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Abstract Heterogeneous processors, comprising CPU cores and a GPU, are the de
facto standard in desktop and mobile platforms. In many cases it is worthwhile to
exploit both the CPU and GPU simultaneously. However, the workload distribution
poses a challengewhen running irregular applications. In this paper,we present LogFit,
a novel adaptive partitioning strategy for parallel loops, specially designed for applica-
tions with irregular data accesses running on heterogeneous CPU–GPU architectures.
Our algorithm dynamically finds the optimal chunk size that must be assigned to the
GPU. Also, the number of iterations assigned to the CPU cores are adaptively com-
puted to avoid load unbalance. In addition, we also strive to increase the programmer’s
productivity by providing a high level template that eases the coding of heterogeneous
parallel loops. We evaluate LogFit’s performance and energy consumption by using
a set of irregular benchmarks running on a heterogeneous CPU–GPU processor, an
Intel Haswell. Our experimental results show that we outperform Oracle-like static
and other dynamic state-of-the-art approaches both in terms of performance, up to
57%, and energy saving, up to 31%.
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1 Introduction

We are currently seeing a growing variety of heterogeneous processors, characterized
by featuring several CPU cores and an accelerator on the same die. The success of
these systems will rely on the ability to map the application level parallelism to exploit
the underlying available devices.

We consider the problem of efficiently executing parallel loops on heterogeneous
CPU–GPU chips, by scheduling the work on both devices. This requires a care-
ful partitioning of the iteration space into blocks of iterations (called chunks). The
size of these chunks should be appropriately computed for each device to opti-
mize the system throughput. To cater for programmer’s productivity, we extend
the parallel_for() function template provided by the task library TBB (Intel
Threading Building Blocks) [22] to ease the implementation of parallel loops on het-
erogeneous CPU–GPU processors. We provide our template library with an adaptive
partitioning strategy that is able to balance the workload among the available devices
(CPU andGPU)while dynamically selecting the chunk size that ensures a near optimal
throughput on each device.

Developing a dynamic and adaptive partitioning mechanism is challenging, and
evenmorewhen the computational needsmay vary at runtime, as it happens in irregular
applications. There are several strategies that offer support for heterogeneous CPU–
GPU systems, like StarPU [1], OmpSs [3], XKaapi [17], HDSS [2], Fluidic [21]
and Concord [14]. These previous task frameworks implement a variety of dynamic
scheduling and partitioning strategies which aim to balance the workload between the
CPU and the GPU. In general, and assuming that the host-to-device and device-to-host
times are not an issue, as it happens in chips with integrated accelerators that share
the main memory, these strategies would consider that once the size of the chunk
offloaded to the GPU is high enough to occupy all the GPU execution units, then the
throughput of the accelerator will tend to stay fixed. In this paper, we demonstrate that
not only a small chunk size, but also a large one can lead to a suboptimal throughput,
especially when running irregular applications. In our strategy, we continuously resize
the chunk of iterations offloaded to the GPU in order to prevent underutilization of
the execution units, while also resizing the chunks assigned to the CPU cores to avoid
load imbalance among the GPU and the CPU.

The contributions of the paper are: (i)We analyze the performance impact of execut-
ing irregular applications on integrated GPUs when the size of the chunk of iterations
offloaded to the device varies (Sect. 2); (ii) We describe the proposed heterogeneous
parallel_for() template and the API that simplifies movement of data among
devices and heterogeneous execution orchestration (Sect. 3); (iii) We present a novel
adaptive partitioning algorithm that can be applied to parallel loops to automatically
find a near optimal chunk size for the GPU and the CPU cores (Sect. 4); and (iv) Using
regular and irregular applications, we evaluate the efficiency of our approach, in terms
of performance and energy consumption, and compare it with related work (Sect. 5).

123



Int J Parallel Prog (2019) 47:213–233 215

(a) (b) (c)

Fig. 1 Evolution of GPU hardware-based metrics while execution the first time-step of Barnes Hut on the
Intel HD Graphics 4600 GPU.

2 Motivation

In this section, we motivate the need for varying the amount of iterations offloaded
to the GPU (chunk size) while dynamically scheduling a parallel loop of irregular
iterations.

As a running example, we introduce the Barnes Hut algorithm1 for solving the n-
body problem. This irregular benchmark performs a gravitational particle simulation
for a number of time-steps. Each time-step can be implemented as a parallel loop
in which, for each particle, its next position in a 3D space has to be computed. The
irregularity comes from the fact that the amount of computations varies from parti-
cle to particle since the number of gravitational interactions depends on the relative
distances of the particles. Therefore, the amount of work performed by each iteration
of the parallel_for exhibits a high variability. To understand how the range of
iterations offloaded to the GPU affects the performance in this benchmark we conduct
some experiments on an i7-4770 Intel Haswell processor with four CPU cores and an
integrated on-chip GPU (HD4600).

Figure 1 shows the evolution of threeGPUhardware-basedmetrics for the first time-
step and an input set of 100,000 particles (the iteration space, so 100,000 iterations in
each time-step) in Barnes Hut. Each figure represents the evolution of the metric of
interest when we offload chunks of fixed size (see chunk sizes legend in Fig. 1b) to
the GPU. We use Intel VTune Amplifier 2015 [13] to collect the metrics. Figure 1a, b
show the ratio of cycles for which all the GPU Execution Units are in the Active (EU
Active) or Idle (EU idle) state, respectively, whereas Fig. 1c represents the Last-Level
Cache (LLC) cache misses due to GPU memory requests.

