subscribes to both Pose and Obstacle as its input, passing
the WayPoints message to the control node. To be modular at a fine-grained scale
makes the publish/subscribe model a good design for distributed systems.

3 Observation

3.1 Communication Cost

Weanalyze theROS2’s performance problemswith a specific example shown in Fig. 3.
It originates from a real-world scenario in our autonomous robot system built on the
ROS2. We select two types of message, Image and WayPoints, to measure the
total communication cost. There may be some differences in the message structure in
other systems, but the problem generally exists. Image has only one dimension, who
consists of an array of bytes. WayPoints contains an array of submessage called
WayPoint. WayPoint includes Timestamp (two integer value) and Pose data.
Pose includes much float64 information and Point data. Finally, Point includes
3 float64 data. WayPoints message is complex due to its nested structure but small
in the terms of data size. One WayPoint only has 1 int32, 1 uint32 and 8 float64,
totally 72 bytes.

123



124 International Journal of Parallel Programming (2020) 48:119–136

Fig. 4 Communication cost of Image and WayPoints

Figure 4 shows that the communication cost for Image and WayPoints. The total
size of Image is 8MB; while the size of WayPoint, who contains 2000 WayPoint
message, is only 144KB. We observe that (1) The communication cost WayPoints
is 34.1 ms, which means the bandwidth is about 4.2MB/s. Image uses just 4 ms but
nearly 55 times the data size of the former as a contrast and the bandwidth is 1.97GB/s.
Compared with Image, WayPoints has much higher latency and lower bandwidth.
(2) After analyzing the communication cost of WayPoints for each step, we observe
that “convert” and “de-convert” accounted for 89.1% of total communication cost. The
terrible 24.3ms of “de-convert” shows that this part is a key bottleneck to improve
ROS2’s performance in our workflow.

3.2 Converting Cost Study

We further evaluate the converting efficiency for different types of messages due to
the high cost in passing WayPointsmessage. To explore this problem, we construct
a three-level message shown in Fig. 5 (denoted as A-Msg). One A-Msg includes an
array of a two-level message (denoted as B-Msg) and one B-Msg’s submessage is an
array of C-Msg, which consists of an array of float64. We vary the size of array in each
layer and calculate the converting cost. In our experiment, we fix the total number of
elements to 10,000 float64.

Fig. 5 Structure of the
three-layer message

123



International Journal of Parallel Programming (2020) 48:119–136 125

Table 1 Converting cost for
different types of messages

Structure Number of converting Cost

1× 1× 10,000 2 1.5

1× 10× 1000 11 1.6

1× 20× 500 21 1.7

1× 50× 200 51 2.2

1× 100× 100 101 2.8

1× 200× 50 201 3.9

1× 500× 20 501 8.2

1× 1000× 10 1001 14.4

1× 2000× 5 2001 27.6

1× 2500× 4 2501 35.0

1× 5000× 2 5001 63.1

1× 10,000× 1 10,001 126.1

10× 10× 100 110 2.9

100× 10× 10 1100 15.7

500× 5× 2 3000 41.6

500× 10× 2 5500 73.4

Fig. 6 Results of converting experiment

Table 1 shows the structure of the message, the number of converting and the
converting cost. We have two observations: (1) For the fixed size of messages, the
converting cost varies from 1.5 ms to 126.1 ms, which means it is very significant to
do optimization for converting in the worst case and it can achieve up to 124.6 ms
performance improvement. (2) We further calculate the ratio, where the number of
converting divides the converting cost and the results are shown in Fig. 6. We observe
that the results fit into a line, which means the converting cost linearly increases when
the number of converting increases.

123



126 International Journal of Parallel Programming (2020) 48:119–136

3.3 Motivation

In summary, the more complex the message is, the larger cost of converting (de-
converting), which means if we can simplify the structure of messages, we can largely
reduce the converting (de-converting) overhead. As the simplest structure of message
is serializedmessage, which only includes a continuous buffer inmemory, we consider
to doing the serialization before converting, so that we can obtain a serialized message
as the input of converting process.

Based on this idea, we put the serialization step into Programming Language Layer.
However, we find that although the converting cost decreases, the serialization cost
increases. The reason is that the high level programming language, for example Python
and Java, is not as efficient as C, and the serialization in C is much faster.

