
Int J Parallel Prog (2019) 47:234–252
https://doi.org/10.1007/s10766-018-0564-z

Fish School Search with Algorithmic Skeletons

Fabian Wrede1 · Breno Menezes1 · Herbert Kuchen1

Received: 8 September 2017 / Accepted: 2 March 2018 / Published online: 9 March 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract Low-level parallel programming is a tedious and error-prone task, especially
when combining several programming models such as OpenMP, MPI, and CUDA.
Algorithmic skeletons are a well-known high-level solution to these issues. They
provide recurring building blocks such as map, fold, and zip, which are used by
the application programmer and executed in parallel. In the present paper, we use
the skeleton library Muesli in order to solve hard optimization problems by applying
swarm intelligence (SI)-basedmetaheuristics.We investigate, howmuch hardware can
reasonably be employed in order to find quickly a good solution using Fish School
Search (FSS), which is a rather new and innovative SI-based metaheuristic. Moreover,
we compare the implementation effort and performance of low-level and high-level
implementations of FSS.

Keywords Algorithmic skeletons ·Metaheuristics · Swarm intelligence · Fish School
Search

1 Introduction

In order to fully exploit the computational capacity of high performance computers,
programmers need in-depth knowledge of low-level parallel programming models

B Fabian Wrede
fabian.wrede@uni-muenster.de

Breno Menezes
b_mene01@uni-muenster.de

Herbert Kuchen
kuchen@uni-muenster.de

1 ERCIS, University of Münster, Leonardo Campus 3, 48149 Münster, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-018-0564-z&domain=pdf
http://orcid.org/0000-0003-3927-7931

Int J Parallel Prog (2019) 47:234–252 235

and have to combine them in a non-trivial way. These are for example OpenMP [1]
for shared memory or MPI [2] for distributed memory architectures. Additionally,
in the recent decade, accelerators such as Graphics Processing Unit (GPUs) or the
Intel Xeon Phi, emerged to further increase the possible performance. They require
an additional framework such as CUDA [3] or OpenCL [4] to be used. Low-level
parallel programming is error-prone, since the application programmer has to deal
with tasks such as communication, synchronization, and data transfer from main
memory to GPU memory and vice versa, and it requires a lot of effort. High-level
parallel programming models such as algorithmic skeletons [5] shield the application
programmer from these low-level aspects and provide a structured way of parallel
programming. Thus, they reduce the effort required to develop parallel programs
and also the amount of training required to be able to develop parallel programs.
Algorithmic skeletons comprise well-known data- and task-parallel building blocks
such as map, fold, and zip or farm, branch-and-bound, and divide-and-conquer. In
this work, we strive for applying algorithmic skeletons to the domain of metaheuris-
tics.

Metaheuristics are used when computing optimal solutions for optimization prob-
lems is intractable. In these cases, metaheuristics are able to find “good” solutions in
a feasible time [6]. Swarm Intelligence (SI) algorithms are part of the population-
based metaheuristics family. In this family, individuals move through the search
space in order to find a good solution. The algorithms use nature-inspired meth-
ods that determine the way the individuals move and cooperate with each other
[7].

In the SI family, Fish School Search (FSS) [8] is inspired by the behavior of a fish
school looking for food. One of the main features of FSS is the ability to change its
behavior along the search process, alternating between exploration and exploitation
(expanding or contracting the whole fish school). Studies have shown that FSS is a
good candidate for solving hard optimization problems [9].

However, for some problems even metaheuristics need a large amount of time to
solve them. This is particularly true for problems with a large number of dimensions or
with a very complex fitness function. In such cases, parallelism can help. In particular,
clusters of multi-core computers provide the necessary computational power, which
can be exploited.

Themain contribution of this paper is a case study in the domain of SImetaheuristics
comparing the implementation effort and performance of a low-level implementation
based on frameworks such as MPI and OpenMP to a high-level implementation based
on data-parallel algorithmic skeletons. Moreover, we demonstrate the importance of
a parallel implementation of FSS to solve complex problems in a reasonable amount
of time.

This paper is structured as follows. In Sect. 2, we explain the details of FSS. Sec-
tion 3 justifies its parallelization. In Sect. 4, the implementations are explained for
both approaches explored in this research, low- and high-level. Both approaches are
compared in Sect. 5 regarding the implementation effort and the performance of the
resulting implementations. Related work is discussed in Sect. 6. Finally in Sect. 7, we
conclude and and point out future work.

123

236 Int J Parallel Prog (2019) 47:234–252

2 Fish School Search

Mimicking the collectivemovements of a fish school, FSS has as itsmain characteristic
the ability to switch between exploration and exploitation automatically during the
search process [8]. FSS also includes the concept of weight such that a fish gets
heavier or lighter according to the success of its last movement. As it gets heavier, it
has more influence on the behavior of the whole school, attracting other fish.

During the search process, each fish (a candidate solution) has three movement
components, namely individual movement, instinctive movement, and volitive move-
ment. The individual movement is random (Eq. 1). In the case of an improvement, the
fish stays in that position. Otherwise it returns to its previous position.

ni, j (t) = xi, j (t) + rand(−1, 1) ∗ stepind (1)

where xi, j (t) is the position of fish i in iteration t (where 1 ≤ i ≤ N) in dimension
j (where 1 ≤ j ≤ d), ni, j (t) is the candidate position for the same dimension and
stepind is the step size for the individual movement previously set.

The position of the fish is updated just in the case that it has improved. The fitness
variation must then be updated according to Eq. 2 and the displacement variation
according to Eq. 3.

