
Int J Parallel Prog (2018) 46:543–564
https://doi.org/10.1007/s10766-017-0501-6

A Framework for Assessing Reusability Using Package
Cohesion Measure in Aspect Oriented Systems

Puneet Jai Kaur1 · Sakshi Kaushal2 · Arun Kumar Sangaiah3 ·
Francesco Piccialli4

Received: 5 February 2017 / Accepted: 20 March 2017 / Published online: 10 April 2017
© Springer Science+Business Media New York 2017

Abstract Due to better modularization of crosscutting concerns, the Aspect oriented
programming approach enhances the quality of the system as it results in less complex
andmore readable implementation of the system. As the software applications grow in
size and complexity, they require some kind of high level organization. For high level
organization of software system, packages are required. A lot of work has been carried
out for measuring cohesion in Aspect Oriented Systems (AOS) at class level but very
less research has been done for designing package level cohesion metric. Package
cohesion metrics plays an important role in analyzing quality of software at package
level. According to object oriented design principle, a good software design must
have high cohesion with high reusability. Thus a relationship must therefore exist
between cohesion and reusability. Number of attempts has been made to evaluate
effect of cohesion on external attributes but at class level only. Impact of package
level cohesion metrics on reusability for AOS is not yet explored. (a) To implement

B Arun Kumar Sangaiah
arunkumarsangaiah@gmail.com

Puneet Jai Kaur
puneet@pu.ac.in

Sakshi Kaushal
sakshi@pu.ac.in

Francesco Piccialli
francesco.piccialli@unina.it

1 Department of Information Technology, U.I.E.T., Panjab University, Chandigarh, India

2 Department of Computer Science and Engineering, U.I.E.T., Panjab University,
Chandigarh, India

3 School of Computing Science and Engineering, VIT University, Vellore, Tamil Nadu, India

4 Department of Mathematics and Applications, University of Naples “Federico II”, Naples, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-017-0501-6&domain=pdf


544 Int J Parallel Prog (2018) 46:543–564

the proposed package cohesion measure, PCohA, on AspectJ sample packages, (b)
to theoretically validate the proposed measure and (c) to find the impact of package
cohesion on measuring reusability for AOS. Theoretical validation has been done by
proving its validity on four theorems given by Briand et al. For finding the impact of
proposed measure on external attributes, correlation has been found between package
cohesion, PCohA, and external attribute—reusability. After theoretical validation, it
has been proved that the proposed measure is suitable for measuring cohesion at
package level. Correlation between package cohesion metric (PCohA) and reusability
is calculated by usingKarl Pearson ProductMoment correlation. The computed values
showa strong positive relation betweenPCohAandReusability. The proposed package
cohesion measure is found to be a useful indicator of external quality factors such
as reusability. The proposed metric is also established as a better predictor of code
reusability than the existing cohesion measures. The work discussed in this paper can
be used for designing high quality software by developing new package level metrics
for other quality attributes such as maintainability, changeability etc. as a future work.

Keywords Aspect Oriented System · Quality metrics · Package cohesion ·
Reusability · AspectJ

1 Introduction

Aspect Oriented SoftwareDevelopment (AOSD) approaches are attracting lot of atten-
tion over different domains [1] like object oriented systems, XML, etc. AOSD, as a
modern programming paradigm [2] aimed at improving modularity by introducing
aspects and overcomes the difficulties of Object Oriented Systems (OOS). It focuses
on identification and representation of crosscutting concerns and their modularization
into different working units. Some disadvantages of OOS like crosscutting concerns
and separation of concerns are supported by Aspect Oriented Programming (AOP).
The key difference between Object oriented programming (OOP) and AOP is that the
focus of OOP is to divide programming task into objects, which encapsulate data and
method, while AOP focuses on dividing the program in crosscutting concerns. These
crosscutting concerns are pieces of logic that have to be applied at many places in the
program, but don’t have anything to do with the logic. AOSD improves separation
of concerns shown by object oriented programming and support mechanisms to deal
with crosscutting concerns [3].

There aremany languages that belongs toAspect oriented family such as—AspectJ,
AspectXML, AspectC++, CaserJ and HyperJ. Among these AspectJ (extension of
JAVA) is the most popularly used aspect oriented programming language [4]. Even
though there are other AO techniques which are able to signify the concept of AOP
like,Meta programming etc., AspectJ has been the most adopted technology [5]. It can
be implemented with the help of seven components—Concerns, Separation of Con-
cerns, Crosscutting Concerns, Aspect, Join points, Point cuts, Advice and Weavers
[6]. Aspect-oriented system designs are decomposed into classes and aspects; aspects
modularize crosscutting concerns and classes modularize non-crosscutting concerns
[7]. Recently some work has been carried out for finding the pitfalls while program-

123



Int J Parallel Prog (2018) 46:543–564 545

mingAOS [8]. Their results shows that programmers inOOP stick usingOOconstructs
they are familiar with, while avoiding AspectJ constructs and thus making mistakes.
Hence measurement of quality attributes in AOP becomes necessary.

As software industry is growing day by day, the applications developed also grow
in size and complexity. To accommodate the increase in size classes are not adequate
to be used as the development unit for large applications. This necessitates the use of
some high level of organization such as packages. The design objective of a package is
to increase the quality of large software systems. Packages are highly cohesive groups
that contain only related components [9]. For package to exhibit good quality software,
maximum cohesion andminimum coupling among the elements is required. Cohesion
is considered as themost important criteria formeasuring quality of software as it is the
value of similarity between different attributes of the component. An aspect in AOP
is encapsulated with its state (attributes) and associated modules (operations) such
as advice, introduction, point cuts and methods. The cohesion of aspect is therefore
about similarity of the aspect attributes and modules. Highly cohesive components
tend to have high maintainability and reusability [10]. A package in AOP is the high
level abstraction of aspect. Thus a package in AOP consists of aspects or classes or
interfaces which are related to one another in one or more ways.