Based on these results, we find that there is a trade-off between serialization per-
formance loss and converting performance improvement. Therefore, for each type of
message, we can select when to convert and serialize the message to obtain best per-
formance. In other word, there is an opportunity in determining the order of converting
and serialization to minimize the total overhead.

4 Adaptive Two-Layer Serialization Algorithm

4.1 Cost Formulation

In the traditional message passing process, the serialization process is in the lower
layer (ROS2 Middleware Layer) and we call it Low-layer Serialization Algorithm
(denoted as LSA). On the contrary, we propose to put the serialization step into Pro-
gramming Language Layer in order to reduce the converting cost. This method is
denoted asHigh-layer Serialization Algorithm (HSA). As publishing and subscrib-
ing process are decoupled, we only analyze the publishing process as an example. We
can obtain the same conclusions for subscribing.

In Low-layer Serialization Algorithm, we consider to publish message x with
n layers, where ki (x) (i = 1, 2, . . . , n) denotes the number of elements in the i-th
layer. We denote converting cost, serialization cost and transport cost as C(x), S(x)
and T (x) and the total cost Cost(x) can be expressed in equations below:

Cost(x) = C(x) + S(x) + T (x) (1)

4.1.1 Converting Cost

In our observations, we find that in the fixed length of message (denoted as l(x)),
converting cost linearly increases when the number of converting increases. Note
that the length of message means the total number of bytes the message occupies.
Furthermore, for the fixed message type, the cost is linearly related to the length
of message. We utilize a fixed value tc to represent the converting coefficient and
converting cost can be expressed as:

123



International Journal of Parallel Programming (2020) 48:119–136 127

C(x) =
n−1∑

i=1

ki (x) × tc × l(x) (2)

4.1.2 Serialization Cost

Serialization process is very complex, the cost is related to the type of each element
and the length of message l(x). We can use a linear function to simulate the cost. In our
experiments, we find the total difference from serialization cost and our approximate
linear function is very small (usually less than 5%). We use the fixed serialization
coefficient (ts) to describe the linear relationship and serialization cost can be expressed
as:

S(x) = ts × l(x) (3)

4.1.3 Total Cost

Based on the analyzing for each step in publishing process, the total cost can be
calculated as:

Cost(x) =
n−1∑

i=1

ki (x) × tc × l(x) + ts × l(x) + T (x) (4)

In High-layer serialization algorithm, we do serialization (denoted as advanced
serialization) in programming language interface layer, which will take more time.
Compared with the serialization cost S(x) in ROS2 Middleware Layer, the cost S̄(x)
of advanced serialization isα times larger. But the number of converting can be reduced
to one copy and the converting cost C̄(x) is equal to tcl(x). The transport cost T̄ (x)
is equal to T (x). Based on these analysis, the cost can be expressed as:

¯Cost(x) = C̄(x) + S̄(x) + T̄ (x)

= tc × l(x) + (1+ α) × ts × l(x) + T (x)
(5)

4.2 Threshold Definition

The difference D(x) between the two algorithms can be expressed as:

D(x) = Cost(x) − ¯Cost

=
(
n−1∑

i=1

ki (x) × tcl(x) + tsl(x) + T (x)) − (tcl(x) + (1+ α)tsl(x) + T (x)

)

=
[(

n−1∑

i=1

ki (x) − 1

)
tc − αts

]
l(x)

123



128 International Journal of Parallel Programming (2020) 48:119–136

=
(
n−1∑

i=1

ki (x) − tc + αts
tc

)
× l(x) × tc (6)

We define K (x) =
n−1∑
i=1

ki (x) and a constant value Threshold = tc+αts
tc

and Eq. 6

can be simplified to:

D(x) = [K (x) − Threshold] × l(x) × tc (7)

From Eq. 7, we can conclude that if K (x) is larger than Threshold, D(x) will be
larger than 0, which means the total cost of LSA is larger than the cost of HSA. On
the contrary, if K (x) is smaller than Threshold, LSA is better because of the lower
cost.

