Int J Parallel Prog (2018) 46:630-646 @ CrossMark
https://doi.org/10.1007/s10766-017-0513-2

Real-Time Big Data Stream Processing Using GPU
with Spark Over Hadoop Ecosystem

M. Mazhar Rathore! - Hojae Son! -
Awais Ahmad? - Anand Paul' - Gwanggil Jeon3

Received: 27 February 2017 / Accepted: 15 June 2017 / Published online: 27 June 2017
© Springer Science+Business Media, LLC 2017

Abstract In this technological era, every person, authorities, entrepreneurs, busi-
nesses, and many things around us are connected to the internet, forming Internet of
thing (IoT). This generates a massive amount of diverse data with very high-speed,
termed as big data. However, this data is very useful that can be used as an asset
for the businesses, organizations, and authorities to predict future in various aspects.
However, efficiently processing Big Data while making real-time decisions is a quite
challenging task. Some of the tools like Hadoop are used for Big Datasets process-
ing. On the other hand, these tools could not perform well in the case of real-time
high-speed stream processing. Therefore, in this paper, we proposed an efficient and
real-time Big Data stream processing approach while mapping Hadoop MapReduce
equivalent mechanism on graphics processing units (GPUs). We integrated a parallel
and distributed environment of Hadoop ecosystem and a real-time streaming process-

B Anand Paul
paul.editor@gmail.com

M. Mazhar Rathore
rathoremazhar @ gmail.com

Hojae Son
sonhj07 @gmail.com

Awais Ahmad
aahmad.marwat @ gmail.com

Gwanggil Jeon
gjeon@inu.ac.kr
School of Computer Science and Engineering, Kyungpook National University, Daegu, Korea

Department of Information and Communication Engineering, Yeungnam University,
Gyeongbuk, Korea

Department of Embedded Systems Engineering, Incheon National University, Incheon, Korea

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-017-0513-2&domain=pdf

Int J Parallel Prog (2018) 46:630-646 631

ing tool, i.e., Spark with GPU to make the system more powerful in order to handle the
overwhelming amount of high-speed streaming. We designed a MapReduce equiva-
lent algorithm for GPUs for a statistical parameter calculation by dividing overall Big
Data files into fixed-size blocks. Finally, the system is evaluated while considering
the efficiency aspect (processing time and throughput) using (1) large-size city traffic
video data captured by static as well as moving vehicles’ cameras while identifying
vehicles and (2) large text-based files, like twitter data files, structural data, etc. Results
show that the proposed system working with Spark on top and GPUs under the parallel
and distributed environment of Hadoop ecosystem is more efficient and real-time as
compared to existing standalone CPU-based MapReduce implementation.

Keywords Big Data - Hadoop - Spark - GPU - MapReduce

1 Introduction

Recently, an extensive interest has been seen in several areas of Information and Com-
munication Technology (ICT) that contributed a substantial evolution in the data and
the analytics [1,2]. One of the IBM reports in 2012 narrated that overall in the world,
90% of the data was generated in 2010-2011 [3]. Existing services (e.g., social web-
sites, networks, web apps, and so forth) and various sensor technologies (e.g., health
sensors, environmental sensors, road and vehicle sensors, ultrasonic sensors, environ-
mental sensors, and so forth) are producing gigabytes of data within few milliseconds
continuously. Furthermore, in this technological era, a number of devices and objects
connected to the internet is more than humans, which forms an Internet of things
(IoT) and this number would reach to 50 billion in 2020 [4]. With this number, one
can imagine the amount of high-speed data generation. This massive amount of high-
speed data, termed as Big Data, is acknowledged by 3 V’s, as volume (data with huge
size), velocity (data generating with high speed), and variety (data with diverse nature).
Similarly, these days, most of the countries are using a network of video cameras to
monitor streets and roads. Vehicles have cameras and black box to track the record in
case of any accident. Moreover, the vehicle cameras are also being used to track and
detect vehicles on the road while moving [5]. These thousands of cameras throughout
the city are generating a vast quantity of high-speed Big video Data.

This great volume of high-speed diverse data brings the issues of aggregation, stor-
age, and processing. On the other hand, it can be used in establishing smart parkings
and smart transportation systems [6], health systems [7,8], Smart city and urban plan-
nings [9], remote sensing [10], and in many other applications. In addition, Big Data
analytics can be very useful in order to predict future, recommend systems based on
user trends, predict future needs, improve businesses and infrastructure, and much
more. In a nutshell, it is an asset for the organizations, authorities, and businessmen
if properly handled, and efficiently processed and analyzed. Furthermore, people are
moving to cities, and in 2050, 70% of the overall population will live in urban areas
[11]. This transformation will have the disastrous effect the city traffic. Authorities
have a lack of human resources to monitor and control such amount of traffic continu-
ously. Also, there is a possibility of maladministration by the authorities to the public.

@ Springer

632 Int J Parallel Prog (2018) 46:630-646

Therefore, these days, authorities are moving towards computer-based systems to con-
tinuously monitor and control city traffic without human’s intervention by real-time
analytics of Big video data generated by road and vehicles’ cameras.

