
International Journal of Parallel Programming (2020) 48:344–366
https://doi.org/10.1007/s10766-018-0601-y

A Secure Provenance Scheme for Detecting Consecutive
Colluding Users in Distributed Networks

Idrees Ahmed1 · Abid Khan1 · Adeel Anjum1 ·Mansoor Ahmed1 ·
Muhammad Asif Habib2

Received: 8 June 2018 / Accepted: 8 September 2018 / Published online: 25 September 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Data provenance is becoming extremely important these days for distributed environ-
ment, due to the ease in sharing andmodifying data stored (e.g. cloud storage systems).
However, the protection of provenance chain has been greatly understudied prob-
lem. This paper presents a secure provenance scheme for a distributed environment,
designed to ensure data confidentiality, integrity, and non-repudiation. Specifically, the
proposed scheme is designed to detect attacks on a provenance chain launched bymul-
tiple concurrent adversaries, such as forged provenance records and provenance record
shuffling attacks.Moreover, the proposed schemedetects the provenance record,which
has been perturbed and identifies the malicious or compromised user. We then evalu-
ate our scheme empirically and analytically with the state of the art to demonstrate its
security and performance in terms of computational and storage overheads.

Keywords Secure provenance · Integrity · Collusion attacks · Aggregated signatures

B Abid Khan
abidkhan@comsats.edu.pk

Idrees Ahmed
idrees.ciit@gmail.com

Adeel Anjum
adeel.anjum@comsats.edu.pk

Mansoor Ahmed
mansoor@comsats.edu.pk

Muhammad Asif Habib
dr.m.asif.habib@gmail.com

1 Department of Computer Science, COMSATS University, Islamabad, Pakistan

2 National Textile University, Faisalabad, Pakistan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-018-0601-y&domain=pdf
http://orcid.org/0000-0003-2712-1956


International Journal of Parallel Programming (2020) 48:344–366 345

1 Introduction

Provenance in computing generally refers to the genealogy or history of objects, in the
sense of who created a piece of data, and who performed what operations on the data
during its life cycle (i.e. information about the activity, user and the entity involved
in producing the data) [1]. Provenance has applications in a number of domains,
such as databases [2, 3], workflow systems and e-science [4–6], Web [7, 8], and file
systems [9–11]. With the increasing digitalization of data, the distributed nature of
data storage and dissemination, and the ease where digital data can be modified, it is
important to ensure the provenance of the data. In other words, we need to be able
to trust data coming from diverse sources to make accurate decisions, particularly in
critical missions such as battlefields. Data provenance is not linear, in the sense that it
can be represented as a directed acyclic graph (DAG) where every provenance record
has a relationship with other records.

Thus, in such a chained structure data, simply encrypting the data is not likely
to ensure the data’s provenance, as we also need to protect the relationships of the
data with other records. Generally, a secure provenance scheme should provide the
following properties.

• Confidentiality Ensures unauthorized access to or disclosure of the data (e.g. agents,
entities, and activities).

• Tamper resilient (also known as integrity) Integrity ensures that the provenance
record or chain cannot be forged/modified undetected. A secure provenance scheme
should be tamper resilient even in the event that one or more colluding users
attempted to forge the data.

• Non-repudiation Once the provenance record is made, a user cannot repudiate
his/her actions (e.g. using digital signature schemes).

• Availability Source data and provenance information should be available anytime
whenever queried, for as long as permitted or required by the data retention pol-
icy/legislation.

As previously discussed, a number of provenance schemes have been proposed to
for distributed environment, such as those of Hassan et al. [12, 13], Wang et al. [14]
and Rangwala et al. [15]. Existing security solutions are generally tamper resilient
only when two or more consecutive adversaries cannot launch attacks concurrently,
as these schemes, among users, assume transitive trust. Such an assumption is not
practical, particularly in a distributed network (e.g. federated cloud environment). In
addition, existing schemes generally require an additional element for provenance
records chaining (e.g. public keys of users).

Seeking to address the above two limitations, we present a scheme that is tamper-
evident even when provenance chain and data are forged by several consecutive
adversaries. Also, our scheme aggregates the signature of users to chain the provenance
records; thus, reducing the storage overheads. In our scheme, provenance information
is represented and stored in an XML file. We then prove the security of the proposed
scheme and evaluate its performance. The main contributions of the paper are listed
below.
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– Detection of attacks by multiple consecutive adversaries besides providing confi-
dentiality, integrity, and non-repudiation.