4.3 AlgorithmDesign

Algorithm 1 Adaptive Two-layer Serialization Algorithm in publisher
1: Function: Publish
2: Parameter: Threshold
3: Input: Message x
4: Output: Serialized Message y
5: if K (x) > Threshold then
6: x = Advanced-Serialization(x)
7: end if
8: x = Converting(x)
9: if K (x) > Threshold then
10: y = Memcpy(x)
11: else
12: y = Serialization(x)
13: end if

4.3.1 Basic Algorithm

Based on the analyzing of total cost, if the message x is given, we can select the suit-
able algorithm to do publishing. In fact, function K (x) can represent the complexity
of message x. If K (x) is larger than Threshold, which means message x is complex
enough, we can utilize advanced serialization in the upper layer and only do memory
copy after converting. Otherwise, we use the traditional algorithm to publish mes-
sage. We propose the Adaptive Two-layer Serialization Algorithm in publishing, as
illustrated in Algorithm 1, to improve the performance in message passing. In Algo-
rithm1,we combineHSA andLSA together and adaptively determinewhich approach
to select based on the Selection Condition in Line 1 and 5.

123



International Journal of Parallel Programming (2020) 48:119–136 129

4.3.2 Subscribing Problem

For the subscribing process, we cannot obtain the message before de-converting step
and we cannot determine when to do deserialization based on the same method as
publishing. The solution is that, we add the information, that whether K (x) is larger
or smaller than Threshold, to the serialized message and send to the subscriber. In
the subscribing process, we add an pre-deserialzation step to obtain this value (bool
value) to decide which method to use. This design introduces a small overhead due to
packing and unpacking the bit into a message. The overhead will be calculated as a
part of de-converting cost when evaluating the latency of the whole message passing
process. The Algorithm is shown in Algorithm 2.

Algorithm 2 Adaptive Two-layer Serialization Algorithm in subscriber
1: Function: Subscribe
2: Input: Serialized Message x
3: Output: Message y
4: Condition, x = Pre-deserialization(x)
5: if Condition then
6: x = Memcpy(x)
7: else
8: x = Deserialization(x)
9: end if
10: y = De-converting(x)
11: if Condition then
12: y = Advanced-Deserialization(y)
13: end if

4.4 SystemOverview

Figure 7 shows our proposed system, which is based on ROS2. We create our plugin
in ROS2 Middleware layer and add an advance-serialization module in Programming
Language Interface Layer. In publishing the message, we first calculate the Selection
Condition (Line 1 and 5 in Algorithm 1) and then determine the order of serialization
and converting.

The red solid line shows the communication process for relatively complex mes-
sages. The publisher do serialization in advance, extracting this module from the
DDS implementation to the programming language interface layer. Then the seri-
alized messages are passed to the bottom layer without converting. Messages are
copied into transport slots using in-memory representation. The subscriber receives
the messages and directly pass them to the top layer. The de-serialization module in
Programming Language Interface Layer deserializes the messages. The blue dotted
line represents the communication process for flat-structure messages. This process is
similar to the common ROS2, except that in-memory representation is replaced with
our implementation for compatibility.

Before publishing messages, we pack the Selection Condition into the messages
as their first bit and unpack it while subscribing.

123



130 International Journal of Parallel Programming (2020) 48:119–136

Fig. 7 Two-layer Serialization System Overview (Color figure online)

Fig. 8 The average optimization effect of different parameters

123



International Journal of Parallel Programming (2020) 48:119–136 131

5 Evaluation

5.1 Experimental Setup

5.1.1 Platform

Our experiment is based on ROS2 Bouncy Version [6]. We run our experiments on a
server with Interl(R) Core(TM) i7-7700K CPU (4.2 Ghz 8 cores 32 GBmemory). The
operating system is Ubuntu 16.04. All the publishers and subscribers are implemented
by Python.

5.1.2 Comparisons

We select ROS2,which use Low-level Layer SerializationAlgorithm, asBaseline. The
Low-level Layer Serialization Algorithm is denoted as LSA. The High-level Layer
Serialization Algorithm is denoted as HSA and our proposed Adaptive Two-layer
Serialization Algorithm is denoted as ATSA.

5.1.3 Dataset

We compare different algorithms in our real autonomous robot system workflow. The
structure of the workflow is shown in Fig. 3. Our dataset is based on the real data
recorded from the workflow. It contains several different types of message, including
Image, Lidar, Novatel, Pose and WayPoints. Image has only one dimen-
sion, who consists of an array of bytes. The total size of Image is 8MB. Lidar is the
most complex one in the five message types. It contains 1000 packets and each packet
contains 1250B. The total size is 1220KB Novatel is a frame of GPS informa-
tion, which consists of some simple sub-messages like timestamp and other geometry
information. The total size is 142B. Pose is a relatively flat message, which includes
two-layer sub-messages like position(x,y,z). The total size is 400B.WayPoints con-
tains an array of submessage called WayPoint, which includes timestamp and Pose
data. 2000 WayPoints’ total size is 140KB. Furthermore, we evaluate the end-to-end
performance of the whole workflow.

