
Int J Parallel Prog (2018) 46:528–542
https://doi.org/10.1007/s10766-017-0505-2

A GPU Implementation of OLPCA Method in Hybrid
Environment

Pasquale De Michele1 · Francesco Maiorano1 ·
Livia Marcellino2 · Francesco Piccialli1

Received: 28 February 2017 / Accepted: 23 April 2017 / Published online: 3 May 2017
© Springer Science+Business Media New York 2017

Abstract Sophisticated denoising algorithms are used to improve image quality in
the Magnetic Resonance Imaging field. Of course, better results are obtained by
implementing computationally expensive schemes. In this paper,we consider theOver-
complete Local Principal Component Analysis (OLPCA)method for image denoising
and its main issues. More in detail, we investigated the impact of the Singular Value
Decomposition on the OLPCA algorithm and its high computational cost. Moreover,
we propose a fine-to-coarse parallelization strategy in order to exploit a parallel hybrid
architecture and we implement a multilevel parallel software as a smart combination
between codes using NVIDIA cuBLAS library for Graphic Processor Units (GPUs)
and the standard Message Passing Interface library for cluster programming. Experi-
mental results show improvements in terms of execution time with a promising speed
up with respect to the CPU and our old GPU versions.

Keywords Overcomplete local principal component analysis · High performance
computing · Graphic processor units · Hybrid architectures

B Livia Marcellino
livia.marcellino@uniparthenope.it

Pasquale De Michele
pasquale.demichele@unina.it

Francesco Maiorano
frances.maiorano@studenti.unina.it

Francesco Piccialli
francesco.piccialli@unina.it

1 University of Naples Federico II, Strada Vicinale Cupa Cintia 21, 80126 Naples, Italy

2 University of Naples Parthenope, Centro Direzionale, Isola C4, 80143 Naples, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-017-0505-2&domain=pdf
http://orcid.org/0000-0003-2319-8008

Int J Parallel Prog (2018) 46:528–542 529

1 Introduction

A common task in the Magnetic Resonance Imaging (MRI) field is image denoising.
Over the last few years, several techniques have been proposed to face the image
noise removal problem, for small structures without excessive blurring (see [4,7], for
details). Among these methods, some performing and robust denoising approaches
are the Joint Linear Minimum Mean Squared Error (JLMMSE) [30], Non-local
Means (NLM) [3,15,26], Adaptive Non-local Means (ANLM) [24], Principal Com-
ponent Analysis (PCA) [5,28] and Local PCA (LPCA) [25]. For completeness, other
approaches are based on the minimization of a suitable cost function [6,18,20,21]
. In this context, Diffusion Weighted Imaging (DWI) has received much attention
because of its feature to measure the microscopic motion of water molecules within
tissue.

In this paper, we choose the LPCA scheme, in order to exploit the multi-directional
redundancy of the multicomponent Diffusion Weighted (DW) images. In particular,
we resort to the Overcomplete LPCA (OLPCA) method, discussed in [23], where for
each pixel in an image, local estimates are combined in order overlap little portions of
the image. However, the huge amount of computational resources demanded by this
method is a critical issue.

We started from previous works [9,10], where we have designed and implemented
a hybrid CPU and Graphic Processor Unit (GPU) parallel version of the OLPCA
algorithm. Indeed, recently on the track of current developments of GPUs for High
Performance Computing (HPC), many algorithms has been accelerated, with good
results [8,14,17,19,22,27].

To be specific, we have chosen to parallelize some basic modules by using Com-
pute Unified Device Architecture (CUDA)1 on a GPU architecture, combining the
shared and global memories. The GPUs are massively parallel architectures that effi-
ciently work with impressive performance improvements. However, the use of GPUs
requires a deep understanding of the underlying architecture and ad hoc thread based
algorithms.

Unfortunately, in our previous software there was a bottleneck for the overall
parallel application: the most expensive linear algebra task in OLPCA algorithm,
the Singular Value Decomposition (SVD), was processed on the CPU. Clearly, we
observed that making the SVD computation in a sequential manner on CPU, caused a
slowdownwhich inevitably affects performance. Generally, the SVD is a very difficult
routine to parallelize. To have an idea of possible parallelization strategies, we refer
to [2].

Furthermore, in another work [12], our aim has been to perform an SVD profiling in
aGPU-CUDAenvironment in order to analyse how to speed up theSVDcomputational
task. We investigated how cuBLAS and CULA optimized libraries could support our
analysis. We reported tests for a group of SVDs showing execution times of a SVD
performed on a CPU (Intel Core i7 860 @ 2.80Ghz) and a GPU (NVIDIA Quadro

1 http://www.nvidia.com/.

123

http://www.nvidia.com/

530 Int J Parallel Prog (2018) 46:528–542

K5000 4Gb). In the GPU version, we performed a SVD decomposition comparing
two libraries: CULA2 and cuBLAS.3

GPUperformance gains are noticeablewhen the squared inputmatrix size increases,
while the CPU version performs better when the problem size is small. However, in
the OLPCA algorithm, the SVD is performed on many small matrices. Once again,
this critical issue seems to encourage a sequential implementation for the OLPCA
method as many of them can be performed simultaneously with a proper approach.