These hardware metrics indicate that small chunk sizes (i.e. 320 iterations—or
particles—) do not effectively keep active all the available EUs, as the ratio EU Idle
indicates in Fig. 1b (see blue line). In contrast, when the chunk size is large enough to
feed all the EUs (EU Idle< 0.1 for chunks> 320), then the EUs utilization improves.
However, looking at Fig. 1a, we find out that chunk sizes higher than 640 decrease the
ratio EU Active. Irregular benchmarks like Barnes Hut usually exhibit uncoalesced
memory accesses (memory divergences) that can lead to scenarios where most of EUs
are stalled due to memory contention. As pointed out in a previous work [4], Barnes

1 https://github.com/avilchess/barneshut
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Hut exhibits an uncoalesced memory access pattern that may represent between 65
and 75% of the total number of issued instructions. Such a pattern is responsible for the
increment in the ratioEUStalledwhen the chunk size increases. This is corroborated by
the increment inL3 cachemisseswhen the chunk size increases (see cyan andpink lines
in Fig. 1c), which clearly increases the pressure in the memory interconnect. Similar
behavior is also exhibited by other benchmarks, as has been reported previously [16,
23]. In our case, chunk sizes larger than 1280 dramatically increase L3 misses, which
in turn increases the ratio of EU Stalled (> 0.9) and reduces the ratio of EU Active
(< 0.08). All this results in that, for this time-step, the highest averageGPU throughput
is obtained when chunks of only 640 iterations are offloaded to the GPU. However, in
other time-steps, for example 5 and 30, the highest average throughput is obtainedwith
chunk size=1280. In any case, for all time-steps, the application takes an important
performance hit for larger chunk sizes.

We have validated that if the chunk size is adaptively selected to the value that
provides the highest throughput during the execution, then an additional improve-
ment of 5–7% is observed. This requires to vary the chunk sizes between [620–1320]
for time-step 0, and between [740–1560] and [1280–1760] for time-steps 5 and 30,
respectively.

On the other hand, we have observed that the effective throughput for the CPU cores
is not that sensitive to the chunk size. This is because the CPU cores are provided with
other architectural features that hidemore effectivelymemorydivergencies thanGPUs.
In fact, for our Barnes Hut example, as long as the chunk size is bigger than a certain
threshold value2, the average CPU throughput tends to be constant independently of
the chunk size.

Clearly, irregular application can benefit from an adaptive mechanism to compute
the optimal GPU’s chunk size throughout the whole iteration space and all the time-
steps. Aswe are interested in the collaborative execution betweenGPUandCPUcores,
we also consider that offloading large chunk sizes toGPUmay result in load imbalance,
especially at the end of the iteration space. In any case, our partition strategy, LogFit,
which we describe in Sect. 4, tackles the described issues: finding an optimal chunk
size for the GPU and the CPU while balancing the load among the devices.

3 Programming Interface

In addition to performance and energy efficiency, we also care about the productivity
and ease of use of heterogeneous architectures. To that end, we introduce the Hetero-
geneous Building Blocks (HBB) library. It is a C++ template library that builds on top
of OpenCL and TBB libraries, and it offers a parallel_for() function template
to run on heterogeneous CPU–GPU systems, as depicted in Fig. 2.

The left part of Fig. 2 shows the proposed software stack. Our library (HBB) offers
an abstraction layer that hides the initialization and management details of TBB and
OpenCL constructs (contexts, command queues, device_ids, etc.) [24]. The right part

2 For instance, Threading Building Blocks library (TBB) [22], recommends to have CPU chunk sizes that
take 100,000 clock cycles at least.
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Fig. 2 Software stack and scheduling approach

of Fig. 2 shows that the internal engine that moves the parallel_for() function
is a two-stage TBB pipeline. At the top of this part we can see the iteration space with
the chunks that have already been assigned to a processing unit (in orange for GPU
and yellow for CPU cores) and the remaining iterations, r , that have not been assigned
yet (in white). The example shows an execution of the pipeline with 5 tokens. The
tokens represent the number of items that can be in-flight traversing the pipeline. The
tokens are used to control the number of computing devices that we want to use in
the system (e.g., 5 tokens = 4 CPUs + 1 GPU). Once a token enters in the stage S1,
it checks if the GPU device is idle and that there is work that can be offloaded to the
GPU. In that case, the GPU is acquired and initialized with the current GPU chunk. If
there is no idle GPU device, then a CPU core is idle and the token is initialized with
the current CPU chunk. In both cases, the partitioner extracts the corresponding chunk
of iterations from the set of remaining iterations. Next, stage S2 executes the selected
chunk in the corresponding device (GPU or CPU core). Once a token has finished the
work of stage S2, it goes back and enters again stage S1.

One of the biggest advantages of this parallel_for() implementation [19]
is the asynchronous mode of computing, because each computing device (GPU or
CPU core) will host one of the tokens that traverses the pipeline, and will carry out
the corresponding chunk computations independently of the other devices. Thus, we
avoid unnecessary synchronization points between computing devices with different
computing power. In contrast, other state of the art approaches [18,26] suffer from load
imbalance due to the usage of fork-join patterns with implicit synchronization
points between CPU and GPU. In the rest of this section, we explain the functionality
and implementation details of the main HBB components.

