Int J Parallel Prog (2018) 46:565-583 @ CrossMark
https://doi.org/10.1007/510766-017-0507-0

MeshCleaner: A Generic and Straightforward
Algorithm for Cleaning Finite Element Meshes

Gang Meil2(® - Salvatore Cuomo® - Hong Tian* -
Nengxiong Xu!2 . Linjun Peng’®

Received: 27 February 2017 / Accepted: 28 April 2017 / Published online: 6 May 2017
© Springer Science+Business Media New York 2017

Abstract Mesh cleaning is the procedure of removing duplicate nodes, sequencing
the indices of remaining nodes, and then updating the mesh connectivity for a topo-
logically invalid Finite Element mesh. To the best of our knowledge, there has been no
previously reported work specifically focused on the cleaning of large Finite Element
meshes. In this paper we specifically present a generic and straightforward algorithm,
MeshCleaner, for cleaning large Finite Element meshes. The presented mesh cleaning
algorithm is composed of (1) the stage of compacting and reordering nodes and (2)
the stage of updating mesh topology. The basic ideas for performing the above two
stages efficiently both in sequential and in parallel are introduced. Furthermore, one
serial and two parallel implementations of the algorithm MeshCleaner are developed
on multi-core CPU and/or many-core GPU. To evaluate the performance of our algo-
rithm, three groups of experimental tests are conducted. Experimental results indicate
that the algorithm MeshCleaner is capable of cleaning large meshes very efficiently,
both in sequential and in parallel. The presented mesh cleaning algorithm MeshCleaner
is generic, simple, and practical.

Keywords Finite Element mesh - Data structure - Mesh topology - Parallel algorithm

B Gang Mei
gang.mei@cugb.edu.cn

Department of Geological Engineering, Qinghai University, Xining, China

2 School of Engineering and Technology, China University of Geosciences, Beijing, China

3 Department of Mathematics and Applications “R. Caccioppoli”, University of Naples Federico
1L, Naples, Italy

4

Faculty of Engineering, China University of Geosciences, Wuhan, China

Academician Pioneering Park, Dalian University, Dalian, China

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-017-0507-0&domain=pdf
http://orcid.org/0000-0003-0026-5423

566 Int J Parallel Prog (2018) 46:565-583

1 Introduction

Finite Element meshes are widely used in the numerical simulation, shape modeling,
computer graphics, etc. A topologically valid Finite Element mesh is composed of
a set of nodes and a set of elements formed by nodes. In other words, there are at
least two geometric primitives in any valid Finite Element mesh, i.e., the nodes and
the elements. After some kinds of manipulations such as mesh Boolean operations,
mesh refinement [2, 10, 16,26], mesh coarsening [1], mesh optimization [6,23] or mesh
merging in parallel mesh generation [8,9,13,32], the nodes and/or the elements are
removed or added, and the mesh topology is modified. In this case, the changed mesh
needs to be cleaned to become valid again.

The reason why mesh cleaning is typically needed to be performed for Finite Ele-
ment meshes is as follows. In general, when conducting the numerical analysis using
Finite Element Method (FEM), duplicate nodes are not allowed since the system/global
stiffness matrix will be singular if there are duplicate nodes; and in this case no correct
or reliable analysis results can be achieved. Moreover, it would be better that all of
the nodes in the same mesh are sequenced (i.e., continuously indexed). This can help
reduce the computer memory requirement for storing the system stiffness matrix. Fur-
thermore, it is much easier to assemble the system stiffness matrix due to easy access
to the entries in both the element and system stiffness matrix. In summary, cleaned
meshes is in general required in FEA. This is also the primary objective to carry out
the presented work in this paper.

The primary objective of mesh cleaning is to make the changed mesh topologically
valid again by merging potential duplicate vertices in the uncleaned mesh. In most
cases, duplicate nodes, i.e., differently indexed nodes with the same coordinates and
attributes, are not allowed. Hence, after conducting a specific kind of mesh modifica-
tion, all nodes need to be merged, checked, and newly indexed. Furthermore, after the
merging and re-indexing of all nodes, the mesh topology is also needed to be refreshed.
In summary, in the process of mesh cleaning the vertices are needed to be merged and
the topology is needed to be updated.

Nowadays, Finite Element meshes can be quite large. For example, in the CFD
simulation of aircraft, the Finite Element models may be composed of one billion
elements or even more. In this case, when needed to locally refine the large Finite
Element mesh and then clean the refined mesh, the computational cost may be too
expensive. In these cases, the computational efficiency needs to be improved. An
effective and practical strategy to improve the computational efficiency is to perform
the mesh cleaning in parallel on various parallel computing platforms such as multi-
core CPUs, many-core GPUs, or even clusters. To the best of our knowledge, there has
been no previously reported work specifically focused on the cleaning of large Finite
Element meshes, especially on the parallel mesh cleaning on multi-core CPUs and/or
many-core GPUs.

In this paper, we specifically present a generic and straightforward algorithm
for cleaning large Finite Element meshes. The presented mesh cleaning algorithm
is termed as MeshCleaner, and is implemented on multi-core CPU and/or many-
core GPU architectures with the use of OpenMP [20], Thrust [11], and CUDA [19].

@ Springer

Int J Parallel Prog (2018) 46:565-583 567

To demonstrate the effectiveness of the MeshCleaner, we apply it to combine large
tetrahedral Finite Element meshes.

This paper is organized as follows. In Sect. 2, the motivation of cleaning Finite Ele-
ment mesh is stated. In Sect. 3, the presented mesh cleaning algorithm, MeshCleaner,
is described in details. Moreover, an application example of MeshCleaner is presented
in Sect. 4 to demonstrate the effectiveness. In Sect. 5, the features of the algorithm
MeshCleaner, including the advantages and shortcomings, are analyzed. Finally, the
presented work is concluded in Sect. 6.

2 Problem Statement

In this section, for the sake of clarity when introducing our work, we specifically
present several background concepts and definitions.

