Int J Parallel Prog (2018) 46:508-527 @ CrossMark
https://doi.org/10.1007/s10766-017-0498-x

Multilevel Data Processing Using Parallel Algorithms
for Analyzing Big Data in High-Performance
Computing

Awais Ahmad! - Anand Paul? - Sadia Din? -
M. Mazhar Rathore? - Gyu Sang Choi! -
Gwanggil Jeon?

Received: 26 December 2016 / Accepted: 11 March 2017 / Published online: 27 March 2017
© Springer Science+Business Media New York 2017

Abstract The growing gap between users and the Big Data analytics requires innova-
tive tools that address the challenges faced by big data volume, variety, and velocity.
Therefore, it becomes computationally inefficient to analyze such massive volume
of data. Moreover, advancements in the field of Big Data application and data sci-
ence poses additional challenges, where High-Performance Computing solution has
become a key issue and has attracted attention in recent years. However, these systems
are either memoryless or computational inefficient. Therefore, keeping in view the
aforementioned needs, there is a requirement for a system that can efficiently analyze
a stream of Big Data within their requirements. Hence, this paper presents a system

B Awais Ahmad
aahmad.marwat @ gmail.com

B Gwanggil Jeon
gjeon@inu.ac.kr

Anand Paul
paul.editor@gmail.com

Sadia Din
research.2486 @gmail.com

M. Mazhar Rathore
rathoremazhar @ gmail.com

Gyu Sang Choi
castchoi@ynu.ac.kr
Department of Information and Communication Engineering, Yeungnam University,

Gyeongbuk, Republic of Korea

School of Computer Science and Engineering, Kyungpook National University, Daegu,
Republic of Korea

Department of Embedded Systems Engineering, Incheon National University, Incheon, Korea

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-017-0498-x&domain=pdf

Int J Parallel Prog (2018) 46:508-527 509

architecture that enhances the working of traditional MapReduce by incorporating par-
allel processing algorithm. Moreover, complete four-tier architecture is also proposed
that efficiently aggregate the data, eliminate unnecessary data, and analyze the data
by the proposed parallel processing algorithm. The proposed system architecture both
read and writes operations that enhance the efficiency of the Input/Output operation.
To check the efficiency of the proposed algorithms exploited in the proposed system
architecture, we have implemented our proposed system using Hadoop and MapRe-
duce. MapReduce is supported by a parallel algorithm that efficiently processes a huge
volume of data sets. The system is implemented using MapReduce tool at the top of the
Hadoop parallel nodes to generate and process graphs with near real-time. Moreover,
the system is evaluated in terms of efficiency by considering the system throughput
and processing time. The results show that the proposed system is more scalable and
efficient.

Keywords Big Data - HPC - Parallel Processing algorithm - Four-tier system
architecture

1 Introduction

Recently, much focus is given to Big Data since it is one of the influential research
areas in 2020 horizon. The model of the Big Data analytics relies on the data acquisi-
tion and aggregation of the enormous volume of data that supports innovation in the
upcoming years. The data is considered to be big when it meets the basic requirements
of traditional three v’s. These three v’s are volume, variety, and velocity [1]. The basis
of the Big Data exploitation is to enable the existence of big data sets with a view
to extracting information, which ultimately results in better business value chains.
According to the latest report published by International Data Corporation (IDC), the
quantity of the data will increase fourth-four time bigger in the next up-coming years.
Such increase is noticed as 0.8-35 ZB [1].

Having fact that scientific applications tend toward more data-intensive due to
the desires of scientific sightings. For instance, Sloan Digital Skype Survey (SDSS)
and Arctic Systems Reanalysis (ASR) [2] are the two case studies that generate an
extensive amount of Big Data, i.e., one hundred terabytes and twenty-three terabyte
of data in an individual cycle. It is also noticed that the size of these applications
will continue to increase in a near future. Therefore, various applications, such as
internet of things (IoT), smart cities, and wireless sensor network can be used for
data acquisition, aggregating, and analyzing data liable on the framework. Moreover,
Gartner Group predicts that 26 billions of the things will be connected by 2020. Hence,
it provides a great deal of opportunities for the scientific discoveries. Apparently, it
poses a lot of challenges in the community of high-performance computing. In this
regard, the Input/Output (I/O) systems are one of the well-known challenges and are
getting attraction with notable methods proposed. The aforementioned valuations are
examples of Big Data acquisition, aggregation, and analysis, and it can be dealt with
the massive volume in a larger variety, aggregating data with high velocity to define
value-added services and other applications.

@ Springer

510 Int J Parallel Prog (2018) 46:508-527

The coupling between Big Data and High-Performance Computing (HPC) is strong
[1,3,4]. Since there is no such widespread approach that supports HPC in real-time. For
instance, data acquisition, data aggregation, and data analysis and their exploitation.
Some of the recent trends are focused on the data acquisition and data aggregation from
the data generation tiers [5], aggregation tiers [6], exploitation tier [7], and lastly, the
analysis tiers [1,8]. These mentioned approaches are challenging tasks than locating,
identifying, understanding or citing data [9]. In the case of large-scale data, the above-
mentioned factors shall occur in a mechanized way since there is a requirement of
diverse data structure and semantics that need to be expressed in a way so that the
computer can understand the data. Though, to analyze data having one data sets, some
traditional and simple intelligently designed databases might work. However, if the
size of the data is increased than the basic requirements of memory, then the existence
technique might fail to store and process parallel in a traditional computing machine.
Therefore, to design a system that intelligently tackles the Big Data by using HPC
will have advantages over others traditional processing tools.

Having understood from the fact that traditional Big Data analytics are not just a
useful remedy to analyze a stream of data in an efficient manner. Therefore, various
platforms are introduced by different vendors that are used for HPC [10]. These plat-
forms are software only or they simply provide analysis services. Moreover, these
platforms are designed for latest technologies that are used for the analytical purpose
only. These technologies include web traffic, global positioning system (GPS), and
IoT data. Moreover, several other platforms are also available in the market that is
used for the particular application.