3.1 HBuffer and HTask Classes

TheHBB library provides a HBuffer template class that offers an abstraction to avoid
the explicit management of memory buffers. Each HBuffer<T> instance represents
a logical shared buffer that can be accessed either by the CPU and GPU. As we can see
in Fig. 3, this class hides the data buffer management and the user just needs to call the
methods getHostPtr() (line 10) and getDevicePtr() (line 17) to get access
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Fig. 3 Definition of class body

to the CPU memory buffer and the GPU memory buffer, respectively. These methods
receive an additional parameter that sets the buffer access mode (BUF_RO, BUF_WO
and BUF_RW)3, which is used to avoid unnecessary data transfers. The allocation of
the HBuffer instance is shown in Fig. 4 (line 8). The default constructor of the class
takes as argument just the buffer size, but optionally, a second argument can be used
to set the buffer in Zero-Copy mode (USE_ZCB, line 8 in Fig. 4).

Before using the parallel_for() function, the user must extend the HTask
abstract class in order to define the body of the parallel loop (line 5 in Fig. 3). In this
example we define the class Body that implements two methods: operatorCPU()
(line 9) defines the CPU code for a single core in C++; and operatorGPU()
(line 13) that takes care of the argument setting and kernel launching on the GPU.
Note that kernel loading and compiling is automatically done by the HTask con-
structor when it receives the KernelInfo parameter (line 8) that comprises the
kernel file path (KernelFile) and the kernel function name (KernelName).
There are two methods to set the kernel arguments: the setKernelArg() method
for variables of basic types (lines 15–16), and the setKernelBuf() method for
instances of the class HBuffer<T> (line 17). Additionally, the HTask class pro-
vides a launchKernel() method (line 19) so the user does not have to manage
the command_queue or the kernel id.

3.2 Function Template: parallel_for()

Figure 4 shows a main function with all the required component initialization and
allocation to use theparallel_for(). The constructor of theHInit class receives

3 RO = Read-Only; WO = Write-Only; RW = Read–Write
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Fig. 4 Using the parallel_for() function template

two arguments: the first one indicates the number of active CPU cores and the second
one is a bool that represents if the GPU must be initialized or not. Once the library
has been initialized, the user can create the KernelInfo, HBuffer and the Body
instances (lines 7–9) required to run the parallel_for() function.

The parallel_for() function template receives four parameters (line 11): the
lower and upper bounds of the iteration space, begin and end, the Body instance
which contains the implementation of the CPU and GPU body loop, and an instance
of a partitioner, LogFit, that is explained next.

4 Partitioning Strategy

In this section, we describe the details of LogFit, our adaptive partitioning strat-
egy. LogFit targets parallel_for loops that run onto heterogeneous processors. Our
approach is designed as a three phases strategy consisting on: the Exploration Phase
(EP), the Stable Phase (SP) and the Final Phase (FP). In the Exploration Phase we
look for an initial GPU and a CPU chunk sizes that maximize the throughput in both
devices. For it, we carry out an exploration in which we sample the throughput for
different GPU chunk sizes and from them compute the point (chunk size) in which
the throughput is stabilized. During this phase, for each sampled GPU chunk size, we
compute a CPU chunk size that balances the load for all the devices. Then, in the Sta-
ble Phase we continuously re-adjust the GPU chunk size to cope with the application
irregularities, and at the same time we re-compute a CPU chunk size that balances the
load for all the devices while ensuring optimal throughput. The Final Phase is acti-
vated when there are few remaining iterations and we have to pay particular attention
to load balance between the CPU cores and the GPU. In all these phases, our heuristic
is based on approximating the GPU throughput as a logarithmic function of the GPU
chunk size [2]. Thus, LogFit name stands for the logarithmic curve fitting in which the
method relies to estimate future throughputs based on previous ones, as we explain
next.
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Fig. 5 LogFit’s partition strategy flow chart

4.1 Overview of the Partition Problem

We assume that the execution of a parallel_for loop can be seen as a sequence of
scheduling intervals {IG0 , IG1 . . . IGi−1 , IGi , . . .} for the GPU and {IC0 ,

IC1 . . . ICi−1 , ICi , . . .} for each CPU core. Each computing device at the i th inter-
val computes a chunk of iterations of size Ch(IGi ) (GPU chunk size) and Ch(ICi )

(CPU chunk size), respectively. The running time for the assignedGPU chunk, T (IGi ),
or CPU chunk T (ICi ), is recorded. This time is used to compute the throughput in
the corresponding interval, λ(IGi ) = Ch(IGi )/T (IGi ) for the GPU or λ(ICi ) =
Ch(ICi )/T (ICi ) for the CPU core. In particular, this throughput is the parameter that
we keepmonitoring to adjust the chunk size for each device to ensure optimal resource
utilization and to avoid load imbalance. But let’s explore inmore detail how each phase
of our partitioning strategy works.

4.2 The Algorithm Design: LogFit

LogFit is designed as a three-phase partition strategy: the Exploration Phase (EP), the
Stable Phase (SP) and the Final Phase (FP). Figure 5 shows the flow chart for the
Exploration and Stable Phases. In both phases, the Stop Condition is firstly checked.
This condition queries for the corresponding scheduling interval, i + 1, if there are
enough iterations to feed all devices with at least one chunk. If it is not the case, then
the algorithm moves to the Final Phase, where a final partition must be performed
to distribute all remaining iterations, r , among the available computing devices. The
Stop Condition is satisfied when,

r < Ch(IGi ) + Ch(ICi ) · ncores (1)

Exploration Phase (EP) If there are remaining iterations and the GPU is idle, we
check if we have to stay in the Exploration Phase sampling new chunk sizes or if
the throughput of the previous samples has stabilized. For it, we check if the Stable
Condition is satisfied:
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(a) (b)
Fig. 6 Logarithmic fitting to compute GPU chunk sizes. a Fitting in EP, b fitting in SP

[
λ(IGi−2) ∗ (1 + θ) > λ(IGi )