Mesh Representation. Typically, a mesh can be simply represented with two types
of components, i.e., the list of nodes and the list of elements [12]. The list of nodes
usually holds the index, coordinates, and attribute of each node, while the list of
elements stores the index of each element, the indices (not the coordinates) of nodes
forming the element, and the attribute of each element.

In this study, we specifically focus on those meshes represented with the above
mesh representation form. The widely used . OFF format (Object File Format) is the
simplest one of the above-mentioned mesh representation forms, and the mesh format
employed in the famous tetrahedral mesh generator TetGen [28] also falls into this
mesh representation form.

Cleaned Mesh. The cleaned mesh is the type of mesh with the following features:

1) There are no duplicate nodes with the same coordinates;
2) The indices of all nodes are sequenced (i.e., continuously listed);
3) All elements are represented by the already cleaned nodes.

The above features of cleaned meshes are typically required in Finite Element
Analysis (FEA). In general, when conducting the numerical analysis using Finite
Element Method (FEM), duplicate nodes are not allowed since the system / global
stiffness matrix will be singular if there are duplicate nodes; and in this case no correct
or reliable analysis results can be achieved. Moreover, it would be better that all of
the nodes in the same mesh are sequenced (i.e., continuously indexed). This can help
reduce the computer memory requirement for storing the system stiffness matrix.
Furthermore, it is much easier to assemble the system stiffness matrix due to easy
access to the entries in both the element and system stiffness matrix. In summary,
cleaned meshes is in general required in FEA. This is also the primary objective to
carry out the presented work in this paper.

The mesh cleaning is a procedure specifically for generating cleaned mesh. There
are two major sub-procedures in the mesh cleaning.

e Sub-procedure 1: the generation of cleaned nodes by merging and reordering all
vertices;

e Sub-procedure 2: the generation of cleaned elements by updating the mesh topol-
ogy using the already cleaned nodes

@ Springer

568 Int J Parallel Prog (2018) 46:565-583

Mesh Refinement | | Mesh Coarsening | | Mesh Merging | | Mesh Cutting | |Mesh Optimizationl
Insert or Remove . Mesh Connectivity /
Nodes / Vertices " N Topology Changed
Uncleaned Mesh
Merge / Reorder . Update Connectivity
Nodes / Vertices Using Merged Nodes

Cleaned Mesh

Further Usage

Visualization | | Geometric Modeling | ------ | Numerical Simulation

Fig. 1 Motivation of performing mesh cleaning

After performing the mesh cleaning, cleaned meshes can be obtained and then used
for further mesh manipulation such as mesh refinement [16,26], mesh coarsening [1]
or used as the computational mesh models for numerical analysis. The motivation of
conducting the mesh cleaning is illustrated in Fig. 1.

3 The Proposed Algorithm: MeshCleaner
3.1 Overview

In general, a mesh can be described using a list of vertices and a list of elements.
Correspondingly, the merging of meshes typically consists of two stages: (1) the com-
pacting of all vertices by removing duplicate vertices and then reordering the IDs of
the remaining nodes, and (2) the refreshing of all elements by updating the nodal IDs in
each element; see an extremely simple illustration of mesh cleaning in Fig. 2. In the fol-
lowing content, we will describe the basic ideas behind the above two stages in detail.

3.2 The Basic Ideas Behind Merging and Reordering Nodes

The first task of mesh cleaning is to compact the vertices by deleting duplicate vertices
and renumbering the remaining points. After performing some mesh modifications
such as local mesh refinement or cutting part of meshes, the vertices are newly added
or removed. In this case, duplicate vertices may exist, and the IDs of the vertices
are probably no longer numbered continuously. However, in a topologically valid
mesh, duplicate vertices are not allowed, and also the IDs of all vertices are typically
continuous for easy accesses. Therefore, the new list of vertices after carrying out
mesh operations needs to be first compacted.

@ Springer

Int J Parallel Prog (2018) 46:565-583 569

1 0

9 4 1

10 3 0

() (b) ()

Fig. 2 An extremely simple example to illustrate the procedure of mesh cleaning. a Multiple meshes, b
combined and uncleaned mesh, ¢ required and cleaned mesh

@|of[1]2][3]4a]s5]6]7]8]9[10]11]msofallorginal nodes

) [0]10] 7 [9]2|5]8[11]1]3]4]6 |sofalsortednodes

@f[2]o]1]of1]o0]o0]0]1]0]1]0 Fagsindicatingduplicates
@[2]1]2]2[3[3[3]3]4]4]5]5 |nNewnodalips(onebased)
@foJof1[1]2]2]2]2]3]3]4]4]newnodalips(zerobased)

(f) ’ 0 ‘ 7 ‘ 2 ‘ 1 ‘ 4 ‘ n/a ‘ n/a ‘ n/a ‘ n/a ‘ n/a ‘ n/a ‘ n/a ‘ Remaining nodes

Fig. 3 The basic ideas behind the merging and reordering of nodes

In the algorithm MeshCleaner, the compacting of vertices can be quite efficiently
realized by utilizing the parallel primitives of sorting and scanning. The workflow of
compacting the vertices are listed as follows.

1) Sort all nodes ascendingly according to the nodal coordinates.

2) Check duplicate nodes by comparing the coordinates of any pair of sorted adjacent
nodes.

3) Mark each duplicate node with a specific flag.

4) Assign the new and continuous IDs for the sorted and checked nodes.

5) Remove the duplicate nodes and keep the unique ones.