Among various I/O systems, a great potential has been seen in active storage systems
that address the 1/0 bottleneck challenges for scientific application. Such potential is
increased with the increase in the demand for the data. Though, the prototype of the
active storage [11,12], the main focus is given to read-intensive operations. Since it
provides an easy way to identify common operations, i.e., lookup, amongst several
data analysis approaches, kernel analysis is predefined in libraries, known as process-
ing kernels [12]. On the other hand, various other techniques for writing-intensive
applications are not well addressed that are common in scientific areas. Since rapid
advancement in the size of the output, write performance operations I/O systems
becomes more important [10]. Moreover, due to incredible growth in this scientific
application, several other challenges are noticed. These challenges include storing
huge amount of data and memory allocation to this application, processing and ana-
lyzing these data without having intelligent technique. Several other techniques, such
as prototype reduction (PR) is one of the useful remedies for class distribution. Proto-
type reduction splits the original data into different subsets, which can be individually
addressed. After that, PR combines each moderately compact set into a global solu-
tion. In addition, torrents of event data are essential to be distributed among various
databases, which required large mining algorithms needed to be distributed in the net-
works of the computer. However, the design of existing active storage techniques have
some major drawbacks, which are (i) to process kernel design pattern is not suitable
for write operations, (ii) usually, write operations require more computation power
than read operations, and (iii) to process massive volume of data is sometimes hard to
processes by using some traditional intelligence and processing tools.

@ Springer

Int J Parallel Prog (2018) 46:508-527 511

Motivating from the aforementioned limitations discussed above, we propose a
novel architecture, called multilevel data processing using parallel algorithms for ana-
lyzing big data using high-performance computing. The active Input/Output works
on three levels. The first level is used for data generation. The second level is used
for data storage, which is used for getting data from the data nodes and stores it in
a sequential manner. Moreover, the data storage level is also comprises processing
servers, in which we came up with the algorithms to enhance the efficiency of the
Hadoop server. The processing server efficiently processes and analyzes Big Data in
limited resources. Finally, the third level is the interpretation level, which is used for
getting the processed data from the layer-two and displays it for the user.

The proposed architecture is used to analyze real-time as well as offline Big Data.
The contribution of the paper is manifold, which are:

(1) The data is aggregated by our proposed architecture in larger blocks.

(2) The aggregated data is arranged in a sequential manner so that it may be useful to
store in the parallel storage devices in a server.

(3) The data blocks are partitioned in equal size so that it may increase the processing
efficiency.

(4) Finally, the parallel algorithms are used to process the data and perform analysis,
which enhances the system efficiency to be called as high-performance computing.

The remainder of this paper is organized as follows. In Sect. 2, we give a detailed
related work. In Sect. 3 presents the motivation. In Sect. 4, we presents multilevel
architectural model for Big Data analytics. In we briefly explained proposed four-tier
architecture design the requirements for the Big Data. In Sect. 5, we present a detailed
analytical and simulation results using Hadoop and MapReduce. Finally, Sect. 6 offers
a conclusion.

2 Related Work

MapReduce programming paradigm producing a large amount of datasets that is
responsible for the extensive diversity of real world tasks [13]. MapReduce divides
input data into small independent chunks which dealt in a parallel manner completely.
The MapReduce architecture classifies the maps outputs and sends to the reduce job.
Basically, the input and output of the task are kept in the file system. MapReduce
is a parallel programming model, which perform three main task at the same time
i.e., simplicity, load balancing, and fault tolerance. The Google File System (GFS)
normally inspired from the MapReduce model gives the reliability and efficiency of
data storage required for large databases applications [14].

MapReduce model motivated by functional languages. Functional languages have
a map and reduce primeval exist in functional languages. Depending on the frame-
work requirement numerous executions can be feasible in MapReduce platform. Few
recently executions are existed in literature work e.g., networked machines clustering
[13], shared memory multi-core system techniques [15,16], graphic processors and
asymmetric multi-core processors approach [17].

Google launched one of the most famous implementation that exploit a huge num-
ber of clusters of computers, which are joint through switch Ethernet. Basically,

@ Springer

512 Int J Parallel Prog (2018) 46:508-527

Google MapReduce scheme reduce the cost of clusters of machines for wide range
distributed applications. MapReduce approach makes simpler and easier the estab-
lishment process. It is based on real-time execution and it does not define preplan
execution scheduling of the node [18].

MapReduce paradigm is able to perform a parallel execution on distributed nodes.
The core purpose of MapReduce model is to clarify huge data implementation as well
as low-cost cluster machines. It is also obtained fault toleration and balancing the load
for each cluster to make this simpler and easier for operators. Map and Reduce are two
basic entities of the MapReduce model. Google is the owner of indigenous MapReduce
so it is not for public use [18]. Even though, the idea of MapReduce primeval generally
simply the distributed computing system. The original MapReduce structure is very
important to obtain required and efficient performance [19]. The Google’s MapReduce
Structure has originally distributed file system which identifies the data location and
accessibility [13].

The objective of acquiring distributed data execution to processed parallel data
for thousands of computing machines can be accomplished by joining the MapRe-
duce programming model and an effectual distributed file system. By applying this
approach, data can be processed on large scale i.e., terabyte and petabyte along with
better system performance, reliability and more effectiveness of the system. MapRe-
duce minimize the accessing and loading data time greater than 50% because it has
data optimization efficiency and reliability [20]. MapReduce is a flexible and scalable
processing tool introduced by Google. It is able to process a huge amount of low-cost
computing node’s data on same time [21]. Lately, MapReduce has become the center
of attraction among the scientific and commercial community for its best performance
[22-25].