In addiction, we resume an idea proposed in [11,13] and the recent trend to adopt
hybrid architectures, i.e. High Performance Computing (HPC) environments [1],
where special purpose devices are chosen with the aim to improve performance of the
overall application [16,29].More in details, we resort to a hybrid architecture based on
a cluster of multi-processors environment, equipped with GPU devices. Therefore, we
propose to exploit the multilevel parallel paradigm for such hybrid computing system,
in order to implement a novel parallel algorithm for the OLPCA method.

In our paradigm, the parallel implementation resorts to: (i) the cuBLAS library, to
perform basic linear algebra operations and the SVD computation; (ii) the Message
Passing Interface (MPI) library4 for the domain decomposition, to overtake the space
limitation issue of GPUs. In this way, we design a fine-to-coarse parallelization by sug-
gesting a coarse-grained strategy, which enforces concurrency among cluster nodes,
by means of the problem decomposition. Conversely, to compute local problems, we
use a fine-grained parallelization strategy using suitable cuBLAS routines.

Finally, we prove that the proposedmultilevel parallel framework is able to leverage
the computational power of the hybrid architecture adopted, on its full capability.More
precisely, the proposed strategy allows us to calculate the SVD necessary for the DWI
denoising algorithm in a much shorter time as opposed to the sequential approach and
we report some tests to prove it.

The paper is organized as follows. In Sect. 2 we give a short description of the
OLPCAalgorithm and our previous parallel implementations. Then, in Sect. 3, we pro-
vide implementation details for our novel hybrid parallel software.Moreover, results of
our work are reported and discussed in Sect. 4. Finally, in Sect. 5 we draw conclusions.

2 The Parallel OLPCA Method

TheOLPCAmethod is used to perform the denoising of sequences ofDW images (usu-
ally affected by Rician noise). They have a multi-directional structure generating 4D
sequences along axes (x , y, z and k), where the last dimension displays the k directions
of the microscopic motion for each slice (see Fig. 1).

The OLPCA method takes advantage of the multi-directional redundancy of that
multicomponent and works as follows: let xp be a voxel of a three-dimensional DW
image, the 3D patches, surrounding xp in any direction k, are reordered as a column

2 http://www.culatools.com/.
3 https://developer.nvidia.com/cublas.
4 http://www.mcs.anl.gov/research/projects/mpi/.

123

http://www.culatools.com/
https://developer.nvidia.com/cublas
http://www.mcs.anl.gov/research/projects/mpi/

Int J Parallel Prog (2018) 46:528–542 531

Fig. 1 DWI sequence

Algorithm 1 The LPCA scheme
1: for each X do
2: C = XT X //covariance matrix,
3: C = WDWT //singular value decomposition
4: Y = XW
5: Ŷ = threshold(Y, τ) //thresholding step
6: X̂= ŶWT //denoised output
7: end for

vector of a matrix X with N × K components, where N are the patch items and K
the directions. The scheme of the LPCA method is listed in the Algorithm 1.
More in detail:

– the matrix W contains the eigenvectors, while the diagonal matrix D contains the
eigenvalues

– a SVD is computed for each matrix X of size N × K ,
– the threshold τ is equal to the local noise variance level γ · σ

– the matrices WT and W−1 are equal because W is an orthogonal matrix.

Finally, the Overcomplete rule, for each voxel, combines all the estimates as follows:

x̂i =
∑

j

1

1 + ||Ŷ j ||0
. (1)

In a previous work [10], we have proposed a parallel implementation of the OLPCA
method, which exploits (i) the natural multidimensional structure of the DW images
and (ii) the numerous floating point operations of the OLPCA algorithm itself.

Here, we summarize, asmuch as possible, only the basic concepts about our parallel
OLPCA implementation. It consists of some GPU-parallel modules of the algorithm
on top of a three-dimensional computational grid, as big as the 3D basis of the DW
image. This way, a voxel (i, j, z, k) is associated to each thread, in all its k directions.

In Fig. 2 we can observe the three-dimensional computational grid of threads,
coloured in green, while the 4D DW image is represented by cyan cubes (each cube
is a direction of the image). A single thread in the grid is coloured in red, while its
competence voxels, in the DW image, are highlighted in orange in the k available
directions.

123

532 Int J Parallel Prog (2018) 46:528–542

Fig. 2 Distribution thread with competence elements

This parallel algorithm combines use of the shared and global memories in the
OLPCA computational tasks. In this way, although the access times for the global
memory are higher than the shared memory, we can benefit the absence of space
constraints.More in detail, the algorithm uses four CUDAkernels for removing Rician
noise in DW images.

(i) The first kernel constructs the matrix X locally and computes both the mean of
each column of X and the covariance matrix for each voxel (i, j, z). Data are
all declared and computed in the shared memory. Afterwards they are moved to
the global memory.