Here we employ a simple illustration to demonstrate the above workflow of com-
pacting vertices. As shown in Fig. 2, after combing four quite simple triangular meshes,
there are totally 12 vertices before mesh cleaning. These 12 vertices are first simply
numbered continuously without taking duplications into account; see Fig. 3a. In the
first step, those 12 vertices are sorted according to the coordinates; see Fig. 3b. Then,
each pair of adjacent vertices is checked to identify whether they are duplicate nodes.
Obviously, there are several pairs of duplicate nodes, e.g., the nodes 0 and 10. We use
specific flags to indicate the duplicates: 0 if duplicate and 1 if not. In this case, an array
of flags consisting of ones and zeros is formed; see Fig. 3c. We then perform an inclu-

@ Springer

570 Int J Parallel Prog (2018) 46:565-583

(@ O 10| 7 | 9 2 |5 8 |11 | 1 3 | 4 | 6 |IDsofallsorted nodes
)OO0 |2 (1|2 |2 |2 (2|3 |3 /|4]| 4 |NewnodallDs(Zero-based)

(c) | O 112 |3|4 |5 |67 |8 |9 |10]11|IDsofalloriginal nodes
(d) | O 3 2 3 4 2 4 1 2 1 0 2 | Corresponding new IDs

Fig. 4 The basic ideas behind the updating of mesh topology

sive scanning for the array of flags to obtain the new nodal IDs; see Fig. 3d. Noticeably,
the new nodal IDs, in this case, are one-based; and the corresponding zero-based IDs
can be easily achieved by subtracting the value of ones; see Fig. 3e. It should be noticed
that those new nodal IDs will further be used to determine the relationship between the
old nodal IDs and the new nodal IDs. Finally, the required list of cleaned nodes can be
obtained by removing the duplicate vertices according to the nodal flags; see Fig. 3f.

The above workflow of merging and reordering vertices can be easily parallelized.
First, the sorting of vertices according to the coordinates can be obviously parallelized
using the parallel merging sorting algorithm [24]. Then, each pair of adjacent vertices
can be checked independently, and thus the checking for pairs of adjacent vertices can
be conducted in parallel. Third, the inclusive scanning that is employed to calculate
the new nodal IDs can also be carried out in parallel using the prefix sum algorithm
[27]. Also, the transforming of one-based nodal IDs to zero-based ones can be quite
easily parallelized.

3.3 The Basic Ideas Behind Updating Mesh Topology

The updating of mesh topology is much easier than that of merging vertices. After
merging and reordering the nodes, each of the remaining nodes receives a new ID.
That is, there is a corresponding relationship between the old IDs and the new IDs of
all nodes. In this sense, for each node in an element, its new ID can be quite easily
determined according to the relationship between the new and old IDs. The relationship
can be obtained by re-sorting all the sorted nodes along with the new nodal IDs by
using the old nodal IDs as the keys for sorting.

This can be also quite easily illustrated using an extremely simple example; see
Figs. 2 and 4. After obtaining the zero-based new nodal IDs, there is, in fact, a one-
to-one relationship between the old nodal IDs (Fig. 4a) and the new nodal IDs (Fig.
4b). However, when updating the mesh topology by refreshing the nodal indices in all
elements, the access to the new nodal ID of a specific node, for example, the node with
the old ID 9, needs to perform a searching in the array of old IDs of the first sorted
nodes (Fig. 4a). This updating of mesh topology that needs searching new nodal ID is
computationally inefficient.

To improve the computational efficiency of updating the mesh topology, we avoid
the searching of the new ID for each node. Our solution is that: we re-sort all the sorted
nodes along with the new nodal IDs by using the old nodal IDs as the keys for sorting;
see the re-sorted results in Fig. 4c, d. After re-sorting, a new relationship is between
the old nodal IDs and the new nodal IDs. In this case, the new ID for each node can
be quite easily accessed by exploiting the new relationship.

@ Springer

Int J Parallel Prog (2018) 46:565-583 571

The updating of mesh topology can also be easily conducted in parallel. First,
the re-sorting of the sorted nodes can also be parallelized using the parallel merging
sort by keys. Second, the refreshing of the nodal IDs in an element can be obviously
performed independently; and this means the refreshing for all elements can be carried
out in parallel.

3.4 Serial and Parallel Implementations

The mesh cleaning algorithm, MeshCleaner, is implemented on both multi-core CPU
and many-core GPU platforms by exploiting the OpenMP API [20], Thrust library
[11], and CUDA parallel computing model [19]. In this subsection, we will introduce
more details on one serial and two parallel implementations.

It should be also noted that the source code of the above three implementations is
available at: https://figshare.com/s/0cd4233b8bf10ba4fdOe.

3.4.1 Serial Implementation with STL

The serial implementation of the algorithm, MeshCleaner, is developed by coherently
according to the basic ideas behind the merging of vertices and the updating of mesh
topology; see Figs. 3 and 4. For the sake of simplicity, we develop this implementation
by employing the vector containers and efficient algorithms such as sorting that are
provided in the C++ STL (Standard Template Library).

The serial implementation is rather simple with the use of STL. First, we create two
vector containers to store the original nodes and elements before mesh cleaning, then
use the std: : sort () function to sort all nodes according to the nodal coordinates.
Third, we check the duplicate nodes by comparing the coordinates of any pair of
adjacent nodes and accordingly set the flags for indicating the duplicates. According
to the flags indicating duplicates, the new nodal IDs can be very easily obtained by
summarization. After obtaining the new nodal IDs, to form the relationship between
the new IDs and the old IDs, we use the std: : sort function again to sort the old
IDs along with the new IDs. Finally, we perform a loop over all the elements to update
the nodal IDs in each element according to the formed relationship between the old
IDs and new IDs.

3.4.2 Parallel Implementation on Multi-core CPU

As mentioned in Sects. 3.2 and 3.3, both of the two major stages, i.e., the merging of
vertices and the updating of mesh topology can be quite easily parallelized. To improve
the computational efficiency, we develop a parallel implementation on multi-core CPU
by exploiting the interface OpenMP [20] and the library Thrust [4,5]. Note that in the
library Thrust the parallel computing primitives such as sorting and scanning can be
executed on either multi-CPUs or many-core GPUs [3].