3 Motivation

Usually, the framework of Hadoop MapReduce run over Hadoop Distributed File
Server (HDFS), which has the advantage of multiple local disks on a computer node
providing better data-locality [26]. Though, majority of the HPC clusters [27,28] used
to follow traditional Beowulf architecture [29,30]. In such systems, the computer nodes
are provided with a very light weight operating system, or sometimes with a limited
capacity of local storage [31]. Simultaneously, they are all connected to a parallel
file system, called as Lustre. Lustre provides an efficient and scalable data storage
facility. Figure 1 delineates an example scenario of deployment of Lustre system and
the operation of YARN MapReduce on modern HPC clusters.

The major drawback of this architecture has the limited capacity of local disks since
they inhibit the working of MapReduce on large data sets. These inconsistencies lead
toward attenuation of MapReduce running on HPC clusters. Moreover, recent studies
also verify that MapReduce does not provide significant results when it combines with
HPC cluster [10,32,33]. These limitations lead us toward a question whether storage
system with Lustre gives us local storage capabilities that facilitate MapReduce, which
gives us efficient results on HPC clusters?

@ Springer

Int J Parallel Prog (2018) 46:508-527 513

User
®

I =
| e
“ : Core C
| 1

Interconnect Fabric D Login Node
(Ethernet/InfiniBand)
. YARN Resource Manager'

____________________ .
: Computer Nodes 1 YARN App Master Map
|
|
I |
! Memory Memory
| I
| I
I
: | Lustre Client Reduce
! |]
|
|
1
|
1

LustreDeployemnt || YARN Node Manager

._.-n_"—._._" . Meta data server

J \ . Object storage server

Fig. 1 YARN MapReduce running over a typical Lustre

The majority of the Lustre system installed on HPC cluster using Lustre as a local
storage. This local storage is for traditional MapReduce functions where these func-
tions can be completed in two steps, i.e., read and write operations. These operations
give us high-speed data shuffles path since read and write have high throughput on
Lustre systems. Though, the time required for a transmission inside Lustre depends
on many factors, such as interconnection of clusters, data load, and other variations,
etc. These factors, when combined together, generate an overhead on the traditional
MapReduce functions [10]. Moreover, recent studies have also been proposed to
enhance the function of MapReduce design [34-36] in order to speed-up the func-
tion of MapReduce. However, these systems are facing some other limitations related
to the local memory, processing big data sets, dividing the job of the map and reduce
function, results in storage in a real-time scenario, etc.

Motivated by these factors, the proposed multilevel architectural design for pro-
cessing big data using parallel algorithms is a useful remedy to provide local memory
where the map and reduce efficiently perform their functionality. Moreover, the data
is divided into small chunks that can be stored in the local memory in order to perform
I/0O jobs more efficiently.

4 Proposed Multilevel System Design

The multilevel active storage and processing aim to extend the existing storage and
processing systems. The system architecture is composed of four layers. Each layer

@ Springer

514 Int J Parallel Prog (2018) 46:508-527

is supported by different functionalities enables read and write operations high effec-
tively. In this section, we will first introduce the layered architecture that supports
complete system design for high-performance computing. Afterward, we will present
the design and working of the designed system.

4.1 IV-Tier Layered Architecture

Based on the needs of analyzing big data, we propose an I'V-Tier architecture model.
The designed model assists different objects to interact with each other using the
shared medium. The proposed architectural model integrate various data generated by
difference application, under the same domain, i.e., social internet of things, which
supports the research community to provide the generalized framework and architec-
ture that can help the domestic users in the case of security, healthcare, elderly age
people and kids, and transportation system, machine-to-machine network, wireless
sensor network, and vehicular network, etc. As Fig. 1 shows that the proposed I'V-Tier
architectural model consists of four layers.

Tier I Data Generation handles data generation through various objects and then col-
lecting and aggregating that data. Since a different number of objects are involved in
generating the data. Therefore, an enormous number of heterogeneous data is pro-
duced with various formats, a different point of origin, and periodicity. Moreover,
various data have security, privacy, and quality requirements. Also, in sensor’s data,
the Metadata is always greater than the actual measure. Therefore early registration and
filtration technique are applied at this layer, which filters the unnecessary Metadata,
as well as redundant data, is also discarded.

Tier-1I This layer provides end-to-end connectivity to various devices. Moreover,
data is aggregated at this point generated from various devices and arrange them in
the proper format.

Tier-1I1 Data storage and Processing Layer is the primary layer of the whole system
architecture, which handles the processing of data. Since we need a real-time stream
of the data and offline data analysis. Therefore, we need a third party real-time tool
to combine with the processing server to provide the real-time implementation. To
provide real-time implementations, Strom, Spark, VoltDb, and Hupa can be used. For
instance, to be very specific in the case of data analysis, the implementation part could
be achieved by using MapReduce. At this layer, the same structure of MapReduce and
HDFS is used. With this system, we can also use HIVE, HBASE, and SQL supposed
for managing Database (in-memory or Offline) to store historical information.

Tier-1V Service layer is the lowermost layer responsible for incorporating the third
party interfaces to objects and human. This layer can be used autonomously as a
single site, merged with other locations, or deployed in cloud interface. There are
different other features as well. For instance, the unique global ID management is the
key element in the application layer that handles identifying the object throughout the

@ Springer

Int J Parallel Prog (2018) 46:508-527 515

| Business \ | Business \ | Business H Business , Data store
rules entities tasks reports [§ Container _

1

1

Data formats "

0 g Pcap Input
evice -to-device 1
Binary 1/0

communication A_ Unstructured Text 1/O '
1

w0 IoT/MZM

Standard
\
- ‘ : Ro)

Connmed

sjoo3 JuawAhojdaqg
pue uawdojanag

Fig. 2 Four-tier communication model

universe. Vendor control is another feature deals with the definition of the activities
duly performed by different objects. The proposed architectural layers involve different
objects that need intelligent power to interact with a human. For this reason, a smart
algorithm is required at the application level that could efficiently and effectively
interact with the human. Various tasks could be performed by these features, such
as request generator, session initiating, setting up communicating rules, interact with
heterogeneous objects and terminating the session (Fig. 2).

