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Abstract We deal with the following scheduling problem: an infinite number of tasks
must be scheduled for processing on a finite number of heterogeneous machines,
such as all tasks are sent to execution with a minimum delay. The tasks have causal
dependencies and are generated in the context of biomedical applications, and produce
results relevant for the medical domain, such as diagnosis support or drug dose adjust
measures. The proposed scheduling model had a starting point in two known bounded
number of processors algorithms: Modified Critical Path and Highest Level First With
Estimated Times. Several steps were added to the original implementation along with
a merge stage in order to combine the results obtained for each of the previously
scheduled tasks. Regarding the implementation, a simulator was used to analyze and
design the scheduling algorithms.
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1 Introduction

The correct exploitation of parallel and distributed computing resources in scientific
applications with specific time requirements relies on the capability of producing
optimal schedules for the various tasks that compose the application, accounting for
a correct evaluation of the interdependencies and of causal effects. Unfortunately,
the problem of optimal scheduling is well known to be complex, and may only be
reasonably faced, with the exclusion of a few cases, by means of heuristic approaches,
that eventually leverage on specific characteristics of the workload. An appropriate
tool to cope with this problem is provided by simulation based performance models of
parallel and distributed systems and applications [33,38]. Many approaches consider
heterogeneous environments (CPUs and GPUs [11,12]).

A relevant formulation of the problem may be given in the following terms: given
a finite set of resources, a number of specific applications and the condition that every
resource may be responsible of executing an infinite number of tasks, the problem
consists in defining a (sub)optimal schedule to send to execution all tasks, while
minimizing a local and global penalty measure.

In detail, an application is a sequence of specific tasks, each of which may require
a specific set of resources (e.g. a specific computing node instead of any computing
node in the system), that results in a set of constraints for the problem, and must be
completed before a given deadline, that results in an additional constraint; resources
may be used individually or in sets, that add further constraints; and are located on the
nodes of the system, each of whichmay serve a given number of resource requests (and
usage) simultaneously; finally, tasks follow a (partial) ordering, that is produced by the
application logic, introducing additional constraints. In some cases, some resources
may be alternative, and the choice between the alternatives may affect global and
local performances (e.g. in-memory data vs data stored in external files), thus heavily
impacting the efficiency of a schedule.

An additional aspect that characterizes modern computing infrastructures is the
scale of available resources with respect to the past. Infrastructures are shared to a
potentially very large number of concurrent users, and applications are structured to
exploit, when possible, massive parallelism, to take advantage and to make profitable
big data centers, or highly parallel architectures. The most popular approach to ensure
scalability, performances and dependability on large scale computing infrastructures
is based on the cloud architecture. In practice, the massive parallelism allowed by
modern computing infrastructures suggests a coordinated scheduling of many con-
current computing processes: large parallelism is the most common situation, and
scheduling problems may be analyzed by giving as a fact that the size of the schedules
may be relevant. We hypothesized that, on these premises, there may be an increase in
efficiency if scheduling is simultaneously performed for all the applications that are
under the scheduler responsibility, instead of considering a separate scheduling for
each application [1,5].

Consequently, in this paper we present two modified algorithms, stemmed from an
application case that will be used as case study, that extend to the case of multiple
simultaneous schedules two existing solutions in literature, namely MCP and HLFET.
The effectiveness of our solution, with respect to the specific class of workloads
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of interest, is evaluated by means of a simulative approach, that is based on a real
case. These two algorithms, and their performance evaluation by means of simulation,
constitute the main contribution of this paper: the solution generalizes a problem that
stemmed from a real case study, in which the goal is the improvement of overall
processing time for a healthcare system.

This paper is organized as follows: next Section presents some related works; Sect.
3 describes the approach followed to improve the two scheduling algorithms, followed
by a case study in the subsequent Section and the evaluation of the results obtained
on the case study; conclusions close the paper.