Δ fi (t) = f (#»ni (t)) − f (#»xi (t)) (2)

Δ #»x i (t) = #»ni (t) − #»xi (t) (3)

If the candidate solution has a lower fitness than the current position of the fish,
the movement is discarded and both, fitness variation and displacement variation, are
equal to zero.

After the individualmovement, the feeding operator is applied and all fish have their
weight updated. The weightWi of fish i is updated using Eq. 4. In order to control the
growth of all weights, the new factor is a percentage of the maximum fitness variation
in that iteration, represented by max(Δ f (t)).

Wi (t + 1) = Wi (t) + Δ fi (t)

maxNk=1(Δ fk(t))
(4)

The second movement component is the instinctive movement. During this phase,
the fish are attracted to the successful areas regarding the last movement. Only fish
that improved during the individual movement influence the resulting direction of the
school on this movement component. The direction is calculated using Eq. 5 and then
all fish update their positions according to Eq. 6.

#»
I (t) =

∑N
i=1 Δ #»x i (t)Δ fi (t)
∑N

i=1 Δ fi (t)
(5)

#»x i (t + 1) = #»x i (t) + #»
I (t) (6)

123

Int J Parallel Prog (2019) 47:234–252 237

The volitive component is responsible for switching between exploration and
exploitation. In order to perform this step, it is necessary to calculate the total weight
and the barycenter

#»
B(t) (Eq. 7) of the fish school, and each fish must calculate the

Euclidean distance between its current position and the barycenter of the school. If
the fish school has a higher weight than in the last iteration, which means that it has
improved, the fish school contracts in order to exploit an area. Thus each fish moves
towards the barycenter. On the other hand, if the fish school did not improve, it needs
to explore other areas. In this case, each fish moves away from the barycenter and the
whole fish school expands (Eq. 8).

#»
B(t) =

∑N
i=1

#»x i (t)Wi (t)
∑N

i=1 Wi (t)
(7)

#»x i (t + 1) = #»x i (t) ± stepvol · rand(0, 1)
#»
B(t) − #»x i (t)

distance(#»x i (t),
#»
B(t))

(8)

where distance() calculates the Euclidean distance between the position of the fish
and the barycenter of the school. stepvol is pre-determined and controls the displace-
ment of the fish.

The vanilla version of FSS follows the steps in Algorithm 1:

Algorithm 1 Fish School Search
1: Initialize all fish in random positions and with the same weight
2: while stop criterion is not met do
3: for each fish do
4: Evaluate Fitness Function
5: Perform Individual Movement
6: Evaluate Fitness Function
7: Feeding

8: Calculate Instinctive Movement Direction
9: for each fish do
10: Perform Instinctive Movement
11: Calculate Sum of Weights
12: Calculate Barycenter
13: for each fish do
14: Perform Volitive Movement
15: Increment Step State

3 Motivation for Parallel Implementation of FSS

An obvious approach for a parallel implementation of FSS is to process the fish in
parallel. FSS differs slightly from other parallel computing problems in the sense that
it is not the goal to process a given amount of work in the shortest possible time or with
the highest possible speedup. Instead, the goal is to find a good (ideally the optimal)
solution as quickly as possible. Considering larger fish schools and hence investing
more parallelism might help, but it may also happen that a small fish school suffices.

123

238 Int J Parallel Prog (2019) 47:234–252

Fig. 1 Results for Rastrigin function with 512 dimensions and 5000 iterations

There are four main factors that influence the computational complexity of FSS
and should be considered when designing a parallel implementation:

– the number of fish,
– the complexity of the fitness function,
– the number of dimensions of the search space, and
– the number of iterations.

If the fitness function is complex, the importance of the communication overhead
(e.g. for computing the barycenter) is reduced, enabling good speedups for given
numbers of fish, dimensions, and iterations. The fitness function and the number
of dimensions depend on the given optimization problem and cannot be influenced
by the developer. The number of dimensions and the shape of the search space are
important for the number of fish, which can effectively be employed. For a simple
search space, a small number of fish finds a good solution almost as quickly as a large
one.

We found that the question, whether a larger number of fish leads more quickly
to better results, is highly dependent on the given problem. Figure 1 shows the fit-
ness of the best found solution for the Rastrigin function with 512 dimensions and
5000 iterations. The results are based on the average of 30 runs. The test has been
designed as a minimization problem. Thus a lower fitness value is better. The results
show that a high number of fish can certainly lead to improved results for this prob-
lem.

In the diagram in Fig. 1 there is a step between 8192 and 16,384 fish. As described
above, FSS has the ability to switch between exploration and exploitation of the search
space, which happens in the collective movement operators. For the collective move-
ment to work effectively a certain threshold of fish is necessary. The same pattern
can be observed for other benchmark functions. For example for the less complex
Schwefel function, the step from 256 to 512 fish leads to an improvement for the
fitness of 9.93%, while the next step to 1024 fish improved the fitness by 30.1%. A

123

Int J Parallel Prog (2019) 47:234–252 239

Fig. 2 Results for the supply chain planning scenario with 512 dimensions and 5000 iterations

swarm needs to have a certain size in order to reach another promising “valley” of
the fitness function. If it finds it, the improvement can be arbitrarily large. Another
related observation is that increasing the population size typically leads to an improved
fitness.

In addition to classic benchmarks as the mentioned ones, we have also considered a
practically relevant large supply chain network planning problem. In this scenario, the
overall costs of a supply chain network are minimized by optimizing the production,
inventory, and transportation quantities. The corresponding fitness function is defined
in [10]. The results are presented in Fig. 2. Here with up to 131,072 fish, better
solutions can be found than with less fish. However, good solutions can already be
reached with 8192 fish. Summing up, the optimal number of fish highly depends on
the given problem.

