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Abstract Empirical equations having large numbers of fitted parameters, such as the
international standard reference equations published by the International Association
for the Properties of Water and Steam (IAPWS), which form the basis of the “Ther-
modynamic Equation of Seawater—2010” (TEOS-10), provide the means to calculate
many quantities very accurately. The parameters of these equations are found by least-
squares fitting to large bodies of measurement data. However, the usefulness of these
equations is limited since uncertainties are not readily available for most of the quan-
tities able to be calculated, the covariance of the measurement data is not considered,
and further propagation of the uncertainty in the calculated result is restricted since
the covariance of calculated quantities is unknown. In this paper, we present two tools
developed at MSL that are particularly useful in unleashing the full power of such
empirical equations. “Nonlinear Fitting” enables propagation of the covariance of the
measurement data into the parameters using generalized least-squares methods. The
parameter covariance then may be published along with the equations. Then, when
using these large, complex equations, “GUM Tree Calculator” enables the simultane-
ous calculation of any derived quantity and its uncertainty, by automatic propagation
of the parameter covariance into the calculated quantity. We demonstrate these tools
in exploratory work to determine and propagate uncertainties associated with the
TAPWS-95 parameters.
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1 Introduction

Empirical equations having large numbers of fitted parameters, such as the extremely
valuable international standard reference equations published by the International
Association for the Properties of Water and Steam (IAPWS) that form the basis of the
Thermodynamic Equation of Seawater (TEOS-10) [1], provide the means to calculate
many quantities very accurately (see Fig. 1). The equation parameters are found by
least-squares fitting to large bodies of measurement data. However, the full usefulness
of these equations is limited because:

e Uncertainties are not readily available for most of the quantities able to be calcu-
lated;

e The covariance of the measurement data is not considered; and

e The covariance of calculated quantities is unknown, thus restricting further prop-
agation.

One such equation is IAPWS-95, which is the TAPWS equation for the thermodynamic
properties of fluid water [2,3]. In a recent paper [4], we reported on our investigation
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Fig. 1 Schematic outlining the calculation of the isobaric heat capacity of fluid water using IAPWS-95,
here represented at fop as one of the four primary thermodynamic potentials within TEOS-10 [1]. The
TAPWS-95 equation for the reduced specific Helmholtz energy, ¢, is expressed as the sum of ideal gas, ¢°,
and residual, ¢, parts that are functions of the reduced density § = p/pc and reduced inverse temperature
v =T¢/T,where p. = 322 kg-m*3 is the critical density and 7. = 647.096 K is the critical temperature.
The residual part (middle box) contains one fitted parameter (labeled n;) for each of 56 regressors, which
include polynomials, exponentials, modified Gaussians and “nonanalytical terms.” Many physical quantities
that are functions of derivatives of ¢° + ¢ can be calculated, such as pressure p, speed of sound w, virial
coefficients BYY and C¥W" and the isobaric heat capacity ¢, (see lower box, where the subscripts represent
first and second partial derivatives with respect to § and t)
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to refit IAPWS-95 to the original data and thereby: (a) propagate the covariance of the
input data into the covariance of the IAPWS-95 equation parameters; and (b) propagate
the parameter covariance further into the calculated quantities. Here we report on two
tools developed at the Measurement Standards Laboratory of New Zealand (MSL)
that have been critical in this work to help unleash the full power of such empir-
ical equations. “Nonlinear Fitting” (NLF) [5] enables propagation of measurement
data covariance into the parameters using generalized least-squares methods, allow-
ing parameter covariance to be published with the fitted equations. When using these
equations, “GUM Tree Calculator” (GTC) [6,7] enables simultaneous calculation of
any derived quantity and its uncertainty, by automatic propagation of the parameter
covariance into the calculated quantity.

In Sect. 2 we discuss methods to generate the covariance matrix for the input
data derived from an uncertainty budget, where it is important that the budget clearly
identifies the random components and the systematic components common to all
measurements. A brief description of the structure of the JAPWS-95 equations is
given in Sect. 3. The NLF and GTC software tools used to determine and propagate
uncertainties associated with the IAPWS-95 parameters are discussed in Sects. 4 and
5, and some preliminary results are demonstrated, and finally, a discussion and some
conclusions are given in Sect. 6.