For a software system to be good in quality and easilymaintainable, itmust reuse the
existing packages or organize classes into packages [11]. And for better reusability,
packages should contain only interconnected components with maximum cohesion
and minimum coupling [12]. When packages with low cohesion are given to the
software developers for reusability, they have to bring in components from other
packages to provide full functionality. This will result in increased overall effort.
Therefore, to overcome this problem, packages must be designed with maximum
cohesion. In this case, it can be stated that the package level cohesion plays a significant
role in framing software packaging and can help in analyzing external quality attributes
like reusability [13]. Till date only few quantitative works have been conducted for
measuring cohesion in Aspect Oriented software (AOS) and that too at aspect level
only. Package level metrics can help software developers to develop high quality
software. In our previous work [14] we have proposed the Package level cohesion
metric for AOS. In this context, this paper, presents an extension of proposed metric
as a framework for assessing reusability in AOS.

The paper is organized as follows: In Sect. 2, review of literature has been dis-
cussed. Section 3 gives the proposed package cohesionMetric (PCohA), its validation
and implementation. Section 4 discusses the assessment of reusability by using the
proposed metric. Section 4 is followed by conclusion and future work.

2 Literature Review

This section presents the research work carried out in the field of quality measure-
ment for AOS. Since focus of this study is to find the cohesion at package level for
AOS, metrics at package level for Object Oriented Systems have also been explored
through the literature survey. Significance of any internal quality measure like cohe-
sion can only be validated if it can help in assessing some external quality attribute like

123



546 Int J Parallel Prog (2018) 46:543–564

reusability etc. In this regard, we are also presenting some review work on assessing
external quality attributes in AOS.

2.1 Aspect Oriented Quality Metrics

Metrics for measuring various attributes of quality like cohesion, coupling etc. have
been defined at class level. Zhao [15] had proposed a framework for measuring aspect
cohesion, based on the analysis of dependencies. This framework is based on the
dependency graph, and it analyzes the degree of coherence between aspects attributes
and modules. This approach focused on the features of the aspect itself, and does
not consider the application context in which the aspect is placed. A metric suite
was also designed by Sant’Anna et al. [16] on the attributes of software design and
implementation. This suite includes metrics for separation of Concerns, Coupling,
Cohesion and size. The proposed cohesion metric was named as Lack of Cohesion
in Operations (LCOO). It measures the lack of cohesion of a component. LCOO
measures the amount of method/advice pairs that do not access the same instance
variable. This metric extends the CK metric Lack of Cohesion in modules (LCOM).
The authors also framed a metrics suite for concern-driven architecture. The metric
suite measures various quality attributes like cohesion, coupling and complexity for
Aspect oriented and non-AOS. For cohesion, Lack of Concern-based Cohesion (LCC)
metric was proposed that counts the number of concerns addressed by the assessed
component.

Another framework was proposed by Ceccato and Tonella [17] for measuring
Aspect oriented software development derived from C&K metric suite for object
oriented systems. They had proposed cohesion metric, Lack of Cohesion in Oper-
ations (LCO), along with other metrics for measuring coupling. LCO was defined
as the pair of operations working on different class fields minus pairs of operations
working on common fields. Gelinas et al. [18] framed a metric from dependency anal-
ysis to measure cohesion of aspect. The metric is known as ACoh and was designed
on Module-Data Connection Criterion and Module-Module Connection Criterion. A
Cohesion metric for generic/unified AOS was also proposed. Here, generic means
applicable to most of the AOP languages. Their framework has been defined for Java,
AspectJ and CaesarJ languages. In order to represent elements of different program-
ming languages as common and unambiguous names, they defined new terminology
for AOS. They identified six different types of connections that cause cohesion. Using
these connections and framework criteria, they derived cohesion metric and defined
Unified Aspect Cohesion as UACoh. They had also correlated cohesion metric values
with changeability metric and reached at the conclusion that cohesion metric cannot
be for assessing changeability of the AOS. Elish et al. [19], has analyzed various func-
tion level metrics for AOS for stability assessment. An empirical validation has been
carried out by Piveta et al. [20] for AOS to identify the gaps in the existing software
by using the six commonly used metrics. Balani and Singh [21], has proposed SQA
metrics for evaluating aspect Oriented Programs. A comparison of two paradigms i.e.
Object Oriented and Aspect oriented software systems has been done by Kaur and
Kaur [22] and conclusion was made that AOS are better than Object Oriented sys-

123



Int J Parallel Prog (2018) 46:543–564 547

tems in certain parameters like coupling and cohesion for enhancing software design
and reusability. Impact of Aspect oriented programming on Crosscutting concerns has
also been explored using Breshman technique by Hans [23]. The analysis showed that
modifying the functionality in any way can effect cohesion.

2.2 Package Level Cohesion Metrics

Packages are reusable components for highly organized software systems. For devel-
oping high quality AOS package level metrics are needed to be explored. Since focus
of this study is to find the cohesion at package level for AOS, metrics at package level
for Object Oriented Systems have been taken into consideration to reach our goal.

Measurement of cohesion at package level is very useful in software packaging as
it helps in analyzing the maintainability and reusability of software. Very few metrics
are available in literature to measure quality characteristics at package level. Eder et
al. [24] has developed a framework to give complete criterion for cohesion at method
and class level in object oriented systems. A metric suite was also proposed by Hitz
and Montazeri [25] for measuring coupling in Object Oriented systems. In this suite
some improvements were made on LCOM metric for measuring cohesion.

Another framework was designed by Briand et al. [26] that helps in comparing,
evaluating, and defining cohesion metrics in Object Oriented systems. A new frame-
work was proposed by Gupta and Chabbra [9] for measuring the cohesion of package
in Object oriented systems. The metric depends on the relationships between package
elements i.e. classes, interfaces or sub packages. During the literature review studies
on package cohesionmeasures for Object oriented systems are found but no such study
has been done for AOS. Table 1 summarizes various package level cohesion metrics
that exists in literature for OO systems.

2.3 Assessment of Reusability as an External Quality Attribute

From the literature survey, it is found thatmost of the researchers have considered qual-
ity models for assessing external attributes. The quality model AOSQUAMO given
by Kumar et al. [37], has given the significance of Reusability in measuring quality of
the AOS. AOSQUAMO is the extension of the ISO/IEC 9126 (2001) software quality
model. Author had added four new sub-characteristics—modularity, code-reusability,
complexity, and reusability under the main characteristics of maintainability, effi-
ciency, usability, and functionality respectively. They redefined existing characteristics
of ISO/IEC 9126 in terms of AOS and highlighted the importance of the new added
characteristics inAOS.The authors stated that theAOShas three categories of reusabil-
ity: functional reusability, code reusability and aspect code reusability. Using their
quality measurement approach, two or more projects of AOS can be compared in
terms of quality.