5.2 Experimental Results

5.2.1 Parameter Study

An experiment is designed to determine the best Threshold parameter. We first find
the range [0, 8000], which cause the ATSA to downgrade into HSA and LSA. Then we
vary the value and calculate the average performance improvement for all the message
in our selected Dataset.

Figure 8 shows the optimization effect of different Threshold parameter.When the
Threshold is set to 500–800, the average cost of all messages in our system becomes
lowest, achieveing 83% optimization effect. The parameters smaller than 400 cause

123



132 International Journal of Parallel Programming (2020) 48:119–136

Fig. 9 Overall performance comparison between ROS2 and ATSA

many flat meesages to use HSA, which means unnecessary cost of serialization. And
those parameters larger than 1000 may not cover all complex messages, thus suffering
from converting costs.

5.2.2 Overall Performance Comparison

This experiment is designed to evaluate the overall performance. A publisher sends to
a subscriber in a single machine. We send 2000 number of message for each selected
type of message in our dataset and calculate the average performance improvement.

Figure 9 shows the overall performance comparison between ROS2 and ATSA. It
includes the detailed latency for each step of message passing. As the sizes of message
are different for each type, we normalize the communication latency to Baseline. We
have two major observations: (1) For Image, Novatel and Pose, Baseline and
ATSA have similar performance. Because these messages are not complex and ATSA
will select LSA to pass the message. The extra overhead for packing and unpack-
ing a subscribing bit, which we have introduced before, has a tiny impact. (2) For
WayPoints and Lidar, ATSAoutperforms the Baselinewith 78–95%performance
improvement. The reason is that the converting cost for the two messages are very
large in LSA. Lidar achieves a better optimization effect, given that converting cost
dominates its message passing process.

5.2.3 Performance Comparison for Different Algorithms

This experiment is designed to evaluate the efficiency of our proposed adaptive
method.We select Image and WayPoints to represent two relatively extreme cases
for different message types. For both types, we send 2000 number of message and cal-
culate the average performance improvement.

123



International Journal of Parallel Programming (2020) 48:119–136 133

Fig. 10 Algorithm between LSA, HSA and ATSA

Figure 10 shows the performance comparison for different algorithms, including
LSA, HSA and ATSA. The results show that ATSA has the best performance in both
of the two cases. For Image, ATSA can obtain 77.6% performance improvement
compared with HSA; while for WayPoints, ATSA can get 79.2% performance
improvement compared with LSA. Using either LSA or HSA alone can’t achieve the
best results.

5.2.4 Workflow Performance Comparison

This experiment is designed to evaluate ATSA’s effect in a real scene. We use ROS2
and ATSA respectively as the middleware in our autonomous robot system. There
are more than ten nodes with publishers and subscribers in the test environment. The
message is passed in accordance to the workflow. The total latency in our system is
the sum of latency in the critical path, which includes three types of message, Lidar,
Pose and WayPoints: The lidar sensor nodes publish Lidar to localization node.
The localization node subscribes Lidar and publishes Pose. The planning node
subscribes Pose as its input, passing the WayPoints message to the control node.

Figure 11 shows the performance comparison results.
Our proposed algorithm can achieve up to 93% performance improvement in

communication. ATSA can largely reduce the latency of Lidar and WayPoints
decrease the total communication latency from 160ms to about 10ms. The perfor-
mance improvement is very significant in real-time autonomous robot system, which
is very sensitive to latency.

5.3 Summary

Based on the experiment, our proposed algorithm indeed improves the performance
of message passing process with complex structures. Besides, our design still take

123



134 International Journal of Parallel Programming (2020) 48:119–136

Fig. 11 Workflow latency comparison

advantage of the raw ROS2’s message passing process, thus keeping low latency when
transporting flat messages. Overall, ATSA can obtain 93% performance improvement
in the whole workflow.

6 RelatedWork

6.1 Serialization in Robotics Middleware

Many projects designed for robotics middleware have been developed in recent years.
A survey and comparison of the different projects is given in [7].Message serialization
are important functions for these robotics middleware.