2 Related Works

2.1 The DAG Model

In the following, the application to be scheduled will be described in abstract form
as a Direct Acyclic Graph (DAG). In our model the task graph is represented by
G(V, E, c, τ ) where: V is a set of nodes (tasks), so we have v nodes. We will refer
to the nodes using the n1, n2, . . . notation; E is a set of directed edges (we have e
number of dependencies), noted as e(ni , n j );w : V → R+ is a function that associates
a weight w(ni ) to each node ni ∈ V ; w(ni ) represents the execution time of the task
Ti , which is represented by the node ni in V ; ewn is a function ewn : E → R+
that associates a weight to a directed edge; if ni and n j are two nodes in V , then
ewn(ni , n j ) denotes the inter-tasks communication time between Ti and Tj (the time
needed for data transmission between processors that execute tasks Ti and Tj ). When
two nodes are scheduled on the same processing element P , the cost of the connecting
edge becomes zero. In this model a scheduler is considered efficient if the makespan
is short and respects resource constrains, such as a limited number of processors,
memory capacity, available disk space, etc. Many types of scheduling algorithms for
DAGs are based on the list scheduling technique. Each task has an assigned priority,
and scheduling is done according to a list priority policy: select the node with the
highest priority and assign it to a suitable machine. According to this policy, two
attributes are used to assign priorities:

– t-level (top-level) for ni is the weight of the longest path from the source node to
ni :

t-level(ni ) = max
n j∈pred(ni )

{
t-level(n j ) + w(n j ) + ewn(n j , ni )

}
,

– b-level (bottom-level) for ni is the weight of the longest path from ni to the exit
node:

b-level(ni ) = w(ni ) + max
n j∈succ(ni )

{
b-level(n j ) + ewn(ni , n j )

}
.

The time-complexity for computing t-level and b-level is O(v + e), so there are no
penalties for the scheduling algorithms.
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Table 1 Description of former classes for DAG scheduling algorithms

Former class Description

LNP Limited number of processors

BNP Bounded number of processors

UNC Unbounded number of clusters

TBD Task duplication based scheduling algorithms

ANP Arbitrary processors network scheduling algorithms

We can define the ALAP (As Late As Possible) attribute for a node ni to measure
how far the node’s start-time, st (ni ) can be delayed without increasing the makespan.
This attribute will have an important role for load balancing constrains because it
shows if we can delay the execution start of a task Ti :

ALAP(ni ) = min
n j∈succ(ni )

{
ALAP(n j ) − ewn(ni , n j )

} − w(ni )

The critical path (CP) is the weight of the longest path in the DAG and it offers
an upper limit for the scheduling cost. Algorithms based on CP heuristics produce on
average the best results. They take into consideration the critical path of the scheduled
nodes at each step. However, these heuristics can result in a local optimum, failing to
reach the optimal global solution [23]. The t-level and the b-level are bounded from
above by the length of the critical path.

The former class of DAG scheduling algorithms are presented in Table 1.
Table 2 presents a critical analysis of existing DAG scheduling algorithms high-

lighting the type of the algorithm (list scheduling, clustering, etc), the complexity
(where v represents the number of nodes, e represents the number of edges and p is
the number of processors), the priority attribute used by the algorithm and the former
class.

In this paper we focus on the two main reference algorithms used by our approach,
namely Modified Critical Path (MCP) [39] and Highest Level First with Estimated
Time (HLFET) [2], both belonging to the Bounded Number of Processors (BNP) [8]
family. The BNP scheduling algorithms make the assumption of having a limited
number of processors available and also require that the nodes are fully-connected,
which means that no attention is paid to link contention or routing strategies used for
communication.

2.2 The MCP Algorithm

The Modified Critical Path (MCP) algorithm is one of the most popular algorithms
used to schedule DAG on a previously known number of processors. The idea of
scheduling a problem represented by a DAG on a number of parallel processors in
order to minimize the completion time is known to be as a NP-complete problem in its
general form: this is the reason for which heuristic solutions were adopted [23]. The
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MCP algorithm is known to satisfy two important requirements: a good quality of the
algorithm and also a reasonable low complexity. The quality refers to the completion
time of the parallel program and the complexity is strictly related to its scheduling
time [23].

