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Abstract
When collecting the Internet of Things data using various sensors or other devices,
it may be possible to miss several kinds of values of interest. In this paper, we focus
on estimating the missing values in IoT time series data using three interpolation
algorithms, including (1) Radial Basis Functions, (2) Moving Least Squares (MLS),
and (3)Adaptive InverseDistanceWeighted. To evaluate the performance of estimating
missing values, we estimate the missing values in eight selected sets of IoT time series
data, and comparewith those imputed by the standard kNNestimator. Our experiments
indicate that in most experiments the estimation based on the Lancaster’s MLS is the
best. It is also found that the number of nearest observed values for reference and the
distribution of missing values could strongly affect the accuracy of imputation.

Keywords Internet of Things (IoT) · Time series · Missing values · Interpolation ·
Data imputation

1 Introduction

Nowadays, Internet of Things (IoT) [5,18,26] is one of the promising technologies
that have attracted lots of attention in both industrial and academic fields [11]. IoT
aims to integrate seamlessly both physical and digital worlds in one single ecosystem
that makes up a new intelligent era of Internet [15], which has been widely applied
in the fields of smart agriculture [28], smart cities [1,21], smart home [2,9,24], and
personalised healthcare [17]. In short, IoT can be considered as the extension and
expansion of the Internet, which has and will affect many fields in our daily life both
on personal and business levels.
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In the IoT, data represents the bridge that connects digital and physical worlds. Data
is quite critical in the IoT due to its utility from the need of ways to represent and
manipulate the huge amount of raw data expected to be generated from the “things”.
A major characteristic of the IoT data is its large amount. This is due to the fact that:
technological advances have impressively enhanced the “data harvesting” capabilities
of embedded sensor devices resulting in more generated data and more continuous
data streams from the real world.

When analyzing the IoT data, a critical issue needed to be carefully dealt with is
the data quality. Data quality is crucial to gain user engagement and acceptance of
the IoT paradigm and services. If data are of poor quality, decisions are likely to be
unreasonable [10]. In general, there are two categories of values in the IoT data that
can strongly reduce the quality of data gained in the IoT, i.e., the abnormal values and
the missing values. The existence of the abnormal values and missing values is mainly
due to incorrect response or nonresponse.

To improve the data quality reduced bymissing values, many approaches have been
proposed for dealing with the missing values in the IoT data. These approaches can
be broadly classified into statistical and machine learning techniques [27]. The statis-
tical techniques for estimating missing values are usually based on mean/mode and
regression, which have been widely used for a long time. In the recent years, several
powerful machine learning techniques occur and have been frequently used to impute
missing values in various Big Data. For example, the k Nearest Neighbor (kNN), Arti-
ficial Neural Network (ANN), Support Vector Machine (SVM), and Random Forest
(RF) techniques have been employed in missing data imputation [16,22,25].

When dealing with the missing values in IoT data, two critical issues need to
be carefully considered, i.e., the estimation accuracy and computational efficiency.
Typically, more complex algorithms for imputing missing values might be able to
produce better imputation results but will generally require a higher computational
cost. Most machine learning techniques are usually more computationally expensive
than many statistical techniques due to the (off-line) model training and construction
process they entail. However, one exception is that the kNN technique is the most
computationally efficient in most cases because it is the Lazy Learning [23].

The standard kNN estimator [8] for imputing missing values is in fact a straightfor-
ward interpolant. It can be considered as a specific version of the Shepard’s method
[19] since it has the same principle as that of the basic form of the Shepard’s method.
Motivated by estimating missing values using the Shepard’s interpolant / kNN estima-
tor, we are quite interested in assessing the performance (i.e., the estimation accuracy
and computational efficiency) of imputing missing values using several of other inter-
polation algorithms.

There have been several research work focusing on imputing missing values using
various interpolation algorithms. For example, Beveridge [3] extended the minimum
mean square error linear interpolator to handle missing values in time series for any
pattern of nonconsecutive observations. Bhattacharjee et al. [4] proposed semantic
Kriging to blend the semantics of spatial features of surrounding data points with
ordinary Kriging (OK) method for prediction of the missing attribute in Geographic
Information System(GIS). Shtiliyanova et al. [20] explored the properties of Kriging
to impute missing data in air temperature series.
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In this paper, we focus on estimating the missing values in IoT data using various
interpolation algorithms. Specifically, we employ the interpolants based on (1) Radial
Basis Functions (RBF), (2) Moving Least Squares (MLS), and (3) Adaptive Inverse
Distance Weighted (AIDW) to predict the missing values occurring in the IoT time-
series data. To the best of the authors’ knowledge, there is currently no such research
work.

The rest of this paper is organized as follows. Section 2 introduces the method
for estimating the missing values in IoT data using several different interpolation
algorithms. Section 3 presents the benchmark experiments and Sect. 4 discusses the
experimental results. Finally, Sect. 5 draws several conclusions.