Even though, any data, either it is video or text, is very useful for analytics and
decision-making, but, processing a big amount of data is a challenging task, which
needs special hardware tools, computing models, software tools, and advanced com-
munication infrastructure. Some systems exist that handles the loT-generated data for
various purposes and decision making [6-9]. However, these systems are specific to
some sensors and 0T applications; They do not ruminate the real-time aspect of big
traffic video processing. Many companies are using a distributed data processing tool
called Hadoop [12], which is best to handle a large amount of stored data. Hadoop
performs well for batch processing. On the other hand, it is not suitable to use for
real-time applications, especially video processing. Apache Spark [13] provides the
real-time data processing. Still, this tool is not efficient enough to analyze a large
amount of high-speed text and video data while working standalone. Hence, there is a
need for an efficient and real-time system that uses advanced technology to process a
large amount of high-speed data (textual and video) in order to perform some analytics
to make decisions.

In recent years, GPUs have become a powerful coprocessor for general purpose
computing and video processing. GPUs can be regarded as massively parallel proces-
sors with an order of magnitude higher computation power (in terms of some floating
point operations per second) and memory bandwidth than CPUs [14]. Moreover, the
computational performance of GPUs is improving at a rate higher than that of CPUs.
GPUs are traditionally designed as special-purpose coprocessors for dedicated graph-
ics rendering. As such, GPU cores are single-instruction-multiple-data (SIMD), which
discourages complex control flows. Furthermore, GPU cores are virtualized, and the
hardware manages threads. GPUs manage their onboard device memory and require
programmers to explicitly transfer data between the GPU memory and the main mem-
ory. All these factors make it desirable to perform general purpose computation on
GPUs (GPGPUs) framework on which users can develop correct and efficient GPU
programs easily. However, it is still a challenging task of developing efficient GPU
programs for complex applications and high-speed videos coming from thousands of
cameras in the city. However, with the integration of GPUs and Big Data processing
technologies, the real-time traffic monitoring and high amount of real-time Big Data
processing could be possible. Few systems have been designed that use parallel and
distributed processing system, i.e., Hadoop [12] with its programming paradigm called
Hadoop MapReduce that will automatically distribute and execute tasks on multiple
machines [15] or multiple CPUs in a single machine [16]. Thus, this paradigm reduces
the programming complexity so that developers can easily exploit the parallelism in the
underlying computing resources for complex tasks. On the other hand, the MapReduce
is only suitable for batch processing. Therefore, in the real-time Big Data processing,
MapReduce would not be a good option. Therefore, in this paper, we are proposing
an efficient and real-time system that uses GPU and Spark with Hadoop ecosystem
to process a large amount of high-speed data (textual and video) in order to perform
some analytics to make decisions.

@ Springer

Int J Parallel Prog (2018) 46:630-646 633

The contribution of the paper is as follows:

e An efficient and real-time Big Data processing system, including its architecture
and implementation model, is proposed that integrates the advanced processing
technology of Hadoop for parallel and distributed processing, Apache Spark for
achieving real-time environment, and GPUs for fast and efficient processing.

e In order to extract features and compute various generic statistical parameter for
Big Data analytics and classification problems, a Map Reduce equivalent mecha-
nism is proposed to work with GPUs (especially, working with video data) while
dividing texture and multimedia data into fixed-size blocks.

e Finally, the whole system is implemented and tested on texture data and real-time
vehicular traffic videos captured from road and vehicle cameras. The evaluation is
performed by considering efficiency aspect of the system with respect to processing
time and system throughput in various circumstances.

e The proposed system with GPUs working under the Hadoop and Spark working
over the Hadoop ecosystem is more proficient than the traditional MapReduce
implementation.

The rest of the paper is organized as follows. The next section, Sect. 2, presents
the state of the art work related to the proposed system. Section 3 provides the overall
details of the proposed system including the proposed architecture to process high-
speed real-time Big Data and the proposed Map Reduce equivalent data processing
algorithm using GPUs. Later section i.e. Sect. 4, provides the information of datasets
used, the system’s implementation environment, and the system’s evaluation. Finally,
the last section concluded the article.

2 Related Work

May works have been done in the performance improvement of CPU and GPU archi-
tectures. Various ways of analyzing multicore CPUs systems are available in the
literature [17-20]. For instance, multiple parametric performance models are men-
tioned by the authors [17], which aim to run multiple class applications. Also, it seeks
to supply a comprehensive modeling that supports multifaceted data centers. In most
of the cases, importance is given to the performance of a single component of the
CPUs. A low-power overhead scheme is presented based on a portion of shared cache
among different application [18]. Moreover, the focus is also given to L2 cache shar-
ing in which the performance of on-chip cache came up with a novel architecture for
configuration of sharing of synchronous dynamic access memory between multiple
CPU functions [19]. Similarly, to understand the partitioning effects of the system
performance, a scheme [20] is presented that is based on the partitioning of cache
and bandwidth partitioning interaction. Also, the parallel software implementation
of 3D/4D-variational (3D VAR/4D-VAR) data assimilation is done whose aim is to
reduce the overall computational cost of the OceanVar code [21]. To achieve better
results of truncated SVD, OceanVar is analyzed regarding condition number which
describes the benefits obtained from using Cholesky factorization.