This parallel implementation developed on multi-core CPU is quite similar to the
serial implementation version described in Sect. 3.4.1. First, we create two Thrust
vector containers rather than STL vector containers to store the original nodes and

@ Springer

https://figshare.com/s/0cd4233b8bf10ba4fd0e

572 Int J Parallel Prog (2018) 46:565-583

elements before mesh cleaning; then use the thrust: :sort () rather than the
std: :sort () function to sort all the nodes according to the nodal coordinates in
parallel. Third, we check the duplicate nodes in parallel by using the OpenMP directive
“#pragma omp parallel for” andaccordingly set the flags for indicating the
duplicates. According to the flags indicating duplicates, the new nodal IDs can be
very easily obtained by performing a parallel inclusive scanning procedure using
the efficient function thrust::inclusive_scan(). After obtaining the new
nodal IDs, to form the relationship between the new IDs and the old IDs, we use the
thrust: :sort () rather than the std: : sort () function again to sort the old
IDs along with the new IDs. And finally, we update the nodal IDs in each element
in parallel according to the formed relationship between the old IDs and new IDs by
using the OpenMP parallel_for directive.

3.4.3 Farallel Implementation on Many-Core GPU

We also implement the mesh presented algorithm, MeshCleaner, on a single CUDA-
enabled GPU. The GPU implementation can also be roughly divided into two major
stages: (1) the compacting/merging of all vertices in parallel, and (2) the updating
of mesh topology in parallel. Several quite efficient parallel primitives such as GPU-
accelerated sorting [24] and scanning [27], which are provided by the thrust library
[4,5] in the CUDA programming model, are directly used in our GPU implementation.

After reading the uncleaned mesh data, we first allocate the global memory on the
device and then transfer the mesh data on the host to the device. Second, We sort all the
original and uncleaned vertices according to the coordinates in parallel by employing
the quite efficient parallel sorting primitive thrust: : sort (). Third, we design a
CUDA kernel to specifically check whether any pair of adjacent points duplicate, and
meanwhile mark the duplicate vertices with specific flag value. In this CUDA kernel,
each thread is responsible for checking one pair of adjacent points and setting the
flag value. Then, we use the parallel primitive thrust: : inclusive_scan() to
obtain the one-based new IDs of the sorted vertices. Moreover, another quite simple
CUDA kernel is designed to transfer all the one-base new IDs into to zero-based IDs
(Fig. 3e). We then re-sort all the previously sorted vertices according to the old nodal
IDs using the efficient parallel primitive thrust: : sort (). And in this case, the
relationship between the old nodal IDs and the new nodal IDs is created. The duplicate
vertices can be removed in this time. According to this relationship, we invoke another
CUDA kernel to update the mesh topology, where each thread in the CUDA kernel
takes the responsibility to update the nodal IDs in only one element.

4 Application Examples
To evaluate the performance of the algorithm MeshCleaner, in this section we will

provide three groups of experimental tests by applying our implementation to combine
several parts of tetrahedral meshes into an entire one.

@ Springer

Int J Parallel Prog (2018) 46:565-583 573

N

VAT avavavy
PR
N

AV A,
v %},

X
TAY

Fig. 5 One of the mesh models in the first group of testing data

4.1 Experimental Environment

The experimental tests are performed on a machine featured with an Intel i7-3610QM
processor (2.30 GHz), 6 GB of memory and an NVIDIA GeForce GTX660M graphics
card. The graphics card GTX 660M has 2 GB of RAM and 384 cores. All the exper-
imental tests have been evaluated using the Visual Studio 2010 and CUDA toolkit
version 8.0 on Window 7 Professional.

4.2 Experimental Testing Data

Three groups of datasets have been created for testing. Each group of testing data con-
sists of three or four tetrahedral meshes that are generated from the same geological
model. The geological models are created by using our own geological modeling soft-
ware ROCKModel [30,31]. There are several separated subregions/blocks in a geolog-
ical model. Each block is tetrahedralized individually by the famous tetrahedral mesh
generator TetGen [28]; and then the entire mesh model of the geological model is gener-
ated by combing those tetrahedral meshes in all subregions. Obviously, there are many
duplicate vertices along the boundaries of the subregions, and mesh cleaning needs to
be performed. More details on the three groups of testing data are described as follows.

4.2.1 The First Group of Testing Data

The first group of testing data consists of three mesh models with different sizes
of nodes and elements. Those three mesh models are created by meshing the same

@ Springer

574 Int J Parallel Prog (2018) 46:565-583

Table 1 Details on the mesh models in three groups of testing data

Group Size Num. of blocks Num. of node Num. of element Figures

Ist Size 1 (0.95M) 18 173,906 950,846 Fig. 5
Size 2 (3.24M) 18 561,948 3,237,982 -
Size 3 (9.32M) 18 1,551,401 9,325,636 -

2nd Size 1 (0.32M) 13 66,512 316,332 -
Size 2 (1.05M) 13 196,083 1,053,906 Fig. 6
Size 3 (2.31M) 13 397,341 2,309,047 -
Size 4 (8.70M) 13 1,475,943 8,698,098 -

3rd Size 1 (0.63M) 3 113,572 629,559 Fig. 7
Size 2 (2.14M) 3 367,602 2,138,802 -
Size 3 (6.17M) 3 1,009,115 6,116,335 -

Fig. 6 One of the mesh models in the second group of testing data

geological slope model with different meshing configurations; see Fig. 5 for one of the
mesh models. The numbers of subregions/blocks, nodes, and elements in each mesh
model are listed in Table 1.

4.2.2 The Second Group of Testing Data

The second group of testing data consists of four mesh models with different sizes
of nodes and elements. Those four mesh models are created by meshing the same
geological dam model with different meshing configurations; see Fig. 6 for one of the
mesh models. The numbers of subregions/blocks, nodes, and elements in each mesh
model are listed in Table 1.