Kumar [38] extended the AOSQUAMO model and proposed a new quality model
namely AOSQ model for AOS. Author has integrated evolvability as characteristic
under extensibility, sustainability, design, stability and configurability as sub charac-
teristics into AOSQUAMO model.

123



548 Int J Parallel Prog (2018) 46:543–564

Table 1 Review of package cohesion metrics for object oriented systems

Year Author/s Cohesion measurement

1999 Doval et al. [27] Cohesion = Number of intra-edge dependencies
maximum number of possible dependencies

between the components (classes) of cluster

2000 Vernazza et al. [28] Cohesion is calculated as the coupling of a class in a
module normalized with the total coupling among the
classes

2004 Khan [29] Cohesion is measured as the total coupling amongst the
classes of a package

2005 Seng et al. [30] Cohesion is given as the number of connections
between the classes in subsystem divided by the
square of the number of classes in the subsystem

2005 Hussain [31] Cohesion is calculated as the number of methods in
class communicating with the methods of other
classes within the same package

2009 Gui and Scott [32] Proposed the metric that gives the degree of cohesion
and transitive cohesion of methods

2009 Abdeen et al. [33] Cohesion is described as the number of internal
relations within the package

2012 Gupta et al. [9] Cohesion is defined as number of relations between
pairs of the package elements, divided by the total
relations between them

2012 Singh and Bhattacherjee
[34,35]

Proposed Average package level metrics by calculating
the average of class level metrics

2014 Albattah and Melton [36] Introduced package cohesion classification scheme and
defined metric for each type of cohesion

Sant’ Anna et al. [16], had proposed a framework for evaluating reusability and
maintainability based on metric suite and quality model to assess aspect oriented
software in terms of quality. Arora et al. [39], in their work has established correlation
between various quality characteristics and internal quality attributes. The relation of
reusabilitywith internal quality attributes iswell literated byChoudhary andChatterjee
[40] in their research work. According to authors, reusability can be assessed with help
of complexity, cohesion, size and couplingmetrics. They also concluded that if internal
characteristics are high, then reusability is also high. It means cohesion should have
positive relation with reusability. Nerurkar et al. [41], have also defined assessment
model for reusability using fuzzy logic. In another research by Vinobha et al. [42],
reusability is assessed with the help of inheritance metrics. They had proposed AO
Reusability Evaluation Model to infer on the effect of applying inheritance in AOSD.
Another model for assessing reusability in AOS is given by Singh et al. [4]. In this
model the authors have given the dependency among external quality characteristics
with internal quality attributes and the metrics for measuring these internal attributes.
The dependency of reusability on other quality attributes is also given by Dhole and
Nirmal [43]. According to them, reusability is dependent on portability, adaptability,
maintainability and understandability. A framework for assessing maintainability has
been proposed by Ananthi and Roby [44]. The framework suggested to use the static

123



Int J Parallel Prog (2018) 46:543–564 549

metrics for calculating maintainability. Mallikarjuna Reddy et al. [45] in their work
has given the importance of maintenance and understandability in AOS. They had
presented various metrics for calculating these attributes.

From the detailed review of literature, it is found that no work has been done in the
field of measuring cohesion at package level in AOS. Although lot of work is being
carried on assessing various external quality attributes, but no contribution is found
in regard to using package cohesion to assess quality attributes. To overcome this
research gap, we have proposed the package cohesion metric (PCohA) in our previous
work [14]. In this paper, we are defining a framework for using the proposed package
cohesion metric for assessing reusability in AOS.

3 Package Cohesion Metric

This section gives the theoretical framework for defining the package cohesion metric.
It includes the basic definitions and relationships associated with package that helped
in building the framework as discussed in following sections.

A package can be defined as the group of elements and relations between the
elements. The elements of a package for AOP includes aspects, classes, interfaces, and
sub-package. The presence of a sub-package in a package creates a leveled structure
of the package. At level i , package is defined as given in Eq. (1):

pi = [Ei , Ri ] (1)

where Ei , represents the elements of package i and Ri represents the set of relations
on Ei .

3.1 Types of Relationships

A package in AOP consists of aspects, classes, interfaces or sub-packages. If two
elements x and y of a package are related to each other, their relation is shown as
r (x, y) = 1. It means element x is related to element y. The relations are asymmetric
in nature, i.e. x → y does not means y → x . As there are different types of elements
in a package, there are different types of relations between them. Aspects and classes
are similar in their functioning and structure where aspects modularize crosscutting
concerns and classes modularize non-crosscutting concerns. Interfaces are again han-
dled similarly as classes. Thus different relations that can happen are: Aspect–Aspect,
Class–Class, Aspect–Class, Class–Aspect, Aspect–Subpackage, Subpackage–Aspect,
Subpackage–Class, Class–Subpackage, Subpackage–Subpackage.

3.2 Cohesion Measurement at Package Level

Package cohesion is measured as an intra package dependency amongst its elements.
Intra package dependency considers all elements used directly or indirectly by the
package. Inspired by some approaches for defining class cohesionmeasures [18] pack-
age cohesion metric PCohA can be defined as the relatedness between the package

123



550 Int J Parallel Prog (2018) 46:543–564

Fig. 1 Example of connections between elements of package

Fig. 2 Undirected connection graph

members. This relatedness is measured as the total number of connections among
the package components—both direct and indirect. Figure 1 shows the relationship
diagram between elements of a package.

Suppose E1, E2, E3, E4, E5 and E6 are the components of a package, which can be
an aspect, an interface or a class and there are some dependencies between them. E1
depends on E2, E4 and E5. In other words, E1 depends directly on E2 and E4 whereas
it depends on E5 indirectly through E4. Similarly, E3 indirectly depends on E2 and
E4 through direct connection with E1. If we consider the graph with all connections
(direct and indirect) for Fig. 1, we get undirected graph shown in Fig. 2.