] ∧ [
λ(IGi−2) ∗ (1 + θ) > λ(IGi−1)

]
(2)

which returns true when we have already found a sample (chunk size Ch(IGi−2 )) for
which its throughput is similar enough (using a threshold value, θ ) to the throughput of
the two subsequent samples. As illustrated in Fig. 6a, during the EP we keep sampling
the GPU throughput for different GPU chunk sizes (doubling the size each time) until
theEq. 2 returns true.When this happens,we select four (n = 4) equidistributed samples
from the collected set of samples, being the last sample (Ch(IGi−2), λ(IGi−2)). With
these selected sampleswe compute the Least Squares fittingmethod to obtain the value
of the coefficients a and b of a logarithmic function, l f (x) = a · ln(x) + b. Finally,
we compute the reference value, Ref = a/Ch(IGi−2), which allows us to establish a
reference ratio between throughput and chunk-size for the benchmark data-set. More
precisely, Ref is the slope of the tangent line to l f (x) at the point Ch(IGi−2) (see red
dotted line in Fig. 6a). Note that this reference value is calculated only once, as you
can see in Fig. 5.

In order to start with a big enough Ch(IG0), for the first GPU’s scheduling interval,
IG0 , LogFit follows the expression Ch(IG0) = nEU , being nEU the number of
Execution Units (EUs) on the target GPU.4 Then, the chunk size is doubled at each
interval until the Stable Condition is satisfied, Ch(IGi ) = nEU × 2i , i = 0 : t .

During this phase, the CPU cores are also computing chunks of the iteration space.
The first CPU chunk size is Ch(IC0) = nEU , but for next chunks, we adapt the
size dynamically. To this end, we also monitor the CPU throughput for each CPU
chunk, which allows us to compute the relative speed of the GPU over the CPU,
s(Ii ) = λ(IGi )/λ(ICi ). The factor s(Ii ) is used to adaptively adjust the size of the
next chunk assigned to a CPU core using the expression:Ch(ICi+1) = Ch(IGi )/s(Ii ).
For example, if at a given scheduling interval the GPU has processed a chunk twice
as fast as the CPU (s(Ii ) = 2), CPU chunk size for the next interval will be half the
size of the GPU chunk, so that we can keep the CPU and the GPU workload balanced
at each scheduling interval, in spite of the different workload phases that irregular
applications exhibit. Note that the CPU throughput is not as sensitive as the GPU to

4 nEU = clGetDeviceInfo(deviceId, CL_DEVICE_MAX_COMPUTE_UNITS)
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the chunk size, but this frequent adaptation will help to ensure workload balance at
the end of the iteration space.
Stable Phase (SP) This phase is activated once the previous phase finds a chunk
that optimally occupies the computational resources of the GPU. In this phase,
LogFit adapts the size of new GPU chunks depending on the throughput varia-
tions. For regular applications that exhibit a constant throughput across the whole
iteration space, the GPU chunk will stay almost constant. But, for irregular applica-
tions that may exhibit big throughput variations LogFit will propose bigger/smaller
chunk sizes depending on throughput rise/drop. In general, the equation to compute
the next GPU chunk size is Ch(IGi+1) = ai/Ref , were ai is obtained from re-
computing the logarithmic fitting taking into account the GPU throughput of the
last computed GPU chunk, λ(IGi ) and Ch(IGi ), respectively. This is illustrated
in Fig. 6b, where the four samples used to compute ai and bi (from l fi (x) =
ai · ln(x)+bi ) are {(Ch(IGx1), λ(IGx1)), (Ch(IGx2), λ(IGx2)), (Ch(IGx3), λ(IGx3)),

(Ch(IGi ), λ(IGi ))}. This is, we use the first 3 samples used for the fitting in EP plus the
forth sample that informs about the GPU chunk size and throughput just from the pre-
vious scheduling interval. The net effect of this heuristic is that we slightly increase the
GPU chunk size when the throughput increases, and the contrary when the throughput
decreases. That way we try to avoid both over provisioning or underutilization of the
GPU EUs.

Regarding the CPU, in this phase we keep adapting the CPU chunk size to the GPU
one by following the same equation, Ch(ICi+1) = Ch(IGi )/s(Ii ), that we already
used in the previous EP.
Final Phase (FP) As mentioned before, the execution of the Final Phase is activated
by the Stop Condition shown in the Eq. 1. At this point, we need to find out the best
possible partitioning of the remaining iterations. The goal is to minimize the time to
compute the remaining iterations by finding Tmin = min(TCPU , TGPU , THET ). Thus,
we devise three possible scenarios: (i) CPU case; (ii) GPU case; and (iii) HET case.

In the CPU case, the entire set of remaining iterations should be executed on the
CPU cores. In this case, the estimated CPU execution time, TCPU = r

ncores ·λ(ICi )
, is

the shorter one. GPU is therefore banned from doing any additional computation.
In theGPU case, the whole set of remaining iterations is assigned to the GPU. The

estimated GPU execution time is computed in the same way as the CPU execution
time. However, the GPU throughput depends on the size of the GPU chunk. Thus,
we define a function (thrG(r)) that accurately approximates the GPU logarithmic
behavior by using the last set of four equidistributed samples. To simplify the maths,
we assume that the GPU throughput exhibits a linear behavior between each pair of
equidistributed samples. This is, we approximate the logarithmic curve by a piecewise
linear with four pieces (that we call GPUthr segments). This allows us to estimate
thrG(r) and then to estimate TGPU = r

thrG (r) . If this is the minimum time, the CPU
cores are power gated.