Another point to mention is the number of iterations. In FSS each iteration depends
on the results of the previous iteration. Thus, there is no potential for parallelization
here. However, one could launch several fish schools (i.e. searches) in parallel.Making
sure that different fish schools explore different regions of the search space would then
be a non-trivial implementation problem. In the present paper, we focus on a single
fish school. Nevertheless, a higher number of fish might reduce the required number
of iterations to find an equivalent solution.

Figure 3 shows the results for the supply chain network planning scenario with a
varying number of iterations and fish. The results are also listed in Table 1. They show
that in fact there is a trade-off between the number of fish and the number of iterations.
For example, the fitness for 211 fish and 5000 iterations is 2,114,722. For 215 fish and
only 3000 iterations, a better fitness can be achieved. Consequently, if the execution
time is a major concern and the hardware is available, it is possible to increase the
number of fish, which can be processed in parallel, in order to decrease the number of
sequential iterations.

123

240 Int J Parallel Prog (2019) 47:234–252

Fig. 3 Results for the supply chain planning scenariowith a varying population size andnumber of iterations

Table 1 Fitness for supply chain planning scenario with varying number of fish and iterations

Population size Iterations Fitness Population size Iterations Fitness

256 1000 293,261,600 8192 1000 48,719,440

256 2000 162,427,900 8192 2000 11,634,620

256 3000 82,337,390 8192 3000 4,015,172

256 4000 52,475,350 8192 4000 2,112,031

256 5000 34,218,760 8192 5000 1,665,966

512 1000 231,193,900 16,384 1000 34,089,000

512 2000 89,416,500 16,384 2000 8,090,774

512 3000 46,469,710 16,384 3000 2,750,193

512 4000 29,400,850 16,384 4000 1,676,880

512 5000 16,552,050 16,384 5000 1516,044

1024 1000 156,689,500 32,768 1000 28,475,360

1024 2000 55,633,740 32,768 2000 4,411,987

1024 3000 23,185,670 32,768 3000 2,078,623

1024 4000 11,027,930 32,768 4000 1,614,690

1024 5000 7,537,969 32,768 5000 1,442,766

2048 1000 113,896,900 65,536 1000 16,164,340

2048 2000 32,792,400 65,536 2000 3,296,976

2048 3000 11,649,350 65,536 3000 1,677,916

2048 4000 5,314,763 65,536 4000 1,450,626

2048 5000 2,947,324 65,536 5000 1,399,154

4096 1000 71,199,710 131,072 1000 11,027,460

4096 2000 21,038,060 131,072 2000 2,190,810

4096 3000 6,786,763 131,072 3000 1,569,670

4096 4000 3,845,317 131,072 4000 1,426,930

4096 5000 2,114,722 131,072 5000 1,368,174

123

Int J Parallel Prog (2019) 47:234–252 241

4 Parallel Implementation of FSS

In the following subsections, we outline the parallel implementations of FSS.We have
considered a low-level implementation based on MPI and OpenMP and a high-level
implementation based on Muesli.

4.1 Low-Level Parallel Implementation with OpenMP and MPI

Asalreadymentioned, the low-level implementation iswritten inC++directly basedon
OpenMP andMPI. The implementation is rather straightforward in the sense that only
well-known pragmas are used, such as #pragma omp parallel for without
further parameters such as schedule , i.e. GCC’s default settings with dynamic
scheduling and a chunk size of 1 are used. Consequently, it is optimized to a degree
that is expectable from an average application programmer who is not experienced
in parallel programming. This matches the typical target group for high-level parallel
programming approaches.

The implementation uses conventional vectors to store fish objects. Each of these
objects comprises all the information related to one fish, such as the current posi-
tion, weight, and the fitness. Moreover, a global state object is used to keep track of
information, such as the current iteration and the step size.

Algorithm 2 Low-level parallel implementation of FSS.
1: for each fish in parallel do � omp parallel for, omp simd
2: initialize fish in random position and with weight = 1

3: while iteration_counter < number_of_iterations do
4: for each fish in parallel do � omp parallel for, omp simd
5: evaluate fitness function
6: perform individual movement
7: evaluate fitness function
8: calculate maximum fitness variation � MPI_Allreduce
9: for each fish in parallel do � omp parallel for
10: perform feeding

11: calculate inst. movement direction � omp parallel for (reduction), MPI_Allreduce
12: for each fish in parallel do � omp parallel for, omp simd
13: perform instinctive movement

14: calculate sum of weights � omp parallel for reduction, MPI_Allreduce
15: calculate barycenter � omp parallel for (reduction), MPI_Allreduce
16: for each fish in parallel do � omp parallel for, omp simd
17: perform volitive movement

18: update step size, iteration

The implementation including the used OpenMP and MPI constructs is out-
lined in Algorithm 2. The individual movement operator basically consists of two
nested for-loops, with the outer loop iterating over the fish and the inner loop iter-
ating over the dimensions. Consequently, we used a parallel for-loop for the outer
loop (#pragma omp parallel for) and a SIMD instruction for the inner loop
(#pragma omp simd).

123

242 Int J Parallel Prog (2019) 47:234–252

The collective movement components require reductions. This is for example the
case for the calculation of the fitness variation sum in the instinctive movement
component and for the calculation of the total weight of the fish school in order
to calculate the barycenter in the volitive movement. All reductions are handled
by an OpenMP reduction, e.g. #pragma omp parallel for reduction
(+:fitness_variation_sum) followed by MPI_Allreduce.