@ Springer

Int J Parallel Prog (2018) 46:565-583

575

Fig. 7 One of the mesh models in the third group of testing data

1000
—_— =4 Sequential / 930
©
£ 800 [—m=Parallel on CPU
E ~=h=—Parallel on GPU / 570
£ 000 / /
=
o0 4 42
& 400
£
5 200
-3

Size 1

Size 2
Mesh Models in the 1st Group

(a)

Running Time (/ms)

1000

Size 3

1000

800

600

400

200

Running Time (/ms)

~&—Sequential

f 889

[=#=Parallel on CPU
«Parallel on GPU /
/ / 556
// 07
Size1 Size 2 Size 3 Size 4

Mesh Models in the 2nd Group

800 [

=4—Sequential
- Parallel on CPU
~f—Parallel on GPU

600

A 629

400

200

Size 1

Size 2

Size 3

Mesh Models in the 3rd Group

(o)

(b)

Fig.8 Comparison of the running time of three implementations for three groups of testing data. a Running
time for the first group of testing data, b running time for the second group of testing data, ¢ running time
for the third group of testing data

@ Springer

Int J Parallel Prog (2018) 46:565-583

576

§8°60¢ €eI91 6v'¢E6 (444 YLS 0€6 9€9°STE’6 918°CLY'1 10V 1SS°T (NZE'6) € 9718

S1'00c orvel I8°L8 9¢1 80¢C ¥Y0€ T86°LET'E 096°CTS 816°19S (AYT'E) T 9218

L6'S91 09vCl 9¢'¢e8 8¢ LS €8 9r8°056 867 95T 906°€LI (NS6°0) T 9718
NdDuo [e[ered NJD Uo [o[ered BRSO dD UO [O[lered D UO [o[[ered [BIOS SJUSWIO[H POUEBSD SOPON POUB[OUN SIPON

SdOTAN

(swy) owmn Suruuny

SJUQWA[Q pue sopou Jo ‘wnN dnoi3 piIg ur SOOI

eyep Sunse) Jo dnoid jsiy ay) Jo synsal [puowadxyg g d[qel,

pringer

As

577

Int J Parallel Prog (2018) 46:565-583

L8°C0T 9L8ST 90°¢6 LOY 9¢¢ 688 860°869°S L9E°86E 1 €V6°SLY 1 (NOL'S) ¥ 9218

8¢'161 09°6€l €568 £el ol €0C Lv0°60€°C 196°9L€E IvE°L6€E (NT€T) € 9218

€C0LL 9¢°0€l 6098 €L 9 €6 906°€S0°T €0L'SLT €80°961 (NSO'D) T 9718

80'9¢1 6¢°16 0529 0¢ Sl [43 TEE91E 10€°9S T1S'99 (NZE0) T 9218
NdD uo [o[iered NdD UO [[[ered [BLAS N JD UO [d[[ered dD UO [9[[eIed [BLIAS SJUSWIQ[PAUBI[D SOPON PAUBI[OUN SIPON

SdOTAN

(swy) awm Juruuny

SJUSWIQ[A PUE SIPOU JO “WINN

dnoi3 pig ur soysoN

eyep Sunse) Jo dnoi3 puodas ay) Jo synsal [puowadxyg ¢ d[qe],

pringer

As

Int J Parallel Prog (2018) 46:565-583

578

¢C'80C 9991 9898 L8C 00 679 SEE9IT9 180°1L6 SI1°600°1 (ALT'9) € 9218
[fazit 80°6Cl cl'6L 801 Sel 61 208°8€1°C Y68'8tE 209°L9¢ (AY1'T) T o718
99Trl 676 6079 & 9¢ 143 655°629 ¥91°501 TLS'ETT (NEY0) T 9218
NdDuo [e[ered NJD Uo [o[ered BRSO dD UO [O[lered D UO [o[[ered [BIOS SJUSWIO[H POUEBSD SOPON POUB[OUN SIPON
SAOTAN (swy) owmy Suruuny SJUQWA[Q pue sopou Jo ‘wnN dnoi3 piIg ur SOOI

eyep Sunse) Jo dnoi3 pary) oy jo synsal [pyuswiradxy § [qeL

pringer

As

Int J Parallel Prog (2018) 46:565-583 579

4.2.3 The Third Group of Testing Data

The third group of testing data consists of three mesh models with different sizes of
nodes and elements. Those three mesh models are created by meshing the another
geological slope model with different meshing configurations; see Fig. 7 for one of
the mesh models. The numbers of subregions/blocks, nodes, and elements in each
mesh model are also listed in Table 1.

4.3 Experimental Results

The computational performance of applying the algorithm MeshCleaner for cleaning
three groups of combined meshes is presented in this subsection. Note that the running
time presented in this work includes the overhead of transferring data between the
host side (CPU) and the device side (GPU). However, the running time consumed for
inputting the testing data from files on the disk and outputting the results to files on
the disk is ignored.

The running time and FLOPS [7,21] of the three implementations for the three
groups of testing data is listed in Tables 2, 3, and 4, respectively. Also, the running
time for the same group of testing data is compared in Fig. 8.

According to the experimental results, it can be observed that: (1) all of the three
implementations are quite efficient to clean large Finite Element meshes since the
execution time is less than 1 second for all test data and implementations; (2) the
parallel implementation on multi-core CPU is approximately 1.5 times faster than the
fast serial implementation; and (3) the parallel implementation on many-core GPU is
approximately 2.0 times faster than the fast serial implementation.

It can be easily learned that both of the two parallel implementations are faster than
the serial implementation due to the use of multiple threads. However, the advantage
of the parallel implementation over the serial implementation is not evident. We will
analyze this in the Discussion section.

5 Discussion

In this paper, we have presented a specific algorithm, termed as MeshCleaner, for
cleaning large Finite Element meshes. The mesh cleaning algorithm, MeshCleaner, is
composed of two major stages, i.e., the compacting and reordering of all nodes and
the updating of the mesh topology. We have introduced our basic ideas for performing
the above two stages efficiently, both in serial and in parallel.

We have developed three efficient implementations of the algorithm MeshCleaner.
The first and serial implementation is developed on the CPU with the use of STL. The
second and parallel implementation is realized by exploiting the power of multi-core
CPU with the aid of OpenMP and Thrust. The third and parallel one is developed on
many-core GPU by using the CUDA programming model.