Robot Operating System 1 (ROS1) aims to provide a general communication
method with sockets. Users define a message simply with a file and the ROS1 auto-
matically generates message types as well as the serialization functions for different
programming languages. However, the serialization and de-serialization functions are
strictly determined by the ROS1, which means users are not allowed to use the serial-
ization method they want.

Middleware for Robotic Applications (MIRA) [8] aims to provide a middleware
with low-latency communication mechanism. MIRA adopts a “reflect” serialization
method in high-level languages, which allows complex objects with functionalities to
be transported. However, no matter how simple a user-defined class is, MIRA requires
users to implement a “reflect” method themselves to help do serialization.

The Lightweight Communications and Marshalling (LCM) library [9] aims to
simplify the development of low-latency message passing systems. LCM provides
marshalling library to do data pack. Extra information is written into data to verify
the marshalled serialized messages. LCM mostly takes the convenience into account
when developing instead of serialization performance.

Yet Another Robot Platform (YARP) [10] aims to contribute to humanoid robotics
applications by promoting the development efficiency. YARP provides serialization

123



International Journal of Parallel Programming (2020) 48:119–136 135

and deserialization for simple data types. However, users have to write their own C++
templates to provide serialization and deserialization for complex data types, which
brings some inconvenience.

This survey shows different serialization mechanisms adopted in current robotics
middleware. Most robotics middleware provide unscalable serialization methods. To
provide scalability, ROS2 is designed to support customized DDS plug-ins and more
programming languages, suffering the loss when passing complex messages during
converting between different languages andmessage types.We summary communica-
tionmechanismsmentioned on the abovemiddleware and try to balance the scalability
and performance of ROS2. This optimization makes an effort to reduce the latency of
passing complex messages while preserving the advantage of ROS2.

6.2 Latency in the ROS

Mush emphasis has been placed on the latency in the ROS like [11,12]. RT-ROS [13]
constructs a real-time ROS architecture to allow real-time and non-real-time ROS
nodes separately running with different processor cores respectively, achieving a
higher performance than the ROS1.

Towards Zero-Copy (TZC) [14] aims to reduce the times of data copy and seri-
alization in the ROS2. TZC uses an algorithm called partial serialization, cutting a
message into two parts. By only serializing the necessary information in one part,
TZC improves the general serialization process and the whole latency.

Hardware ROS-compliant FPGAComponent [15] implements a FPGA-basedmes-
sage passing accelerator to improve the publish/subscribe performance in the ROS.
The research uses small amount of hardware and utilizes the high performance of
hardware algorithm to reduce the latency in message passing process.

The uROSnode [16] is designed to help the ROS communicate with embedded
systems. The embedded system can do a part of work that ROS does in a fast and
lightweight way.

7 Conclusion and FutureWork

Since the latency of the ROS2’s message passing process is limited by the converting
process, we propose an Adaptive Two-layer Serialization Algorithm to adaptively
determine the order of converting and serialization. The ATSA aims to minimize the
total costs of converting and serialization for different message types. Experimental
results show that our design can obtain 93% performance improvement in our real
autonomous robot workflow.

Currently, we only implement the ATSA on ROS2 for Python and C++. By mod-
ifying the programming language interface layer and evaluating the serialization
efficiency of target programming languages, we could implement the ATSA for other
languages that ROS2 supports, such as Java and JavaScript. And we verify the opti-
mizations and do the experiments on Linux now. We plan to evaluate ATSA-ROS2 on

123



136 International Journal of Parallel Programming (2020) 48:119–136

more platforms like Windows and Raspberry Pi. It would be interesting and important
to support more programming languages and platforms.

In addition, we set the threshold parameter throughmany experiments andmanually
select the best parameter. Tomake the process automatically, a basic idea is to simulate
what we do by ATSA itself before a system starts, generating a proper parameter with
binary search.

Furthermore, we find that transport cost becomes one of the most important factors
since converting cost has been reduced by ATSA. Shared memory is generally a faster
transport method than socket-based method. We plan to take efforts to optimize the
transport cost in future.

Acknowledgements We would like to thank the anonymous reviewers for their valuable comments. This
work is partially supported by the National Key R&D Program of China (Grant No. 2016YFB0200100),
National Natural Science Foundation of China (Grant No. 61722208).