– Detection of attacks launched by malicious users to shuffle the order of provenance
records.

– Our scheme chains the provenance records by aggregating the signatures of users
without introducing an extra element in a provenance record.

– Our scheme presents the security analysis to validate the results and assurance of
security properties of a secure provenance scheme.

– We evaluate our scheme empirically and analytically to demonstrate its security
and performance in terms of computational and storage overheads. The verification
with current state-of-the-art shows promising results.

The rest of the paper is organized as follows: In Sect. 2 a detailed overview of related
works is provided. Background and models are presented in Sect. 3. The proposed
scheme is presented in Sect. 4, and its performance evaluation is given in Sect. 5. The
security analysis of the proposed scheme is given in Sect. 6. Section 7 concludes this
paper.

2 RelatedWork

In this section, we provide an overview of schemes, which are related to our work.
Kairos [16] is a framework designed to protect the ownership and temporal data in
a grid using digital signatures and time-stamp protocol (TSP). Although the authors
demonstrate that provenance record is protected in their framework, there is no discus-
sion on the structure of provenance record and chaining. In a separate work, the authors
in [17] formalize the requirements for location provenance in personal mobile devices.
To protect location provenance, hash chain, block hash chain, Bloom filter, shadow
hash chain, multi-linked hash chain, and RSA accumulator are used. Hassan et al. [18]
propose a witness-endorsed scheme for personal mobile phone and location-aware
services. The scheme uses a hash chain and bloom filter to avoid collusion and tam-
pering attacks in location proofs. A secure framework, based on [18, 17], is proposed
in [19] to securely generate the location proofs in mobile devices. Asghar et al. [20]
propose a scheme for the cloud to protect the provenance and communication channel.
Similarly, in [21], a secure provenance scheme for data forensic for the cloud is pro-
posed. Bilinear pairing is used to protect the user’s privacy. However, the scheme does
not protect the provenance records. Izuan et al. [22] propose a trust model for cloud
computing using secure data provenance. To achieve the properties of a secure prove-
nance scheme, this framework works in two phases, namely: protecting user privacy or
anonymity is achieved via authentication, and protecting data provenance is achieved
using cryptographic techniques. Storing and accessing the provenance data are the
two processes involved in this trust model. In [23], a PDP scheme is proposed for the
cloud to protect the privacy of users. Hash chaining and group signatures are used for
securing the provenance data in the cloud. SECAP is proposed in [24] to achieve secure
application provenance in the cloud. The scheme uses the digital signatures and bloom
filter to protect the provenance information. Similarly, ProvChain [25], a provenance
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framework is proposed for the cloud environment. Blockchain technology is used to
ensure privacy and availability of data provenance (history of operations). Xu et al. [26]
propose a framework for a secure provenance management. In the framework, there is
a layer in between the application and physical device. Sultana et al. propose a scheme
for secure provenance transmission in sensor networks. The provenance information
is hidden inter-packet delays. At the destination, provenance data is retrieved using a
threshold-based mechanism. For secure transmission of provenance data in the sensor
network, spread spectrum watermarking technique is used [27]. Sultana et al. [28, 29]
utilized in-packet bloom filter to encode the provenance in, which detects the packet
dropping and provenance forgery attacks. Hussain et al. [30] propose a secure prove-
nance compression technique for wireless sensor networks using arithmetic coding. To
detect unauthorized or malicious modifications of packet and provenance, this scheme
binds the data packet and its associated provenance along with its path. Integrity and
authenticity of the data packet and its associated provenance are achieved using the
secure packet sequence number generation along with AM-FM sketch technique. A
provenance compression scheme using the dynamic Bayesian network is proposed for
sensor network by Wang et al. [31]. This scheme applies the same techniques as [30],
to secure the data packet and its provenance. However, the main focus of this scheme
is provenance compression. In [32], a dictionary-based scheme for sensor networks is
designed to achieve provenance security and compression. Distributed message digest
mechanism is used to achieve confidentiality, integrity, and availability of data packet
and its provenance.