Based on this dependency criteria, we have proposed cohesion metric at package
level as the total number of dependent edges in the undirected connection graph (NCE)
divided by maximum number of connections between elements (MCE) [14], as shown
below in Eq. (2)

PCohA = NCE

MCE
∈ (0, 1) (2)

where, NCE is the count of connected edges and MCE is calculated as N × (N − 1),
if N is the number of elements in the package.

Figure 3 illustrates the various steps to measure the proposed metric PCohA. Fol-
lowing these steps, value of PCohA is calculated for an example shown in Fig. 2.
In Fig. 2, there are 6 elements (aspects/classes/interfaces). Connected edge gives the
relation among elements. There are 8 connected edges/relations among elements of
this example. Hence from Eq. (2)

123



Int J Parallel Prog (2018) 46:543–564 551

Input a Package
Count the number of 
elements 

Find the number of 
relations of each element

Calculate PCohA = number of dependent edges in the graph 
(NCE)/ maximum number of connections between elements Value of PCohA

Fig. 3 Demonstration of proposed cohesion metric

Table 2 Qualitative
categorization of cohesion [46]

PCohA range Cohesion category

0 Non-cohesive

0<PCohA≤0.3 Loosely cohesive

0.3<PCohA<0.7 Averaged cohesive

0.7<PCohA<1 Strongly cohesive

1 Highly cohesive

PCohA = 8/6(6 − 1)

= 8/30

= 0.26

Since the value of PCohA is near to 0, this package is loosely cohesive [46].
A package is said to be highly cohesive if value of PCohA is 1 and non-cohesive if

PCohA is 0. Table 2 represents the relation between qualitative and quantitative value
for cohesion metric.

From the Table 2 description, it can be concluded that the cohesion of a package is
desirable to be near to 1 and if it is near to 0, it is less cohesive

The proposed package cohesion metric, PCohA, is analysed by considering three
cases as:
Worst CaseWhen every element within a package is independent or package is empty,
i.e. if, N = 0, then there will be no relation and hence PCohA = 0.
Best Case When every class within a package depends on other classes of the same
package, it will contain all the possible relations it can and hence, PCohA = 1.
Average Case When approximately half of the classes of a package are related with
every class of package.

The proposedmetric, PCohA, is further theoretically validated using four properties
given by Briand et al. in 1996.

3.3 Theoretical Validation of Proposed Metric

Briand et al. [26] suggests that cohesion measurement must follow some set proper-
ties. These properties are: Non-negativeness, normalization, minimum and maximum
values, monotonicity and merging property.

123



552 Int J Parallel Prog (2018) 46:543–564

First two properties are self-explanatory from the given definition of PCohA in
Eq. (2). The value of package cohesion measured by proposed metric will always fall
between 0 and 1, i.e., the value is normalized and it will always be positive.

If package P is empty, it means there is no element in the package i.e. N = 0 and
there will be no relation. In this case, PCohA(P) = NULL. If number of elements
in package is N and assuming that each element of package is related to all other
elements of the package, then PCohA(P) = 1 and if N = 1, i.e. package has only
one element then also PCohA(P) = 1, i.e maximum value. It can thus be concluded
that the proposed metric has minimum value 0 and maximum value 1.

Monotonicity means on adding relationships in package, cohesion must not
decrease. It requires the addition of relations not elements. Let package P1 contains
relations R1 and P2 is the modified package with added relations. If R2 is the number
of relations in package P2, then R1 belongs to R2. According to the proposed measure,
the value of numerator will never decrease but can either increase or stay same. Hence,
if R1 belongs to R2 then, PCohA(P1) ≤ PCohA(P2) i.e. cohesion will never decrease
with the addition of relations.

According to merging property, cohesion value should not increase by combin-
ing unrelated packages. If P1 and P2 are two unconnected packages and P is the
package formed after merging these two packages, then according to the proposed
measure, the value for numerator in PCohA (P) will increase in less amount as com-
pared to the value of denominator. In this case, package cohesion may decrease i.e.,
max [PCohA (P1) ,PCohA (P2)] ≥ PCohA (P).

The proposed metric is theoretically validated since all the four properties are
satisfied. We have implemented our metric PCohA on AspectJ projects available as
AspectJ benchmarks for research use (http://abc.comlab.ox.uk/) and some projects are
enclosed within the eclipse platform as AspectJ examples (https://eclipse.org/aspectj/
doc/released/progguide/examples.html). Table 3 gives the details of AspectJ projects
taken for research work.

3.4 Implementation of Package Cohesion Metric

Here we are implementing proposed metric PCohA on AspectJ Projects given in
Table 3. UML notations have been used for counting number of connected edges
[47]. AspectJ projects Bean Aspect and Subject Observer Protocol have been taken as
examples for illustrating the calculation of PCohA.

3.4.1 Bean Aspect

The Bean example describes an aspect that makes Point objects into java bean with
bound properties. The example contains three classes—point, BoundPoint and Demo.
Point is a simple class representing points with rectangular coordinates. The Bound-
Point is an aspect responsible for Point to be a bean and the Demo class is a test
program that act as a property change listener for a point object that it creates and then
performs simple updations on it.

123

http://abc.comlab.ox.uk/
https://eclipse.org/aspectj/doc/released/progguide/examples.html
https://eclipse.org/aspectj/doc/released/progguide/examples.html


Int J Parallel Prog (2018) 46:543–564 553

Table 3 AspectJ projects

Package no. AspectJ projects No. of packages Size (LOC)

P1 Bean example 1 125

P2 Introduction 1 148

P3 Observer figure 1 132

P4 Spacewar 2 Coordination 317

P5 Spacewar 1110

P6 Telecom 1 181

P7 TJP 1 50

P8 Tracing 1 84

P9 Observer 1 83

P10 Producer consumer 1 51

P11 Resource pool management 1 125

P12 SBT-ATM 2 ATM 54

P13 ATMtest 45

P14 DCM 5 DCM.certrevsim 974

P15 DCM 116

P16 DCM.handleGC 33

P17 DCM.Jsim.event 64

P18 DCM.Jsim.queue 416

P19 Figures 1 94

P20 NullCheck 3 NullCheck.Certrevsim 974

P21 NullCheck.Jsim.event 64

P22 NullCheck.Jsim.queue 416

P23 Quicksort 1 72

Figure 4 shows the UML diagram for Bean Aspect. It is clear from the diagram
that BoundPoint aspect and Demo class are related to Point Class. It means the Bean
example has two relations and three elements. The proposed measure of Package
cohesion for Bean example is calculated as:

PCohA = 2/3(3 − 1)

= 2/6

= 0.33

3.4.2 The Subject Observer Protocol

The Observer design pattern defines dependency between a subject and several
observers. When the subject changes its state, all observer objects will automatically
be notified and updated accordingly. The basic parts of the protocol are the interfaces
Subject and Observer, and the aspect Subject Observer Protocol.