(ii) The second kernel, using a combination of shared and global memories, com-
putes the product between the matrices X and W (in the shared memory) and
assigns the result to the matrix Y (defined in the global memory), on which a
threshold is then applied.

(iii) The third kernel computes the inverse PCA, reconstructing, in the global mem-
ory, the restored matrix X̂ by using eigenvectors moved from shared to global
memory. Afterwards the kernel performs the overlapping.

(iv) Finally, the last kernel computes, entirely in global memory, the weighted mean
for each voxel in the restored output image.

Notice that for all kernels the block size is:

nThreadPerBlock.x × nThreadPerBlock.y × nThreadPerBlock.z,

123

Int J Parallel Prog (2018) 46:528–542 533

while the grid dimension is:

⌊
LENGTH

nThreadPerBlock.x

⌋
×

⌊
WIDTH

nThreadPerBlock.y

⌋
×

⌊
DEPTH

nThreadPerBlock.z

⌋
,

where LENGTH and WIDTH are the number of rows and columns, respectively, and
DEPTH is the depth of the DW image. Moreover, the structures used are tailored with
a dimension able to contain the data for each thread in all the k directions.

TheSVDtask in this softwarewasprocessedon theCPU, causing a slowdownwhich
inevitably affects the performances. In other words, this GPU approach is affected by
a bottleneck found in the OLPCA SVD software and a few considerations have to be
addressed to solve this issue. In the next section we will illustrate how we bypassed
this problem.

3 Hybrid Implementation

Here we propose a solution to the bottleneck problem of our previous parallel algo-
rithm, exploiting the hierarchical parallelism of novel architectures such as a cluster
of multi-processors equipped with GPUs. More in detail, we use a GPUs’ cluster,
which is still a challenge, for a lack in terms of efficient and general programming
model approaches. Observe that, GPUs’ clusters can provide high peak performance
at small cost, and so their importance and spreading are currently increasing among
the scientific software community.

Figure 3 shows a hybrid architecture consisting of n CPUs andGPUs. The CPUs (in
the green boxes) and the GPUs (in the orange boxes), each of which having its own
storage, communicate via an I/O Hub. More in detail, CPUs consist of more cores,
each of them with an L1 cache memory, and any couple of cores share an L2 cache
memory.

Furthermore, a basic organization of GPUs is comprised of a set of cores, or Scalar
Processors (SPs), performing simple mathematical operations and organized into a
streaming multiprocessor (SM). Each SM has a shared memory, a shared L1-cache,
and several other units. We highlight that such an architecture has many advantages.
Firstly, when the GPU performs a computation, the CPU simultaneously executes
computing operations, rather than waiting the GPU. Secondly, it is possible to observe
a reduction of the number of communicating nodes (i.e., the total communications).
This feature depends on the number of processors per number of cores in itself. Here,
the most difficult challenge is to avoid the communications among the cluster nodes
due to exchanges of data and, simultaneously, solving local sub-problems as efficiently
as possible.

Our paradigm is based on a fine-to-coarse strategy in order to implement an efficient
multilevel parallel framework. The main feature of our idea is to follow a domain
decomposition approach, while, inside each node, the local computational kernels
can be solved by using specific libraries as middleware. To be specific, the multilevel
paradigm is composed by two nested parallelization strategies:

123

534 Int J Parallel Prog (2018) 46:528–542

Fig. 3 Hybrid architectures: a cluster of multiprocessors composed of n many-core CPUs and GPUs

– The intra-node configuration, which implements a coarse-grained parallelization
strategy onmultiprocessor systems. The computing elements involved in this strat-
egy are reported in Fig. 3, in the blue broken box. This approach relies on a
suitable domain decomposition with a coarse-grained parallelism, which exploits
the intra-node concurrency of multi-processors in order to distribute among nodes
the matrices X , constructed for each voxel, as described in the previous section.
Notice that the data distribution and collection is carried out by a direct scattering-
gathering, with MPI functions.

– The inter-node configuration realizes a fine-grained parallelization strategy on a
single node with a GPU. The computing elements involved in this strategy are
reported in Fig. 3, in the red dotted box. Here, we compute the local OLPCA
algorithms exploiting the massive parallelism of the GPU inside a single node by
means of the CUDA-Nvidia environment.

Finally, combining these two configurations, we have our fine-to-coarse parallelization
strategy on a GPUs’ clusters, which allows us to implement our multilevel framework
and to achieve significant benefits. This strategyminimizes the communication among
the nodes (data must be only distributed at the beginning and collected at the end
of local operations), and especially plans the local sub-problems solution by means
of a specific middleware (for some well known computational kernel, appropriate
optimized libraries can be used).

3.1 Multi-level Approach

In order to illustrate the implementation details, we start from the description of the
OLPCA algorithm done in Sect. 2.