In theHET case, we estimate if the remaining iterations should be computed on the
GPU and the CPU cores. In order to find an optimal distribution, we need to partition
the remaining iterations, r , so that THET = TGPU = TCPU . This is equivalent to find
the number of iterations, x , to offload to the GPU such that: x

thrG (x) = r−x
ncores·λ(ICi )

,
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where thrG(x) can be computed using the piecewise linear approximation of the last
logarithmic function, as we did in the GPU case.

5 Experimental Results

In this section we first describe the architecture on which we conduct the experiments
with the selected benchmarks. Next, we analyze how our partitioning strategy follows
the throughput of the computational devices and adapts the size of the chunks accord-
ingly. Finally, we compare our proposal with other related state-of-the-art dynamic
alternatives to assess the performance and energy efficiency of our approach.

5.1 Experimental Setup

We run our experiments on an Intel Quad-Core processor: a Core i7-4770, 3.4GHz,
based on the Haswell micro-architecture. This processor features an on-chip GPU, HD
Graphics 4600.We rely on the Intel PerformanceCounterMonitor (PCM) library [9] to
access the hardware counters (which also provide energy consumption in Joules). Intel
Threading Building Blocks (TBB 4.2) provides the core task engine of our heteroge-
neous parallel_for(). The GPU kernels are implemented in OpenCL language
and compiled by using the Intel OpenCL SDK 2014. Since there is no OpenCL drivers
for Linux, Windows 7 is the installed OS. The host code part of the benchmarks is
compiled with Intel C++ Compiler 15.0 and -O3 optimization flag. We measured time
and energy in 10 runs of the applications and report the average.

We use five benchmarks whose details can be seen in Table 1. It shows the data
input, number of invocations and the iteration space for each benchmark. These appli-
cations come from several domains and exhibit different behavior: regular versus
irregular, coarse grained versus fine grained. Nbody [12] and Barnes Hut [15] are two
different approaches to the n-body problem: the first one computes all the interactions
between particles (regular), while the second one use an octree to traverse particles
(irregular). PEPC [10] is similar to Barnes Hut but computes electrical forces instead
of gravitational ones. Another important difference is that Barnes Hut sorts the par-
ticles to better exploit spatial locality, but PEPC does not. CFD comes from Rodinia
Benchmark suite [6] and performs a FluidDynamic simulation. SpMV comes from the
SHOC Benchmark suite [7], and performs a sparse matrix-vector multiplication. The

Table 1 Benchmarks description

Name Suite Description Input|invocations It. space

NBody Intel OpenCL [12] Particle simulation 100,000 bodies|1 100,000

Barnes Hut Lonestar [15] Particle simulation runC|75 100,000

PEPC PEPC [10] Coulombs simulation 100,000 Qi | 50 100,000

CFD Rodinia [6] Fluid dynamics missile.0.2M|6000 232,536

SPMV SHOC [7] Linear algebra GL7d16.mtx [8]|200 955,128
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(b)(a)

Fig. 7 Throughput evolution: PEPC and CFD on the Intel integrated GPU. a PEPC, b CFD

last four benchmarks are irregular. Considering these irregular benchmarks, Barnes
Hut and PEPC are examples of coarse grained application (each iteration executes in
approximately 32 and 69µs, respectively, on oneHaswell core) while CFD and SpMV
are fine grained ones (0.13 and 0.1 µs per iteration, respectively, on one Haswell CPU
core).

Figure 7 shows the GPU’s throughput across the iteration space of the first time
step for two irregular applications: PEPC and CFD. We can observe big differences
between the two benchmarks plots, mainly because PEPC exhibits coarse grained
parallelism but CFD presents with fine grained one. Actually, PEPC has a quite stable
throughput, that is maximized for GPU chunk sizes of 1024 iterations. However, CFD
exhibits higher throughput irregularities, as the most performing chunk size varies
between 32, 768 and 131, 072, depending on the application phase.

5.2 Analysis of GPU’s Chunk Size Adaptation to Throughput Variations

To graphically assess how well LogFit adapts the GPU chunk size to each through-
put phase, Fig. 8a shows the evolution of the throughput (blue) and the GPU chunk
size (green) throughout the iteration space for the first time-step of Barnes Hut. It is

(b)(a)

Fig. 8 GPU throughput and chunk study for Barnes Hut. a Throughput and chunk size evolution, b
histogram
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noticeable that the chunk size curve closely follow the throughput with just a small
delay, since we use the previous throughput to compute the next GPU chunk size.

The Fig. 8b shows an analysis of the GPU chunk size adaptation throughout all
time-steps for Barnes Hut. It shows the chunk size histogram that LogFit selects during
several executionswhere the number of threads varies between 1 (onlyGPUexecution)
and 5 (four CPU cores plus the GPU host thread). Notice that for all executions the
most frequent chunk sizes are within the range 1000 and 1300. We also see that the
frequency of chunk sizes decreases as the number of threads increases, because, as
more chunks are assigned to the CPU cores less chunks are computed on GPU. In any
case, the increment in the number of threads does not affect the selection of the chunk
size for the GPU, which demonstrates that our partitioning method works properly
independently of the number of cores.

5.3 Sources of Overhead in Dynamic Partitioning

As we explained before, the host thread is responsible of feeding the GPU by exe-
cuting the usual steps needed to offload work to the GPU: hostToDevice(),
launchKernel(), deviceToHost(), and clFinish(). The first three calls
asynchronously enqueue the memory transfers and the kernel launch on the GPU’s
command queue, whereas the latter is a synchronous wait. Figure 9 shows all the oper-
ations that take place each time a chunk of iterations is offloaded to the GPU. After
the deviceToHost() operation is completed, the host thread is notified but some
time may be taken by the OS to re-schedule the host thread. This time is illustrated in
the Fig. 9 with the label “Thread dispatch”.