123



554 Int J Parallel Prog (2018) 46:543–564

Fig. 4 UML for Bean Aspect

The Subject interface contains methods to add, remove, and view Observer objects
and the Observer interface contain methods to set and get Subject objects. The aspect
SubjectObserverProtocol contains all the basic parts to execute the update method of
Observer object when some state changes in a subject. It defines an abstract pointcut
that is overridden on extending aspects. It also defines an advice that run after the
join points of the pointcut. And it declares an inter-type field and two inter-type
methods so that each Observer can hold onto its Subject. Button object makes sure
that the void click () method is called whenever a button is clicked. This class knows
nothing about being a Subject. ColorLabel objects are labels that support the void
colorCycle() method. Again, they know nothing about being an observer. Finally, the
SubjectObserverProtocolImpl implements the subject/observer protocol, with Button
objects as subjects and ColorLabel objects as observers.

From Fig. 5, we can predict that Subject/Observer protocol has 8 elements and
14 relations between them. So Package Cohesion as calculated from our proposed
measure is:

PCohA = 14/8(8 − 1)

= 14/56 = 0.25

123



Int J Parallel Prog (2018) 46:543–564 555

Fig. 5 UML for Subject Observer Protocol

The value of PCohA for other AspectJ projects is calculated in similar manner and
is given in Table 4.

From PCohA values obtained for the examples in Table 4 and the qualitative cate-
gorization from Table 2, it is concluded that 10 packages are loosely cohesive, 11are
averaged cohesive and 2 are highly cohesive.

In the next section,we are validatingPCohAagainst external attribute i.e. reusability
for proving its significance in calculating the quality of AOS.

4 Assessing Reusability Through Package Cohesion Measure

Software quality is the phenomenon for meeting system’s specified requirements. As
shown in Fig. 6, measure of any internal quality attribute is significant only if it can
assess some external quality attribute. In concepts of software engineering, measures
of internal quality attributes have no meaning if it cannot measure any external quality
attribute [48].

Internal quality attributes may include the various metrics for measuring cohesion,
coupling, size, separation of concerns etc. and some main external quality attributes
extracted from the literature are—reusability, maintainability, understandability and

123



556 Int J Parallel Prog (2018) 46:543–564

Table 4 PCohA values for AspectJ examples

Package No. of classes No. of interfaces No. of relations PCohA

P1 3 0 2 0.33

P2 4 0 3 0.25

P3 6 2 14 0.25

P4 6 3 11 0.15

P5 23 0 26 0.05

P6 7 0 16 0.38

P7 2 0 1 0.5

P8 4 0 4 0.33

P9 8 2 14 0.15

P10 2 0 1 0.5

P11 5 0 5 0.25

P12 2 0 2 1

P13 4 0 8 0.66

P14 13 0 31 0.19

P15 2 0 1 0.5

P16 0 1 0 1

P17 3 0 3 0.5

P18 11 0 26 0.23

P19 5 1 10 0.33

P20 13 0 31 0.19

P21 3 0 3 0.5

P22 11 0 26 0.23

P23 3 0 2 0.33

The values for the metric PCohA calculated for the sample examples are given in bold

Fig. 6 Quality lifecycle (https://xbosoft.com/definition-software-quality)

testability. Here, in this paper external quality attribute—reusability, is assessed using
package cohesion metric to prove its significance in AOSD.

Reusability of the software systems is becoming a very important factor due to rapid
software development and increasing complexity. Software reusability is a process of

123

https://xbosoft.com/definition-software-quality


Int J Parallel Prog (2018) 46:543–564 557

Fig. 7 Relation of reusability with external and internal quality attributes

reusing the software with very little or no modification. The software is reusable if it
is easily understandable and is less complexed. In terms of AOS, reusability is defined
as the capability of an AO component to be reused in other AO components. AOP
overcomes the major limitation of OOP i.e. crosscutting concerns. In OOP, the code
related to concern is scattered inmultiple classes, affect reusability andmaintainability.
These scattered concerns are called crosscutting concerns. AOP provides solution to
the problem by encapsulating code of crosscutting concern in a single module called
aspect. The aspects encapsulating crosscutting concern are integrated with classes
(primary classes) with the help of weaving process. Weaving injects the code of an
aspect into well-defined locations called joinpoints in primary concerns (classes). This
is the way of achieving reusability on AOP [41].

Software reusability improves the quality of software product by reducing develop-
ment time, effort and cost. From the literature review it is found that, various models
have been proposed for Reusability. All models concentrate on relating Reusability
with various external quality attributes and measuring them using internal character-
istics. It is concluded that Reusability is highly dependent on the four main quality
attributes—maintainability, Understandability, Adaptability andModularity. All these
four external attributes can be measured with the help of internal attributes like
complexity, coupling, cohesion, size etc. Figure 7 illustrates the importance and sig-
nificance of cohesion in measuring reusability.

4.1 The Assessment Framework

The measure of any internal attribute, such as cohesion, is significant only if it can
help in assessing some external attribute (e.g. reusability). In software development,
internal quality attributes are superficial concepts and, in themselves, have nomeaning.
Thus, there is a requirement to develop a framework to assess internal attributes like,
cohesion and size in terms of their usefulness as indicator of the external qualities
like, maintainability and reusability. In fact, the aim of the assessment framework is to
provide support for assessment of reusability of aspect-oriented systems based on the
proposed metric. The framework components help organize the assessment process

123



558 Int J Parallel Prog (2018) 46:543–564

Fig. 8 The assessment
framework

Data collection

Package Cohesion 
Metric (PCohA)

Correlation

Code Defined concerns

Reusability

Table 5 Design metrics for AOS

Design property Design metric

Coupling Efferent coupling (CE)

Cohesion Package cohesion metric (PCohA)

Messaging Interface size of package (IP)

Design size Number of classes and interfaces (ADS)

and assist in data collection and interpretation (Fig. 8). The basic components of the
framework are: package levelmetrics and the reusabilitymodel (Fig. 7). The reusability
model establishes the relationships between the external attributes, internal attributes
and the metrics. The framework requires some artifacts as inputs to the measurement
process. First, it requires the system code for the use of the metrics. In addition,
the assessment framework requires a description of the system concerns to guide the
identification of the concerns when using the metrics of separation of concerns.