2 Material andMethods

In this paper, our objective is to compare the estimation of missing values in IoT
time series data when using the MLS, RBF, and AIDW interpolation algorithms. In
this section, we will first briefly introduce the principle of the above mentioned three
interpolation algorithms, and then describe the process of comparing the estimation
of missing values in IoT time series data.

2.1 Brief Introduction to theMLS, RBF, and AIDW Interpolation

2.1.1 The Orthogonal MLS Interpolation Algorithm

For a given polynomial basis function pi (x), there is an orthonormal basis function
qi (x, x̄) , i = 1, 2, . . . ,m (m is the number of the basis functions), which satisfies:

q1 (x, x̄) = p1 (x) ,

qi (x, x̄) = pi (x) −
i−1∑

j=1

αi j (x, x̄)q j (x, x̄) , (1)

where

αi j (x̄) =
∑n

k=1 wk (x̄) pi (xk) q j (xk, x̄)∑n
k=1 wk (x̄) q2j (xk, x̄)

. (2)

Because the coefficient matrix is a diagonal matrix, the solving for ai (x) does not
require the inversion of matrix, i.e.,

ai (x̄) =
∑n

k=1 wk (x̄) qi (xk, x̄) fk∑n
k=1 wk (x̄) q2i (xk, x̄)

, (3)

where n is the number of data points.
When the number or order of basis functions increases, it only needs to calculate

am+1 andαm+1 inSchmidt’s orthogonalization. It is not needed to recalculate all entries

123



International Journal of Parallel Programming (2020) 48:534–548 537

in the coefficient matrix. This could reduce the computational cost and probably also
reduce the computational error.

2.1.2 The Lancaster’s MLS Interpolation Algorithm

To make the approximation function f h (x) constructed by the interpolation type
moving least square method satisfy the properties of the Kronecker δ function, a
singular weight function is adopted:

ω (x, xk) =
{ ‖(x − xk)/ρk‖-α ,

0,
‖x − xk‖ ≤ ρk
‖x − xk‖ > ρk

. (4)

Let p0 (x) ≡ 1, p1 (x) , . . . , pm̄ (x) denote the basis functions used to construct
the approximation function, where the number of basis functions is m̄ + 1. To be able
to implement interpolation properties, a new set of basis functions is constructed for
a given basis function. First, p0(x) is standardized, i.e.,

p̃0 (x, x̄) = 1
[

n∑
k=1

ω (x, xk)

]1/2 , (5)

Moreover, we construct a new basis function of the following form:

p̃i (x, x̄) = pi (x̄) −
n∑

k=1

ω (x, xk)
n∑

l=1
ω (x, xl)

Pi (xk). (6)

2.1.3 The RBF Interpolation Algorithm

Let X = {x1, x2, . . . , xn} be a set of pair wise distinct points in a domainΩ ⊆ Rd with
associated data values fi , i = 1, 2, . . . , n. We consider the problem of constructing a
d-variety function F ∈ Ck

(
Rd

)
that interpolates the known data. Namely, we require

F (xi ) = fi , i = 1, 2, . . . , n. If we denote F in the form

F (x) =
n∑

j=1

w jϕ
(∥∥xi − x j

∥∥
2

)
, (7)

where ϕ : [0,∞] → R is a suitable continuous function, then the interpolation
conditions become:

n∑

j=1

w jϕ
(∥∥xi − x j

∥∥
2

) = fi , i = 1, 2, . . . , n. (8)
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2.1.4 The AIDW Interpolation Algorithm

TheAIDW is an improved version of the standard IDW [19], which is originated by Lu
and Wong [12]. The distance-decay parameter α is no longer a pre-specified constant
value but adaptively adjusted for a specific unknown interpolated point according to
the distribution of the nearest neighboring data points.

2.2 Comparison of EstimatingMissingValues Using Different Interpolation
Algorithms

2.2.1 The Baseline Estimator for Comparison

We employ the standard kNN method [8] as the baseline to examine the estimation
of missing values. In the kNN method, the estimates of the missing observations are
calculated as weighted averages of the k nearest neighboring observations:

ŷ j =
∑k

i=1 wi j yi∑k
i=1 wi j

, (9)

where, k is a number of nearest neighboring observations, yi is the observed value of
dependent variable, ŷ j is the respective prediction for missing observation j , and wi j

is the weight of a neighboring observation i for the missing observation j .
The weight is calculated as follows:

wi j =
(

1
di j

)pm

∑k
i=1

(
1
di j

)pm , (10)

where di j is the similarity distance between i and j , and pm is theweighting parameter
(i 	= j).

The distance di j is defined as

di j =
L∑

l=1

cl
∣∣xil − x jl

∣∣ , (11)

where L is the number of independent variables, and c is their respective weights.
In this work, we aim at estimating a single independent variable in each imputation.
Thus, L is 1, and c is ignored in the imputation.