123

Int J Parallel Prog (2018) 46:528–542 535

The matrices X , for each voxel xp, are built on one cluster node and on GPU envi-
ronment, as illustrated at point (i) in the previous section. Therefore, their processing
can be distributed to nodes in the cluster. To be specific, we have a matrix X , for each
voxel xp, p = 1, . . . , L × W × D, where:

L = LENGHT, W = WIDTH, D = DEPTH,

are the number of rows, columns and the depth of the DW image, respectively.
Suppose we have a cluster of μ processors, then the L × W × D matrices will be

scattered to all processors. This means that each node (with ID: Id) will be working
with nloc matrices, where:

nloc =

⎧
⎪⎪⎨

⎪⎪⎩

⌈
L×W×D

μ

⌉
if Id < mod(L × W × D, μ)

⌊
L×W×D

μ

⌋
if Id ≥ mod(L × W × D, μ)

More in details, we use the MPI_Scatter and MPI_Broadcast basic routines of
the MPI library, to distribute data among processors, following the inter-node parallel
approach.

Then, each node should execute the Algorithm 1 on GPU environment, for nloc
matrices. Following the intra-node parallel approach, each node computes the tasks
(ii), (iii) and (iv) on our GPU, as described in Sect. 2. Moreover, here we add a new
GPU-parallel task for the SVD computation of a high number of C matrices of small
size, which will be described in the next subsection.

Finally, results are collected by means of the MPI_Gather routine of the MPI
library, following the inter-node parallel approach and using the Overcomplete rule
defined in (1).

3.2 SVD Factorization by Batches CuBLAS Routine

Here, we focus on how to parallelize a specific class of problems, where we request
a solution for a group of identical problems, namely a Single Instruction Multiple
Data (SIMD) operation. Such operations leverage data-level parallelism and allow to
focus on distributing data across different nodes in order to achieve multi-level paral-
lelism. Moreover, the SVDs are independent to each other. Organizing this problem
in batches is the logic next step.

In such a case study, a way of exposing parallelism on a GPU is to perform the
same cuBLAS routine on multiple independent problems simultaneously. While it is
possible to achieve this by executing multiple cuBLAS kernels over several CUDA
streams, batched cuBLAS routines naturally allow this type of parallelism for specific
operations (GEMM, GETRF, GETRI, TRSM and GEQRF). In the past few years,
NVIDIA introduced such batched operations in its cuBLAS and cuSOLVER libraries.

As we pointed out in [12], these interfaces are best suited for particular circum-
stances, that is large batch sizes (number of matrices > 1000) and small matrix size

123

536 Int J Parallel Prog (2018) 46:528–542

Fig. 4 Golub and Reinsch factorization scheme

(matrix size < 32). Our case study relates to this category of problems. Our batch size
consists of more than 650.000 matrices each of size 14 × 14. Unfortunately, due to
lacking of a SVDbatched routine in the cuBLAS and cuSOLVER libraries, we decided
to leverage the aforementioned batched routines, specifically cublas<t>geqrfBatched
for QR factorization, and implement the Golub and Reinsch (1970) algorithm to ulti-
mately obtain a SVD of multiple small matrices.

Briefly described in Fig. 4 is the Golub and Reinsch algorithm to obain a SVD of
a matrix A. It consists of two main steps:

– Convert the input matrix to a bidiagonal form using Householder transformations.
– Diagonalize the resulting matrix through QR transformations.

The key computational task in this case is the QR factorization. cuBLAS batched QR
routine has 8 parameters: (i) a handle to cuBLAS, (ii) and (iii) the width and height of
thematrices (14×14), (iv) an arrayAarray of pointers tomatrices stored in a column-
major format, (v) thelda dimension, (vi) an arrayTauArray of pointers to vectors of
dimensionmax(1,min(m, n)), (vii) an output parameter which is zero if input param-
eters are valid, less than zero otherwise and (viii) the batch size, namely the number
of pointers in Aarray. For each Aarray[i], for i = 0, . . . , batchSize−1,
the cublas<t>geqrfBatched routine performs a QR factorization using Householder
reflections. Each output matrix Q[i] is stored in the lower part of each Aarray[i]
and is represented by the product of elementary reflectors. As stated by cuBLAS doc-
umentation, this function is intended to be used for matrices of small sizes where the
launch overhead is a significant factor. cuBLAS batched operations accept matrices
of arbitrary dimension but only support a compute capability of 2.0 or above.

4 Experiments

The computing environmentwe used to develop, execute and test theMultiLevel GPU-
parallel OLPCA algorithm is a cluster in which each node is equipped with a CPU
Intel Core i7 (2.8GHz), 8GB of RAM memory and a GPU Nvidia Quadro K5000,
with 1536 CUDA cores, 2.1 TFLOPS in single precision, 4GB GDDR5 of memory
size and 173GB/s of memory bandwidth, Network: 1Gb Ethernet, Switch CISCO
Layer3.