One important notion used by this algorithm is the ALAP time of a node. This is
a measure of how long the start-time of a node can be delayed without increasing the
schedule length. The MCP algorithm uses the ALAP time of a node as the scheduling
priority. The first step of the algorithm is to compute the ALAP times of all the nodes;
then, in the second step, it builds a list of nodes, in increasing order of ALAP time.
Ties are broken by considering the ALAP time of the children of a node. The MCP
algorithm then schedules the nodes on the list one by one, such that a node is scheduled
to a processor that allows the earliest start-time, using the insertion approach. The
time-complexity of the MCP algorithm is O(v2 log v + p) [23].

Simulations have shown that the complexity of the second step of the MCP algo-
rithm may be reduced by using only one level of descendants in order to break ties,
instead of using all the descendants. This particular change in the original algorithm
did not modify the initial performance, but reduced the complexity of the second step
of the algorithm to O(e + v log v) [23].

2.3 The HLFET Algorithm

TheHLFETalgorithm is aBNP algorithmwhich is considered to be one of the simplest
algorithms of its kind and it is known as a list scheduling algorithm [23]. One important
notion used by this algorithm is the b-level (bottom level, or static level) of a node.
The b-level is bounded from above by the length of the critical path. The first step of
HLFET is to compute the b-level of each node. The second step is to create a list of
the nodes which are ready to be processed in descending order of the b-level. This list
initially contains only the entry nodes of the graph, that are the nodes which have an
in-degree equal to zero. The next two steps are to be computed until all the nodes have
been scheduled. Step number four of the algorithm is to schedule the first node of the
previously created list to a processing element which ensures the earliest execution.
At this step a non-insertion procedure is used. The fifth and last step of the algorithm
is to update the list of ready nodes with the nodes which are currently ready to be
processed. The HLFET algorithm has a time-complexity of O(v2), which is lower
than MCP time-complexity [23].

3 Proposed Approach

Our approach deals with the simultaneous scheduling of multiple DAGs, exploiting
the MCP algorithm and the HLFET algorithm. These algorithms were analyzed and
their implementation was adapted to our case, by modifying the generation of the
application schedules so that a single, global data structure to support scheduling is
created with the information about the DAG nodes of all applications, and adding the
necessary handling sections to create and manage this global structure. The rationale
is that this collective organization of the schedule may enable an overall performance
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increase, because of the presence of a higher number of mutually independent DAG
nodes, that potentially allows a better mapping to the resources. As a result, a single,
comprehensive scheduling algorithm is run for all the controlled workload, instead of
an instance per application. We chose two different basic algorithm in order to verify
the fitness of our assumptions, and to compare the effects of the modifications in the
two cases.

Both MCP and HLFET have a time-complexity bounded to the number of ver-
tices. Since the DAGs used for testing the final scheduling algorithms had a relative
small number of vertices, the interesting issue is to analyze how the number of DAG
structures influences the performance of the proposed algorithm. In both cases, the
algorithm assumes that the set of all DAGs for the workload has been computed an is
hence available.

3.1 The MCP Modified Algorithm

Theproposed solution for adapting theMCPscheduling algorithm to schedulemultiple
DAG structures simultaneously is the addition of an extra step to the initial algorithm,
to create a final list of nodes that contains all the nodes from all DAG structures;
symmetrically, also the step in which a node is extracted from the list and scheduled to
a processor using the non-insertion approach is replacedwith the extraction ofmultiple
nodes from the final task list at the same time. The main steps of the algorithm are:

1. for each DAG structure:
(a) compute the ALAP of each node;
(b) create a list of ALAP nodes and a list of corresponding node ids in ascending

order of the ALAP values; ties are broken using the lowest ALAP value of the
node children;

(c) create a hash map using the list of ALAP values as keys and the corresponding
node ids as values; if two nodes happen to have the same ALAP, the first in
the list is added to the hash map with the initial ALAP value, but the next one
is added with a key equal to the initial ALAP + 1;

2. create a final hash by merging all the previously computed hash maps, by keeping
the key values and creating a corresponding array for the nodes which have the
same ALAP value;

3. sort the final hash by the key value;
4. transform the hash into an array of node arrays, keeping the order of the node

lists;
5. repeat until all tasks have been selected:

(a) take the entry with the lowest index and check if the number of nodes is lower
than the number of processing elements available; if this is the case, complete
the list by extracting other nodes from the following list of nodes in order to
have a minimum length equal to the number of processors;

(b) distribute the current task list to the processing elements using a round robin
approach;

(c) assign to each new task a processing time using a uniform probability distri-
bution;
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(d) at each processor level, process tasks using a FIFO scheduling algorithm to
guarantee that the processing order is kept.