4.2 System Architecture for High-Performance Computing
Figure 3 shows the high-level system architecture for large-scale data processing

services using parallel algorithms in designing HPC system. The proposed system
architecture for analyzing Big Data is divided into four layers, i.e., data collection

@ Springer

516 Int J Parallel Prog (2018) 46:508-527

Data Collection Layer Computer Nodes
il

G

Communication Layer

|
/
/
{
High Speed Netwark

_Lss | Mmss | Lss
Hadoop Eco System

HDFS Storage Processing Results
Computations Calculations Generations: |

ing layer ¢ v ¥ HPC Servers Result
= Amaipis
— — P :lesu!ts‘inte'rpretgﬁov_-
RS2 L2 Ry

Service Layer

Session
Initiating

Setup
rules

Terminating
Session

Fig. 3 Proposed Big Data Architecture using HPC system

layer, communication layer, processing layer, and service layer. Each layer is respon-
sible for performing individual tasks. These layers are described as below

1. Data Collection Layer

This layer is responsible for data generation. Devices involved in this layer uses com-
munication medium, such as the Internet, ZigBee, Wi-Fi, etc. to communicate with
each other. The communication mediums handle collecting data from all the objects
and then relay it towards the communication layer. Initially, metadata is collected
whose nature heterogeneous. Moreover, this layer is also capable of finding the redun-
dant data. For this technique, some related techniques are used to find the redundant
data[1,3]. Afterward, those metadata, as well as redundant, are discarded. In the litera-
ture, the design of HPC usually tackles the entire amount of data, which uses additional
system requirements. Therefore, the proposed system for HPC does not encounter pro-
cessing of raw data, redundant data, or metadata. After elimination of redundant data,
the useful amount of data is classified by the identifier and message type. Once the
data is classified, the data is converted to machine readable form, which provides easy
solution for the processing to understand it very well and process accordingly.

2. Communication Layer

This layer is responsible for transmission of data from source to the design HPC system
for analysis purpose. It used high-speed Internet, GPRS, 3G, 4G/LTE, or WIMAX as a
source of the medium provider. In addition, it uses Wi-Fi or Bluetooth communication
technology to transfer data from source to designed server if the devices and system are
kept near to each other. All the communication with the various units of the analysis
system is done by Ethernet. In this layer, we exploit the nature of graph that generates

@ Springer

Int J Parallel Prog (2018) 46:508-527 517

or updates each time when new data is added to the system. Initially, it creates a new
graph but at later stages, when it meets any incoming data, it just updates the graph
by either adding a new node, new edge or updating the weights on the edge. It uses
an efficient searching mechanism, which uses indexing to search particular edge to
be updated when required. Graph building layer also increases the efficiency of the
system by making the graph be processed on multiple parallel servers simultaneously
while dividing the graph into various independent mutually exclusive parts/subgraphs.
The exploitation of graphs in the system assists the HPC to process the data efficiently.
It is important to note that unlike the previous system for HPC, our designed system
is not only deals with the processing efficiency. However, its main task is to analyze
the huge amount of data in limited resources of the Hadoop server.

3. Processing Layer

This layer is responsible for processing sub-graphs which were sent to the processing
server by the intermediate layers. From the literature, it is recognized that the tradi-
tional approaches do not efficiently analyze Big Data. Therefore, a new system with
novel algorithms is required that can efficiently analyze and process Big Data in real-
time as well as offline. Therefore, keeping in view the aforementioned requirements,
the proposed system architecture is powered by the processing layer, which acts as a
core component for designing HPC system. The processing layer initially performs
load balancing algorithm. Load balancing is used for distributing load to each HPC
server in equal size. This equal size distribution enhances the system efficiency and
all the server will process the equal amount of output, and generate an output at the
same time. After load balancing, the data chunks (referred to as sub-graphs) are sent
to the raw data storage device. Raw data storage device is used for storing sub-graphs
in a sequential form. This unit helps HPC system if the data has some missing values;
it can re-accessed from the previous layers. After storing the data, if there is metadata
(after arranging data in graphs form) than it is the time to discard those data. Moreover,
the semantic engine will check whether the graphs those are ready for processing is
at low scale, medium scale, or large scale. The semantic engine pass-on their instruc-
tion to the Hadoop system to react accordingly (i.e., assign memory and processing
power).

Now the data is ready for processing in the designed HPC server. The designed
system is powered parallel algorithms, which equally and parallel process the data.
Once the data is processed, it is required to the store the results in a local disk, where
they can be used for future usage. In related work as stated in Sect. 2, the majority
of the techniques are based on very minimum local memory. Thus, it is really hard to
store the results or perform a traditional MapReduce function. In order to cope with
such situation, we came up with the extension of the HPC system that provides enough
local memory to store the data and result. For this purpose. The incorporation of results
storage device plays an important role. In some cases using HPC systems, sometimes
we do not get what we actually want, or the results are corrupted. Hence, we need
to process the whole data again. Thus, reducing the computational and processing
efficiency of the system. Therefore, our designed system stores the results, analyze
the results and then it is displayed to the users

@ Springer

518 Int J Parallel Prog (2018) 46:508-527

4. Service Layer

The service layer is provided with different features, such as session initiating, defining
rules, providing security, cloud support, and others. As the data is processed by parallel
algorithms is completed. Therefore, there is a need to send the results toward the
service layer. As the results arrive at the service layer, the aforementioned functions
started their job. On the basis of the contents, the rule is defined. These rules can be
‘where to store the data when the whole process will finish, etc’. Moreover, database
management features are also provided that can handle the database and the storage
system. These databases are used to store various records and their relationships.

5 Implementation Results and Analysis

The main purpose of the proposed scheme is to enhance the efficiency of the HPC
system based on Hadoop system. In order to validate the system, we consider some
example scenarios. These example scenarios help us in implementing our proposed
architecture for HPC systems. For this purpose, this section provides the details about
the analyzing datasets of various sizes, the tools we use for the analysis, and the
implementation of the proposed algorithm on Hadoop system.