In the following we describe the tests performed and the results achieved in terms
of accuracy and performance. Quality of denoising is assessed by using as reference

123

Int J Parallel Prog (2018) 46:528–542 537

Fig. 5 The ground-truth images used

Table 1 Noisy images with
depth z = 0 and direction k = 0

Noise level (%) Threshold
factor

Truth-noise Truth-denoise

Image k = 0

3 3.5 39.3627 40.4992

5 4 35.1357 36.0129

7 5.5 32.5834 33.3899

9 5.5 30.6760 32.8739

a sample image free of noise, namly a ground-truth,5 in NIFTI format. Starting from
this image, various percentages of Rician noise were added, in order to obtain noisy
images to be restored. DW images used in this work have size 176 × 176 × 21 × 10,
where: 10 are the directions (i.e. 6504960 voxel) and the LPCA method is able to
denoise all the images for each z and k, where z is the depth of the diffusion weighted
image and k is the direction. In the accuracy tests, we reported results related to a
fixed z = 0 in the directions k = 0, 5, 9. In Fig. 5, the ground-truth images we have
chosen are shown.
The metric used for the quality is Peak Signal-Noise Ratio (PSNR):

PSNR = 10 log10
L2

MSE
,

where L is the maximum voxel value and MSE is the mean square error. PSNR
values for the two sample images used, obtained varying the noise, are reported in the
following.
By observing Tables 1, 2 and 3, in which each row represents an image with a fixed
noise level (3, 5, 7 and 9%), it is possible to note that when noise level increases, the
PSNR between ground-truth and noise tends to decrease. Moreover, in conditions of
equal noise, the PSNR values in the last columns of Tables 2 and 3 are higher than
those reported in Table 1. This is due to the fact that the DW images have a signal/noise

5 Available at http://brainweb.bic.mni.mcgill.ca/brainweb/.

123

http://brainweb.bic.mni.mcgill.ca/brainweb/

538 Int J Parallel Prog (2018) 46:528–542

Table 2 Noisy images with
depth z = 0 and direction k = 5

Noise level (%) Threshold
factor

Truth-noise Truth-denoise

Image k = 5

3 3.5 40.0504 46.4654

5 4 36.5721 43.7716

7 5.5 33.606 42.1731

9 5.5 31.471 40.4865

Table 3 Noisy images with
depth z = 0 and direction k = 9

Noise level (%) Threshold
factor

Truth-noise Truth-denoise

Image k = 9

3 3.5 40.2151 46.8808

5 4 36.6531 44.0942

7 5.5 33.7361 42.1145

9 5.5 31.5565 40.5904

Table 4 Execution times (in
seconds) for the SVD task, depth
z = 0 and direction k = 5

SVD (CPU): 650496 QR (GPU): 5003 SVD (GPU): 5003

Image k = 5

35.17 1.23 14.25

ratio lower than other kinds of images. Ultimately, the PSNR shows that the algorithm
produces output results with a good accuracy from a numerical point of view. In Fig. 6
we reported the case z = 0, k = 0, 5, 9 and noise level equal to 3%.

In the followingwe show the results about the performance tests.Wefirst report tests
performed on the core computational task, namely the SVD (see Table 4). We remind
that for one direction k, the dataset size is: 176 × 176 × 21, i.e. 650496 voxels. For
each of them a SVD factorization must be computed. Here we report the execution
time only for direction k = 5, but the execution times for other directions k is it’s
always the same, because the computation remain unchanged.

The CPU version is based on the SVD implementation provided by the OpenCV
library; while, in the GPU version, cuBLAS QR batched routine represents the core of
this particular batch computation. More in details, we considered 130 (μ) nodes in our
cluster so to achieve a batch size of approximately 5000 matrices for each node. We
then compared CPU and GPU performance for such batch size, taking into account
that to have an SVD the Golub and Reinsch method needs to perform approximately
10 QR decomposition.

We derived the following: to process 650, 000 SVD in CPU environment requires
more time than 5000 × 130 SVD on GPU environment with our algorithm, because
these are performed simultaneously. In other words, while GPU performance is worse
than the CPU version on such a batch size, exploiting a hybrid architecture and spread

123

Int J Parallel Prog (2018) 46:528–542 539

Fig. 6 Top noisy (3%) and denoised images with z = 0 and k = 0.Middle noisy (3%) and denoised images
with z = 0 and k = 5. Bottom noisy (3%) and denoised images with z = 0 and k = 9

123

540 Int J Parallel Prog (2018) 46:528–542

Table 5 Execution times (in
seconds) for OLPCA, depth
z = 0 and direction k = 5

CPU CPU+GPU ML_GPU

Image k = 5

52.17 36.54 19.62

650, 000 matrices on this hybrid solution allows us to achieve better performance than
the sequential CPU version: decompositions are computed in the same amount of time
one node computes a batch of 5000. Moreover, with proper use of device memory,
increasing the batch size more parallelism could be exploited.

Finally, in Table 5, we report the comparison between our old CPU−GPU parallel
software (CPU+GPU), the serial version on CPU and the novel hybrid multi-level
parallel software (ML_GPU).