3.2 The HLFET Modified Algorithm

Analogously, we propose for the HLFET scheduling algorithm as well a version for
scheduling multiple DAG structures simultaneously. As first, an extra step is added,
in order to create the final list of tasks containing all the nodes from each of the causal
models: this step is similar to the one used for adapting the MCP algorithm. As in the
case of the MCP algorithm, the step in which a node was scheduled to an available
processor is modified as well. In this case, since the HLFET scheduling algorithm
used a non-insertion approach, no other alterations are made to the lists. The main
steps of the algorithm are:

1. for each DAG structure:
(a) compute the b-level of each node;
(b) create an empty ready-list;
(c) add the root nodes of the graph to the ready-list;
(d) create lists of nodes with the same value of the b-level and add them to the

final array of task lists in descending order of the b-level value;
2. repeat until all tasks have been scheduled:

(a) from the final array of task lists, extract the one with the lowest index;
(b) create a job for each of the tasks in the current task list and distribute the

tasks to the processing elements using a round robin approach;
(c) assign eachnew task aprocessing timeusing auniformprobability distribution;
(d) at each processor level, process tasks using a FIFO scheduling algorithm to

guarantee that the processing order is kept.

3.3 Implementation Details

All of the systems components are modeled as Java objects, benefiting of the advan-
tages of Object Oriented Paradigm: the code is easy to be maintained and modified,
the system has a modular structure and inheritance makes it easy to expand differ-
ent functionalities and adapt them in order to fit the simulation requirements for the
problem in cause.

The Graph Generator The generator is a module written in Java that can easily be
extended with new functionalities and has the following main components:

– Digraph This class represents a directed graph with a number of vertices V and a
number of edges E, and a list of adjacent nodes for each of the V vertices. It also
holds an array of all the nodes in-degree. The private attributes of the class are
the number of nodes, the number of edges, a vector of adjacency lists containing
the adjacency information for every node in the directed graph and a vector of
integer numbers which represent each of the vertices in-degree. In order to access
the important attributes of the class mentioned above, the Digraph component has
several getters defined, one for each of the private attributes. The class, however,
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does not allow for this attributes to be changed by any external class, and this is why
no setters have been defined. The Digraph class has three constructors, allowing
the directed graph to be initialized as an empty digraph, as a deep-copy of another
directed graph or as a graph created from an input stream which can be either a
file or a URL. The used constructor when creating the test data is the one creating
an empty directed graph, as the edges are later added taking into consideration
the type of graph which is needed, specified in the DigraphGenerator component.
However, the simulator makes use of this component to read data from the files
given as input, and so the constructor which creates a directed graph from the
information received as a file input shall be used. In order to make sure each graph
is generated correctly, meaning no mathematical or DAG rules are broken, this
component also throws errors if the given parameters are not correct. Such errors
refer to the number of vertices which cannot be negative or the format of the input
received by the constructor. Regarding the time-complexity of the operations, each
of them take constant time. One exception is made by the functions which imply
iterating over adjacent vertices of a vertex. This operations time complexity is
directly proportional with the number of the adjacencies.