5.1 Datasets, Tools, and Implementation Environment

In this, describe the detailed description about the data sets we used for our analysis.
Please note that the datasets that are used for analysis are only to check the system per-
formance of the proposed HPC system based on Hadoop. The datasets are taken from
the European Space Agency (ESA) [37]. Moreover, other datasets are related to the
healthcare system, which comprises Glucose level of the patients, ECG, temperature,
and various other activities [1].

ESA gets their datasets from two satellites, as shown in Table 1. These satellites
are mounted 800 KM above the surface of the earth [38]. In these datasets, different
products are analyzed, which are Sea, Ice, and River, as shown in Fig. 4. Moreover, ESA
is monitoring various countries the globe, i.e., S. Africa, Mauritania, and the USA, etc.
In Fig. 10, product 10 covers the land, ice, sea from Canada. Product 7 covers the sea
and land between Spain and Morocco. Finally, product 9 and product 1 is from USA
and Vietnam. These in-depth details about the datasets are highly recommendable to
test the proposed HPC system using Hadoop environment. We developed and test the
proposed algorithm to extract the features of the river using the divide and combine
mechanism on corei5 3.20 GHz x 4, UBUNTU 14.04 local machine with Hadoop
single node setup having 4 GB RAM and Gallium 0.4 on AMD OLAND graphics.

5.2 Proposed Algorithm for HPC System Using Parallel Algorithms
In the processing layer, analyze function is used to break down the data into smaller

chunks so that interested feature shall be detected in an efficient way. Initially, data is
arranged in a fixed size cell, called block, and in each block, there are various statistical

@ Springer

Int J Parallel Prog (2018) 46:508-527 519

Table 1 Parameters and their description

Parameters Descriptions
Op_size Block size threshold
Set vivers Set of concerned point (CP) detected. I.e., R1, R, R3, .. .Ry

and each R; is also a set of ordered 3- tuples that contain the
pixels information of the river
Ri = {(x,y,value) / (x,y) € R;}

B1,B; Blocks obtained by dividing the matrix

Width_M Width of image matrix

Height_ M Height of image matrix

X B,SD B Mean and Standard Deviation of pixel values of block and

3" Pixel values in block B

calculated as: X B = b
- no. of pixels

S.Dp =
Y (Pixel value i*ym)z
no. of pixels
ED The Euclidian distance between two pixels.
ED(P1,P2) = \/(Plx — Pyx)?2 4+ (Py — P2y)? Where
pi: pixel; position = (P1x, P1y), P, : pixel,position =

(P2x, Pay)

OMin_RB_SD Minimum S.D threshold set for the block that has a concerned
point

OMean_Diff Threshold set for mean absolute difference between X_B and
Mean of concerned point pixel values

NP_RDS Threshold set for detecting minimum number of pixel in a
concerned set of single block

Threshold set for detecting minimum Threshold set for detecting minimum number of pixel in a

number of pixel in a concerned concerned point set of single block

point set of single block

parameters are associated with it. Hence, if the data block does not meet the threshold
value, then it means that the block does not contain any of the interested features.
Moreover, if the interested parameter is found in the data block, then the anomalies
as well as false-positive are minimized by exploiting mean difference comparison.
The difference is calculated between mean values of the interested region and the
whole block by (|YRDC — X3 |). Moreover, the pixel value for each interested region
is denoted by (NP_RDC). These parameters are mapped with the different threshold
in order to minimize false-positive in the data sets, as shown in Fig. 5.

The combination of results is made in the processing layer of the multiple
processors. Since the data is divided for each parallel processing, performing the
above-mentioned algorithm at each level. Now, we need to combine the results, which
are being generated by each processor. For this reason, recursive operations are made
on each consecutive data blocks. For instance, if one set remains empty than another
set of the data block can be returned. Apparently, the proposed algorithm checks the
Euclidean Distance (ED) between the interested rejoins of different data sets. Such
difference is made to know about the continuous features. In order to examine the
continuous features, our proposed HPC system based Hadoop performed significant

@ Springer

520

Int J Parallel Prog (2018) 46:508-527

Divide Function

Start (EO Matrix)

(@)

Fig. 4 Datasets locations. a Product 10, b Product 7, ¢ Product 9 and d Product 1

Block/Matrix Size<Threshold

Call Analyze (Block b)

For each block B1,B2

Set of concerned point for each block

'

'

B2

Call

Combine (for each two block results)

Divide(M)

Bl

Fig. 5 Divide function flows chart

1. Proposed Algorithm

The proposed algorithm for the proposed HPC system based on Hadoop server uses
recursive mechanisms in order to achieve division of the data, analysis of the data, and

@ Springer

Set of rivers in image M

calculations, and hence enhancing the system efficiency. After calculating ED, bother
interested rejoins at each data block are merged together, as shown in Figs. 6 and 7.

Int J Parallel Prog (2018) 46:508-527 521

Combine Function

Start
(Set River SR1, Set river SR2),

For each River R1 in SR1

For each River R2 in SR2 ED(R1, R2)<Ed_river threshold

Merge R1, R2

Fig. 6 Combine function flowchart

Analyze Function

Start Block B Calculate mean_B,
SDB

Return empty set of rivers

S.D_B< Threshold

Call River in Block(B, mean_B|

Set of Rivers

Map Threshold For each river in R Set Return Set of rivers

No

Remove river from Set

Fig. 7 Analyze function flowchart

combine the data. In the algorithm, the first statement is the division function (i.e., if-
statement). This statement checks the incoming data chunks in the processing server.
In the given algorithm, if the size of the data blocks is less than the defined threshold

@ Springer

522 Int J Parallel Prog (2018) 46:508-527

than the division process will stop and analysis function will start. Apparently, each
data block is equally divided (horizontal and vertical) depending on the width and
height of the data block. Moreover, the division function is called again in order to
check the block size. This will happen when we have large data sets, and we need to
analyze the data more efficiently. After division into the certain threshold, the division
process stops. If the algorithm detects the region of interest, then it compares and
analyzes the pixel value information and the entire data block with the mean values.
Moreover, a REPTree method is exploited to divide the data in a fixed size up to
certain extent. And finally, the combine function is used to collect and combine the
results generated by each parallel server. The proposed parallel algorithms for HPC
are described in Algorithm 1.