5 Conclusions

In order to provide a fast denoising algorithm for DW images, we presented a hybrid
GPU-parallel software based on the OLPCA method. Our approach uses a fine-to-
coarse parallelization strategy in order to exploit a parallel hybrid architecture inwhich
codes using NVIDIA cuBLAS library for GPUs and the standardMPI library for clus-
ter programming are combined. The proposed multilevel parallel framework is able
to leverage the computational power of the hybrid architecture adopted, minimizing
communication among nodes and solving the local sub-problems by a specific opti-
mized library. Our results show significant improvements in terms of performances
with respect to the CPU version. As a future development, we will investigate on
the implementation of a multiple SVD GPU kernel where each thread executes an
independent decomposition of a matrix. In this a way data locality could be better
exploited, and probably overhead could be minimized, improving also the speed-up.

References

1. Abate, D., Ambrosino, F., Aprea, G., Bastianelli, T., Beone, F., Bertini, R., Bracco, G., Calosso, B.,
Caporicci, M., Chinnici, M., Colavincenzo, A., Cucurullo, A., D’Angelo, P., De Michele, P., De Rosa,
M., Del Giudice, E., Funel, A., Furini, G., Giammattei, D., Giusepponi, S., Guadagni, R., Guarnieri,
G., Italiano, A., Magagnino, S., Mariano, A., Mencuccini, G., Mercuri, C., Migliori, S., Ornelli, P.,
Palombi, F., Pecoraro, S., Perozziello, A., Pierattini, S., Podda, S., Poggi, F., Ponti, G., Quintiliani, A.,
Rocchi, A., Scio, C., Simoni, F., Vita, A.: The role of medium size facilities in the hpc ecosystem: the
case of the new cresco4 cluster integrated in the eneagrid infrastructure. In: International Conference
on High Performance Computing and Simulation, pp. 1030–1033, HPCS 2014, Bologna, Italy, 21–25
July (2014). doi:10.1109/HPCSim.2014.6903807

2. Berry, M., Sameh, A.: Special issue on parallel algorithms for numerical linear algebra an overview of
parallel algorithms for the singular value and symmetric eigenvalue problems. J. Comput. Appl. Math.
27(1), 191–213 (1989). doi:10.1016/0377-0427(89)90366-X

3. Buades, A., Coll, B., Morel, J.: A review of image denoising algorithms, with a new one. Multiscale
Model. Simul. 4(2), 490–530 (2005). doi:10.1137/040616024

4. Buades, A., Coll, B., Morel, J.: Image denoising methods. A new nonlocal principle. SIAMRev. 52(1),
113–147 (2010). doi:10.1137/090773908

123

http://dx.doi.org/10.1109/HPCSim.2014.6903807
http://dx.doi.org/10.1016/0377-0427(89)90366-X
http://dx.doi.org/10.1137/040616024
http://dx.doi.org/10.1137/090773908

Int J Parallel Prog (2018) 46:528–542 541

5. Bydder, M., Du, J.: Noise reduction in multiple-echo data sets using singular value decomposi-
tion. Magn. Reson. Imaging 24(7), 849–856 (2006). doi:10.1016/j.mri.2006.03.006. http://www.
sciencedirect.com/science/article/pii/S0730725X06001317

6. Cafieri, S., D’Apuzzo, M., De Simone, V., Di Serafino, D., Toraldo, G.: Convergence analysis of an
inexact potential reduction method for convex quadratic programming. J. Optim. Theory Appl. 135(3),
355–366 (2007). doi:10.1007/s10957-007-9264-3

7. Campagna, R., Crisci, S., Cuomo, S., De Michele, P., Galletti, A., Marcellino, L., Murano, A.: A
novel split Bregman algorithm for MRI denoising task in an e-health system. In: ACM International
Conference Proceeding Series. Proceedings of the 9th PETRA Conference will held on the Island of
Corfu, Greece at the Corfu Holiday Palace Hotel from June 29 to July 1 (2016). doi:10.1145/2910674.
2910692. http://dl.acm.org/citation.cfm?doid=2910674.2910692

8. Cuomo, S., DeMichele, P., Galletti, A.,Marcellino, L.: A gpu-parallel algorithm for ecg signal denoting
based on the nlm method. In: 30th IEEE International Conference on Advanced Information Network-
ing andApplications,AINA2016,Crans-Montana, Switzerland,March 23–25, 2016, pp. 35–39 (2016).
doi:10.1109/WAINA.2016.110. http://doi.ieeecomputersociety.org/10.1109/WAINA.2016.110

9. Cuomo, S., De Michele, P., Galletti, A., Marcellino, L.: A gpu parallel implementation of the local
principal component analysis overcompletemethod for dw imagedenoising. In: 2016 IEEESymposium
on Computers and Communication (ISCC), pp. 26–31 (2016). The Twenty-First IEEE Symposium on
Computers and Communication, 27–30 June 2016, Messina, Italy. doi:10.1109/ISCC.2016.7543709

10. Cuomo, S., De Michele, P., Galletti, A., Marcellino, L.: Local principal component analysis overcom-
plete method: a gpu parallel implementation combining shared and global memories. In: International
Conference on High Performance Computing and Simulation, HPCS 2016, Innsbruck, Austria, July
18–22, 2016, pp. 81–87 (2016). doi:10.1109/HPCSim.2016.7568319