In this paper, we are using our proposed design metrics [14] as given in Table 5,
for calculating reusability. Reusability can be calculated as given in Eq. (3):

Reusability = −0.25 × Coupling + 0.25 × Cohesion

+ 0.5 × Messaging + 0.5 × Design Size (3)

Table 6 gives the value of reusability for each package mentioned in Table 3,
calculated by applying metrics defined in Eq. 3.

4.2 Correlation Between PCohA and Reusability

For finding the correlation between Reusability and PCohA, rating is given to values
of Reusability. Values are rated on a numerical scale from 1 (high) to 10 (low). The
package with high value of reusability is easy to be reused and hence rated as 1 as
presented in Table 7.

Figure 9 shows the relationship between values of package cohesion (PCohA) and
reusability for each package.

123



Int J Parallel Prog (2018) 46:543–564 559

Table 6 Reusability of AspectJ
projects

Package CE PIS DSP PCohA Reusability

P1 0 1 3 0.33 2.0825

P2 0 4 4 0.25 4.0625

P3 0 1 8 0.25 4.5625

P4 0 4 9 0.15 6.5375

P5 2 1 23 0.05 11.5125

P6 0 13 7 0.38 10.095

P7 1 1 2 0.5 1.375

P8 0 4 4 0.33 4.0825

P9 0 4 10 0.15 7.0375

P10 0 2 2 0.5 2.125

P11 0 3 5 0.25 4.0625

P12 0 2 2 1 2.25

P13 1 1 4 0.66 2.415

P14 3 13 13 0.19 12.2975

P15 0 3 2 0.5 2.625

P16 1 1 1 1 1

P17 1 3 3 0.5 2.875

P18 0 11 11 0.23 11.0575

P19 0 0 6 0.33 3.0825

P20 3 13 13 0.19 12.2975

P21 1 3 3 0.5 2.875

P22 0 11 11 0.23 11.0575

P23 0 2 3 0.33 2.5825

It is clear from the Fig. 9 that the PCohA has positive relation with Reusability.
Reusability is high for the package with high cohesion. Highly cohesive package P7,
P10, P12, P13, P16, P17 and P21 has ratings between 8 and 10, i.e., high reusability.
Similarly, less cohesive packages like P5 and P9 has ratings between 2 and 4, i.e., less
reusable.

Correlation between package cohesion metric (PCohA) and reusability is calcu-
lated by using Karl Pearson Product Moment correlation from the values in Table 7.
Correlation values are as shown in Table 8.

The computed values show a strong positive relation between PCohA and reusabil-
ity. Thus it can be concluded that level of PCohA can determine the level of reusability
in AOS.

4.3 Comparison with Existing Measures

From the literature review, it is found that nowork has been done on designing package
cohesion metric for AOS. Commonly package cohesion can be calculated by taking

123



560 Int J Parallel Prog (2018) 46:543–564

Table 7 Ratings for reusability Package Reusability Rating PCohA

P1 2.0825 8 0.33

P2 4.0625 6 0.25

P3 4.5625 6 0.25

P4 6.5375 5 0.15

P5 11.5125 2 0.05

P6 10.095 3 0.38

P7 1.375 9 0.5

P8 4.0825 6 0.33

P9 7.0375 4 0.15

P10 2.125 8 0.5

P11 4.0625 6 0.25

P12 2.25 8 1

P13 2.415 8 0.66

P14 12.2975 1 0.19

P15 2.625 7 0.5

P16 1 9 1

P17 2.875 7 0.5

P18 11.0575 2 0.23

P19 3.0825 7 0.33

P20 12.2975 1 0.19

P21 2.875 7 0.5

P22 11.0575 2 0.23

P23 2.5825 8 0.33

Fig. 9 Relation between Reusability and PCohA

the average of cohesion measure, Lack of Cohesion in Objects (LCOO), given by
Sant’Anna et al. [16] for each package in the project. We are comparing LCOO with
our proposed metric. Table 9 gives the value for LCOO for selected packages.

123



Int J Parallel Prog (2018) 46:543–564 561

Table 8 Correlation values

Attributes Correlation value Level of significance

PCohA and reusability 0.67 0.05

Table 9 9 values of LCOO Package LCOO Package LCOO

P1 0.17 P13 0

P2 0.16 P14 0.23

P3 0 P15 0

P4 0.4 P16 0

P5 0.27 P17 0.16

P6 0.28 P18 0.25

P7 0 P19 0.2

P8 0.06 P20 0.23

P9 0 P21 0.16

P10 0 P22 0.25

P11 0 P23 0.13

P12 0

Table 10 Correlation values for
PCohA and LCOO

Attributes PCohA LCOO

Reusability 0.67 −0.64

0 

2 

4 

6 

8 

10 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

R
eu

sa
bi

lit
y 

R
at

in
g

L
C

O
O

Axis Title

Relation Between Reusability and LCOO

LCOO Ra�ng

Fig. 10 Relation between Reusability and LCOO

Figure 10 shows the relation betweenLCOOvalues andReusability ratings obtained
for selected packages. The correlation values at significance level 0.05 are shown in
Table 10.

Table 10 shows that the proposed measure PCohA has produced high value of
correlation with reusability, i.e. 0.67. LCOO has also shown good correlation, though
it is negative, i.e., −0.64, as this metric measures lack of cohesion. But our proposed

123



562 Int J Parallel Prog (2018) 46:543–564

approach is much suitable as it is less complex to calculate. Using LCOO to measure
package cohesion, it has to be repeatedly calculated for all elements of package which
is very cumbersome. Whereas using PCohA for same purpose requires calculation for
one time only, reducing time and effort. Hence, it can be concluded that PCohA is
much suitable for measuring the reusability in AOS.