Similar to Wang et al. [12, 13], an Onion scheme is proposed by Hassan et al.
to detect integrity and confidentially attacks on provenance data. In [14], PKLC is
proposed for distributed information network, designed to mitigate some of the limi-
tations of Onion scheme. For provenance integrity, and ensuring data confidentiality,
RSA, AES, and SHA-1 are used. A mutual-agreement scheme is proposed by Rang-
wala et al. [15] to detect confidentiality and integrity attacks on data provenance. For
non-repudiation, digital signatures are used. Amril et al. [33] propose a scheme to
protect the directed acyclic graph model of provenance. They use digital signatures to
maintain the integrity of provenance data. The data owner and contributor both sign
the nodes and their relationships. To ensure data confidentiality, they use path- based
access control and compartment based access control. Schaler et al. [34] proposed a
watermarking based scheme for reliable provenance for multimedia data.

Aman et al. [35] propose a provenance scheme for Internet of Things (IoT) devices.
Physical Unclonable Function (PUF) and symmetric encryption are used to ensure the
device’s physical and provenance security. Message Authentication Code (MAC) is
deployed to ensure data integrity. A detailed overview of secure provenance schemes
for various distributed systems from the perspective of trustworthy data is provided
in our paper [36]. Fuzel et al. [37] presented a secure provenance using a Merkle
hash tree (MHT) as an authenticated data structure. However, this scheme required
the involvement of a trusted auditor to generate the root of the tree.
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3 Background andModels

In this section, we first provided the necessary background knowledge, definitions, and
terminologies in the subsection Preliminaries. Then, we described the system model
and the threat model for our proposed scheme.

3.1 Preliminaries

Here, we discuss the relevant concepts, system, and threat model.

– Document The document could be a word file, PDF file, website, or database tuple,
created and modified by agents for which provenance needs to be generated. In the
context of this paper, we will use a word file created and modified by the user as
the document, which is modified each time when it is sent to another user resulting
in a provenance record being added to the chain.

– Provenance chain Whenever a document is created or modified, the action per-
formed by users is recorded in form of provenance record denoted by PRi (‘i’
represents the provenance record’s number). Provenance records collectively make
a provenance chain {PR1, PR2 …PRn}. Thus, the provenance chain is a complete
history of the document being created and modified by the users.

– Agent Registered users who perform operations on the document are referred to as
agents. An agent can be a user, owner of the document, a malicious attacker, or a
compromised user.

– ActivityOperations performed on a document, such as create, read, write and delete,
are referred to as activity.

– Trusted auditor This is a trusted and powerful third party tasked to verify the prove-
nance chain.

– Adversary An adversary is one who seeks to attempt undetected forgeries on the
provenance chain, and the adversary can be an external attacker or a compromised
user (which also captures the notion of a malicious insider, such as consecutive
colluding users described next).

– Consecutive Colluding Users Consecutive adversaries are attackers who seek to
launch attacks on a provenance chain to forge, add or re- move provenance records
collaboratively. Suppose Agent2 and Agent3 are consecutive adversaries and they
collude to launch attacks on provenance chain. Such attacks are not considered in
existing schemes, such as those reported in [12–15] (i.e. these schemes assume
transitive trust among participating users; thus, implying that only non-consecutive
users collude to initiate attacks on the provenance chain, e.g. Agent2 and Agent4 are
non-consecutive). Unlike these schemes, our scheme is designed to detect attacks
launched by consecutive colluding users.

3.2 SystemModel

Our systemmodel consists of trusted auditor(s) and a number of users working collab-
oratively to perform specified task(s), and these registered users are denoted Agents
(Agent={Agent1, Agent2, Agent3, …, Agentn})—see Fig. 1.

123



International Journal of Parallel Programming (2020) 48:344–366 349

Fig. 1 System model

3.3 Threat Model

In our threat model, the adversary has the following capabilities.

• A malicious user or multiple colluders, and can add and/or remove selective prove-
nance records from the provenance chain.

• An adversary can repudiate the actions performed on a document.
• An attacker can forge existing provenance records, user signature, and history of
ownership.