1 void feeding () {
2 size_t number_of_fish = state.getNumberOfFish ();
3 // get global max fitness variation
4 double max_fitness_variation = 0.0;
5 double local_max_fitness_variation =

state.getHighestFitnessVariation ();
6 MPI_Allreduce (& local_max_fitness_variation ,

&max_fitness_variation , 1, MPI_DOUBLE , MPI_MAX ,
MPI_COMM_WORLD);

7 // update weight of each fish
8 if (max_fitness_variation > 0) {
9 #pragma omp parallel for

10 for (size_t i = 0; i < number_of_fish ; ++i) {
11 double current_fitness_variation =

state.getFitnessVariation (i);
12 if (current_fitness_variation > 0) {
13 double new_weight =

state.getFish(i)->getWeight () +
current_fitness_variation /
max_fitness_variation ;

14 if (new_weight < WEIGHT_LOWER_BOUND) {
15 new_weight = WEIGHT_LOWER_BOUND;
16 } else if (new_weight > WEIGHT_UPPER_BOUND) {
17 new_weight = WEIGHT_UPPER_BOUND;
18 }
19 current_fish ->setWeight(new_weight);
20 }
21 }
22 }
23 }

Listing 1 Feeding operator in the low-level implementation.

Listing 1 illustrates the implementation of the feeding operator. Since the fish are
distributed among the processes, in the lines 3–6 the global maximal fitness variation
is calculated using the MPI_Allreduce routine. The corresponding data structures
are hidden in the global state object. In lines 8–22 the weights are updated. This
can be done in parallel, since it is done for each fish separately.

4.2 High-Level Parallel Implementation with Muesli

In addition to the mentioned low-level implementation, we have also developed a
high-level implementation of FSS based on the Muenster Skeleton Library (Muesli)

123

Int J Parallel Prog (2019) 47:234–252 243

[11–14]. Muesli is a C++ library for parallel programming based on typical patterns
for parallel programming, so-called algorithmic skeletons [5]. Programmers can make
use of the provided data structures and algorithmic skeletons. They can focus on the
given application problem and ignore low-level details of the parallel implementation.
For example, in the low-level implementation of the feeding operator in Listing 1, it
becomes apparent that the programmer has to use multiple programming models, i.e.
MPI in line 6 and OpenMP in line 9. Consequently, the programmer does not only
need to know different programming APIs for shared- and distributed-memory archi-
tectures, but also during the implementation the location of data has to be considered
etc. In contrast as shown in the following, for the high-level implementation there
are just skeleton calls on the distributed data structures to be considered. Moreover,
from the same code base, different binaries for different hardware architectures can
be generated, e.g. a CPU with or without attached GPUs or for whole clusters of
such computing nodes. Internally, Muesli makes use of a combination of OpenMP
for shared-memory architectures, CUDA for Nvidia GPUs, and MPI for distributed-
memory architectures.

As the two main data structures, Muesli provides distributed arrays (DA) and dis-
tributed matrices (DM). These data structures are automatically distributed among the
started processes by usingMPI. To the programmers, it seems as if the data was locally
stored on one node. Both data structures offer a set of data-parallel communication and
computation skeletons asmember functions, which can be used tomanipulate the data.
Communication skeletons are for example broadcast or permutePartition.
Computation skeletons include for example map, fold (also known as reduce), and
zip. In addition to the vanilla versions of these skeletons, there are also some variants.
For instance, mapIndex expects an argument function, which has the index of the
considered DA element as additional argument. mapInPlace does not generate a
new DA, but replaces the elements of the considered data structure by the generated
results. mapIndexInplace combines both features. Custom user-functions can be
provided as C++ functors, i.e. classes that overload the function call operator. These
functors are passed as arguments to the skeleton and are applied accordingly. For exam-
ple, for the map skeleton, the functor is applied to each element of the data structure.
The skeletons are automatically executed in parallel by making use of MPI, OpenMP,
and CUDA. Moreover, it is possible to reference distributed arrays and matrices as
arguments of the custom user functors.

As pointed out above, parallel programswrittenwithMuesli are based on distributed
data structures. For the high-level FSS implementation,we use the same parallelization
approach as described above. A DA represents the population of the fish swarm. Each
process works on the same number of its elements. Moreover, we use several more
data structures to store additional data such as fitness or variation of the position.

As described in Sect. 2, FSS has four components: 1. individual movement, 2.
feeding, 3. collective instinctive movement, and 4. collective volitive movement.

The individual movement component can be implemented by using the
mapIndexInPlace skeleton. However, the position of each Fish cannot be directly
updated in the population DA. Since fish only move, if their fitness increases, it is
necessary to compute an intermediary DA with possible positions and to calculate the
correspondingfitness values. If the fitness of a fish has increased, its position in the pop-

123

244 Int J Parallel Prog (2019) 47:234–252

Table 2 Summary of the skeletons used in the high-level FSS implementation

Operator Data structure Skeleton Purpose

Individual movement candidate_population mapIndexInPlace calculate candidates for
each fish

candidate_fitness mapIndexInPlace calculate fitness for each
candidate fish

population mapIndexInPlace update population

fitness mapIndexInPlace update fitness

Feeding fitness_variation mapIndexInPlace calculate fitness variation
for each fish

fitness_variation fold get the maximum fitness
variation

weight mapIndexInPlace update the weight of each
fish

Instinctive movement fitness_variation fold calculate the sum of
fitness variations

displacement mapIndexInPlace calculate sum of weighted
displacements

instinctive_movement mapInPlace, fold, gather calculate direction of the
instinctive movement
and share it among all
processes

population mapIndexInPlace update population
according to instinctive
movement vector

Volitive movement weight barycenter fold mapInPlace, fold, gather calculate sum of weights
calculate barycenter and
share it among all
processes

population mapIndexInPlace update the population

ulation DA can be updated. This has been implemented with a mapIndexInPlace
skeleton and a functor that takes the current fitness and the candidate fitness as argu-
ments so that the values can be compared.