– DigraphGenerator This class is the main class of the Graph Generator, which sets
the important parameters for each file generation: the number of files generated,
the type of directed graph contained by each of the files, the number of vertices
and edges of each of the DAGs. An inner class of this component is the Edge class,
which holds the logic behind each of the directed graphs edges. This class imple-
ments the Comparable interface. This feature of the class is used when generating
the graphs to guarantee an ascending order of the two vertex ids. There have been
defined several methods for generating a DAG, all of them returning a Digraph
component with a specific pattern. The first method generates a directed graph
with a fixed number of vertices and edges. An empty Digraph is the starting point
of the DAG and a new edge is added each time the id of the first node generated
using the uniform probability distribution is different from the second id generated
using the same method and the edge is not already contained in the graph. The
second method returns a type of graph which is a random generated directed graph
usually called the Erdos–Renyi model. This directed graph has a fixed number of
vertices and a number of edges generated with a given probability. The method
uses the simple constructor of the Digraph component where an empty DAG is
generated, then adds edges to the graph using the Bernoulli distribution probabil-
ity. Another method generates a complete DAG with a fixed number of vertices
and uses the first method where the number of edges given is equal to v(v − 1).
There is also a method for generating a tournament graph. Given a number of ver-
tices, this method creates a directed graph where there is a directed edge between
every two edges. Two important methods are the ones for generating a rooted-in
or a rooted-out directed graph with a fixed number of vertices and edges. Both
of the methods take two integers as parameters, representing the two values. The
first type of graph contains vertices which have the property that there is only one
vertex reachable from any other node. The second type of graph contains nodes
which have the property that each of them is reachable from only one other vertex.
Another two similar methods are the ones for generating a rooted-in tree and a
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rooted-out tree with a given number of nodes. These type of graphs are most suited
for simulations on a Bayesian network, as they respect a causal model structure.
A method for creating a complete binary tree with a fixed number of vertices also
exists, this method being suitable for creating graphs which have the structure
of a yes/no decision tree. These type of graphs may help scheduling input data
received from a software which is meant to give an answer regarding whether a
certain medication is appropriate for a patient.

– StdRandom This Java class provides different methods for generating random
numbers. This component is used by the DigraphGenerator to guarantee the ran-
domness of the graphs edges generation. The numbers may be generated from
several continuous and discrete probabilities: Gaussian, exponential, Bernoulli,
and Poisson. The StdRandom class has two private attributes: the first one of type
Random, for pseudo-random number generation and the second one is a long type
attribute and represents a number used to initialize the first attribute.

DAGBroker is the distribution of tasks to processing nodes in the simulation. The
next node to receive a task is chosen in a Round Robin manner, to guarantee that
no node is overloaded while others remain unused. When a job is created, the length
of the job is given with a uniform probability distribution to simulate tasks which
have different time-complexity. This distribution can be easily changed with Weibull
distribution to see how the processing time changes.

4 A Case Study

In order to verify the benefits of our proposal, a simulative approach has been chosen.
The simulation has been based on a tool based on the HEPAR system, from which the
scheduling workload have been abstracted and extracted.

4.1 The Simulated System

The HEPAR system is a medical expert system used to support diagnostic decisions
based on data retrieved from physical examinations, medical interviews and non-
invasive medical procedures. One advantage of this system is that is have been proved
not to be sensitive to incompleteness of data [25]. This system contains a database of
patient records of theGastroenterological Clinic of the Institute of Food and Feeding in
Warsaw, which is continuously enlarged with new cases [28].With help of the HEPAR
system, medical diagnosis and decision making are modeled using if-then rules. The
system analyzes the given data and produces a subset of possible diagnoses, out of
more than 70 types of disease categories. Regarding liver transplantation, the HEPAR
system combines the risk scores with weights which can be varied dynamically in
order to infer prognosis from previously given rules [18,25].

Knowledge in HEPAR is represented as a rule (e.g. Fig. 1), which has a mea-
sure of confidence in its correctness associated in order to express the uncertainty in
the domain. This approach, however, does not give an exact meaning to these non-
probabilistic measures of uncertainty [18]. On this system, a tool for liver disorders
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Fig. 1 Example of a production rule for HEPAR

diagnosis [28] has been built, based on a Bayesian network model, managing causal
relations among the various variables that are relevant in the HEPAR database for a
diagnosis.

The application is executed on the MapR Converged Data Platform [https://
mapr.com/products/mapr-converged-data-platform/], a software platform that pro-
vides real-time databasemanagement capabilities, global event streaming and scalable
enterprise storage, integrating Hadoop and Spark. Database services are based on a
NoSQL system, used to add real-time, operational analytics assets.MapR is composed
of threemain entities (see Fig. 2): theMapRPlatformServices, responsible for storage,
database functionalities and streaming; the Commercial Engines; and the Open Source
Engines, that allow the integration of other ecosystem such as Hive, Apache, Mahout
and others. In the Healthcare and Life Sciences domains, this software platform can
provide access to important data, such as output from medical devices, lab results,
imaging reports, medical correspondence and clinical data. This type of unstructured
data represents almost 80% of information in the healthcare industry, and is in a con-
tinuous growth. The MapR Converged Data Platform is considered an efficient means
of storing information about a big number of patients, which can be used to analyze
the effects of new therapies, or even adjust drug doses, to minimize side effects and
improve effectiveness, because of its support to Big Data and real-time data collec-
tion and processing, and has been chosen as support for genome processing and DNA
sequencing, assisted diagnosis and personalized treatment planning applications.