2.2.2 Measures for Evaluating the Estimated Missing Values

The estimation accuracy and computational efficiency are critical in any methods
for imputing missing values. In this work, we will compare both the accuracy and
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Table 1 Employed IoT time series data in our experiments

Dataset City Selected
attribute

Number of all
observations

Number of missing
observations

Missing
rate (%)

City air quality
in China

Beijing PM2.5 52560 2174 4

Shanghai PM2.5 30816 2062 7

Chengdu PM2.5 35136 1103 3

Shenyang PM2.5 23592 1913 8

City air quality
in Italy

Milan CO 9351 1683 18

Milan C6H6 9351 366 4

Milan NOX 9351 1639 18

Milan NO2 9351 1642 18

efficiency of the MLS, RBF, AIDW, and kNN estimators in the estimation of missing
values in several time series datasets.

We use two measures, i.e., the Root Mean Square Error (RMSE) and the Standard
Deviation (SD), to evaluate the estimation ofmissing values in IoT time series data. The
RMSE is used to measure the accuracy of the estimated missing values by comparing
to the observed values. The SD is used to quantify the amount of variation or dispersion
of (1) each dataset without the missing values and (2) each dataset with the estimated
missing values.

We also record the imputation time to compare the efficiency. Note that when the
size of the employed dataset is not large, the computational time of imputation cannot
be counted apparently. Thus, we will repeat the same imputation several times and
then obtain the average computational time.

3 Results

3.1 Employed IoT Time Series Data

In our experiments, we use two datasets of city air quality obtained from the UCI
Machine Learning Repository (http://archive.ics.uci.edu/ml/index.php). Note that
there aremultiattributes in each dataset, but only several of those attributes are selected
for the estimation of missing values. Basic information of those employed datasets is
listed in Table 1.

3.2 Accuracy of EstimatingMissingValues in IoT Time Series Data

For each set of selected variables, we sequentially select 90% observed values as the
training / known observations, and assume the rest 10% values as the testing / missing
observations; see Fig. 1. It should be noted that in fact the 10%missing values have the
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Training subsets Testing subsets

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Fig. 1 The sequentially selected training subset (90%) and the testing subset (10%)

(a) (b)

Fig. 2 Comparison of the RMSE when k = 10. a The concentration of PM 2.5 in four Chinese cities. b
The concentration of four gases in Milan

(a) (b)

Fig. 3 Comparison of the RMSE when k = 20. a The concentration of PM2.5 in four Chinese cities. b The
concentration of four gases in Milan

really observed values, after imputing, the estimated values of the assumed missing
observations will be compared to the predicted values.

To compare the performance of the interpolation algorithms to that of the kNN esti-
mator, we also select the k nearest neighboring observations to impute those missing
observations. That is, all the estimators are on the basis of local rather than global
reference observations. We have configured the k as 10, 20, 40, 80, and 160, and
then obtained the imputation accuracy. The imputation accuracy is measured with the
RMSE; see Figs. 2, 3, 4, 5 and 6.

The results illustrated in Figs. 2, 3, 4, 5 and 6 show that:
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(a) (b)

Fig. 4 Comparison of the RMSE when k = 40. a The concentration of PM2.5 in four Chinese cities. b The
concentration of four gases in Milan

(a) (b)

Fig. 5 Comparison of the RMSE when k = 80. a The concentration of PM2.5 in four Chinese cities. b The
concentration of four gases in Milan

(a) (b)

Fig. 6 Comparison of the RMSE when k = 160. a The concentration of PM2.5 in four Chinese cities. b
The concentration of four gases in Milan
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(a) (b)

Fig. 7 Computational efficiency of imputing missing values when using different estimators. a Imputing
the concentration of PM2.5 when k = 80. b Imputing the concentration of four gases when k = 20

When k = 10, the accuracy of the RBF estimator is the lowest, the kNN and AIDW
estimators can achieve better accuracy, and those three MLS estimators are the best.

When k = 20, the accuracy of the RBF estimator is still the lowest, the kNN and
AIDW estimators can achieve better accuracy, and the Lancaster’s MLS estimator is
the best.

When k = 40, for the estimation of PM2.5 concentration, the accuracy of the RBF
and the Orthogonal MLS estimators are the lowest, the kNN and the Lancaster’s MLS
estimators can achieve better accuracy, and the AIDW estimator is the best. For the
estimations of other gas concentrations, the accuracy of the RBF and the Orthogonal
MLS estimators are also the lowest, the kNN and AIDW estimators can achieve better
accuracy, and the Lancaster’s MLS estimator is the best.

When k = 80, the kNN and Lancaster’s MLS estimators are the best.
When k = 160, the kNN and Lancaster’s MLS estimators are still the best.
In general, it could be summarized that the Lancaster’s MLS estimator performs

well in most cases.