As a matter of the fact that a significant amount of work is investigated regarding
GPUs for general purpose computing in which the effectiveness of GPUs is mentioned

@ Springer

634 Int J Parallel Prog (2018) 46:630-646

for multiple applications [22,23]. In both cases, the performance of GPUs is compared
with multicore CPU performance. Apparently, it is also shown that the performance
of GPU as compared with the CPUs mainly depends on the system data and overhead,
which need to move the data where it can be used again [24]. To the best of our knowl-
edge, a framework for high-performance computing application is lacking two or more
programs running in a sharing manner [25]. Therefore, the usage of hardware accel-
eration provided by the GPU to overcome the said constraint. Similarly, the problem
above is also solved by combining compute unified device architecture (CUDA) from
various virtual machines by executing them concomitantly. Thus, to support sharing of
GPU among virtual machines. A newly proposed stencil-reduce is proposed, which is
a high parallel filter for visual data restoration based on a skeletal approach [26]. The
proposed scheme is implemented by way of FastFlow parallel programming library on
a multicore machine, which is on multi GPPUSs, or even both. The major drawback of
the proposed scheme is that it does not consider the real-time aspect of video and Big
Data processing. Also, the GPU, standalone, does not consider the larger amount of
data because of a shortage of memory. One of the broad techniques that use dynamic
scheduling takes benefits of the GPUs and CPUs architecture [27]. In the given method,
GPUs are optimized in a way that throughput requires a significant number of inputs
size to achieve high performance. Temporarily, it takes smaller tasks that are more
suitable for CPU cores. Apparently, other techniques, i.e., linear algebra are deeply
optimized so that to achieve high performance on the following attributes, i.e., dif-
ferent clusters with GPUs, conventional clusters without GPUs, and shared-memory
multiple GPUs, and multicore computers, respectively [28,29]. Similarly, using both
multicore processors and standard cluster environment are discussed that consider
advantage of hybrid architecture [30]. Also, a heuristic technique is proposed based
on the problem knowledge [31]. While discussing shared-memory multicore machine,
many alternative codes are available, i.e., LAPACK [32], PLASMA [33], PetsC, Intel
MKL, AMD and ACML libraries. However, distributed-memory CPU-based machines
ScaLAPACK and TBLAS represent optimal choice [34,35], whereas the collection
of LAPACK subroutines are provided by MAGMA [36]. Finally, a fine-to-coarse par-
allelization is proposed that uses a parallel hybrid architecture by the consideration
of Optical Flow numerical problem while implementing parallel multilevel software.
The proposed scheme is based on a smart combination of codes on GPUs and standard
scientific parallel computing libraries on a cluster. The evaluation is made on a real
satellites image sequence coming from large datasets while considering large data sets
using multi-GPUs and CPUs.

With respect to the Big Data processing aspects, only couple of the aforementioned
techniques might be able to handle it. On the other hand, few other architectures and
implementations also exist that use Hadoop and Spark tools for various Big Data
analytical applications. For instance, intelligent transportation system [6] and smart
city [9] are established using Big Data analytics at central city building equipped with
advanced computing models on Hadoop and Spark. Similarly, researchers also worked
on healthcare [7,8] and remote sensing [10] Big Data using data fusion on clusters of
Hadoop ecosystem. A parallel algorithm for multilevel data processing while working
in a high-performance computing environment is proposed by Ahmad et al. [37] using
divide and conquer strategy for YARN and Lustre client application. Rathore et al.

@ Springer

Int J Parallel Prog (2018) 46:630-646 635

[38] deeply analyzed real-time traffic data for voice over Internet Protocol (VoIP) calls
detection using Big Data approach. Even though there exist many Big Data processing
approaches have been conceived, but most of them are specific to some application.
Few others have a lack of efficient processing of real-time video data. GPU-based
processing techniques in the literature also do not support real-time video monitoring
and processing. Also, the use of standalone GPU does not consider the larger amount of
data because of the shortage of memory. Thus, it is essential to integrate the advanced
technologies with distributed and parallel processing mechanism to analyze Big Data,
especially video data, in a real-time environment without producing any delay.

3 Proposed System for Real-Time High-Speed Big Data Processing

We know that there are lots of IoT devices and systems that generate the Big Data
such as, sensors, smart systems like smart home, smart parking, smart city, and social
networks like facebook, twitter, etc. The processing such overwhelming amount of
high-speed data requires an efficient and powerful system to be analyzed and makes
real-time decisions. Besides, it is very hard for the authorities to place the traffic police
at each and every place to control and monitor the traffic. Therefore, they might require
a system that can automatically monitor the traffic and generate an alert in case of any
traffic violation through video capturing. For them, there are two options to monitors
the city traffic, i.e., (1) by running vehicles’ cameras and (2) by a network of static road
camera. The vehicle camera monitors all the vehicles going in front of the car in all
lanes, whereas, the static camera is normally mounted on a top of the pole to monitor
all the vehicles under its coverage area. Consequently, this will make a network of
thousands of cameras in the city, which are continuously generating the video data
of huge size with high speed, term as Big video Data. Such Big video Data can be
generated from any big camera networks monitoring any area. Thus, to process above-
mentioned types of Big Data, we have proposed an architecture having the ability to
process a huge volume of high-speed real-time Big Data. We also proposed GPU-
based MapReduce equivalent algorithm to process Big Data matrix (images/frames)
that are more powerful as compared to tradition Hadoop MapReduce programming
platform.

The proposed system consists of two major components. The first one is the data
generation and traffic monitoring that we have already discussed in the last paragraph.
The second component is the key part of the system, called central analysis building
(CAB), which consists of various processing layers. The proposed system architecture
is depicted in Fig. 1 that has the ability to process high-speed real-time data from
thousands of devices. By real-time analyzing the traffic videos, we can decide about
the suspected illegal actions from the vehicles, such as wrong U-turn, wrong overtake,
drunken driving, wrong parking, or other wrong driving actions. Moreover, the driver
also has the option to alert the central system and to transmit the videos in case he saw
any traffic event or possible suspected activity, such as an accident or drunken driver,
etc.