11. Cuomo, S., De Michele, P., Galletti, A., Marcellino, L.: A parallel pde-based numerical algorithm for
computing the optical flow in hybrid systems. J. Comput. Sci. (2017). doi:10.1016/j.jocs.2017.03.011

12. Cuomo, S., De Michele, P., Maiorano, F., Marcellino, L.: Advances on P2P, parallel, grid, cloud and
internet computing. Lecture Notes on Data Engineering and Communications Technologies, vol. 1,
chap. GPU Profiling of Singular Value Decomposition in OLPCA Method for Image Denoising,
pp. 707–716. Springer International Publishing (2017). doi:10.1007/978-3-319-49109-7_68. Pro-
ceedings of the 11th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing
3PGCIC-2016 November 5–7, 2016, Soonchunhyang University, Asan, Korea. Online ISBN: 978-3-
319-49109-7

13. Cuomo,S.,Galletti,A.,Giunta,G.,Marcellino,L.: Toward amulti-level parallel frameworkongpuclus-
ter with petsc-cuda for pde-based optical flow computation. pp. 170–179 (2015). doi:10.1016/j.procs.
2015.05.220. http://www.scopus.com/inward/record.url?eid=2-s2.0-84939155665&partnerID=40&
md5=ddcb2162cbc29925e582fc9498463059

14. Cuomo, S., Galletti, A., Marcellino, L.: A gpu algorithm in a distributed computing system for 3d
MRI denoising. In: F. Xhafa, L. Barolli, F. Messina, M. R Ogilla (eds.) 10th International Conference
on P2P, Parallel, Grid, Cloud and Internet Computing, Krakow, Poland, pp. 557–562, November 4–6
(2015). doi:10.1109/3PGCIC.2015.77

15. Cuomo, S., Michele, P.D., Piccialli, F.: 3d data denoising via nonlocal means filter by using parallel
GPU strategies. Comput. Math. Methods Med. 523, 1–523. doi:10.1155/2014/523862

16. D’Amore, L., Arcucci, R., Marcellino, L., Murli, A.: A parallel three-dimensional variational data
assimilation scheme. AIP Conf. Proc. 1389(1), 1829–1831 (2011). doi:10.1063/1.3636965

17. D’Amore, L., Laccetti, G., Romano, D., Scotti, G., Murli, A.: Towards a parallel component in a
gpucuda environment: a case study with the l-bfgs harwell routine. Int. J. Comput. Math. 92(1), 59–76
(2015). doi:10.1080/00207160.2014.899589

18. deAngelis, P.L.,Bomze, I.M., Toraldo,G.: Ellipsoidal approach to box-constrainedquadratic problems.
J. Glob. Optim. 28(1), 1–15 (2004). doi:10.1023/B:JOGO.0000006654.34226.fe

19. D’Amore, L., Marcellino, L., Mele, V., Romano, D.: Deconvolution of 3d fluorescence microscopy
images using graphics processing units. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 7203 LNCS(PART 1),
pp. 690–699 (2012). doi:10.1007/978-3-642-31464-3_70

20. De Asmundis, R., di Serafino, D., Hager, W., Toraldo, G., Zhang, H.: An efficient gradient method
using the yuan steplength. Comput. Optim. Appl. 59(3), 541–563 (2014). doi:10.1007/s10589-014-
9669-5

123

http://dx.doi.org/10.1016/j.mri.2006.03.006
http://www.sciencedirect.com/science/article/pii/S0730725X06001317
http://www.sciencedirect.com/science/article/pii/S0730725X06001317
http://dx.doi.org/10.1007/s10957-007-9264-3
http://dx.doi.org/10.1145/2910674.2910692
http://dx.doi.org/10.1145/2910674.2910692
http://dl.acm.org/citation.cfm?doid=2910674.2910692
http://dx.doi.org/10.1109/WAINA.2016.110
http://doi.ieeecomputersociety.org/10.1109/WAINA.2016.110
http://dx.doi.org/10.1109/ISCC.2016.7543709
http://dx.doi.org/10.1109/HPCSim.2016.7568319
http://dx.doi.org/10.1016/j.jocs.2017.03.011
http://dx.doi.org/10.1007/978-3-319-49109-7_68
http://dx.doi.org/10.1016/j.procs.2015.05.220
http://dx.doi.org/10.1016/j.procs.2015.05.220
http://www.scopus.com/inward/record.url?eid=2-s2.0-84939155665&partnerID=40&md5=ddcb2162cbc29925e582fc9498463059
http://www.scopus.com/inward/record.url?eid=2-s2.0-84939155665&partnerID=40&md5=ddcb2162cbc29925e582fc9498463059
http://dx.doi.org/10.1109/3PGCIC.2015.77
http://dx.doi.org/10.1155/2014/523862
http://dx.doi.org/10.1063/1.3636965
http://dx.doi.org/10.1080/00207160.2014.899589
http://dx.doi.org/10.1023/B:JOGO.0000006654.34226.fe
http://dx.doi.org/10.1007/978-3-642-31464-3_70
http://dx.doi.org/10.1007/s10589-014-9669-5
http://dx.doi.org/10.1007/s10589-014-9669-5