In order tomeasure the relevant overheads involved in the execution onGPU’s, some
time stamps are taken on the CPU (Tc1, Tc2 and Tc3) and on the GPU (Tg1–Tg5)
as depicted in Fig. 9. To get the CPU time stamps we rely on Intel TBB’s tick_count
class, whereas for the GPU we set the OpenCL command queue in profiling mode
so that we can read the “start” and “complete” time stamps of each of the enqueued
commands.

Host
thread

Scheduling
Partitioning Thread dispatch

hostToDevice()
launchKernel()
deviceToHost()

clFinish()

Chunk i

Chunk i+1Chunk i-1

Time

Tc1 Tc2 Tc3

GPU

Host-to-Device

Kernel launching

Kernel execution Device-to-Host

Time

Tg1 Tg2 Tg3 Tg4 Tg5

Fig. 9 Steps required to offload a chunk to the GPU
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We use the previous times to compute the overhead of Scheduling and Partitioning,
Osp, Host-to-Device operation, Ohd , Kernel Launching, Okl , Device-to-Host, Odh ,
and Thread Dispatch, Otd , as follows:

Osp =
∑

#GPUchunks (T c2 − T c1)

TotalExecutionT ime
Ohd =

∑
#GPUchunks (Tg2 − Tg1)

TotalExecutionT ime

Okl =
∑

#GPUchunks (Tg3 − Tg2)

TotalExecutionT ime
Odh =

∑
#GPUchunks (Tg5 − Tg4)

TotalExecutionT ime

Otd =
∑

#GPUchunks

(
(T c3 − T c2) − (Tg5 − Tg1)

)

TotalExecutionT ime
(3)

After identifying themain sources of overhead of our dynamic approach, we discuss
the optimizations that can be implemented to tackle them. The first optimization tech-
nique is the zero-copy-buffer (ZCB) capability of heterogeneous chips that reduces
data movements between CPU and GPU since they can share a common region of
main memory. The second optimization rises the priority of the GPU host thread
(called PRIO), so the GPU host thread has higher priority than any other thread and
can be immediately dispatched. This is key when the GPU processes chunks more
efficiently than the CPU, as it happens in our benchmarks. To boost the host thread
priority we rely on the function SetThreadPriority() from Windows API. Finally, the
third optimization is a combination of the previous ones, and we call it ZCB + PRIO.

In order to study the effects of those overheads and the impact of these three
optimizations, we run the five benchmarks activating each one of the optimizations
and measuring the overheads, total execution time and energy consumption. This
measurements are shown in Fig. 10 and are obtained using 4 threads to process chunks
on the 4 core CPU and one extra thread (host thread) to offload chunks to the integrated
GPU. The left graph shows the overheads with four bars per benchmark: (i) the non-
optimized reference version (Base, first bar); (ii) zero-copy-buffer optimization (ZCB,
second bar); (iii) high-priority host thread optimization (PRIO, third bar), and (iv) the
two previous optimizations combined (PRIO + ZCB, fourth bar). In the overhead
graph on the left, each bar shows the breakdown of each particular overhead, being
the Thread Dispatch overhead, Otd the lighter part of the bar and the Device-to-Host
overhead, Odh the darkest one.

The base version of coarse grain benchmarks like BarnesHut and PEPC suffer from
a high Thread Dispatch overhead, 36 and 32%, respectively. In this case PRIO and

Fig. 10 Impact of optimizations on overhead, execution time and energy
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ZCB + PRIO optimizations reduce total overhead to 5%. Scheduling and Partitioning,
Kernel Launching and Device-to-Host overheads are negligible, but Host-to-Device
Overhead, Ohd , can be up to 2% of the total execution time for a fine-grained
benchmark like SPMV. This overhead can be reduced to 0.2% thanks to the ZCB
optimization. This optimization also have a significant impact in the other fine-grained
benchmark CFD.

The central graph shows the speedup achieved by each optimization over the base
version. Coarse grain benchmarks BarnesHut, PEPC and NBody, do not benefit too
much from the optimizations as the speedup is below 1.2×. However, ZCB+PRIO has
quite an impact over fine-grained benchmarks, CFD and SPMV, yielding a speedup of
2.1× and 1.6× respectively. The left graph shows the energy consumption reduction,
that strongly follows the speedup. All in all, applying ZCB + PRIO optimizations, the
geometric mean of total overhead is below 1%, speedup is 1.3× and 12% less energy
consumption.

5.4 Performance and Energy Comparison

To validate our LogFit partition strategy, we compare with three other related partition
strategies: Static, Concord [14] andHDSS [2]. As a baseline, we use a Static partitioner
(Oracle-like) that assigns one big chunk to the GPU and the rest of the iterations to
the CPU. The size of this single GPU chunk is computed by a previous offline search
phase that exhaustively looks for a partitioning of the iteration space between the CPU
and GPU that minimizes the execution time. This profiling step runs the application 11
times. For each run, the percentage of the iteration space offloaded as a single chunk
to the GPU varies (between 0%, only CPU execution, and 100%, only GPU execution,
by using 10% steps).

The other two approaches, Concord and HDSS, have a profiling phase where the
relative speed of the GPU and the CPU is computed. Concord computes the relative
speed within an online profiling phase where the GPU computes a fixed chunk size
and the CPU cores compute small chunks until the GPU finishes its chunk. Then,
Concord switches to the execution phase where the relative speed computed during
the profiling phase is used to distribute all the remaining iterations between the CPU
and GPU at once.