4.4 Threats to Validity

As in other empirical studies, there are threats to validity of this study also. The use
of one AOP language i.e. AspectJ can be a threat in our study. However, it is fairly
known that AspectJ systems are being used in majority of AOS studies. Even though
there are other AO techniques which are able to signify the concept of AOP like, Meta
programming etc., AspectJ has been the most adopted technology [5]. Another threat
regards the number and size of the target applications chosen for proving validation of
our metric. Regarding the size of our selected examples, small applications are taken,
as it is a beginning in the category of defining package level metrics. To reduce this
threat, in future large applications can be used and also more number of package can
be used to further analyze the metric. The major threat is the use of Reusability as
an indicator of external software quality. The external attributes defining quality of a
software are also dependent on maintainability, understandability etc. To reduce this
limitation, other measures like maintainability and understandability will be used to
validate the metric.

5 Conclusion and Future Work

In this paper, we have made an attempt to measure cohesion at package level in
AOS. We have proposed a new metric, PCohA, for measuring package level cohesion
in AOS. The proposed metric PCohA is based on formal definitions and relations
amongst the elements of package. The proposed metric is theoretically validated as
it satisfies the four properties given by Briand et al. [26]. The metric is implemented
on 23 AspectJ packages available as an open source in AspectJ repository and some
embedded with Eclipse platform. To prove the usefulness of proposed measure a
framework has been defined to empirically validated it on external quality attribute—
reusability. The empirical evaluation has clearly shown that the proposed metric has a
positive effect on the measurement of reusability and it can be used as an assessment
tool for measuring reusability of AOS. The work discussed in this paper can be used
for designing software with high quality attributes. The results of this study can also
be used for helping in the development and improvement of new AO packages.

This proposed measure can be used in future to develop new package level met-
rics for other software quality attributes such as understandability, maintainability,
changeability etc. New replications of the experiment can be performed using large
datasets and other AO languages.

123



Int J Parallel Prog (2018) 46:543–564 563

References

1. Ali, M.S., Babar, M.A., Che, L., Stol, K.J.: A systematic review of comparative evidence of aspect
oriented programming. Inf. Softw. Technol. 52, 871–887 (2010)

2. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Longtier, J.M., Irwin, J.: Aspect-
oriented programming. In: Proceedings of the European Conference on Object Oriented Programming
(ECOOP), Springer, LNCS 1241 (1997)

3. Cacho, N., Santanna, C., Figueiredo, E., Dantas, F., Garcia, A., Batista, T.: Blending design patterns
with aspects: a quantitative study. J. Syst. Softw. 98, 117–139 (2014)

4. Singh, P.K., Sangwan, O.P., Singh, A.P.: A quantitative evaluation of reusability for aspect oriented
software using multi-criteria decision making approach.World Appl. Sci. J. 30(12), 1966–1976 (2014)

5. Rashid, A., Cottenier, T., Greenwood, P., Chitchyan, R., Meunier, R., Coelho, R., Sudholt, M., Joosen,
W.:Aspect oriented programming in practice: tales fromAOSE-Europe. Computer 42(2), 19–26 (2010)

6. Brichau, J., D’Hondt, T.: An introduction to Aspect Oriented Software Development. AOSD Europe
(2005)

7. Fabry, J., Roover, C., Noguera, C., Zschaler, S., Rashid, A., Jonckers, V.: AspectJ code analysis and
verification with GASR. J. Syst. Softw. 117, 528–544 (2016)

8. Santos, A., Alves, P., Figueiredo, E., Ferrari, F.: Avoiding code pitfalls in aspect-oriented programming.
Sci. Comput. Program. 119, 31–50 (2016)

9. Gupta, V., Chhabra, J.K.: Package level cohesion measurement in object oriented software. J. Braz.
Comput. Soc. 18, 251–266 (2012)

10. Ebad, S., Ahmed, M.: An evaluation framework for package level cohesion metrics. In: International
Conference on Future Information Technology, vol. 13, pp. 239–243. IACSIT Press, Singapore (2011)

11. Almugrin, S., Albattah, W., Melton, A.: Using indirect coupling metrics to predict package maintain-
ability and testability. J. Syst. Softw. 121, 298–310 (2016)

12. Tahir, A., Ahmad, R.: AnAOPbased approach for collecting softwaremaintainability dynamicmetrics.
In: Second international Conference on Computer Research and Development. IEEE, pp. 168–172
(2010)

13. Tahir, A., Ahmad, R., Kasirun, Z.: Maintainability dynamic metrics data collection based on aspect
oriented technology. Malays. J. Comput. Sci. 23(3), 177–194 (2010)

14. Kaur, P.J., Kaushal, S.: Package level metrics for reusability in AOS. In: International Conference on
Futuristic Trends on Computational Analysis and Knowledge Management (A BLAZE), pp. 364–368.
IEEE, Amity University, Noida, 25–27 Feb 2015

15. Zhao, J.: Towards a metric suite for aspect oriented software. Technical report, SE 136-25, Information
Processing Society of Japan (IPSJ) (2002)

16. Sant’Anna, C., Garcia, A., Chavez, C., Lucena, C., Staa, A.: On the reuse and maintenance of aspect
oriented software: an assessment framework. In: 17th Brazilian Symposium on Software Engineering
(2002)

17. Ceccato, M., Tonella, P.: Measuring the effects of software aspectization. In: Proceedings of First
Workshop on Aspect Reverse Engineering, WARE (2004)

18. Gelinas, J.F., Badri, M., Badri, L.: A cohesion measure for aspects. J. Object Technol. 5(7), 97–114
(2006)

19. Elish, M.O., Al-Khiaty, M., Alshayeb, M.: Investigation of aspect-oriented metrics for stability assess-
ment: a case study. JSW 6(12), 2508–2514 (2011)

20. Piveta, E.K., Moreira, A., Pimenta, M.S., Araujo, J., Guerreiro, P.: An Empirical Study of Aspect
Oriented Metrics, Science of Computer Programming, vol. 78. Elsevier, Amsterdam (2012)

21. Balani, L., Singh, A.: Software quality metrics for aspect oriented programming. Int. J. Eng. Res.
Technol. 8(1), 1–6 (2015)