The central system, which is the main processing building called CAB, has five
processing layers. The main responsibility of the system is to investigate the incoming

@ Springer

636 Int J Parallel Prog (2018) 46:630-646

Big Data Source

\ 4 . 4

Data Collection

Data Filtration

Load Balancing

Distributed Parallel Processing]

& Analysis o
K{ Q\\ o pgiaon

X il

Decision Making UM
b\

%ﬁf Neural Networks/Deep Learning
S Statistical threshold

Fig. 1 Proposed real-time video processing architecture

videos/data and perform initial processing on the incoming data to extract the features
and hidden parameters to perform various decision depending upon the data, applica-
tion, and the needs. At the initial stage, the system collects all the videos and data from
the sources, such as cameras, through its collection unit. The collection unit integrates
all the data, checks for any possible intermediate alteration and noise for integrity, and
transmits them for filtration. Since all the data/videos are not important to be processed
as they do not have any important data (such as don’t have suspected activity or traffic
event), hence, the designed system does not need to process all the data generated
from thousands of sources. For that reason, the filtration process is applied to make
the process more efficient by discarding irrelevant data by reducing the overall data
to be processed. For example, the filtration server filters all the unnecessary metadata
and other video contents based on the video capturing area as well as time. Next, the
set of media data is sent to the load balancing unit, which is the master server that con-
trols and manages the data processing on a network of many data nodes (computers)
working together. It has all the information of each node including its specification,
its capability, its algorithms, and its current state. Based on this information, the load
balancer sends each dada chunk of specific duration and the corresponding job to
specific data nodes. Data nodes are a network of high-performance computers work-
ing together, equipped with GPUs, Hadoop distributed file system [12], and Apache
Spark [13]. Hadoop has very powerful and efficient distributed parallel processing
environment. On the other hand, the traditional Hadoop ecosystem with MapReduce

@ Springer

Int J Parallel Prog (2018) 46:630-646 637

programming paradigm is only suitable for batch processing. Therefore, we applied
Apache Spark for real-time processing while working with powerful Hadoop envi-
ronment. Spark has two main component (1) Spark streaming, that is responsible for
taking real-time data in chunks (2) Spark engine, that immediately processes each data
chunks at its generation by Spark streaming. In the proposed system, the Spark engine
collaborates for processing with GPU that consists of thousands of specific purpose
multiprocessors, which makes the system more efficient. In a nutshell, we are gain-
ing the benefits of Hadoop parallel and distributed environment, real-time processing
with Spark, and fast and efficient processing capabilities of GPUs. Finally, the decision
making is performed based on the results generated by data nodes. For Instance, the
decision-making process might identify as well as verify the suspected illegal traffic
activities and events, and takes necessary actions, such as calling emergency services,
alerting police and imposing fine on the vehicle in case of traffic control scenario.

Here in this section, we are providing the details of using GPU and how it is working
with Hadoop.

3.1 Use of Hadoop with GPU for Real-Time Video Processing
3.1.1 GPU Processing with CUDA

GPU consists of a grid of thousands of multicore processors (SMs) that performs a
specific task in parallel. CUDA [39] is an application programming interface (API)
and parallel computing platform created by Nvidia to work with GPUs. Basically, the
GPU processes the data using a grid of SMs. The grid is decomposed into blocks and
further into threads by using CUDA, as shown in Fig. 2. GPU allowed a maximum of
1024 number of blocks. The overall problem is divided into blocks and assigned to
each of the SMs. GPU_Kernal function provided by the CUDA algorithm assigns each
of the thread, i.e., the repetitive instruction that can be performed in parallel, to each
of the SMs. All the threads (even thousands) are processed in parallel, reducing the
overall time. Each block has a small amount of memory that is shared only among the
SMs belonging to that block. GPU also has a shared memory that is shared among all
the blocks or all the SMs. GPU processing is quite efficient, but it requires a task that
can be processed in parallel and treated as a thread. Moreover, it could not perform
analysis on the very larger amount of Big Data because of its memory problem and
its inability to collaborate on a network of computers. Therefore, we overcome this
drawback by using Hadoop ecosystem with GPU processing.

3.1.2 Hadoop and MapReduce

Hadoop processes data by its user-defined Map and Reduce job using its parallel and
distributed MapReduce programming paradigm. The analysis job is given using Map
and Reduce function that is performed on HDFS data in the multi-node environment.
MapReduce used by Hadoop is an open source implementation that is originally pro-
posed by Google for working with clusters [40]. Later it is used by different developers
and companies to process and analyze Big Datasets. It works with Hadoop Distributed

@ Springer

638 Int J Parallel Prog (2018) 46:630-646

/ GPU Grid \

0

SMs block SMs block SMs block
Memory Memory Memory

SMs Block

SMs block
Memory

SMs block
Memory

SMs block SMs block
Memory Memory

Shared Memory

Fig. 2 Image frames processing with GPU

File System (HDFS) which is also an open source distributed file system used to store
large datasets and files across distributed nodes in chunks.

MapReduce job is defined by giving the address of input and output files on HDFS in
which Map function takes a set of inputs, processes it, and generates intermediate out-
puts in terms of Key and Value pairs for each chunk of the input file. The Reducer Job
takes the input from Map function in (key, value) pair. Its responsibility is to sort, com-
bine, and gathers all the intermediate outputs based on the Key. Though, MapReduce
paradigm performs efficiently for batch processing and large datasets. But, it does not
perform well for real-time processing. Therefore, to remove this drawback, we used
Apache Spark with Hadoop ecosystem. We proposed an equivalent algorithm to pro-
cess matrix type of data (image/video) using GPUs in the same fashion as MapReduce
does. The proposed algorithm is suitable for features and parameters calculations from
various raw data files and performs real-time analysis for decision making.