HDSS uses a training phase to compute the relative speed for both, the GPU and
the CPU. It starts with a small chunk size and increases it gradually while recording
the corresponding throughput of each sample. With the first four samples, HDSS fits
a logarithmic curve and computes a first recommended GPU chunk size. HDSS keeps
iterating in the training phase by adding samples and recomputing the logarithmic
fitting and the relative speed until the difference between two consecutive speeds is
less than a given threshold (1%) or a fixed percentage (20%) of the iteration space is
computed. Then, it moves to a completion phase where block sizes computed in the
adaptive phase are no longer used. Instead, HDSS starts assigning chunks to the CPU
and GPU relying on a Modified Guided Self-Scheduling (MGSS): it first assigns the
largest possible chunk size to each device considering its relative speed and gradually
reduces the chunk sizes towards the end of the iteration space to avoid load imbalances.
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LogFit departures from these two previously described approaches in two ways.
First, instead of looking for an stable relative speed that may never be found for
irregular codes, its main goal is to adaptively select the recommended GPU chunk
size that is big enough to fully feed the GPU’s EUs while controlling the number of
cycles that the execution units get stalled due to memory contention. LogFit is the
only alternative that considers variations in the relative speed throughout the complete
code execution. Thus, for each scheduling interval, it recomputes the GPU and the
CPU chunk sizes to ensure load balance between the CPU and GPU. Second, instead
of having a steady phase following the adaptive one, LogFit keeps monitoring and
adapting the GPU and CPU chunk sizes, while trying to minimize the overheads of
the adaptive mechanisms, as we demonstrate next. Notice that LogFit and Concord
remember information from one time-step to the next one: LogFit remembers three
points {(Ch(IGx1), λG(IGx1)), (Ch(IGx2), λG(IGx2)), {(Ch(IGx3), λG(IGx3))} sam-
ples, whereas Concord remembers the GPU relative speed. On the other hand, HDSS
does not re-use previous information.

In Fig. 11, we compare performance and energy consumption while executing the
previously introducedbenchmarkswith the four different partitioning approaches.This
figure shows three different plots for each benchmark: the left hand side plots show the
execution time (in milliseconds) while executing the experiments from 1 threads to 5.
In general, as we increase the number of threads, and use more computing devices, we
reduce the total execution time. The middle plots show the total energy consumption
(Joules) while increasing the number of threads, we show an energy breakdown which
distinguishes the energy consumed on the cores, E_CPU, on the GPU, E_GPU, and
on the uncore components of the chip, E_Un. Note that when using only 1 thread, we
get the only-GPU execution. However, from 2 to 5 threads, we add one CPU core until
4, plus the GPU. In the energy versus performance plots, right hand side on the figure,
each mark in the lines represents the number of threads from 1 to 5. In these plots,
note that the closer to the right-bottom zone, the better the tradeoff between energy
consumption and throughput. Typically, when increasing the number of threads, the
curves move towards the upper right corner (higher performance and higher energy
consumption), although there are exceptions, as explained next.

The study with the regular Nbody application aims at assessing the overhead of the
adaptive engine in the three adaptive schedulers w.r.t. the Static approach. As the figure
shows, Concord performs similarly to the Oracle-like Static implementation, while
HDSS and LogFit tend to provide lower throughput and higher energy consumption
from1 to 4 threads.HDSS andLogFit pay an additional overhead due to longer training
phases. Interestingly for 5 threads, LogFit can be faster and consumes slightly less
energy than Static. The reason is due to the fact that Static only evaluates 11 different
partitions, while our adaptive approach rightly finds a finer tuned distribution of work
between the CPU and GPU. Anyway, the 1 thread execution (only GPU execution)
shows the maximum overhead of dynamic strategies: Concord, HDSS and LogFit are
1, 2, and 5% slower than Static, respectively. These results show that LogFit has an
acceptable overhead in comparison with the Static approach. However, LogFit does
not need the offline profiling that Static requires and performs better than any other
partition strategy with 5 threads, because performs a finer load balance strategy thanks
to the final phase.
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Fig. 11 Results for Nbody, Barnes Hut, PEPC, CFD and SPMV benchmarks. Time and Energy graphs,
left to right: Static, Concord, HDSS and LogFit

By looking at the execution time plots of the irregular applications, it is noticeable
that LogFit always outperforms the Static and the other dynamic alternatives, and it
also consumes less energy.

Regarding the irregular coarse grained Barnes Hut and PEPC benchmarks, all
dynamic approaches outperform the Static one. In terms of execution time, for 1
thread (only GPU), LogFit runs 32 and 40% faster than Static for Barnes Hut and
PEPC, respectively. It keeps outperforming all other alternatives with any other num-
ber of threads, e.g., for 5 threads LogFit runs 21% faster than Static for Barnes Hut and
PEPC. However, for 5 threads, Concord just runs 9% (Barnes Hut) and 7% (PEPC)
faster, whereas HDSS gets poorer result than Static with 5 threads. According to the
Energy plots, LogFit achieves the minimum energy for 1 thread (GPU execution). For
Barnes Hut, LogFit consumes 31, 27, and 22% less energy than Static, Concord and
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HDSS, respectively. Again, LogFit is more energy efficient than the other partition
strategies when executing PEPC: for 1 thread, it consumes 30, 28 and 21% less energy
than Static, Concord and HDSS, respectively. For both, Barnes Hut and PEPC, for
any given number of threads, LogFit always delivers the best performance with the
minimum energy consumption.