542 Int J Parallel Prog (2018) 46:528–542

21. Gmez, S., Severino, G., Randazzo, L., Toraldo, G., Otero, J.: Identification of the hydraulic conductivity
using a global optimizationmethod. Agric.WaterManag. 96(3), 504–510 (2009). doi:10.1016/j.agwat.
2008.09.025

22. Laccetti, G., Lapegna, M., Mele, V., Romano, D.: A study on adaptive algorithms for numerical
quadrature on heterogeneous gpu and multicore based systems. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 8384
LNCS(PART 1), pp. 704–713 (2014). doi:10.1007/978-3-642-55224-3_66

23. Manjón, J., Coupé, P., Concha, L., Buades, A., Collins, D., Robles, M.: Diffusion
weighted image denoising using overcomplete local pca. PLoS ONE 8(9) (2013). doi:10.
1371/journal.pone.0073021. http://www.scopus.com/inward/record.url?eid=2-s2.0-84883366803&
partnerID=40&md5=467a3af41b50d17486ab1385ccf8e816

24. Manjón, J.V., Coupé, P., Martí-Bonmatí, L., Collins, D.L., Robles, M.: Adaptive non-local means
denoising of MR images with spatially varying noise levels. J. Magn. Reson. Imaging 31(1), 192–203
(2010). doi:10.1002/jmri.22003. http://www.hal.inserm.fr/inserm-00454564

25. Muresan, D.D., Parks, T.W.: Orthogonal, exactly periodic subspace decomposition. IEEETrans. Signal
Process. 51(9), 2270–2279 (2003). doi:10.1109/TSP.2003.815381

26. Palma, G., Piccialli, F., Michele, P.D., Cuomo, S., Comerci, M., Borrelli, P., Alfano, B.: 3d non-
local means denoising via multi-gpu. In: Proceedings of the 2013 Federated Conference on Computer
Science and Information Systems, Kraków, Poland, September 8–11, 2013, pp. 495–498 (2013). http://
ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6644045

27. Piccialli, F., Cuomo, S., De Michele, P.: A regularized mri image reconstruction based on
hessian penalty term on cpu/gpu systems, pp. 2643–2646 (2013). doi:10.1016/j.procs.2013.
06.001. http://www.scopus.com/inward/record.url?eid=2-s2.0-84892506892&partnerID=40&md5=
cc785a43da0426b134b5a4e05bc3ad5e

28. Poon, P., Wei-Ren, N., Sridharan, V.: Image denoising with singular value decompositon and principal
component analysis. http://www.u.arizona.edu/~ppoon/ImageDenoisingWithSVD.pdf (2009)

29. Song, F., Dongarra, J.: A scalable approach to solving dense linear algebra problems on hybrid cpu–gpu
systems. Concurr. Comput. 27(14), 3702–3723 (2015). doi:10.1002/cpe.3403

30. Tristán-Vega, A., Aja-Fernández, S.: DWI filtering using joint information for DTI and HARDI. Med.
Image Anal. 14(2), 205–218 (2010). doi:10.1016/j.media.2009.11.001

123

http://dx.doi.org/10.1016/j.agwat.2008.09.025
http://dx.doi.org/10.1016/j.agwat.2008.09.025
http://dx.doi.org/10.1007/978-3-642-55224-3_66
http://dx.doi.org/10.1371/journal.pone.0073021
http://dx.doi.org/10.1371/journal.pone.0073021
http://www.scopus.com/inward/record.url?eid=2-s2.0-84883366803&partnerID=40&md5=467a3af41b50d17486ab1385ccf8e816
http://www.scopus.com/inward/record.url?eid=2-s2.0-84883366803&partnerID=40&md5=467a3af41b50d17486ab1385ccf8e816
http://dx.doi.org/10.1002/jmri.22003
http://www.hal.inserm.fr/inserm-00454564
http://dx.doi.org/10.1109/TSP.2003.815381
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6644045
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6644045
http://dx.doi.org/10.1016/j.procs.2013.06.001
http://dx.doi.org/10.1016/j.procs.2013.06.001
http://www.scopus.com/inward/record.url?eid=2-s2.0-84892506892&partnerID=40&md5=cc785a43da0426b134b5a4e05bc3ad5e
http://www.scopus.com/inward/record.url?eid=2-s2.0-84892506892&partnerID=40&md5=cc785a43da0426b134b5a4e05bc3ad5e
http://www.u.arizona.edu/~ppoon/ImageDenoisingWithSVD.pdf
http://dx.doi.org/10.1002/cpe.3403
http://dx.doi.org/10.1016/j.media.2009.11.001

	A GPU Implementation of OLPCA Method in Hybrid Environment
	Abstract
	1 Introduction
	2 The Parallel OLPCA Method
	3 Hybrid Implementation
	3.1 Multi-level Approach
	3.2 SVD Factorization by Batches CuBLAS Routine

	4 Experiments
	5 Conclusions
	References