• An attacker can gain access to the information of a provenance record.
• A malicious user acting alone or colluding with other consecutive users can shuffle
the order of provenance records.
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4 Proposed Secure Provenance Scheme

A provenance chain is made up of provenance records in a chronological order. The
provenance record provides information about the agents and operations on a docu-
ment, and the structure of each provenance record in our scheme is as follows:

PRi � {
Agent∗i , Activi t y∗

i , S∗
i , H (Doci ), Sig∗

i , RV
}

In the above provenance record, Agent*i is an encrypted ID of the agent who creates
or modifies a document, Activity*i is the encoded information about the operation
(create, delete and write), S*i is the encrypted symmetric key of Agenti, and H (Doci)
represents the hash value of the documentDoci, Docn is the final stage of the document,
andSigi is the signature ofAgenti. Sigi includes the signedhashofAgent∗i ,Activity∗

i ,S
∗
i ,

and H(Doci), and the next signature is an aggregated signature: Sig∗
2 �Sig1 ⊕Sig2.

Non- repudiation attacks can be detected by inspecting the signature field. In our
scheme, provenance records chaining is achieved by aggregating signatures of agents.

RV is a root value in PR1.Whenever a provenance record is added to the provenance
chain, RV is updated at PR1. To calculate RV, Agenti sends his/her signature to the
auditor. The auditor first decrypts the RV and then signs the XOR of aggregated
signature and decrypted RV. The updated RV is sent back to Agenti to append in the
provenance record. The first RV is the XOR of Sig1 (which is not the aggregated one)
and IV. The next RV is calculated by the XOR of decrypted RV and Sig∗

2. For

PR1 : RV � EK +
Aud

(I V ⊕ Sig1)

PR2 : RV � EK +
Aud

(
DecryptKAud (RV ) ⊕ Sig∗

2

)

...

For PRn : RV � EK +
Aud

(
DecryptKAud (RV ) ⊕ Sig∗

n

)

TheKey generation and distribution operation is performed off-line. Every user and
auditor is assigned a pair of public and private keys along with a symmetric key. The
public key of every user/auditor is known publicly, whereas the private key remains
confidential. There is a difference between private key and symmetric key in our
approach. The symmetric key is used for encryption and decryption, and specifically
AES in our scheme; while the private key is used for the RSA digital signature. We
assume that the keys and communication channel between participating users are
secure (Table 1).

4.1 Secure Provenance Generation

When the first user creates a document, a provenance record will be saved in the
associated XML file. From lines 3–10 of Algorithm 1, a complete provenance record
is generated. In line 5, the user’s identity is encrypted using the symmetric key of user
1. Activity is empty because the owner of the document has just created the document
(see line 4). In lines 7 and 8, the user’s symmetric key is encrypted using the public key
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Table 1 Symbols and their
description

Notation Description

Agenti ID of Agenti in plain text

Agent∗i Encrypted ID of Agenti

Activityi Activityi in plain text

Activi t y∗
i Encrypted Activityi

Si Symmetric key of Agenti in plain text

S∗
i Encrypted symmetric key of Agenti

Sigi Digital signature of Useri
Sig∗

i Aggregated digital signature of Useri

IV Initialization vector

RV Root value

⊕ XOR

φ Empty/blank

E Encryption

KAud Public key of auditor

K+
Aud Symmetric key of auditor

H(Doci) Hash value of Documenti
DecryptkAud Decryption process (where KAud is the public

key of auditor)

Decryptki Decryption process (where Ki is the public
key of Agenti)

of the auditor, and the hash value of the document is calculated, respectively. In line 9,
the signature of the user is created that is formed by encrypting the hash value of the
user’s identity, activity, symmetric key and hash of document using user 1′s private
key. In line 10, the root value is calculated and encrypted by the auditor that is an XOR
of the signature and the IV. The first user then passes the document and provenance
to the next user for further processing. The next user performs some operations on
the document and generates a second provenance record. In lines 12–14, the identity
of second user, activity and symmetric key are encrypted. The hash of the document
is generated in line 15, and the signature is XORed with the previous signature in
line 16. Finally, in line 17, the auditor decrypts the RV before XORing the decrypted
value and signature and encrypting the result. The working of provenance generation
algorithm is explained in form of a flow diagram in Fig. 2.
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The provenance generation algorithm is depicted in Fig. 3, where AgentA is the
owner of document DocA and PR1 is generated as: PR1 �Agent∗A, Activity∗

A, S
∗
A, H

(DocA), SigA, RV

SigA � SigAH
(
Agent∗A, Activi t y∗

A, S∗
A, H (DocA)