For fine grained applications, CFD and SpMV, the profiling phases implemented
in Concord and HDSS behave worse than the LogFit’s exploration phase. Let’s recall
that in both approaches, the relative speed resulting at the end of the profiling phase is
used during the rest of the execution. However, in these two benchmarks, to find the
right relative speedwe need to perform an exhaustive search by sampling bigger chunk
sizes. These two fine grained benchmarks also present and additional challenge as the
GPU chunk size required to yield a near optimal GPU throughput is comparable to
the whole iteration space. Thus, an exploration phase that allows to profile the whole
iteration space will find a better chunk size that better exploits the GPU, as LogFit
does.

HDSSperforms poorlywhen executingCFD, as this approach executes the profiling
(training) phase for each one of the 6000 time-steps of this application. During each
run of the profiling phase, HDSS offloads small chunks to the GPU, with sub-optimal
chunk sizes. When finally HDSS finishes the profiling phase there are not enough
remaining iterations to assign an optimal chunk size to the GPU. In addition, this
results in load imbalance with the CPU. LogFit successfully detects that the number
of available iterations is not enough to stay in the Stable Phase, so it moves on to the
Final Phase that successfully balances the work between the CPU and GPU.

LogFit achieves the highest improvement when executing SpMV. For instance,
with 1 thread, LogFit runs 36, 34, and 33% faster than Static, Concord and HDSS,
respectively, whereas with 5 threads it runs 57, 45 and 33% faster than Static, Concord
and HDSS. According to the energy plot, the most energy efficient configuration is
LogFit with 1 thread, consuming 26% less energy than Static, and less than 24 and
25% than the other dynamic strategies. The Energy-Performance plots show that again
LogFit is the approach that consumes the least energy (for 1 thread) and the fastest
one (for 5 threads). On the average, considering the four irregular benchmarks and 5
threads, LogFit runs faster than Static, Concord and HDSS by 27, 19 and 28% and
consumes 15, 14 and 24% less energy, respectively.

6 Related Works

Approaches such as CUDA [20], OpenCL [24] and OpenACC [11] facilitate the pro-
gramming of heterogeneous systems composed of a multicore and a GPU. However,
they rely on the programmer to specify how theworkload should be distributed between
CPU and GPU.

Previous works consider the problem of automatically scheduling on heteroge-
neous platforms with a multicore CPU and an integrated or discrete GPU [1–3,14,18].
Among these works, the ones closer to ours are HDDS [2] and Concord [14]. As com-
mented in the previous section, the main difference between these works and ours is
that they do not take into account the irregularity of the workload. Their main focus
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is to determine the computational speed of each device and with this information to
assign the maximum chunk size to the GPU (and the multicore CPU) to avoid load
imbalance. None of the mentioned related approaches dynamically change the chunk
size based on the throughput of the application. Among them, Concord is the only
one that evaluates irregular applications. It is also the only one that, like us, focus
on heterogeneous CPU–GPU chips. However, Concord also suffers from imbalance
when the application is irregular, as they usually stop profiling after 50% of the items
have been processed. Also, none of the previous works evaluate energy consumption.

StarPU [1] and XKaapi [17] provide a runtime for scheduling a DAG of tasks on
heterogeneous CPU–GPU architectures, and a programming model with an API to
select the scheduling policy, while OmpSs [3] provides a set of OpenMP-like prag-
mas and a run-time system to schedule tasks while preserving dependencies. These
systems show performance results for heterogeneous execution, but the granularity of
the workload that is offloaded to the GPU is determined by the programmer or the
compiler, and not automatically determined by the run-time as in LogFit.

Some proposals extend work stealing for heterogeneous CPU–GPU architec-
tures [5,25] and use a host thread to steal work for theGPU. These approaches partition
the iteration space eagerly, as most work stealing approaches do. We perform a lazy
partitioning to better determine the most appropriate chunks sizes to be assigned to
the GPU and the CPU. This is a distinguishing feature of LogFit when compared to
the above mentioned frameworks: we explore adaptive GPU and CPU chunk resizing
to optimize throughput while maintaining load balance.

7 Conclusions and Future Work

Heterogeneous CPU–GPU chips enable the possibility of more coupled work distribu-
tion strategies between the integrated devices. In this paperwe demonstrate that finding
the appropriate chunk size for GPU and CPU cores in the context of parallel loops
in irregular applications is critical for performance and energy efficiency. To tackle
this issue, our heterogeneous paralle_for() template manages the orchestration
of work and simplifies movement of data among devices. The template is supported
by LogFit, a novel adaptive partitioning strategy that we also describe in the paper.
This strategy dynamically finds the chunk size that gets near optimal performance
for the GPU at any point of the execution, while balancing the workload among the
GPU and the CPU cores, taking special care of tuning the chunk sizes during the final
phase when the number of remaining iterations is not enough to completely feed all
the computing devices.

Using a regular and a set of irregular benchmarks,we have assessed the performance
and energy consumption of our partitioner with respect to a Static approach and other
adaptive state-of-the-art partitioners. For the studied irregular benchmarks on Haswell
and 5 threads, we outperform the Oracle-like Static approach by up to 57% (27% on
average) and avoid the exhaustive offline profiling. With respect to the state-of-the-art
Concord and HDSS approaches and for 5 threads, we obtain up to 45 and 43% of
speedup improvement (19 and 28% on average), as well as an average energy saving
of 14 and 24%, respectively. Among all the approaches, LogFit is always the solution
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that results in the minimum energy consumption or the maximum performance. As
future work, we will consider the parameter of energy consumption as part of the
scheduling decisions.
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