As the FSS formulas for the collective movement components show, it is necessary
to calculate the sum of fitness variations over the whole population. This can be done
by fold, which in Muesli delivers the result to every process. Similarly, the other
operations described in Sect. 2 can be expressed by sequences of map and fold
skeletons. Table 2 summarizes the used skeletons for the FSS implementation.

Listings 2 and 3 show the implementation of the feeding operator with Muesli so
that it can be compared to the low-level implementation in Listing 1. The listings
demonstrate the structured implementation process that is used when programming
with Muesli.

First, the functors are implemented as shown in Listing 2. The functor for the
feeding (lines 1–32) is used to update the array that stores the weight of each fish. The
required parameters can already be set in the constructor. Only the maximum fitness

123

Int J Parallel Prog (2019) 47:234–252 245

1 // feeding functor
2 class Feeding : public msl:: AMapIndexFunctor <double ,

double > {
3 public:
4 // constructor
5 Feeding(DArray <double >& fitness_variation , double

weight_lower_bound , double weight_upper_bound):
fitness_variation_(fitness_variation),
max_fitness_variation_ (0),
weight_lower_bound_ (weight_lower_bound),
weight_upper_bound_ (weight_upper_bound) {

6 this ->addArgument (& fitness_variation_);
7 }
8

9 // setter for max fitness variation
10 void setMaxFitnessVariation(double

max_fitness_variation) {
11 max_fitness_variation_ = max_fitness_variation ;
12 }
13

14 MSL_USERFUNC
15 double operator ()(int index , double value) const {
16 if (max_fitness_variation_ < 1e-20)
17 return value;
18 // calculate new weight
19 double result = value +

fitness_variation_.get(index) /
max_fitness_variation_;

20 // consider boundaries
21 if (result > weight_upper_bound_) {
22 result = weight_upper_bound_ ;
23 } else if (result < weight_lower_bound_) {
24 result = weight_lower_bound_ ;
25 }
26 return result;
27 }
28

29 private:
30 LArray <double > fitness_variation_;
31 double max_fitness_variation_ , weight_lower_bound_ ,

weight_upper_bound_ ;
32 };

Listing 2 Functor for feeding operator in the high-level implementation.

variation has to be updated in each iteration. Therefore, there is an additional setter
(lines 9–12). Moreover, the functor contains a pointer to the fitness_variation
data structure (line 30) so that the value can be used in the calculation of the new
weight (line 19).

Second, the data structures are created as shown inListing 3 in lines 3–5.Both arrays
have the size of the number of fish used by the algorithm and are initialized with 0 and
the lower bound of the weight, respectively. The argument Distribution::DIST
determines that a data structure is distributed among the used processes.

123

246 Int J Parallel Prog (2019) 47:234–252

1 double fss(int number_of_fish) {
2 // [...]
3 // create data structures
4 DArray <double > fitness_variation (number_of_fish , 0,

Distribution ::DIST);
5 DArray <double > weight(number_of_fish ,

conf ->getWeightLowerBound (), Distribution ::DIST);
6

7 // instantiate functors
8 MaxArray max_fitness_variation_functor { };
9 Feeding feeding_functor { fitness_variation ,

conf ->getWeightLowerBound (),
conf ->getWeightUpperBound () };

10

11 // main fss iterations
12 for (size_t current_iteration = 0; current_iteration

< iterations; ++ current_iteration) {
13 // [...]
14 // feeding operator
15 double max_fitness_variation =

fitness_variation .fold(max);
16 feeding_functor.setMaxFitnessVariation
17 (max_fitness_variation);
18 weight.mapIndexInPlace(feeding_functor);
19 // [...]
20 }
21 // [...]
22 return global_best_fitness ;
23 }

Listing 3 Feeding operator in the high-level implementation.

Finally, the functors are instantiated (Listing 3, lines 7–9) and applied to the data
structures (lines 14–17). The maximum fitness variation of the current iteration is
calculated by applying the fold skeletonwith themax functor, which returns the higher
value of two arguments, to the fitness variation data structure (line 15). Afterwards,
the feeding functor has to be updated (line 15) and the weights are calculated by using
the mapIndexInPlace skeleton with the feeding functor (line 17), which has been
described above.

5 Evaluation

In the following subsections, we will evaluate the implementations both in terms of
performance and required effort.

5.1 Effort

We use two metrics to measure the implementation effort for the low-level and high-
level implementation of FSS: first, lines of code and second, cyclomatic complexity.

123

Int J Parallel Prog (2019) 47:234–252 247

(a) (b)

Fig. 4 Code metrics for low-level and high-level implementation of FSS. a Lines of code, b cyclomatic
complexity

We are aware of the fact that these codemetrics do not really reflect the implementation
effort, but they are widely adopted and there are no real alternatives, which can be
measured with acceptable effort [15].

As Fig. 4 shows that the implementation effort can be reduced by using a high-level
framework such as Muesli. The number of lines of code decreases by 26 lines from
710 to 684. We want to point that we have always used functors in the high-level
implementation, even though sometimes it would have been possible to use lambda
expressions instead. Additionally, the total cyclomatic complexity is only 77 for the
high-level implementation compared to 123 for the low-level implementation. In fact,
the cyclomatic complexity reflects the perceived implementation effort better, since
it takes into account that in Muesli, there is no need to think about synchronisation
and other low-level parallel programming aspects. Muesli provides predefined terms
in which the programmer can think to structure the algorithm. Therefore, the imple-
mentation can be performed much faster and in a more structured way.