4.2 The Simulation Testbed

The case study has been used to generate a number of DAG structured input data,
representing the schedules of the system to be executed onto the simulated processing
elements. These elements that may be seen as heterogeneous processors, which have
the role of processing the tasks in the real system, according to the causal model of
the various tasks. The simulations are parametrized, by means of the input DAGs, in
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Fig. 2 MapR system architecture

the number of nodes in the graph, the number of edges, the processing time needed
for each independent task and, obviously, the structure of the graph.

The simulation testbed is based onMTS2 (Many Task Scheduling Simulator) [36],
a task scheduling event-based simulator written in Java, which can be used to experi-
mentally check or validate various classes of scheduling algorithms. It simulates events
that happen inside of a cluster and offers a visual result after each simulation. This sim-
ulator solves both scalability problems: scalability in the number of simulated entities
and scalability in the number of simulation steps. The first issue is solved by modeling
entities as finite state machines with a set of accepted inputs, possible states and a
state-transition function. A processing element cannot modify its state if it has not
received any new input, that is the reason why the simulator run-time is linked to the
number of events taking place during the simulation, instead of the clock ticks in the
simulated environment. The second issue has been solved by introducing a PDES (Par-
allel Discrete Event Simulator) version of the simulator, to process events happening
at the same time or at close intervals in parallel. Because the communication is done
by message-passing, there are no issues concerning locking or synchronizing shared
memory areas [37].MTS2 also offers a means for simulating fault tolerant algorithms
and can anticipate the collapse of a processor by allowing new processing components
to be added during the simulation. The architecture of the simulator is inspired by the
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Scala actors model, whose backend API exposes the basic objects which can be easily
extended in order to best fit new needs.

For both schedulers, a method for generating a reversed topological list of nodes
has been implemented. This method is used for both ALAP and b-level computation.
The implementation of the schedulers is based on the map-reduce paradigm, in which
mapping is based on the use of the ALAP values as keys for the key-value pairs for
MCP, and the reduction part combines all partial hashing together in both cases.

The implementation of the modified MCP algorithm is sketched in the following:

– initialize a hash map to collect the results;
– repeat until all DAGs have been processed:

– compute the list of ALAPs and the list of corresponding node ID;
– if counter equals 0

• for each ALAP-node ID pair
• add key-value pairs to the hash map

– else
• for each ALAP value in the ALAP list:

• if the ALAP value exists in result keys:
• add the corresponding node ID to the list of nodes having the same
ALAP value;

• else
• create a new list and add the node and
• add a new entry to the result hash map with the ALAP value as key
and the new list as a value;

– return results;

The implementation of themodified HLFET algorithm is sketched in the following:

– initialize an array for task lists;
– compute the list of task lists for the current DAG;
– copy the list of task lists to the array for task lists;
– repeat until all DAGs have been processed:

– compute the task list for the current DAG;
– for each index of the array for task lists:

• merge the corresponding task lists;
– if length of current task list is greater than the array for task lists:

• add the extra task list to the the array for task lists;
– return the array for task lists;

5 Evaluation

To analyze the implemented scheduling model, various simulations had to be con-
ducted to see how the scheduling and processing time of the test data varied when
some important parameters received different values.
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Fig. 3 Scheduling time by number of files and vertices

5.1 Testing the Modified MCP Scheduling Algorithm

The first set of tests was designed to see how the scheduling time of the test data varied
when the number of DAG structures was changed starting from 10 graphs and ending
with 100 graphs. The simulations were repeated using DAGs with different number
of vertices, ranging from 5 to 15. For each of the graph structure sizes (with 5, 7, 9, 11
and 15 nodes) the scheduling of a single DAG structure has been simulated with an
increasing number of input data files, in order to observe the relation between number
of input data files and scheduling time.1