22. Kaur,M., Kaur, R.: Improving the design of Cohesion and couplingmetrics for aspect oriented software
development. Int. J. Comput. Sci. Mob. Comput. 4(5), 99–106 (2015)

23. Hans, A.: Impact of aspect oriented programming on cross cutting metrics using Breshman technique
for homogeneity. Int. J. Adv. Res. Electron. Commun. Eng. 5(8), 2172–2178 (2016)

24. Eder, J., Kappel, G., Schrefl, M.: Coupling and cohesion in object oriented system. Technical report,
University of Klagenfurt, Austria (1994)

25. Hitz, M., Montazeri, B.: Measuring coupling and cohesion in OO systems. In: Proceedings of Inter-
national Symposium on Applied Corporate Computing, Monterrey, Mexico (1995)

123



564 Int J Parallel Prog (2018) 46:543–564

26. Briand, L.C.,Morasca, S., Basili, V.R.: Property based software engineeringmeasurement. IEEETrans.
Softw. Eng. 22910, 68–86 (1996)

27. Doval, D., Mancoridis, S., Mitchell, B.S.: Automatic clustering of software systems using genetic
algorithm. In: STEP’99, pp. 73–41. IEEE Computer Society (1999)

28. Vernazza, T., Granatella, G., Succi, G., Benedicenti, L., Mintchev, M.: Defining metrics for software
components. In: TheWorldMulticonference onSystemics,Cybernetics and Informatics, Florida (2000)

29. Khan, S.: Design level coupling metrics for UML models. MS Thesis, KFUPM, Saudi Arabia (2004)
30. Seng, O., Bauer, M., Biehl, M., Pache, G.: Search-based improvement of subsystem decompositions.

In: GECCO’05, pp. 1045–1051 (2005)
31. Hussain, S.: Package cohesion metric for OO systems. MS Thesis, KFUPM, Saudi Arabia (2005)
32. Gui, G., Scott, P.D.: Coupling and cohesion metric for evaluation of software component reusability.

In: International Conference on Young Computer Scientists, pp. 1181–1186. IEEE (2008)
33. Abdeen, H., Ducasse, S., Sahraoiy, H., Alloui, I.: Automatic package coupling and cycle minimization.

In: WCRE’09, CNF, pp. 103–122. IEEE (2009)
34. Singh, V., Bhattacherjee, V.: Evaluation and application of package level metrics in assessing software

quality. Int. J. Comput. Appl. 58(21), 38–46 (2012)
35. Singh, V., Bhattacherjee, V.: Assessing package reusability in object oriented design. Int. J. Softw.

Eng. Appl. 8(4), 75–84 (2014)
36. Albattah, W., Melton, A.: Package cohesion classification. In: 5th IEEE International Conference of

Software Engineering and Service Science (ICSESS), Beijing, pp. 1–8 (2014)
37. Kumar, A., Kumar, R., Grover, P.S.: Towards a unified framework for cohesion measurement in AOS.

In: 19th Australian Conference on Software Engineering, pp. 57–65. IEEE (2008)
38. Kumar, P.: Aspect oriented software quality model: the AOSQ model. Adv. Comput. 3(2), 105–118

(2012)
39. Arora, K., Singhal, A., Kumar, A.: A study of cohesion metrics for Aspect Oriented System. Int. J.

Eng. Sci. Adv. Tech. 2(2), 332–337 (2012)
40. Choudhary, R., Chatterjee, R.: Reusability in AOSD—the aptness, assessment and analysis. In: Inter-

national Conference on Reliability, Optimization and Information Technology (ICROIT 2014). IEEE,
pp. 34–39, 6–8 Feb 2014

41. Nerurkar, N.W., Kumar, A., Shrivastava, P.: Assessment of reusability in AOS using fuzzy logic. ACM
SIGSOFT Softw. Eng. Notes 35(5), 1–5 (2010)

42. Vinobha, A., Velan, S., Babu, C.: IEEE International Conference onAdvancedCommunicationControl
and Computing Technologies (ICACCCT), pp. 1715–1722 (2014)

43. Dhole, A., Nirmal, N.: An approach for calculation of reusability metrics of object oriented program.
Int. J. Eng. Res. Technol. 2(6), 2644–2647 (2013)

44. Ananthi, S., Roby, J.: A theoretical framework for the maintainability model of AOS. In: International
conference on Soft Computing and Software Engineering (SCSE), Procedia Computer Science, vol.
62, pp. 505–512 (2015)

45. Mallikarjuna Reddy, G., Anil Babu, N., Arun Kumar, R., Deshmukh, G.: Maintenance and understand-
ability of aspect oriented programming. Int. J. Comput. Trends Technol. 36(2), 77–80 (2016)

46. Tripathi, A., Vardhan,M., Kushwaha, D.S.: Package level cohesion and its application. In: Proceedings
of International Conference on Advances in Communication, Network and Computing, CNC, pp. 437–
446. Elsevier (2014)

47. Garg, S., Kahlon, K.S., Bansal, P.K.: How to measure coupling in AOP from UML diagram. Int. J.
Comput. Sci. Telecommun. 2(8), 52–57 (2011)

48. Briand, L., Emam, K.E., Morasca, S.: Theoretical and empirical validation of software product mea-
sures. Technical report ISERN-95-03. Fraunhofer Institute of Experimental Software Engineering,
Germany (1995)

123


	A Framework for Assessing Reusability Using Package Cohesion Measure in Aspect Oriented Systems
	Abstract
	1 Introduction
	2 Literature Review
	2.1 Aspect Oriented Quality Metrics
	2.2 Package Level Cohesion Metrics
	2.3 Assessment of Reusability as an External Quality Attribute

	3 Package Cohesion Metric
	3.1 Types of Relationships
	3.2 Cohesion Measurement at Package Level
	3.3 Theoretical Validation of Proposed Metric
	3.4 Implementation of Package Cohesion Metric
	3.4.1 Bean Aspect
	3.4.2 The Subject Observer Protocol


	4 Assessing Reusability Through Package Cohesion Measure
	4.1 The Assessment Framework
	4.2 Correlation Between PCohA and Reusability
	4.3 Comparison with Existing Measures
	4.4 Threats to Validity

	5 Conclusion and Future Work
	References