5.2 Performance

In order to compare the efficiency of both implementations, they have been executed
on an HPC cluster. Each node of the cluster has a pair of Intel Xeon E5-2680 v3 CPUs,
12 cores each. In our experiments, up to 16 nodes have been used and the source code
has been compiled with g++ 7.1.0. The execution times presented below correspond to
the whole execution time of FSS in the SCP scenario in Table 1, including instantiation
of data structures, data transfer, etc. We have used a fixed number of 5000 iterations,
512 dimensions, and 2048 fish. As you can see in Fig. 3, this is a configuration, which
already leads to a very good solution. Here, weweremainly interested in the speedups,
which can be obtained by increasing the number of nodes and cores.

For each set up, 30 runs have been executed and the results presented below show
the arithmetic mean of these runs. Table 3 shows the pleasing execution times and
speedups of the implementations. The speedups are calculated based on the current
hardware configuration in relation to the sequential execution time, i.e. a hardware
configurationwith one node andone core. In addition, Figs. 5 and6depict the execution
times graphically.

123

248 Int J Parallel Prog (2019) 47:234–252

Table 3 Execution times, speedups, and overhead for the low-level and high-level implementations

Hardware configuration Low-level implementation High-level implementation

Nodes Cores Execution time (s) Speedup Execution time (s) Speedup Overhead (%)

1 1 1265.7015 1.00 1336.7249 1.00 5.61

1 6 223.1872 5.67 231.7356 5.77 3.83

1 12 112.4978 11.25 117.9595 11.33 4.85

1 24 58.9170 21.48 63.9449 20.90 8.53

4 1 311.9436 4.06 316.1418 4.23 1.35

4 6 54.7551 23.12 58.8165 22.73 7.42

4 12 28.9324 43.75 31.0482 43.05 7.31

4 24 15.9192 79.51 18.5882 71.91 16.77

8 1 155.6209 8.13 159.5144 8.38 2.50

8 6 28.4513 44.49 31.0462 43.06 9.12

8 12 15.0069 84.34 17.8604 74.84 19.01

8 24 8.7479 144.69 11.8637 112.67 35.62

16 1 81.5161 15.53 82.0418 16.29 0.64

16 6 15.2681 82.90 18.5310 72.13 21.37

16 12 8.0125 157.97 11.9276 112.07 48.86

16 24 5.3472 236.70 9.9420 134.45 85.93

Fig. 5 Performance of the low-level implementation

The speedups for the low-level and high-level implementations follow a similar
pattern. In particular, increasing the number of nodes leads to a super-linear speedups
for both implementations, which can be attributed to the cache effect, i.e. less data has
to be handled by each node and therefore, data can be kept in the faster CPU cache
and the number of cache misses can be reduced. By increasing the number of cores,
slightly worse speedups can be achieved, e.g. due to increasing memory congestions
because of cores sharing the main memory and parts of the cache.

123

Int J Parallel Prog (2019) 47:234–252 249

Fig. 6 Performance of the high-level implementation

Also in Table 3, the overhead between the low- and high-level implementations
is shown. It ranges between 0.64 and 85.93%. It is caused by the fact that skeletons
are higher-oder functions, which require the call of an argument function for every
element of a distributed data structure. Since these argument functions are typically
simple, the overhead for the additional calls is considerable. It could be avoided or at
least substantially reduced by massive inlining of these argument functions. A corre-
sponding program transformation is still in progress and hence has not been applied
here. The challenging task is to map the high-level skeletons to low-level represen-
tations, especially when distributed-memory architectures and additional accelerators
have to be considered. Moreover, it might be preferred to rewrite certain expressions
to obtain an even better performance.

Moreover, there is an implicit synchronization after each skeleton call. The analysis
of the execution times shows that the high-level implementation has slightly higher
spin times and overhead times related to the organization of threads. Depending on
the hardware configuration, these additional operations add up to overheads of about
3s to 8s for most configurations, which leads to significant percentual overhead for
configurations with short execution times.

To some extent, the lower performance of the Muesli implementation of FSS is
compensated by the gain in development time. Moreover, the Muesli code is ready to
run also on other parallel hardware architectures such as in a multi-node/multi-GPU
environment, which, for the low-level approach, requires a re-implementation from
scratch.

To demonstrate this, we use FSS and the Rastrigin function with 512 dimensions
and 5000 iterations, since the implementation of the fitness function for the supply
chain planning scenariomakes use of libraries, which cannot be easily ported to GPUs.
However, this example is not particularly well suited to run on GPUs, since the com-
putation effort for the Rastrigin function is rather low and therefore, the expensive data
transfer from the main memory to the GPUs and vice versa as well as the management
of the GPUs can outweigh the potential speedup for parallel computations offered by
the GPUs.

123

250 Int J Parallel Prog (2019) 47:234–252

For example, with 2048 fish the execution time is 43.93s on one node with 24
cores. On one node with one GPU the execution time is 35.96s, so only a rather small
advantage, and for two GPUs the execution time even goes up to 43.38s. Only with a
higher workload the advantage of GPUs becomes apparent. Therefore, we increased
the number of fish to 32,768. Now the execution time on one node with one GPUs is
290.70s, which can be reduced to 125.34s by using four GPUs. In contrast, on a node
with 24 CPU cores, the execution time increases significantly to 748.75s. To sum up, a
quite substantial speedup can be achieved by utilizing GPUs, if the parallel workload
is high, i.e. with a complex fitness function, a high number of dimensions, and a high
number of fish, and by using high-level approaches such as Muesli, there is no need
for a re-implementation.