)

RV � EK + (SigA ⊕ I V )

AgentA and ActivityA are encrypted using the symmetric key of AgentA. To provide
access to the auditor for auditing purpose, the symmetric key of AgentA is encrypted
using KAud and stored in the field S∗

A. The RV is the XOR of SigA and IV signed by
auditor K+. When AgentD receives the document Aud from AgentB and Agentc, all
fields are calculated in the same manner, with the exception of signature and RV . The
signature and RV are as follows:

Sig∗
D � Sig∗

B ⊕ SigD, Sig∗
C ⊕ SigD

here AgentD has two signatures because AgentD received the document from two
users AgentB and AgentC as shown in Fig. 3.

RV � E+
K

(
DecryptKAud (RV ) ⊕ Sig∗)

4.2 Provenance Chain Verification

During audit, to detect malicious modifications in the document, the hash value of
Docn is calculated to compare with H (Docn) of PRn (see lines 2 and 3 of Algorithm
2). If this equation holds true, then the document has not been forged; otherwise, its
integrity has been compromised. The RV is decrypted in line 4 and the auditor XOR
both Sig*n and IV in line 5. If the outcome of line 6 is true, this means the provenance
records are in their original form.Moreover, the auditor checks the order of provenance
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Fig. 2 Provenance generation workflow of our scheme

records and verifies every provenance record to detect the malicious user. In line 8,
the auditor performs an operation of XOR using the current signature and previous
signature. The auditor then decrypts the signature in line 9 and calculates the hash
value of all fields of provenance record in line 10. The decrypted signature and the
hash value is then compared to check the integrity of individual provenance record in
line 12. To verify the first record, the signature is decrypted and hash value is calculated
in lines 14 and 15. If the outcome in line 16 holds true, it means the provenance record
is not forged. The flow diagram in Fig. 4 show the working of provenance verification
algorithm.
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Fig. 3 Document sharing scenario

The Agent and Activity fields in a provenance record are sensitive in nature; thus, to
achieve confidentiality, we encrypt these fields using the relevant user’ symmetric key.
To ensure integrity of the data and provenance record/chain, we use a cryptographic
hash function. This allows us to detect any modifications in the data and provenance
chain simply by comparing the calculated hashwith the hash value obtained by decryp-
tion of the signature field. Non-repudiation is achieved using digital signatures, since
every user signs whenever an operation on document is performed. The provenance
chain is bind with the data, which is available whenever an audit activity is performed.

In lines 2–6 of the provenance verification algorithm, the auditor determines
whether the document and provenance chain has been modified. If the comparison
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Fig. 4 Extended provenance verification workflow for detection of malicious users and provenance forgery
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in lines 3 and 6 of Algorithm 2 holds true, then the integrity of the document and
provenance chain is assured. Regardless of the outcomes of lines 3 and 6 of Algorithm
2, the auditor continues the auditing process to detect provenance records shuffling
attack and malicious user(s). Each individual provenance record is verified by:

Sigi � Sig∗
i ⊕ Sig∗

i−1

Wi � DecryptKi (Sigi )

Sigi is the actual signature of theAgenti, which is then decrypted by the auditor using
Agenti’s public key. Moreover, the auditor calculates the hash value of all elements of
PRi, with the exception of the field of Sigi as:

Xi � H
(
Agent∗i , Activi t y∗

i , S∗
i , H (Doci )

)
.

Finally, the auditor compares the decrypted signature of Agenti and the hash value
of Agent∗i , Activi t y∗

i , S∗
i , H(Doci ). If this comparison holds true, then PRi has not

beenmodified; otherwise,PRi may be forged andAgenti is either an adversary or it has
been compromised. The same procedure continues until the first provenance record in
the reverse order (PRn, PRn−1, PRn−2,…, PR2, PR1). For PR1, there is no need for a
XORoperation because the first signature is not the aggregated one. The auditor simply
decrypts the signature and calculates the hash of

{
Agent∗1 , Activi t y∗

1 , S∗
1 , H (Doc1)

}

as:

U � DecryptK1(Sig1) V � H
(
Agent∗1 , Activi t y∗

1 , S∗
1 , H (Doc1)

)
.