3.1.3 Video Processing Using Hadoop with GPU

Figure 3 shows the complete working model of GPU with Hadoop and Spark. Data is
collected from remote sources and divided into small chunks using Apache Streaming
that can be processed using in-Memory Database. Apache streaming captures the real-
time data from the remote online source, from HDFS, and any TCP Server in chunks
of a particular given duration or size. Later, the load balancer and distributed network
data processing environment are implemented using Hadoop ecosystem. Load bal-
ancer works as Hadoop master node, and the distributed processing system works as
HDFS data nodes. The data nodes are equipped with and GPUs. The data processing
is done on distributed parallel data nodes as well as by parallel processing of GPU
SMs on each node. The Spark engine implements those instructions which cannot be

@ Springer

Int J Parallel Prog (2018) 46:630-646 639

performed parallelly using GPU, such as CPU code in CPU-GPU programming envi-
ronment. GPU runs parallel instructions (independent threads) by implementing them
in GPU kernel function. The MapReduce equivalent mechanism is mapped on GPU
in such a way that each matrix file (image/frame) from the data/video is divided into
blocks. Parameters’ calculations are performed in parallel on each block using GPUs
(as MAPPER function does) and later are combined using CPU code (as REDUCER
function does) based on Spark engine. There is also one global Reducer is implemented
using Spark engine that combines all the results from the same key from multiple dis-
tributed nodes. The algorithm 1 presents the parameter calculations using MapReduce
mechanism while algorithm 2 is the equivalent form of the algorithm using GPU. Table
1 describes all the symbols and parameters used in Algorithm 1 and Algorithm 2.

Algorithm 1: Parameter Calculation for data blocks using MapReduce
INPUT: Dataset_File /' (or image/frame)

OUTPUT: Block with Calculated Parameters params

STEPS:

blks [blk_id, blk_vals] = Divide_data (Data_File F, blk_size)
FUNC MAPPER(Key blk_id, Value blk_vals): START.

| curr_val :=First_val //initialized with first value
| LOOP WHILE (curr_val HasMoreValues()) DO.

| | EMIT (blk_id, curr_val)

| END LOOP

END MAPPER FUNC

FUNC REDUCER(KEY blk_id, IterableValues val) START.

A

©

sum, sunt’, Max_val, Min_val, ... :=0. //initialize all parameters with zero
LOOP FOREACH IterableValues val DO.

- e

\

\

| | UPDATE sum, sum’, Max_val, Min_val, ... //update all parameters
. | Find Max_val, Min_val,

\

\

\

\

W

END LOOP FOREACH

Calculate sum, sum’, MEAN, SD, Max_val, Min_val,
Return.set(blk_id, params)

CONTEXT.WRITE (blk_id, result)

. END REDUCER FUNC.

N R

Algorithm 2: Mapping of MapReduce Mechanism of Parameter Calculation for data blocks with CUDA
INPUT: Dataset_File F (or image/frame)
OUTPUT: Block with Calculated Parameters params

STEPS:

1. blks [blk_id, blk_vals] := Divide_data (Data_File F, blk_size)

2. CPUToGPU(blks[])

3. FUNC GPU_KERNAL(INPUT blks, OUTPUT result, params, blk_size) START.
4. | LOOP FOR idx_id=1 to blk_size. DO.

5. | CALCULATE sum, sum’, MEAN, SD, Max_val, Min_val, params

6. | END LOOP FOR

7. GPUtoCPU (blk_id, params)

8. END GPU_KERNAL FUNC

4 System Implementation and Evaluation
4.1 Datasets Description

Both Video and text data are taken to test and evaluate the proposed system. The
video’s data is captured from YouTube, covering various traffic and road scenarios,

@ Springer

640 Int J Parallel Prog (2018) 46:630-646

~ HDFS
Data Collection PArK Online Traffic Monitoring
TCP Server

Processin; Processin

Result lResuIt N

Global
Reducer

Master Server

Fig. 3 Data processing in distributed environment using GPU

Table 1 Symbols used in algorithms

Algorithm symbols Description Algorithm symbols Description

blk(s) Data/image block(s) Curr_val Current processing value
(pixel value)

blk_id Block ID Strat_val Start value in the block

blk_val(s) Block Value(s) CPU to GPU Send data from CPU to
GPU

val(s) Value(s) GPU to CPU Send data from GPU to
CPU

blk_size Block size SD Standard deviation

Divide_data() Function to divide data

into fixed size matrix
block

e.g., single direction and multi-direction traffic videos, Wrong U-turn and drunken
driving videos captured from following vehicle cameras as well as static road cameras.
For real-time system testing, online videos are taken continuously from road cameras
of Arlingtonva.us [41] and Earth Cam [42]. For the texture data, we have generated
more than 6 Gbs of data from sensors and from social networks through Apache Spark
streaming.

@ Springer

Int J Parallel Prog (2018) 46:630-646 641

4.2 Implementation Environment

For evaluation purpose, we implemented the system using GTX 750 Ti GPU
Engine having 640CUDA Cores processors with 1020Base Clock (MHz), 1085
Boost Clock (MHz), 5.4Gbps Memory Clock, and 2048MB Standard Memory with
GDDR5Memory Interface. GPU is used under a single node Hadoop cluster 2.7.2
with Intel(R) Core(TM) 15-6600 3.30GHz CPU and 16 GB Memory and Win-
dows 10 OS. Also, the Apache Spark 2.0.1 with Spark streaming and Spark engine
modules is implemented over the Hadoop server in order to achieve real-time process-
ing.