3.3 Efficiency of EstimatingMissingValues in IoT Time Series Data

The computational efficiency of those five estimators in the imputation of air quality
data is illustrated in Fig. 7. It can be observed that: for the same variable and the fixed
value of k, the RBF estimator is the slowest and the kNN estimator is the fastest.

4 Discussion

4.1 Effect of Values of k on the Estimation Accuracy

When using the MLS, RBF, AIDW, and kNN estimators to impute missing values
in IoT time series data, a number of k nearest observations are selected. The use of
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(a) (b)

(c) (d)

Fig. 8 Impact of values of k on theRMSEwhen imputing the concentration of PM2.5. aBeijing.bShanghai.
c Chengdu. d Shenyang

different values of k might stongly affect the accuracy of estimation. In our experi-
ments, we configured the values of k as 10, 20, 40, 80, and 160, and then compared
the estimation accuracy; see Figs. 8 and 9.

The experimental results indicate that: for any of the five estimators, the RMSE
of imputation in general become larger with the increase of values of k. Noticabely,
the accuracy when using the RBF estimator is the most significantly reduced, and the
accuracy of the AIDW estimator fluctuates.

The above behavior is probably because of the following reasons. When the
value of k is too small, the local trend of the time series data would be magni-
fied, and the global trend would be masked. This may lead to large deviations or
even extreme predicted values (see Fig. 10a). In contrast, when the value of k is too
large, the local trend of the time series data cannot be preserved or reflected, and
the global trend would become too smooth to produce inaccurate predictions (see
Fig. 10b).
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(a) (b)

(c) (d)

Fig. 9 Impact of values of k on the RMSE when imputing the concentration of four gases in Milan. a CO.
b C6H6. c NOX . d NO2

4.2 Influence of Distribution of MissingValues on the Estimation Accuracy

In our experiments, we have sequentially selected 90% of the observed values as
the training subset and the rest 10% as the testing subset. After imputing the assumed
missing values in the testing subset, we have calculated theRMSEof the predicted 10%
subset. According to this group of experiments, we have found that: the Lancaster’s
MLS estimator can achieve the highest accuracy in most cases, while the RBF is the
worst.

Furthermore, we have also predicted the real rather than assumed missing values
in the time series data. More specifically, we have used all the really observed values
to interpolate the really missing values (see Table 1). After the interpolating, we
calculate the SD rather than RMSE of (1) the original dataset without the predicted
missing values and (2) the entire dataset including the predicted missing values; see
Figs. 11 and 12.

If the SD calculated in the above two cases differs significantly, then it indicates that
the prediction is not well performed. The main reason is that: if the size of successive
missing values is large, the value near the middle of the missing segment may be
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Observed values Missing values

Observed values Missing values

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

(a)

(b)

Fig. 10 Illustration of the impact of values of k on the imputed missing values. a Imputing when k = 10.
b Imputing when k = 20

(a) (b)

Fig. 11 Comparison of the SD when k = 20. a The concentration of PM2.5 in four Chinese cities. b The
concentration of four gases in Milan
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(a) (b)

Fig. 12 Comparison of the SD when k = 80. a The concentration of PM2.5 in four Chinese cities. b The
concentration of four gases in Milan

Observed values Missing values 

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

(b)

Fig. 13 Distribution of missing values. a The size of successive missing values is small; b The size of
successive missing values is large

calculated as an extreme value when using the MLS or RBF predictor; see Fig. 13.
In this case, the calculated SD of the entire dataset with the predicted missing values
would be quite large. In contrast, if the size of successive missing values is small, the
SD would not be quite large.

However, in the above two cases, the SD calculated when using the AIDWand kNN
do not differ apparently. This is probably because that the predicted values calculated
by the two methods are not larger than the maximum value of the original data set and
are also not smaller than the minimum value of the original dataset.

5 Conclusions

In this paper, we have compared the performance of estimating missing values in
IoT time series data by using different interpolation algorithms. Specifically, we have
imputed the missing values in eight selected sets of time series data using three cat-
egories of interpolation algorithms (i.e., the MLS, RBF, and AIDW). We have found
that in most experiments the estimation based on the Lancaster’s MLS is the best.
We have also found that the value of k and the distribution of missing values could
strongly affect the accuracy of imputation.

123



International Journal of Parallel Programming (2020) 48:534–548 547

The computational efficiency is one of the critical issues in estimating missing
values, in particular, for the large-scale IoT time series data. In the current work, we
only consider the computational efficiency of estimatingmissing values for small-scale
IoT time series data. In the future, we will focus on large-scale IoT data and examine
the computational efficiency of parallel interpolation algorithms such as those GPU-
accelerated interpolation algorithms [6,7,13,14].
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