5.3 Results and Discussion

In order to test and validate our proposed HPC algorithm, the datasets mentioned
above are implemented using Java iterations and the Hadoop with proposed algorithm
for HPC system. The proposed algorithm using enhanced MapReduce in the light of
the proposed algorithm is more efficient that the simple Java iteration implementation
as shown in Fig. 8. in this figure, the graph shows average processing time to process
1MB of data using proposed algorithm as well as Java iterations. From the figure, it is
clearly seen that the proposed algorithm for HPC system require approximate half of
the second to process 1 MB of data. Apparently, Java iterations require more time to
process the same amount of data. In addition, ASA—APS requires more time for both
cases since the size of the data is too much. Moreover, products of the ASA-WSM
are processed quite efficiently since the size of the data is very less. It is concluded
from the figure that size of the data plays an important role in any system. Likewise, if
the size increases, the performance of Java iteration drastically reduces, whereas, the
performance of the proposed HPC system is giving us better results.

Moreover, the proposed algorithm for HPC system is compared with the size of
the data. As shown in Fig. 9, if the size of the data is kept smaller for processing (for
both Java and proposed algorithm), in this case, Java implementation generate quite
good results than proposed scheme. On the other hand, if the size of the data increases,
the parallel processing nature of the proposed scheme efficiently process and analyze
data with the HPC systems. Since the parallel processors are waiting for the data.
When each server receives data, then the overall performance of the proposed scheme
significantly increases. Apparently, the Java iteration performs very poorly when the
data size is increased.

Moreover, we also evaluate the throughput of the proposed system by increasing
the size of the data sets. As shown in Fig. 10, the throughput is directly proportional
to the size of the data sets. When there is an increase in the size of the data sets, the
throughput also increases, hence increase the system sufficiency.

In order to test and validate with various other datasets, we measured the processing
time as good throughput on healthcare datasets as shown in Figs. 11 and 12. In the
figure, the proposed scheme with proposed parallel algorithm for HPC system takes
few seconds to process GBs of data. To be more specific, it takes seventy seconds

@ Springer

Int J Parallel Prog (2018) 46:508-527 523

Algorithm I: Parallel Processing Algorithm for HPC System

Divide (image matrix M) {

1 1f (size (M) <=0 size) {
Set_cp = Analyze (M);
Return Set CP; } //end of if
2: If (Width M<Height M) { // divide m into two parts
vertically
B1=M [0- Width M /2] [Height M]; //first half of M
B2=M [Width_M /2- Width_M] [Height M];//2nd half of M}
3: Else {
B1=M [width_M] [0-Height M/2]; //Upper half of M
B2=M [width M] [Height M/2- Height M]; // Lower half of
M} // end of if else
4: Set_ CP 1=Divide (B1);
5: Set CP 2=Divide (B2);
6: Conquer (Set_ CP1, Set_ CP2); /combining blocks and
results of blocks. }//end of Divide
Analyze (Image Matrix Block B) {
1: CalculateX B, S.D B;
2: If (S.D_B <@pyin_rp _sp) {// Block does not have any river.
Set CPDataClass_Set= @
Return Set_ CPDataClass_Set ;} // end of if
3: Set CPDataClass Set=CP in BlocK (B, X B);
4: For each (CPDataClass RDC: Set CPDataClass_Set) {
If (IX_RDC — X_B|<@pean_aifs) || (NP_RDC < dnp rpc)
Remove RDC from Set CPDataClass_Set ;}
5:ReturnSet CPDataClass_Set; / Return set of CP detected. }
CP_in_Block (Matrix block B, Double X B) {
1: Define Set R= ®;
2: Divide B into sub_blocks S B of size 10 x 10;
3: Foreach (S_B) Do {
Calculate X_SB, SD_SB, |X |)?_SB\
If (REPTree (X_SB, SD_SB, |[X B-X SBJ|) ==river) {
Set R=Set RUS B ;}}
4: V SBi, SBj € Set_R where (i#), if (ED (SBi, SBj) <=2) the
merger SBi, SBj
5: return Set R}
Combine (Set Set CP1, Set set_Rivers2) {
1: If (Set CP1== ®) then return Set CP2;
2: If (Set_ CP2== @) then return Set CP1; //if either set is
empty then no need to combine.
3: Foreach (CPR1:Set CP 1)
For each (CP R2: Set_ CP 2) {
If(ED (R1, R2) <@gq4 cp) then R1 + R2;
//Combine R1 and R2, remove individual entries of R1 and R2
+//end of for each loop
4: Return (Set_ CP1 U Set CP2);
Combine CP Setl and Set CP 2

}

@ Springer

524 Int J Parallel Prog (2018) 46:508-527

60

50 —

s0 | Time:MB/Sec
| = Processing time with

30) Simple Java lterations
20 1 ~— m Processing time with
| MapReduce HPC system
10
O & o
&S o é‘q& o o S S e
SR R R &F F P

Fig. 8 Processing time is taken by our algorithm for various products

o Average Processing Time using proposed Parallel Algorithm for HPC System
O Average Processing time for Java iterations

@ﬁmﬂﬂﬂﬂﬂﬂ»

PRODUCT SIZE

PROCESSING TIME/MB (MS)

Fig. 9 Processing time is taken by the proposed system using simple Java and Hadoop

20

18 //v
@ 16
@
s 14
= 12
£ 10
2
2 87
£ 6
-

4l

2 ! ! } ! !

o 1000 2000 3000 4000 5000 6000

Data Size (MB)

Fig. 10 Throughput of the proposed system

to process 2 GB data on a single node of the parallel processor. Moreover, if we
increase the size of the datasets that due to the nature of the proposed parallel and
distributed system of the parallel processors, the throughput is maximized. Therefore,
it is concluded from these results that the proposed system with parallel processors
for HPC system give us very efficient results than ordinary simple processing tools.