To evaluate the performance of our algorithm, we have created three groups of
testing data and applied our algorithm to the real-world applications. In the following

@ Springer

580 Int J Parallel Prog (2018) 46:565-583

subsections, we will analyze the experimental results, capabilities, and limitations of
the proposed algorithm.

5.1 Performance Comparison of Three Implementations

In Sect. 4.3, we have evaluated the computational performance of three implemen-
tations using three groups of testing data. It has been observed that: (1) those three
implementations are quite efficient to clean large Finite Element meshes since the exe-
cution time is less than 1 second for all test data and implementations; (2) the parallel
implementation on multi-core CPU is about 1.5 times faster than the fast serial imple-
mentation; and (3) the parallel implementation on many-core GPU is approximately
2.0x faster than the fast serial implementation.

Both of the two parallel implementations are faster than the serial implementation
due to the use of multiple threads. However, the advantage of the parallel implemen-
tation over the serial implementation in terms of the computational efficiency is not
significant. This is probably due to the following reasons. In the algorithm Mesh-
Cleaner, the most computationally expensive procedure is the sorting of nodes. In
the serial implementation, by employing the function std: : sort (), the computa-
tional performing has already been highly optimized and improved. When exploiting
the power of multi-core CPU or many-core GPU to speed up the sorting of nodes in
parallel, the performance gain in sorting nodes is not evident.

Similar conclusions can be drawn between the two parallel implementations. The
parallel implementation on many-core GPU is only slightly faster than the parallel
version on multi-core CPU. This is because the most computational intensive proce-
dures in MeshCleaner are the sorting and inclusive scanning of nodes. The above two
procedures have already been highly optimized on multi-core CPU, and no significant
improvement in the efficiency can be achieved when mapping the parallel sorting and
scanning from multi-core CPU to many-core GPU.

5.2 The Simplicity of the Algorithm MeshCleaner

The presented algorithm MeshCleaner is quite simple in the aspects of algorithmic
design and implementation. The only complex procedure is the sorting of nodes
according to nodal coordinates, which has the complexity of O (nlogn). Most of other
procedures are quite straightforward and have the linear complexity. In addition, the
sorting of nodes can be quite easily realized by adopting existing, quite efficient func-
tions such as std: : sort and thrust: :sort (). And most of other procedures
are quite suitable to be performed in parallel because of very less data dependency.
In summary, the algorithm MeshCleaner is straightforward and easy to implement in
both sequential and parallel.

5.3 The Generality of the Algorithm MeshCleaner

The algorithm MeshCleaner is generic and applicable for any type of valid Finite
Element meshes. As described in Sect. 3, there are two major stages in in the algorithm

@ Springer

Int J Parallel Prog (2018) 46:565-583 581

MeshCleaner: (1) the compacting and reordering of nodes, and (2) the updating of the
mesh topology. The first stage is generic for most Finite Element mesh since the most
basic geometric primitive is the node/vertex. Any operations that are conducted for
nodes/vertices in a mesh can also be directly applied in another mesh, while the only
difference is that in some meshes the nodes are two-dimensional and in some of other
meshes the nodes are three or even higher dimensional. The second stage is also generic
for valid Finite Element meshes. In the second stage, it is only needed to learn which
nodes form an element; and then the IDs of those nodes in an element is updated from
the old, uncleaned indices to the new, cleaned indices. Obviously, no specific type of
element is needed at this stage. In summary, the algorithm MeshCleaner is generic
and can be applied to clean valid Finite Element meshes.

5.4 The Shortcomings of the Algorithm MeshCleaner

Although the algorithm MeshCleaner is straightforward and generic, it has shortcom-
ings when implementing it on multi-core CPU and/or many-core GPU. The most
obvious shortcoming is the implementation of sorting nodes. The sorting of nodes
is the most computationally expensive procedure in MeshCleaner. By employing the
function std: : sort (), the sorting of nodes is still quite efficient even performed in
sequential. However, when needed to sort extremely large size of nodes, for example,
1 billion nodes [15], the sorting only in sequential would probably not be satisfied in
terms of speed. Thus, typically the sorting needs to be performed in parallel, which
calls for highly efficient parallel sorting approaches and implementations. In our par-
allel implementations, we directly employ the function thrust: :sort () to sort
nodes in parallel. The parallel sorting provided by Thrust library is quite flexible and
easy to use, but it has been reported that the parallel sorting primitive in Thrust is
not as efficient as several of its counterparts [14,22,25]. Hence, performance gains
probably could be achieved by improving the efficiency of parallel sorting procedure
in MeshCleaner.

5.5 Outlook and Future work

As analyzed in Sect. 5.4, the most computationally intensive procedure in Mesh-
Cleaner is the sorting of nodes. And performance gains probably could be achieved by
improving the efficiency of parallel sorting procedure in MeshCleaner. Thus, future
work is planned to focus on this issue.

Another future work is probably to optimize the GPU implementation by taking the
data layouts for efficiently representing meshes on the GPU. Data layout is the form
for organizing data. There are two commonly used data layouts, i.e., the Structure-
of-Arrays (SoA) and the Array-of-Structures (AoS) [17,18]. For the sake of easy
programming, the data layout AoS is adopted in our three implementations. In future,
we plan to re-write all the three implementations by using the layout SoA and then
evaluate the computational performance.

Our algorithm MeshCleaner is currently implemented and evaluated on a single
GPU and a single machine. To be able to handle extremely large size mesh models

@ Springer

582 Int J Parallel Prog (2018) 46:565-583

such as those composed of billions of elements [15,29], we also plan to extend our
algorithm to run on multi-GPUs or even Clusters.