Thefirst conclusionwhich canbedrawn from thegraphic is that the average schedul-
ing time of a single DAG structure is 6.7 ms. We can see that our algorithm which
solves the problem of scheduling multiple DAG structures simultaneously, offers a
much better performance than we would have had trying to schedule the DAGs one
by one. Because the DAGs used for the simulations had a relatively small number of
nodes, scheduling and processing only one DAG at a time on a number of 4 or more
processors would have led to a waste of time, since the dependencies imposed by the
DAG structures would not have allowed at some steps of the simulation, more than a
single job processing. While waiting for some nodes to be processed in order to have
the desired input for the current task, a processing element would have become a waste
of resource. As visible in Fig. 3, the scheduling time increaseswith the number of DAG
structures, but the increase is not directly proportional to the increase of the input data,
but rather has a linear increase. Excluding the results of the simulations which implied
testing the scheduling of a single DAG structure, the other results clearly show how
the time taken by the scheduling algorithm is influenced by the number of vertices in
each of the DAG structures. It was also important to see the relation between the time

1 As the preprocessing stage produced only one hash in the case of these simulations, the algorithm has
been modified by suppressing the step in which the hashes containing partial results were merged, without
loss of generality with respect to the purposes of the simulation.
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Fig. 4 Read and schedule time for modified MCP algorithm by number of files and vertices

Fig. 5 Read, scheduling and processing time for four processors by number of files and vertices

needed to read all the data from the input files and the time need to schedule all the
DAG structures received as input. The reason for this was to show that the scheduling
algorithms are not so time consuming compared to the reading of the data. It is easy to
deduce that when using a system like theMapR platformwhich has great performance
regarding access to unstructured data, the time used to read the data may be reduced
and so the overall time taken by the two operations drops.

In Fig. 4 for each number of files used in the simulation the variations of the number
of vertices are shown. Here, for each of the 4 sections (10, 30, 50 and 100), we can
see the results for 15, 11, 9, 7 and 5 vertices, from left to right. In Fig. 5 we can see the
same data, with the added information of simulation steps taken by each simulation.
The processing time of the DAG structures is not measured in milliseconds like all
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Fig. 6 Read, scheduling and processing time for ten processors by number of files and vertices

the others, but in messages exchanged by the nodes, as explained in Chapter 2. The
simulations for Fig. 5 were made using a simulated cluster of four processing elements
and a Broker.

Similar simulations were made for a number of ten processing elements, to see how
the processing time changed in this case (Fig. 6). The biggest decrease in the processing
time was observed when running simulations for a number of 10 DAG structures. This
is due to the step of the algorithm in which task lists are distributed to processors
using an insertion approach. At this step, the increased number of processing elements
guarantees that lists of tasks which have a length equal or smaller than 10 are processed
at the same time.However,when the number of files increases, the lists of tasks increase
in length and their processing does not depend anymore on the scheduling algorithm,
but on the length of the lists and processing time of each job.

5.2 Testing the Modified HLFET Scheduling Algorithm

Simulations were also conducted to analyze the performance of the second imple-
mented algorithm.As in the case of themodifiedMCP algorithm, a parametric analysis
has been performed. As we can see in Fig. 6, a variable number of DAG structures has
been considered, increasing from 10 to 100. For each of these simulations, the number
of vertices of each causal model was also varied with values ranging from 5 to 15. Fig.
7 shows how the scheduling time increases with the number of files received as input,
each file containing data about a single DAG structure. By a comparison with Fig. 3,
that is related to the first algorithm, the scheduling time appears to be lower. This is an
expected result, as the original HLFET algorithm had a better time-complexity than
the original MCP algorithm. An important difference between the results shown in
Figs. 3 and 7 is that we can no longer see a linear increase of the scheduling time with
the number of vertices of each DAG structure, for each set of tests ranging from 10
to 100 files. Also, the results obtained when simulating an input of 30 DAGs is easily
comparable to the results seen when simulating an input of 50 DAGs.
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Fig. 7 Scheduling time by number of files and vertices

Fig. 8 Read and schedule time for modified HLFET algorithm by number of files and vertices

As in the case of the first set of simulations, the modified HLFET algorithm was
tested on a single DAG structure also to see how the scheduling time differed from
the first analyzed algorithm. An average of 5.54 ms was obtained, which is lower than
the value for the modified MCP algorithm, as expected.