@ Springer

Int J Parallel Prog (2018) 46:508-527 525

Temperature Activity] HR Acuvxty ECG Combine

[)
©c & © ©

Processing Time (Sec)
- NooWw P
o 5 8 8 8

Fig. 11 Processing time of healthcare datasets

& Temperature HActivity HR u Activity ECG @ Combine

Theoughput (MBps), o,

w

0 Datasets

Fig. 12 Throughput of our proposed scheme

6 Conclusion

Undeniably, scientific discoveries and latest innovations can benefit significantly from
huge volume aggregated data and simulated data. Moreover, data scientists can gain
insights and apprehend the singularities behind the data more efficiently. However, it
is based on the assumptions that the designed HPC system can deliver effective and
efficient I/O system. In prior research, various works has been done on the I/O systems
to make it more effective, enhance the data storage and computational capabilities,
which give a significant amount of results based on the data processing. However, still,
the prior systems are lacking such capabilities. Therefore, in this paper, the proposed
scheme based on a parallel algorithm that effectively enhances the computational capa-
bilities of HPC servers. The proposed scheme is based on the four layers architectural
model then aggregated the data, remove erroneous or redundant data, which is use-
ful for the enhancement of computational capabilities. Moreover, an architecture that
analyzes Big Data is also proposed based on the parallel algorithm that is exploited
on Hadoop server giving high-performance computing. The whole system is imple-
mented using enhanced MapReduce with the additional feature of parallel processing
algorithms to process large graphs and MapReduce to process other data with Hadoop
ecosystem to achieve the efficiency and real-time processing. The results proved that
the use of the parallel algorithm with MapReduce and Hadoop ecosystem dramatically
increase the efficiency of the whole system.

@ Springer

526 Int J Parallel Prog (2018) 46:508-527

Acknowledgements This work is supported by BK21 Plus project (SW Human Resource Development
Program for Supporting Smart Life) funded by the Ministry of Education, School of Computer Science
and Engineering, Kyungpook National University, Korea (21A20131600005) and NRF Grant funded by
the Korean Government (NRF-2015R1D1A1A01058171).

References

1. Ahmad, A., Paul, A., Rathore, M.M.: An efficient divide-and-conquer approach for big data analytics
in machine-to-machine communication. Neurocomputing 174, 439-453 (2016)

2. NOAA. Overview of Current Atmospheric Reanalysis. http://reanalyses.org/atmosphere/
overview-current-reanalyses (2016)

3. Ahmad, A., Paul, A., Rathore, M., Chang, H.: An efficient multidimensional big data fusion approach
in machine-to-machine communication. ACM Trans. Embed. Comput. Syst. (TECS) 15(2), 39 (2016)

4. Rathore, M.M., Ullah, A.P., Ahmad, A., Chen, B.-W., Huang, B., Ji, W.: Real-time big data analytical
architecture for remote sensing application. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(10),
46104621 (2015)

5. Haderer, N., Romain, R., Seinturier, L.: Dynamic deployment of sensing experiments in the wild
using smartphones. In: IFIP International Conference on Distributed Applications and Interoperable
Systems, pp. 43-56. Springer, Berlin, Heidelberg (2013)

6. Mosser, S., Fleurey, F., Morin, B., Chauvel, F,, Solberg, A., Goutier, I.: Sensapp as a reference platform
to support cloud experiments: from the internet of things to the internet of services. In: 2012 14th
International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC),
pp. 400-406. IEEE (2012)

7. Mosser, S., Logre, L., Ferry, N., Collet, P.: From sensors to visualization dashboards: need for language
composition. In: Globalization of Modeling Languages workshop (GeMOC’13) (2013)

8. Awais, A., Paul, A., Rathore, M.M., Chang, H.: Smart cyber society: integration of capillary devices
with high usability based on cyber—physical system. Future Gen. Comput. Syst. 56, 493-503 (2016)

9. Labrinidis, A., Jagadish, H.V.: Challenges and opportunities with big data. Proc. VLDB Endow. 5(12),
2032-2033 (2012)

10. Chen, C., Lang, M., Chen, Y.: Multilevel active storage for big data applications in high performance
computing. In: 2013 IEEE International Conference on Big Data, pp. 169-174. IEEE (2013)

11. Felix, EJ., Fox, K., Regimbal, K., Nieplocha, J.: Active storage processing in a parallel file system.
In: Proceedings of the 6th LCI International Conference on Linux Clusters: The HPC Revolution, p.
85 (2006)

12. Thakur, R., Gropp, W., Lusk, E.: Data sieving and collective I/O in ROMIO. In: The Seventh Symposium
on the Frontiers of Massively Parallel Computation, 1999. Frontiers” 99, pp. 182—189. IEEE (1999)

13. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM
51(1), 107-113 (2008)

14. Ghemawat, S., Gobioff, H., Leung, S.-T.: The Google file system. ACM SIGOPS Oper. Syst. Rev.
37(5), 29-43 (2003)

15. Yoo, R.M., Romano, A., Kozyrakis, C.: Phoenix rebirth: Scalable MapReduce on a large-scale shared-
memory system. In: IEEE International Symposium on Workload Characterization, 2009. IISWC 2009,
pp. 198-207. IEEE (2009)

16. Ranger, C.,Raghuraman, R., Penmetsa, A., Bradski, G., Kozyrakis, C.: Evaluating mapreduce for multi-
core and multiprocessor systems. In: 2007 IEEE 13th International Symposium on High Performance
Computer Architecture, pp. 13-24. IEEE (2007)

17. Rafique, M.M., Rose, B., Butt, A.R., Nikolopoulos, D.S.: Supporting MapReduce on large-scale asym-
metric multi-core clusters. ACM SIGOPS Oper. Syst. Rev. 43(2), 25-34 (2009)