6 Conclusion

In this paper, we have presented a generic and straightforward algorithm, MeshCleaner,
specifically for cleaning large Finite Element meshes. The presented mesh cleaning
algorithm, MeshCleaner, is composed of two major stages: (1) the compacting and
reordering of all nodes and (2) the updating of the mesh topology. We have introduced
our basic ideas for performing the two stages efficiently both in sequential and in
parallel. We have developed one serial and two efficient parallel implementations of
the algorithm MeshCleaner, where the two parallel implementations are developed on
multi-core CPU and many-core GPU, respectively. To evaluate the performance of our
algorithm, we have created three groups of testing data and applied our algorithm to
the real-world applications. We have found that the algorithm MeshCleaner is capable
of cleaning large meshes quite efficiently, both in sequential and in parallel. Our mesh
cleaning algorithm is generic, simple, and practical.

Acknowledgements This research was supported by the Natural Science Foundation of China (Grant
Nos. 11602235, 51674058 and 41602374), China Postdoctoral Science Foundation (2015M571081), and
the Fundamental Research Funds for the Central Universities (2652015065).

References

1. Alhadeff, A., Leon, S.E., Celes, W., Paulino, G.H.: Massively parallel adaptive mesh refinement
and coarsening for dynamic fracture simulations. Eng. Comput. 32(3), 533-552 (2016). doi:10.1007/
s00366-015-0431-0

2. Antepara, O., Lehmkuhl, O., Borrell, R., Chiva, J., Oliva, A.: Parallel adaptive mesh refinement for
large-eddy simulations of turbulent flows. Comput. Fluids 110,48-61 (2015). doi: 10.1016/j.compfluid.
2014.09.050

3. Barlas, G.: Chapter 7—the thrust template library. In: Barlas, G. (ed.) Multicore and GPU Programming,
pp. 527-573. Morgan Kaufmann, Boston (2015). doi:10.1016/B978-0-12-417137-4.00007- 1

4. Bell, N., Hoberock, J.: Chapter 26—thrust: a productivity-oriented library for CUDA. In: Hwu, W.M.W.
(ed.) GPU Computing Gems, Jade Edition, Applications of GPU Computing Series, pp. 359-371.
Morgan Kaufmann, Boston (2012). doi:10.1016/B978-0-12-385963-1.00026-5

5. Bell, N., Hoberock, J., Rodrigues, C.: Chapter 16-thrust: a productivity-oriented library for CUDA. In:
Kirk, D.B., Hwu, W.M.W. (eds.) Programming Massively Parallel Processors, 2nd edn, pp. 339-358.
Morgan Kaufmann, Boston (2013). doi:10.1016/B978-0-12-415992-1.00016-X

6. Chen, J., Zheng, J., Zheng, Y., Xiao, Z., Si, H., Yao, Y.: Tetrahedral mesh improvement by shell
transformation. Eng. Comput. (2016). doi:10.1007/s00366-016-0480-z

7. Cuomo, S., De Michele, P., Piccialli, F.: 3D data denoising via nonlocal means filter by using parallel
gpu strategies. Comput. Math. Methods Med. 2014, 14 (2014). doi:10.1155/2014/523862

8. Feng, D., Chernikov, A.N., Chrisochoides, N.P.: Two-level locality-aware parallel delaunay image-to-
mesh conversion. Parallel Comput. 59, 60-70 (2016). doi:10.1016/j.parco.2016.01.007

9. Freitas, M.O., Wawrzynek, P.A., Cavalcante-Neto, J.B., Vidal, C.A., Carter, B.J., Martha, L.F., Ingraf-
fea, A.R.: Parallel generation of meshes with cracks using binary spatial decomposition. Eng. Comput.
32(4), 655-674 (2016). doi:10.1007/s00366-016-0444-3

10. Hatipoglu, B., Ozturan, C.: Parallel triangular mesh refinement by longest edge bisection. SIAM J.
Sci. Comput. 37(5), C574-C588 (2015). doi:10.1137/140973840
11. Hoberock, J., Bell, N.: Thrust—a parallel algorithms library (2017). https://thrust.github.io/

@ Springer

http://dx.doi.org/10.1007/s00366-015-0431-0
http://dx.doi.org/10.1007/s00366-015-0431-0
http://dx.doi.org/10.1016/j.compfluid.2014.09.050
http://dx.doi.org/10.1016/j.compfluid.2014.09.050
http://dx.doi.org/10.1016/B978-0-12-417137-4.00007-1
http://dx.doi.org/10.1016/B978-0-12-385963-1.00026-5
http://dx.doi.org/10.1016/B978-0-12-415992-1.00016-X
http://dx.doi.org/10.1007/s00366-016-0480-z
http://dx.doi.org/10.1155/2014/523862
http://dx.doi.org/10.1016/j.parco.2016.01.007
http://dx.doi.org/10.1007/s00366-016-0444-3
http://dx.doi.org/10.1137/140973840
https://thrust.github.io/

Int J Parallel Prog (2018) 46:565-583 583

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Lage, M., Martha, L.F., Moitinho de Almeida, J.P., Lopes, H.: Ibhm: index-based data structures for
2d and 3d hybrid meshes. Eng. Comput. (2015). doi:10.1007/s00366-015-0395-0

Laug, P., Guibault, F., Borouchaki, H.: Parallel meshing of surfaces represented by collections of
connected regions. Adv. Eng. Softw. 103, 13-20 (2017). doi:10.1016/j.advengsoft.2016.09.003
Leischner, N., Osipov, V., Sanders, P.: GPU sample sort. In: 2010 IEEE International Symposium on
Parallel and Distributed Processing (IPDPS), pp. 1-10 (2010). doi:10.1109/IPDPS.2010.5470444
Lo, S.: 3D delaunay triangulation of 1 billion points on a PC. Finite Elem. Anal. Des. 102C103, 65-73
(2015). doi:10.1016/j.finel.2015.05.003

Lu, Q.K., Shephard, M.S., Tendulkar, S., Beall, M.W.: Parallel mesh adaptation for high-order finite
element methods with curved element geometry. Eng. Comput. 30(2), 271-286 (2014). doi:10.1007/
s00366-013-0329-7

Mei, G., Tian, H.: Impact of data layouts on the efficiency of GPU-accelerated IDW interpolation.
Springerplus 5, 104 (2016). doi:10.1186/s40064-016-1731-6