4.3 System Evaluation

Since we are more focusing on the real-time processing of the Big Data, therefore,
we evaluated the proposed system by considering the system efficiency in terms of
processing time and throughput. Moreover, we have mapped the MapReduce Hadoop
programming mechanism in GPU using CUDA for image processing by dividing
the whole datasets into a number of independent blocks. Hence we compared our
approach to the implementation of traditional MapReduce implementation by per-
forming various parameter calculation by considering both textual as well as media
data.

At the start, we have chosen the numbers of raw data files of fixed length (65 MB).
We have run the parameter calculation algorithm on these files using both MapRe-
duce implementation as well as GPU-based proposed system implementation. We
observed that for the textual raw file, the GPU implementation perform extraordi-
nary than the traditional MapReduce implementation. For ten number of files, GPU
just took almost 1 seconds, whereas CPU took 12 seconds. Moreover, when we
increase the number of files, the processing time is also remarkably increased in
the case of CPU implementation. For GPU-based implementation, the processing
time starts increasing very gradually and the rise in processing time is very lit-
tle as compared to the number of files increased. The processing time comparative
analysis of the proposed GPU-based implementation and the traditional MapRe-
duce implementation corresponding to the number of files processed is shown in
Fig. 4. Similarly, we have also performed the efficiency analysis on text documents
while considering the system throughput. The throughput almost remains constant
for both of the cases with increasing data size. The throughput of the GPU-based
implementation is quite higher, i.e., from 300 to 350 MBps. Whereas, the CPU-
based MapReduce without GPU support only have a throughput of SOMBps, which
is quite poor, as shown in Fig. 5. Therefore, we concluded that for text/number based
big raw files, the GPU-based implementation is quite faster than the CPU MapRe-
duce.

While evaluating the system efficiency on video related Big Data, the process-
ing time is measured in seconds against the video duration, as shown in Fig. 6. It
is obvious that with single CPU MapReduce-based implementation, the processing
time is rapidly growing with the increase in the duration of the video. Whereas, with

@ Springer

642 Int J Parallel Prog (2018) 46:630-646

14000
= 12000 - o~ EPUapRsiinee
z .o .o
£ 10000 |"® GPU
N’
L
£ 8000 -
=
sy 6000 -
£
Z 4000 -
2
£ 2000 -
..... veres@ocO

= 0 o.....o.....o......o.....o.....o.....o o

0 2 4 . . = .

No. of Files

Fig. 4 Processing time with respect to number of large size text file

S00

CPU-MapReduce
------ GPU

-
=]
=]

eee®e,sncnssccesonns, eteccsscasscsncscccesnssccccssns

Throughput (MBps)

0 2000 4000 6000 8000
Dataset Size (MB)

Fig. 5 System throughput with respect to data size

Spark and GPU based Hadoop system, there is a very short increase in the processing
time when there is an increase of hundreds of seconds in the video duration. GPU
processes the video almost seven times faster than the video duration. With these
results, it is obvious that the proposed system is capable of processing real-time traffic
videos.

Normally the videos are generated as 30 frames per seconds. The frame pro-
cessing efficiency of the proposed system and the comparison with the MapReduce
CPU implementation can be seen in Fig. 7. The proposed system takes almost
four milliseconds (ms) to process one frame, which is quite low as compared to
the time taken by the CPU MapReduce system to process one frame. The CPU
MapReduce-based system take almost 18 ms to process one frame and almost more
than half second to process one-second video (18 * 30 frames). This processing
time is quite high in case of processing multiple videos at one time. So, standalone

@ Springer

Int J Parallel Prog (2018) 46:630-646 643

800

—e— GPU
600 - —&— CPU-MapReduce

400 -

200 -

Processing Time (Seconds)

0 200 400 600 800 1000 1200 1400 1600

Video Time (Seconds)

=
i

. 6 Processing time with respect to video duration

=mmm CPU-MapReduce

D

£

‘E:E 20 m— GPU

g

E 15

FA

wm

£ &

Z ™~ 10-

>

<

£

[5+

s

< 0 -
L e
— NN T WV OO0 O — AN NSV O 0N —
OOOOOOOOM»—(M»—tv—«MMMMﬁ(\]NN
8888888855555 858858535

il e gie gl S e
Videos

Fig. 7 Average processing time per frame with various videos

CPU MapReduce-based implementation would not be good enough for real-time
video processing especially when videos are continuously coming from multiple
sources.

Finally, we took the throughput of the system (frame processed per second) that
is measured by dividing the total number of video frames divided by the total time
taken to process the whole video. The throughput of both the GPU and CPU imple-
mentation is almost constant even with the increase in the number of frames, as
depicted by the results in Fig. 8. The proposed system, with GPU-based imple-
mentation, have very high throughput as compared to the CPU implementation. The
GPU processes 200-250 frames per seconds, which means it can process 7-8 live

@ Springer

644 Int J Parallel Prog (2018) 46:630-646

% 200

&

g

§ 150 - —e— GPU

= —&— CPU-MapReduce
£ 100

)

z

0 10000 20000 30000 40000
No. of Frames
Fi

=

g. 8 Throughput with respect to number of frames processed per second

video at real-time. Whereas, The CPU has only the ability to process 1-2 video at a
time.