References

1. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: ROS: an
open-source robot operating system. In: Proceedings of IEEE International Conference on Robotics
and Automation Workshop on Open Source Software, vol. 3 (2009)

2. Maruyama, Y., Kato, S., Azumi, T.: Exploring the performance of ROS2. In: Proceedings of the 13th
International Conference on Embedded Software. ACM (2016)

3. Baidu Appollo. http://apollo.auto/
4. Pardo-Castellote, G.: OMG data-distribution service: architectural overview. In: Proceedings of IEEE

International Conference on Distributed Computing Systems Workshops (2003)
5. Data Distribution Services (DDS) v1.4, (2015). https://www.omg.org/spec/DDS/1.4/PDF
6. ROS2 Bouncy Bolson. https://index.ros.org/doc/ros2/
7. Elkady, A., Sobh, T.M.: Robotics middleware: a comprehensive literature survey and attribute-based

bibliography. J. Robot. (2012)
8. Erik, E., et al.: Mira-middleware for robotic applications. In: 2012 IEEE/RSJ International Conference

on Intelligent Robots and Systems. IEEE (2012)
9. Huang, A.S., Olson, E., Moore, D.C.: LCM: lightweight communications and marshalling. In: 2010

IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE (2010)
10. Metta, G., Fitzpatrick, P., Natale, L.: YARP: yet another robot platform. Int. J. Adv. Robot. Syst. 3(1),

8 (2006)
11. Wei, H., Huang, Z., Yu, Q., Liu, M., Guan, Y., Tan, J.: RGMP-ROS: a real-time ROS architecture of

hybrid RTOS and GPOS on multi-core processor. In: 2014 IEEE International Conference on Robotics
and Automation (ICRA) May 31, pp. 2482–2487. IEEE (2014)

12. Saito, Y., Sato, F., Azumi, T., Kato, S., Nishio, N.: ROSCH: real-time scheduling framework for ROS.
In: 2018 IEEE 24th International Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA) Aug 28, pp. 52–58. IEEE (2018)

13. Wei,H., Shao,Z.,Huang,Z.,Chen,R.,Guan,Y., Tan, J., Shao,Z.:RT-ROS: a real-timeROSarchitecture
on multi-core processors. Fut. Gener. Comput. Syst. 1(56), 171–8 (2016)

14. Wang, Y.-P., Tan, W., Hu, X.-Q., Manocha, D., Hu, S.-M.: TZC: efficient inter-process communication
for robotics middleware with partial serialization (2018). arXiv:1810.00556

15. Sugata, Y., Ohkawa, T., Ootsu, K., Yokota, T.: Acceleration of publish/subscribe messaging in ROS-
compliant FPGA component. In: Proceedings of the 8th International Symposium on Highly Efficient
Accelerators and Reconfigurable Technologies Jun 7, p. 13. ACM (2017)

16. Maruyama, Y., Kato, S., Azumi, T.: Exploring the performance of ROS2. In: Proceedings of the 13th
International Conference on Embedded Software Oct 1, p. 5. ACM (2016)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://apollo.auto/
https://www.omg.org/spec/DDS/1.4/PDF
https://index.ros.org/doc/ros2/
http://arxiv.org/abs/1810.00556

	Message Passing Optimization in Robot Operating System
	Abstract
	1 Introduction
	2 Preliminary and Background
	2.1 Data Distribution Service
	2.2 ROS2 Framework
	2.3 Message Passing Process in ROS2

	3 Observation
	3.1 Communication Cost
	3.2 Converting Cost Study
	3.3 Motivation

	4 Adaptive Two-Layer Serialization Algorithm
	4.1 Cost Formulation
	4.1.1 Converting Cost
	4.1.2 Serialization Cost
	4.1.3 Total Cost

	4.2 Threshold Definition
	4.3 Algorithm Design
	4.3.1 Basic Algorithm
	4.3.2 Subscribing Problem

	4.4 System Overview

	5 Evaluation
	5.1 Experimental Setup
	5.1.1 Platform
	5.1.2 Comparisons
	5.1.3 Dataset

	5.2 Experimental Results
	5.2.1 Parameter Study
	5.2.2 Overall Performance Comparison
	5.2.3 Performance Comparison for Different Algorithms
	5.2.4 Workflow Performance Comparison

	5.3 Summary

	6 Related Work
	6.1 Serialization in Robotics Middleware
	6.2 Latency in the ROS

	7 Conclusion and Future Work
	Acknowledgements
	References