Mei, G., Tipper, J.C., Xu, N.: A generic paradigm for accelerating laplacian-based mesh smoothing on
the GPU. Arab. J. Sci. Eng. 39(11), 7907-7921 (2014). doi:10.1007/s13369-014-1406-y

NVIDIA: CUDA (Compute Unified Device Architecture) (2017). http://www.nvidia.com/object/cuda_
home_new.html

OpenMP_ARB: The OpenMP API Specification for Parallel Programming (2017). http://www.
openmp.org/

Palma, G., Comerci, M., Alfano, B., Cuomo, S., Michele, P.D., Piccialli, F., Borrelli, P.: 3D non-local
means denoising via multi-GPU. In: 2013 Federated Conference on Computer Science and Information
Systems, pp. 495-498 (2013)

Ranokphanuwat, R., Kittitornkun, S.: Parallel partition and merge QuickSort (PPMQSort) on multicore
CPUs. J. Supercomput. 72(3), 1063-1091 (2016). doi:10.1007/s11227-016-1641-y

Sastry, S.P., Shontz, S.M.: A parallel log-barrier method for mesh quality improvement and untangling.
Eng. Comput. 30(4), 503-515 (2014). doi:10.1007/s00366-014-0362- 1

Satish, N., Harris, M., Garland, M.: Designing efficient sorting algorithms for manycore GPUs. In:
2009 IEEE International Symposium on Parallel Distributed Processing, pp. 1-10 (2009). doi:10.1109/
IPDPS.2009.5161005

Satish, N., Kim, C., Chhugani, J., Nguyen, A.D., Lee, V.W., Kim, D., Dubey, P.: Fast sort on CPUs
and GPUs: a case for bandwidth oblivious SIMD sort. In: Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data, SIGMOD ° 10, pp. 351-362. ACM, New York, NY,
USA (2010). doi:10.1145/1807167.1807207

Schepke, C., Maillard, N., Schneider, J., Heiss, H.U.: Online mesh refinement for parallel atmospheric
models. Int. J. Parallel Prog. 41(4), 552-569 (2013). doi:10.1007/s10766-012-0235-4

Sengupta, S., Harris, M., Zhang, Y., Owens, J.D.: Scan primitives for GPU computing. In: Proceedings
of the 22Nd ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hardware. GH ’07, pp.
97-106. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland (2007)

Si, H.: TetGen, a delaunay-based quality tetrahedral mesh generator. ACM Trans. Math. Softw. (2015).
doi:10.1145/2629697

Soner, S., Ozturan, C.: Generating multibillion element unstructured meshes on distributed memory
parallel machines. Sci. Program. (2015). doi:10.1155/2015/437480

Xu, N., Tian, H.: Wire frame: a reliable approach to build sealed engineering geological models.
Comput. Geosci. 35(8), 1582-1591 (2009). doi:10.1016/j.cageo.2009.01.002

Xu, N., Tian, H., Kulatilake, P.H., Duan, Q.: Building a three dimensional sealed geological model
to use in numerical stress analysis software: a case study for a dam site. Comput. Geotech. 38(8),
1022-1030 (2011). doi:10.1016/j.compgeo.2011.07.013

Yilmaz, Y., Ozturan, C.: Using sequential NETGEN as a component for a parallel mesh generator.
Adv. Eng. Softw. 84, 3-12 (2015). doi:10.1016/j.advengsoft.2014.12.013

@ Springer

http://dx.doi.org/10.1007/s00366-015-0395-0
http://dx.doi.org/10.1016/j.advengsoft.2016.09.003
http://dx.doi.org/10.1109/IPDPS.2010.5470444
http://dx.doi.org/10.1016/j.finel.2015.05.003
http://dx.doi.org/10.1007/s00366-013-0329-7
http://dx.doi.org/10.1007/s00366-013-0329-7
http://dx.doi.org/10.1186/s40064-016-1731-6
http://dx.doi.org/10.1007/s13369-014-1406-y
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://www.openmp.org/
http://www.openmp.org/
http://dx.doi.org/10.1007/s11227-016-1641-y
http://dx.doi.org/10.1007/s00366-014-0362-1
http://dx.doi.org/10.1109/IPDPS.2009.5161005
http://dx.doi.org/10.1109/IPDPS.2009.5161005
http://dx.doi.org/10.1145/1807167.1807207
http://dx.doi.org/10.1007/s10766-012-0235-4
http://dx.doi.org/10.1145/2629697
http://dx.doi.org/10.1155/2015/437480
http://dx.doi.org/10.1016/j.cageo.2009.01.002
http://dx.doi.org/10.1016/j.compgeo.2011.07.013
http://dx.doi.org/10.1016/j.advengsoft.2014.12.013

	MeshCleaner: A Generic and Straightforward Algorithm for Cleaning Finite Element Meshes
	Abstract
	1 Introduction
	2 Problem Statement
	3 The Proposed Algorithm: MeshCleaner
	3.1 Overview
	3.2 The Basic Ideas Behind Merging and Reordering Nodes
	3.3 The Basic Ideas Behind Updating Mesh Topology
	3.4 Serial and Parallel Implementations
	3.4.1 Serial Implementation with STL
	3.4.2 Parallel Implementation on Multi-core CPU
	3.4.3 Parallel Implementation on Many-Core GPU

	4 Application Examples
	4.1 Experimental Environment
	4.2 Experimental Testing Data
	4.2.1 The First Group of Testing Data
	4.2.2 The Second Group of Testing Data
	4.2.3 The Third Group of Testing Data

	4.3 Experimental Results

	5 Discussion
	5.1 Performance Comparison of Three Implementations
	5.2 The Simplicity of the Algorithm MeshCleaner
	5.3 The Generality of the Algorithm MeshCleaner
	5.4 The Shortcomings of the Algorithm MeshCleaner
	5.5 Outlook and Future work

	6 Conclusion
	Acknowledgements
	References