5 Conclusion

In this paper, we proposed an efficient and real-time Big Data stream processing system
to analyze the data and make immediate decisions. We proposed an implementation
model by integrating parallel and distributed environment of Hadoop ecosystem with
graphics processing unit (GPU) and Spark to make it more powerful and real-time in
terms of processing. We also proposed MapReduce equivalent algorithm for efficient
data processing using GPUs for parameters’ calculation by dividing overall Big Data
files into fixed-size blocks. Apache Spark streaming is employed to captured real-
time data from remote locations and distribute it among various Hadoop data nodes
using HDFS. Apache Spark engine is used to process that captured data in real-time.
Each Data node is equipped with GPUs and corresponding algorithm to perform
processing using iterative instructions and return back the results to Spark engine using
the intermediate module. We evaluated our approach by taking the city traffic videos,
i.e., captured by static as well as running vehicles’ cameras, by identifying vehicles on
the road and by taking large text-based files, like twitter data files, machine learning
classification data, etc. Finally, we evaluated the proposed system on efficiency while
considering the processing time and throughput with various aspects. The proposed
system is proved more efficient as compared to the traditional standalone CPU based
MapReduce.

Acknowledgements This study was supported by the Brain Korea 21 Plus project (SW Human Resource
Development Program for Supporting Smart Life) funded by Ministry of Education, School of Computer
Science and Engineering, Kyungpook National University, Korea (21A20131600005).

@ Springer

Int J Parallel Prog (2018) 46:630-646 645

References

10.

11.

12.

13.
14.

15.

16.

18.

19.

20.

21.

22.

23.

24.

25.

26.

. Cohen, J., Dolan, B., Dunlap, M., Hellerstein, J.M., Welton, C.: Mad skills: new analysis practices for

Big Data. Proc. VLDB Endow. 2(2), 1481-1492 (2009)

. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Commun. ACM

51(1), 107-113 (2008)

. IBM, Armonk, NY, USA.: Four Vendor Views on Big Data and Big Data Analytics. IBM [Online].

http://www-OLibm.comlsoftware/in/data/bigdata/ (2012)

. CISCO.: The Internet of Things, Infographic. http://blogs.cisco.com/news/the-internet-of-things-

infographic/ (2015)

. Sivaraman, S., Trivedi, M.M.: Integrated lane and vehicle detection, localization, and tracking: a

synergistic approach. IEEE Trans. Intell. Transp. Syst. 14(2), 906-917 (2013)

. Rathore, M.M., Ahmad, A., Paul, A., Jeon, G.: Efficient graph-oriented smart transportation using inter-

net of things generated Big Data. In: 2015 11th International Conference on Signal-Image Technology
& Internet-Based Systems (SITIS), pp. 512-519 (2015)

. Ahmad, A., Paul, A., Rathore, M.M., Chang, H.: Smart cyber society: integration of capillary devices

with high usability based on cyber-physical system. Future Gen. Comput. Syst. 56, 493-503 (2016)

. Rathore, M.M., Ahmad, A., Paul, A., Wan, J., Daqiang, Z.: Real-time medical emergency response

system: exploiting IoT and Big Data for public health. J. Med. Syst. 40(12), 283 (2016)

. Rathore, M.M., Ahmad, A., Paul, A., Rho, S.: Urban planning and building smart cities based on the

internet of things using Big Data analytics. Comput. Netw. 101, 63—-80 (2016)

Ahmad, A., Paul, A., Rathore, M.M.: An efficient divide-and-conquer approach for Big Data analytics
in machine-to-machine communication. Neurocomputing 174, 439-453 (2016)

Jin, J., Gubbi, J., Marusic, S., Palaniswami, M.: An information framework for creating a smart city
through internet of things. IEEE Internet Things J. 1(2), 112-121 (2014)

Apache Hadoop.: Welcome to Apache™ Hadoop®!. http://hadoop.apache.org/ (2016). Accessed 1
Nov 2016

Apache SPARK.: Apache Spark™. http://spark.apache.org/ (2016). Accessed 1 Nov 2016

Ailamaki, A., Govindaraju, N.K., Harizopoulos, S., Manocha, D.: Query co-processing on commodity
processors. VLDB 6, 1267-1267 (2006)

Hadoop.: http://ati.amd.com/technology/streamcomputing/ (2010). Accessed 1 Nov 2016

Ranger, C., Raghuraman, R., Penmetsa, A., Bradski, G., Kozyrakis, C.: Evaluating mapreduce for
multi-core and multiprocessor systems. In: IEEE 13th International Symposium on High Performance
Computer Architecture 2007. HPCA 2007, pp. 13-24 (2007)

. Cerotti, D, et al.: Modeling and analysis of performances for concurrent multithread applications on

multicore and graphics processing unit systems. Concurr. Comput. Pract. Exp. 28(2), 438-452 (2016)
Qureshi, M.K., Patt, Y.N.: Utility-based cache partitioning: a low-overhead, high-performance, run-
time mechanism to partition shared caches. In: Microarchitecture. 2006. MICRO-39. 39th Annual
IEEE/ACM International Symposium on IEEE (2006)

Kavadias, S.G. et al.: On-chip communication and synchronization mechanisms with cache-integrated
network interfaces. In: Proceedings of the 7th ACM International Conference on Computing Frontiers.
ACM (2010)

Liu, F, Xiaowei J., Solihin, Y.: Understanding how off-chip memory bandwidth partitioning in chip
multiprocessors affects system performance. In: High Performance Computer Architecture (HPCA).
2010 IEEE 16th International Symposium on IEEE (2010)