The steps from line 1–6 of Algorithm 2 help us in detection of forgeries in a
document and provenance records/chain. However, these steps cannot detect the attack
of an adversary who shuffles the order of provenance records without forging them.
The remaining steps of Algorithm 2 detect the records shuffling attack. Moreover,
these steps help us to identify the malicious user(s) and forged provenance record(s).

5 Implementation and Evaluation

Provenance generation and its security result in additional overheads in terms of com-
putational and storage costs. Here, we calculate the time needed for generating in
our schemes, as well as three other schemes outlined in Table 2. We implement these
schemes in Java (OS: Windows 8.1 Pro, Core i-3 and RAM GB). For the asymmetric
encryption and digital signatures, we use 1024-bit RSA. We use 128-bit AES for the
symmetric encryption, and SHA-1 to calculate the hash value. The four schemes are
implemented on the same machine and the document is modified whenever it is sent
to the next agent. We remark that provenance transmission and storage evaluations are
beyond the scope of this paper, so we assume a secure transmission among participat-
ing agents. We simulate these four schemes 10 times each and report the average time
required to generate and verify the provenance.
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Table 2 Comparison table

Schemes Detect ownership
history forgery

Record chaining Support dynamic
information
sharing?

Detects attacks by
consecutive
adversaries

[12, 13] No Yes: by
incremental
signature

Yes No

[14] No Yes: by public
keys of users

No No

[15] Yes Yes: by
maintaining
signature of
previous and
next user

Yes No

Proposed scheme Yes Yes: by aggregated
signatures

Yes Yes

5.1 Comparison with Related Schemes

As shown in Table 2, our scheme provides better protection than those in [12–15].
For example, the outermost record of the Onion scheme [12, 13] cannot be protected
because the provenance records are not linked with the next record. In other words,
assume that the provenance chain is (PR1, PR2, PR3, PR4, … PRn), an adversary can
drop certain provenance records PRi to PRn (i≥1ˆi≤n) and place his/her own signa-
ture after PRi−1. This selective record dropping cannot be detected during the audit
activity. On the other hand, the RV in our scheme detects changes in the provenance
chain wherever they are made. Also, an adversary in the PKLC scheme [14] can delete
all records of the provenance chain and claims to be the owner of the document. Thus,
such a scheme cannot be applied in a dynamic information-sharing network where
the next user is not known. In our scheme, the auditor performs XOR operation on RV
and IV (and only the auditor has the knowledge of IV ). Thus, owner history forgery
is not possible. The scheme proposed in [15] maintains the signatures of previous
and next users, and the signature is a concatenation of Ui, Oi, H (Di) and S*i . This is
not cost-effective in terms of storage and computation. If adversaries are consecutive,
then the auditor cannot detect the forgeries in the provenance chain. For instance, if
Ui+1, Ui+2 andUi+3 (i>1) are malicious users and Ui+1 behaves normally and the next
user Ui+2 inserts records betweenUi+3 and him, such a change goes undetected. Also,
when the second last user Un−1 and last Un are adversaries and Un−1 deletes the user
Un and adds another record by appending the next user to his own provenance record,
such attacks cannot be detected as well. Since both PKLC [14] andMutual Agreement
[15] assumed transitive trust, both schemes will not be able to detect attacks launched
by consecutive colluding users. Unlike these schemes, our proposed scheme removes
the transitive trust dependency by maintaining RV signed by the auditor.
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5.2 Secure Provenance Generation

We calculate the time required by the four schemes to generate a provenance record,
and the results are shown in Fig. 5a, b. Our proposed scheme outperforms the other
schemes, in terms of computational cost. PKLC performs well as compared to the
Onion and Mutual Agreement schemes. Our scheme has a lower provenance record
generation time, i.e. 17% lower thanOnion and 11% lower than PKLC. For provenance
records chaining, the Mutual Agreement scheme saves the signatures of previous and
next user, which results in 34% computational overhead.

The Mutual agreement scheme also requires a longer time to generate the prove-
nance record because it uses 4 hashes, three signatures along with the public key. The
overhead of Onion scheme is greater than PKLC because the former uses two hashes,
one signature along with previous signatures, and public key while the later uses two
hashes, one signature, and public key. The overhead reduction of our schemes is due
to the use of two hashes, one signature and a single root value (for whole provenance
chain). We also observe that the computational costs of Onion, PKLC, and mutual
Agreement schemes increase with the increase in the number of provenance records
in the chain.