Simulations have proved a good scalability with the increase of DAG structures.
The maximum scheduling time for 100 input files was 19 ms and the scheduling time
of 500 input files with different DAG sizes (5, 7, 9, 11 and 15 vertices) was 50 ms, a
good value in relation with the average scheduling time of a single graph.

During the simulations, the time taken by the process of reading the data from the
files was measured. Figure 8 shows how the scheduling of data takes significantly less
time than reading data from the input files. The processing time of the graphs was
also measured, but, as in the case of the first scheduling algorithm, the number of
messages exchanged by the nodes as been used as measurement unit, as the simulator
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Fig. 9 Read, scheduling and processing time for four processors by number of files and vertices

Fig. 10 Read, scheduling and processing time for ten processors by number of files and vertices

run time is linked to the number of events happening inside the simulated cluster. This
is visible in Fig. 9, that also shows the relation between the time taken by the read,
the scheduling and the processing of the information. The simulations for the results
showed in Fig. 9 were run on a ten processors simulated cluster.

Figure 10, however, shows the simulation results for a four processors cluster.
It is interesting to see how the differences between the overall time taken by the
reading, scheduling and processing are not so visible, meaning our algorithm can
manage to schedule tasks in such manner that a reduced amount of resources can
offer a similar performance. This last observation may be the result of using a non-
insertion approach when distributing the tasks to the processors. Even if the number
of processing elements increases, the task lists, which have a smaller size than the
number of processors and are distributed exactly as they arrive, cause an increased
number of messages, that translates into a higher processing time.
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5.3 Comparing the Two Algorithms

When analyzing the performance of both algorithms, we start by simulating the
scheduling of a single DAG structure, to see if the initial time-complexity order is
maintained. Regarding the modified MCP algorithm, tests have shown that the aver-
age scheduling time of a single DAG structure is 6.7 ms, which is higher than 5.54 ms,
the time obtained for the modified HLFET algorithm. Moreover, let us consider the
scheduling time taken for 500 input data files which contain DAG structures of dif-
ferent sizes, ranging from 5 to 15 nodes each. For the first scheduling algorithm,
the average scheduling time was 81.5 ms, while, for the second algorithm, the result
obtained was 50 ms. This is the second evidence that the HLFET algorithm proved
to be more efficient when processing graphs with a relatively small number of nodes.
Last, but not least, the simulations for the modified MCP algorithm indicated that
the highest scheduling time was obtained for scheduling 100 DAG structures with
15 vertices each, and the maximum value was 48 ms. For the second algorithm, the
maximum value obtained was 19 ms for scheduling 100 graphs with 9 vertices each.

6 Conclusions

We presented two adapted scheduling algorithms for applications represented as a
causal model, with relevance in the medical industry, having as starting point the
MCP and HLFET scheduling algorithms and the MTS2 simulator as support for our
analysis and algorithmdesign.Our contribution also includes an extension of theMTS2

simulator with a scheduling layer for tasks with dependencies.
The simulations have shown that our scheduling algorithms provide a performance

improvement when simultaneously dealing with a large number of DAGs. The actual
scheduling of the tasks takes a lower time than the reading and processing of tasks.
We have also shown in our simulations that the scheduling model is scalable and the
time improvement between processing a single DAG and a 500 DAGs workload is
significant. For the modified MCP algorithm we see an increase of approximately 12
times for 500 DAGs, as for the modified HLFET algorithmwe observed an increase of
approximately 9 times regarding the scheduling time. Another important observation
was that the time-complexity of the modified MCP algorithm was higher than the
modified HLFET algorithms, maintaining the ranking of the initial algorithms. As
furtherwork,wewill implement the analyzed algorithms in a realmedical environment
and integrate the scheduling layer with a diagnosis tool to help hospitals with low
resource benefit from the diagnosis support of a performant tool without the costs
implied by software platforms like the MapR Converged Platform.
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