18. Lee, K.H., Lee, Y.J., Choi, H., Chung, Y.D., Moon, B.: Parallel data processing with MapReduce: a
survey. AcM sIGMoD Rec. 40(4), 11-20 (2012)

19. Shim, K.: MapReduce algorithms for big data analysis. Proc. VLDB Endow. 5(12), 2016-2017 (2012)

20. Panda, B., Herbach, J.S., Basu, S., Bayardo, R.J.: Planet: massively parallel learning of tree ensembles
with mapreduce. Proc. VLDB Endow. 2(2), 14261437 (2009)

21. Dean, J., Ghemawat, S.: MapReduce: a flexible data processing tool. Commun. ACM 53(1), 72-77
(2010)

@ Springer

http://reanalyses.org/atmosphere/overview-current-reanalyses
http://reanalyses.org/atmosphere/overview-current-reanalyses

Int J Parallel Prog (2018) 46:508-527 527

22.
23.
24.
25.
26.
27.
28.
29.
30.

31.

32.

33.

34.

35.

36.

37.
38.

Ekanayake, J., Pallickara, S., Fox, G.: Mapreduce for data intensive scientific analyses. In: IEEE Fourth
International Conference on eScience, 2008. eScience’08, pp. 277-284. IEEE (2008)

Rathore, M.M., Ahmad, A., Paul, A., Rho, S.: Exploiting encrypted and tunneled multimedia calls in
high-speed big data environment. Multimed. Tools Appl. 1-26 (2017)

Paul, A., Ahmad, A., Rathore, M.M., Jabbar, S.: Smartbuddy: defining human behaviors using big data
analytics in social internet of things. IEEE Wirel. Commun. 23(5), 68-74 (2016)

Rathore, M.M., Paul, A., Ahmad, A., Jeon, G.: IoT-based big data: from smart city towards next
generation super city planning. Int. J. Semant. Web Inf. Syst. 13(1), 28-47 (2017)

Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file system. In: 2010 IEEE
26th Symposium on Mass Storage Systems and Technologies (MSST), pp. 1-10. IEEE (2010)
Stampede at TACC. http://www.tacc.utexas.edu/resources/hpc/stampede

Gordon at San Diego Supercomputer Center. http://www.sdsc.edu/us/resources/gordon/

Gropp, W., Lusk, E., Sterling, T.: Enabling Technologies in Beowulf Cluster Computing with Linux,
2nd edn, vol. 3. The MIT Press, Cambridge, MA, London, England, p. 14 (2003)

Sterling, T.L., Salmon, J., Becker, D.J., Savarese, D.F.: How to Build a Beowulf: A Guide to the
Implementation and Application of PC Clusters. MIT Press, Cambridge, MA (1999)

Engelmann, C., Ong, H., Scott, S.L.: Middleware in modern high performance computing system
architectures. In: International Conference on Computational Science, pp. 784—791. Springer, Berlin,
Heidelberg (2007)

Castain, R.H., Kulkarni, O.: MapReduce and Lustre: Running Hadoop in a High Performance Comput-
ing Environment. https://intel.activeevents.com/sf13/connect/sessionDetail. ww?SESSIONID=1141
Wasi-ur Rahman, Md., Lu, X., Islam, N.S., Rajachandrasekar, R., Panda, D.K.: MapReduce over
Lustre: Can RDMA-Based Approach Benefit? In: tEuropean Conference on Parallel Processing, pp.
644-655. Springer, Berlin (2014)

Wasi-ur-Rahman, Md., Islam, N.S., Lu, X., Jose, J., Subramoni, H., Wang, H., Panda, D.K.: High-
performance RDMA-based design of Hadoop MapReduce over InfiniBand. In: 2013 IEEE 27th
International Parallel and Distributed Processing Symposium Workshops and PhD Forum (IPDPSW),
pp. 1908-1917. IEEE (2013)

Wasi-ur Rahman, Md., Lu, X., Islam, N.S., Panda, D.K.: HOMR: a hybrid approach to exploit maximum
overlapping in MapReduce over high performance interconnects. In: Proceedings of the 28th ACM
international conference on Supercomputing, pp. 33—42. ACM (2014)

Lu, X., Islam, N.S., Wasi-Ur-Rahman, Md., Jose, J., Subramoni, H., Wang, H., Panda, D.K.: High-
performance design of Hadoop RPC with RDMA over InfiniBand. In: 2013 42nd International
Conference on Parallel Processing, pp. 641-650. IEEE (2013). doi:10.1109/ICPP.2013.78

Available online: 14/10/2014, 2312. https://earth.esa.int/

ESA: ENVISAT Altimetry Level 2 User Manual V1.4 2011. [Available online: 15/10/2014, 0333]
https://earth.esa.int/pub/ESA_DOC/ENVISAT/RA2-MWR/PH_light_Irev4_ESA.pdf

@ Springer

http://www.tacc.utexas.edu/resources/hpc/stampede
http://www.sdsc.edu/us/resources/gordon/
https://intel.activeevents.com/sf13/connect/sessionDetail.ww?SESSIONID=1141
http://dx.doi.org/10.1109/ICPP.2013.78
https://earth.esa.int/
https://earth.esa.int/pub/ESA_DOC/ENVISAT/RA2-MWR/PH_light_1rev4_ESA.pdf

	Multilevel Data Processing Using Parallel Algorithms for Analyzing Big Data in High-Performance Computing
	Abstract
	1 Introduction
	2 Related Work
	3 Motivation
	4 Proposed Multilevel System Design
	4.1 IV-Tier Layered Architecture
	4.2 System Architecture for High-Performance Computing

	5 Implementation Results and Analysis
	5.1 Datasets, Tools, and Implementation Environment
	5.2 Proposed Algorithm for HPC System Using Parallel Algorithms
	5.3 Results and Discussion

	6 Conclusion
	Acknowledgements
	References