D’Amore, L., et al.: HPC computation issues of the incremental 3D variational data assimilation scheme
in OceanVar software. J. Numer. Anal. Ind. Appl. Math. 7(3—4), 91-105 (2012)

Che, S., et al.: A performance study of general-purpose applications on graphics processors using
CUDA. J. Parallel Distrib. Comput. 68(10), 1370-1380 (2008)

Owens, J.D., et al.: GPU computing. Proc. IEEE 96(5), 879-899 (2008)

Gregg, C., Hazelwood K.: Where is the data? Why you cannot debate CPU versus GPU performance
without the answer. In: Performance Analysis of Systems and Software (ISPASS), 2011 IEEE Inter-
national Symposium on IEEE (2011)

Shi, L., et al.: vVCUDA: GPU-accelerated high-performance computing in virtual machines. IEEE
Trans. Comput. 61(6), 804-816 (2012)

Aldinucci, M., et al.: Parallel visual data restoration on multi-GPGPUs using stencil-reduce pattern.
Int. J. High Perform. Comput. Appl. 29(4), 461-472 (2015)

@ Springer

http://www-Ol.ibm.comlsoftware/in/data/bigdata/
http://blogs.cisco.com/news/the-internet-of-things-infographic/
http://blogs.cisco.com/news/the-internet-of-things-infographic/
http://hadoop.apache.org/
http://spark.apache.org/
http://ati.amd.com/technology/streamcomputing/

646 Int J Parallel Prog (2018) 46:630-646

27. Wu, W, et al.: Hierarchical dag scheduling for hybrid distributed systems. In: Parallel and Distributed
Processing Symposium (IPDPS), 2015 International IEEE (2015)

28. Song, F., Dongarra, J.: A scalable approach to solving dense linear algebra problems on hybrid CPU-
GPU systems. Concurr. Comput. Pract. Exp. 27(14), 3702-3723 (2015)

29. Du, P, etal.: Soft error resilient QR factorization for hybrid system with GPGPU. J. Comput. Sci. 4(6),
457-464 (2013)

30. Dongarra, J., et al.: Hpc programming on intel many-integrated-core hardware with magma port to
xeon phi. Sci. Program. 2015, 9 (2015)

31. Braun, T.D., et al.: A comparison of eleven static heuristics for mapping a class of independent tasks
onto heterogeneous distributed computing systems. J. Parallel Distrib. Comput. 61(6), 810-837 (2001)

32. Anderson, E., etal.: LAPACK Users’ guide. In: Society for Industrial and Applied Mathematics (1999)

33. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A.,
Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users” Guide, 3rd edn. SIAM, Philadelphia
(1999)

34. Agullo, E., Dongarra, J., Hadri, B., Kurzak, J., Langou, J., Langou, J., Ltaief, H., Luszczek, P., YarKhan,
A.: Plasma Users’ Guide, Technical report. In: ICL, UTK (2014)

35. Blackford, L.S., Choi, J., Cleary, A., D’ Azeuedo, E., Demmel, J., Dhillon, I., Hammarling, S., Henry,
G., Petitet, A., Stanley, K., Walker, D., Whaley, R.C.: ScaLAPACK User’s Guide. In: Society for
Industrial and Applied Mathematics, Philadelphia (1997)

36. Song, F., YarKhan, A., Dongarra, J.: Dynamic task scheduling for linear algebra algorithms on
distributed-memory multicore systems. In: Proceedings of the Conference on High Performance Com-
puting Networking, Storage and Analysis. pp. 1-11 (2009)

37. Ahmad, A., et al.: Multilevel data processing using parallel algorithms for analyzing Big Data in
high-performance computing. Int. J. Parallel Program. doi:10.1007/s10766-017-0498-x (2017)

38. Rathore, M.M., et al.: Exploiting encrypted and tunneled multimedia calls in high-speed Big Data
environment. Multimed. Tools Appl. doi:10.1007/s11042-017-4393-7 (2017)

39. NVIDIA ACCELERATED COMPUTING.: CUDA Toolkit 8.0. https://developer.nvidia.com/cuda-
downloads (2016). Accessed 1 Nov 2016

40. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters. In: Proceedings of
Sixth Conference Symposium on Opearting Systems Design and Implementation (OSDI) (2004)

41. Arlingtonva.us.: Live traffic cameras. https:/transportation.arlingtonva.us/live-traffic-cameras/
(2016). Accessed 1 Nov 2016

42. 43Earth Cam.: LIVE Webcam Network. http://www.earthcam.com/ (2016). Accessed 1 Nov 2016

@ Springer

http://dx.doi.org/10.1007/s10766-017-0498-x
http://dx.doi.org/10.1007/s11042-017-4393-7
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://transportation.arlingtonva.us/live-traffic-cameras/
http://www.earthcam.com/

	Real-Time Big Data Stream Processing Using GPU with Spark Over Hadoop Ecosystem
	Abstract
	1 Introduction
	2 Related Work
	3 Proposed System for Real-Time High-Speed Big Data Processing
	3.1 Use of Hadoop with GPU for Real-Time Video Processing
	3.1.1 GPU Processing with CUDA
	3.1.2 Hadoop and MapReduce
	3.1.3 Video Processing Using Hadoop with GPU

	4 System Implementation and Evaluation
	4.1 Datasets Description
	4.2 Implementation Environment
	4.3 System Evaluation

	5 Conclusion
	Acknowledgements
	References