6 Related Work

A parallel version of FSS was presented first by Lins et al. in 2012 [9]. Their imple-
menation is based on CUDA’s basic functions. In this implementation, each fish is
handled by one thread to perform the steps of the algorithm. They analyze the per-
formance of three parallel FSS variants on GPUs. The first version is a synchronous
one, where all the threads respect barriers set after all steps. These barriers are used
to prevent race conditions. The two other versions work asynchronously, one with
less barriers and one without any barriers inside the iterations. The results enable a
comparison (of fitness and speedup) between parallel and sequential versions of FSS
using traditional benchmark functions, namely Griewank, Rosenbrock and Rastrigin.
Regarding the obtained fitness, there is no big difference between the versions but
regarding the speedup, the asynchronous versions are clearly superior.

In 2014, Lacerda et al. [16] introduced a multithreaded version of FSS, so called
MTFSS. In this approach, every fish has its own thread and two barriers are present
inside each iteration, one after the individual movement and one other after the feed-
ing process. The experiments were executed using 5 traditional benchmark functions
(namely Rastrigin, Rosembrock, Griewank, Ackley and Schwefel) with 30 dimen-
sions, 30 fish, and 5000 iterations. The results show that speedups only occur when
the problem gets more complex.

These two works present similar parallelization strategies having one thread per
fish. In our approach, we treat not only the different fish in parallel but also the
different dimensions of their properties. This approach is propitious for problems
with many dimensions and when running the algorithm in environments that can take
a big computational load, such as clusters of multicore processors.

To the best of our knowledge, there is no implementation of FSS using a high-level
approach. However the MALLBA library [17] provides skeletons for optimization
methods such as tabu search and genetic algorithms. In 2002, Garcia-Nieto used a
parallel implementation of Particle SwarmOptimization (PSO) provided byMALLBA
to tackle the gene selection problem [18]. Later on, another work from Alba et al.
[19] presents some metaheuristics implemented usingMALLBA, namely Ant Colony
Optimization (ACO), Particle Swarm Optimization (PSO), and Scatter Search. In
contrast to Muesli, MALLBA is just based on MPI and does not support GPUs and

123

Int J Parallel Prog (2019) 47:234–252 251

multi-cores. Also, Muesli offers generic skeletons that enable the implementation
of any parallel version of a metaheuristic, while MALLBA encapsulates a whole
metaheuristic as a skeleton. Thus, the user is limited to choosing the parameters it
offers. Consequently, both approaches pursue a different purpose and target different
users. While MALLBA targets users who just want to use a certain metaheuristic,
Muesli does not choose to provide such an even higher level of abstraction, but stays
at a level of abstraction that shields the programmer from low-level programming
models, yet still provides the possibility to implement any application in parallel.

The parallelization of metaheuristics has been explored by other researches for
quite some time already and many approaches have been presented. For example, in
2009, a parallel version of Particle Swarm Optimization (PSO) has been presented by
Zhou et al. [20].

There are many case studies comparing the performance of low- and high-level
parallel implementations. E.g. in [11], this has been done for matrix multiplication,
all-pairs shortest path, Gaussian elimination, FFT, and samplesort. To the best of our
knowledge, our case study is the first such comparison for SI algorithms.

7 Conclusions and Future Work

In this work, we have presented a high-level parallel version of FSS based on the
skeleton library Muesli. We have compared it to a low-level implementation based on
OpenMP, CUDA, and MPI. The comparison was performed in terms of development
effort and runtime efficiency. The complexity of the implementation was measured
in terms of two debatable but frequently used performance indicators, namely lines
of code and cyclomatic complexity. It turned out that the low-level code was about
4% longer and 60% more complex, where the cyclomatic complexity reflects the per-
ceived effort clearly better. The skeleton-based approach relieves the developer from
considering synchronization and communication problems. The reduced implementa-
tion effort had to be paid by a performance penalty ranging between 0.64 and 85.93%
on a 16-node cluster of 12-core Intel Xeon processors. Both implementations of FSS,
low-level and high level, show good execution times and speedups.

In the continuity of this research, other SI algorithmswill be implemented inMuesli,
namely PSO and ACO. These implementations will be tested not only on classical
benchmark functions, but also on complex practical application problems with high
computational costs. Moreover, we will work on the platform-specific optimization of
the skeletons in the spirit of an approach by Steuwer et al. [21].

References

1. Chapman, B., Jost, G., van der Pas, R.: UsingOpenMP: Portable SharedMemory Parallel Programming
(Scientific and Engineering Computation). MIT Press, Cambridge (2008)

2. Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable Parallel Programming with the Message-
Passing Interface (Scientific and Engineering Computation), 3rd edn. MIT Press, Cambridge (2014)

3. Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel programming with CUDA. Queue
6(2), 40–53 (2008)

123

252 Int J Parallel Prog (2019) 47:234–252

4. Stone, J.E., Gohara, D., Shi, G.: OpenCL: a parallel programming standard for heterogeneous com-
puting systems. Comput. Sci. Eng. 12(3), 66–72 (2010)

5. Cole, M.: Algorithmic Skeletons: Structured Management of Parallel Computation. MIT Press, Cam-
bridge (1991)

6. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth
International Symposium on Micro Machine and Human Science, vol. 1, New York, NY, USA, pp.
39–43. IEEE (1995)