5.3 Provenance Chain Verification

In the provenance verification phase, we calculate the time needed for verification of a
provenance chain. The verification time of Mutual Agreement and Onion scheme
increases with the increase of the provenance records in a provenance chain. As
depicted in Fig. 6a, b, the verification time of our scheme and PKLC is approxi-
mately same. However, our scheme has a higher level of security as discussed earlier.

We are considering the first construction of theOnion schemewhere the provenance
records contain the signature of the previous provenance record only. The time required
for Onion scheme to verify a provenance chain will increase exponentially if we
consider the spiral construction, where all the signatures of previously participating
users are saved in a single provenance record. To verify a provenance chain, theMutual
Agreement scheme takes a long time as compared to other three schemes because it
verifies three signatures and two hashes of a single record.

The average overhead reduction in verification time of our scheme is 19% lower
than Onion scheme, 11% lower than PKLC, and 50% lower than Mutual Agreement
scheme as depicted in Fig. 7. The verification time required by our scheme will be
reduced up to 50% if we exclude the last attack of our attacker model (shuffling of
provenance records). RV can be calculated by the XOR of the Sign and IV to detect
the forgeries in provenance records.

Mathematically:

Calculated RV � Sig∗
n ⊕ I V

V eri f y : Calculated RV � or �� RV (RV at PR1)
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Fig. 5 Provenance record generation time and overhead reduction. a A single record generation time and b
overhead reduction

5.4 Storage Costs

We convert all the fields of a provenance record into strings in order to display in XML
file and calculate the number of bytes. PKLC has a lower storage cost as compared to
those of Mutual Agreement and Onion schemes. As shown in Fig. 8a, b, our scheme
has reduced storage overhead as compared to the other three schemes. Specifically,
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Fig. 6 Provenance verification time. a A 5 KB TXT file and b a 5 MB PDF file

the proposed scheme has reduced the storage cost of 60, 53 and 27% as compared to
[15, 13, 14] respectively. The storage costs in [13, 15] will increase exponentially as
the number of provenance records increases. The way our proposed scheme calculates
the signatures and root value does not affect the storage cost because of a fix length
root value for entire provenance chain.
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6 Security Analysis

Wewill now demonstrate that our provenance scheme achieves the security properties
in presence of an adversary as described in Sect. 3.

Claim 1 A malicious user cannot forge the ownership of any document by exterminat-
ing the associated provenance chain undetectably.

If a user removes the provenance chain of a document and inserts a new provenance
record to show his/her ownership, then our scheme detects such an ownership forgery.
The RV is generated by the XOR operation of signature and IV that is known to auditor
only.

RV � EK +
Aud

(Sig1 ⊕ I V )

The IV is oblivious to everyone and therefore, the adversary cannot update the RV .
Similarly, the genuine owner cannot impersonate other legitimate users by forging
their provenance records.

Claim 2 Malicious users cannot repudiate their actions or claim that certain prove-
nance records are of another user.

Whenever a document is created or modified, every user must sign (Sigi) the doc-
ument with private key. An attacker modifies the PRi (provenance record of Agenti)
by inserting Sig*i−1 of Agenti−1 instead of the signature of Agenti−1 and forwards to
the next user to proclaim that PRi is of Agenti−1. As we know that Sigi−1 composes
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Fig. 8 Storage cost and overhead reduction of the proposed scheme. a Storage cost and b reduction of storage
overhead

a signed hash of Agent*i−1, Activity
*
i−1, S

*
i−1, and H (Doci-1). When the auditor gen-

erates the hashes of Agent*i , Activity
*
i , S

*
i , and H (Doci), the hash values will differ.

Mathematically,

HashVal � DecryptKi−1

(
Sig∗

i−1

)

H(Ri ) � Hash
(
Agent∗i , Activi t y∗

i , S∗
i , H (Doci )

)

There f ore, HashVal �� H(Ri ).
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Claim 3 An adversary acting alone and/or colluding with other users cannot success-
fully remove the provenance records from the provenance chain being undetected.

Whenmalicious users removePRi andPRi+1 from the provenance chain, the auditor
can easily detect this attack. The RV calculated by auditor will not be the same as the
RV of provenance record PR1.