7. Talbi, E.-G.: Metaheuristics: From Design to Implementation, Volume 74 of Wiley Series on Parallel
and Distributed Computing. Wiley, Hoboken (2009)

8. Bastos-Filho, C.J.A., Buarque de Lima Neto, F., Lins, A.J. C.C., Nascimento, A.I.S., Lima, M.P.:
A novel search algorithm based on fish school behavior. In: Proceedings of the IEEE International
Conference on Systems, Man and Cybernetics (SMC ’08), pp. 2646–2651. IEEE (2008)

9. Lins, A.J.C.C., Bastos-Filho, C.J.A., Nascimento, D.N.O., Oliveira Junior, M.A.C., Buarque de
Lima Neto, F.: Analysis of the performance of the fish school search algorithm running in graphic
processing units. In: Parpinelli, R., Lopes, H.S. (eds.) Theory and New Applications of Swarm
Intelligence, pp. 17–32. INTECH, Shanghai (2012). https://www.intechopen.com/books/theory-and-
new-applications-of-swarm-intelligence/analysis-of-the-performance-of-the-fish-school-search-alg
orithm-running-in-graphic-processing-units

10. Pessoa, L.F.A., Horstkemper, D., Braga, D.S., Hellingrath, B., Lacerda,M.G.P., Buarque de LimaNeto,
F.: Comparison of optimization techniques for complex supply chain network planning problems. In:
Proceedings of the XXVII ANPET - Congresso Nacional de Pesquisa e Ensino em Transporte (2013)

11. Kuchen,H.:ASkeleton library. In:Monien, B., Feldmann,R. (eds.) Proceedings of the 8th International
Euro-Par Conference on Parallel Processing, Volume 2400 of Lecture Notes in Computer Science, pp.
620–629. Springer, Berlin (2002)

12. Ciechanowicz, P., Kuchen, H.: Enhancing Muesli’s data parallel skeletons for multi-core computer
architectures. In: Proceedings of the 12th IEEE International Conference on High Performance Com-
puting and Communications (HPPC ’10), pp. 108–113. IEEE (2010)

13. Ernsting, S., Kuchen, H.: Algorithmic skeletons for multi-core, multi-GPU systems and clusters. Int.
J. High Perform. Comput. Netw. 7(2), 129–138 (2012)

14. Ernsting, S., Kuchen, H.: Data parallel algorithmic Skeletons with accelerator support. Int. J. Parallel
Program. 45(2), 283–299 (2017)

15. Riguzzi, F.: A survey of software metrics, Technical Report no. DEIS-LIA-96-010, Series no. 17,
Università degli Studi di Bologna (1996). http://ds.ing.unife.it/~friguzzi/Papers/Rig-TR96.pdf

16. Lacerda, M.G.P., Lima Neto, F.B.: A multithreaded implementation of the Fish School Search algo-
rithm. In: Advances in Artificial Life and Evolutionary Computation: 9th Italian Workshop, WIVACE
2014 Vietri sul Mare, Italy, May 14–15 Revised Selected Papers, pp. 86–98 (2014)

17. Alba, E., Almeida, F., Blesa, M., Cabeza, J., Cotta, C., Díaz, M., Dorta, I., Gabarró, J., León, C.,
Luna, J., Moreno, L., Pablos, C., Petit, J., Rojas, A., Xhafa, F.: MALLBA: A library of skeletons for
combinatorial optimisation. In: Monien, B., Feldmann, R. (eds.) Proceedings of the 8th International
Euro-Par Conference on Parallel Processing, Volume 2400 of Lecture Notes in Computer Science, pp.
927–932. Springer, Berlin (2002)

18. García-Nieto, J., Jourdan, L., Talbi, E.-G.: AComparison of PSO andGA approaches for gene selection
and classification of microarray data. In: Proceedings of the 9th Annual Conference on Genetic and
Evolutionary Computation (GECCO ’07), p. 427, New York, NY, USA. ACM (2007)

19. Alba, E., Luque, G., Nieto, J.G., Ordonez, G., Leguizamon, G.: MALLBA: a software library to design
efficient optimisation algorithms. Int. J. Innov. Comput. Appl. 1(1), 74–85 (2007)

20. Zhou, Y., Tan, Y.: GPU-based parallel particle swarm optimization. In: Proceedings of the IEEE
Congress on Evolutionary Computation (CEC ’09), pp. 1493–1500. IEEE (2009)

21. Steuwer, M.: Improving programmability and performance portability on many-core processors. Ph.D.
thesis, University of Münster (2015)

123

https://www.intechopen.com/books/theory-and-new-applications-of-swarm-intelligence/analysis-of-the-performance-of-the-fish-school-search-algorithm-running-in-graphic-processing-units
https://www.intechopen.com/books/theory-and-new-applications-of-swarm-intelligence/analysis-of-the-performance-of-the-fish-school-search-algorithm-running-in-graphic-processing-units
https://www.intechopen.com/books/theory-and-new-applications-of-swarm-intelligence/analysis-of-the-performance-of-the-fish-school-search-algorithm-running-in-graphic-processing-units
http://ds.ing.unife.it/~friguzzi/Papers/Rig-TR96.pdf

	Fish School Search with Algorithmic Skeletons
	Abstract
	1 Introduction
	2 Fish School Search
	3 Motivation for Parallel Implementation of FSS
	4 Parallel Implementation of FSS
	4.1 Low-Level Parallel Implementation with OpenMP and MPI
	4.2 High-Level Parallel Implementation with Muesli

	5 Evaluation
	5.1 Effort
	5.2 Performance

	6 Related Work
	7 Conclusions and Future Work
	References