Mathematically:

RV ∗ � (
Sig∗

n ⊕ Sig∗
n−1, . . . ,⊕Sig1 ⊕ I V

)

Or

RV ∗ � Sign ∗ ⊕I V

RV ∗ �� DecryptKAud (RV )

Claim 4 Two or more than two consecutive colluders cannot add provenance records
in a provenance chain without being detected.

Assume that consecutive colluding users Agenti, Agenti+1, and Agenti+3 add some
records in the provenance chain. During the audit, the RV calculated by the auditor
by performing XOR operation on all signature fields (Sig1, Sig∗

2, …, Sig∗
n) and IV (or

Sig∗
n ⊕ IV ) will not be same as the RV at provenance record PR1 (decrypted RV ). Let

us assume that the original provenance chain is (PR1, PR2, PR3, …, PR5). If some
adversaries add provenance records PR6 and PR7 anywhere in the provenance chain,
then the resultant provenance chain becomes (PR1, PR2, PR3, PR6, PR4, PR5, PR7),
whereCalcRV=Sig1 ⊕Sig∗

2 ⊕Sig∗
3 ⊕Sig6 ⊕Sig∗

4 ⊕Sig∗
5 ⊕Sig7 ⊕ IV orCalcRV=Sig7

⊕ IV
The auditor then compares:

CalcRV � or �� DecryptKAud (RV )

In this way, the auditor can detect any kind of forgery or addition of provenance
records in the provenance chain.

Claim 5 Malicious user acting alone or colluding with other users cannot successfully
perform undetected modifications in the provenance records and signatures.

Assume that an attacker Agenti modifies the fields (Agent*i−1, Activity
*
i−1, S

*
i−1,

H(Doci−1)) of the provenance record PRi−1. During the audit, the hash values of
(Agent*i−1, Activity

*
i−1, S

*
i−1, H(Doci−1)) will not be equal to the decryption of signa-

ture Sigi−1 of Agenti−1.
Formally,

{(
Agent∗i−1, Activi t y∗

i−1, S∗
i−1, H (Doci−1)

)} �� DecryptKi−1 (Sigi−1)
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If the signature (Sig*i−1) is modified, then the forgery can be detected and Sig*i−1
can be retrieved back by:

Sig∗
i−1 � Sig∗

I ⊕ Sigi
(
Sig∗

I � (Sigi ⊕ Sig∗
i−1

)
.

Claim 6 Malicious user acting alone or colluding with other users cannot append a
provenance chain with another document Doc2 undetected.

The last provenance record PRn containsH (Docn), and the auditor obtains the hash
of Doc2.

H (Doc2), The auditor then verifies: H (Docn) ��H (Doc2)
If the comparison holds false, it means that the appended provenance chain isnot

related to document Doc2.

Claim 7 An adversary acting alone or with a set of adversaries cannot shuffle the
order of provenance records without detection.

If the provenance chain is (PR1,PR2,PR3,PR4,PR5,PR6) and an adversary shuffles
the order of records tomake the provenance chain as: (PR1,PR3,PR2,PR5,PR4,PR6).
During the audit phase, the auditor will detect the forgery when he/she verifies the
signatures as:

Sig6 � Sig∗
6 ⊕ Sig∗

4

W6 � DecryptK6(Sig6)

X6 � H
(
Agent∗i , Activi t y∗

i , S∗
i , H (Doci )

)

There f ore, W6 �� X6.

7 Conclusion and FutureWork

As cloud computing and other distributed networks (e.g. social networks, Internet
of Things and cyber-physical systems) become more popular, the need to ensure the
provenance of data becomes increasingly pronounced. In this paper, we studied the
problem of secure and efficient provenance in a distributed environment. Specifi-
cally, we presented a scheme that offers confidentiality; integrity, availability and
non-repudiation, in the sense that attacks on a provenance chain by multiple colluding
users and provenance records shuffling attackswill be detected (as demonstrated in our
security analysis). We also demonstrated that the scheme outperforms other similar
schemes (i.e. [12–15]), in terms of performance. However, one limitation of the pro-
posed scheme is that it requires a trusted auditor during provenance generation phase.
We believe that such trusted auditor is important to carry out the necessary crypto-
graphic operations to detect forgeries. Thus, in the future, we will seek to remove the
trusted auditor from the designwithout compromising on the security and performance
of the scheme.
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