2 Input Data Covariance
2.1 Variance-Covariance Matrix

An empirical equation is a summary of potentially vast sets of data resulting from
experimental measurements. The input data, like all measurements, are subject to
unknown errors. These will propagate into the parameters and into any value calculated
using the equation. Each measurement of an input data quantity Y (the measurand)
can be modeled as a reading, y, minus a sum of the unknown errors, E:

YI=y1—Ei1—Ei2—E3—...
Yo=y,—Ey1—Eyp—Ex3—...

ey

Here, the lower-case symbols yi, y»2, etc., represent known measured values and
the upper-case symbols Ej 1, Ej 2, etc., represent unknown measurement errors.
The errors can arise from various sources, and assuming all biases (known errors)
have been removed (corrected), they are estimated to have expectation values
e1.1 = 0,e12 = 0, etc., and are characterized by corresponding standard uncertain-
ties u(ey.1), u(er 2), etc. In this case, y; is considered to be the best estimate of Y1,
etc.

Each of the error terms in Eq. 1 will either be independent (zero correlation) or have
some degree of correlation with other error terms, leading to correlation between the
uncertainties in the measured y values as estimates of the ¥ measurands. For example,
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it will be common to have zero correlation for different error terms within a single
measurement, but often there will be a significant correlation for the same error term
when multiple measurements are taken within a set of experiments.

The off-diagonal elements of the symmetric covariance matrix V (sometimes known
as the variance—covariance matrix) describing correlation between two measured val-
ues yi and y; are

n

m
dyr 0y
u (Vs YOkt = ZZ 8:“ &jjr(ek,i, ej juleki)uler, ;) (2)

i=1 j=1

(see [8] Egs. F1, F2, and H9) where there are m error terms associated with the
measurement of Y and n error terms associated with Y; (if Y and Y; are the same
quantity, e.g., pressure, then often m = n), and r(ex ;, ¢, ;) is the correlation coef-
ficient between the estimated errors e ; and ¢; ;. Elements along the diagonal of the
matrix V describe the variance of a measurement; i.e.,

2 Yk )2 2
— E AT 0. 3
u ()’k) 1 <aek,i u (ek, ) ( )

i=
For the model under discussion, Eq. 1, the sensitivity coefficients, dyx/dey ;, etc., in
Egs. 2 and 3 are all equal to 1.

From Eqgs. 2 and 3, we can define a (symmetric) correlation-coefficient matrix, R,
such that

u(yr) 0 0 u(yr) 0 0
0 u(yp) 0 .- 0 u(y2) 0

V=1 o 0 u(y) - | XRx| 0 0 upz) |- @

where
I rip rjs

rn1 1 3
31 132 1 5)

and the off-diagonal elements are the correlation coefficients

u(y,y) - ©)

T =1 (Y, y1) = OoDuon

Consider just two measurements, y; and y» in this model; if we suppose that each
of the measurands Y| and Y has only three error terms and that just the first errors are
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correlated, i.e., only r(ey,1, e2,1) is nonzero, then the covariance between y; and y;,
according to Eq. 2, is

u(yr, y2) =r (er,1, e2,1) uler,Dulea,1), @)
the covariance matrix, V, is

V= I:Mz(el,l) +u?(e12) +u*(e13) rler,exnulerulerr) ] )
rier1, e ulerNulezr) u?(exr) +u’(ern) +u’(ers) |

and the off-diagonal correlation coefficients are

ry = r(er1, ez uler )uler 1)
C VR (e +uP(er2) + uP(er3)y/ut(er) + ut(e22) + uP(e3)

&)

ra2=

2.2 Origin of Correlation

Correlation between measurements arises when they are subject to the same uncon-
trolled influence variable or error source (representing a systematic error). Given that
each error termin Eq. 1 is associated with a single source, any two error terms that share
the same source are fully correlated; otherwise, they are uncorrelated (independent). In
the simplest situation, assume the first error terms for the Y1 and Y> measurands in Eq.
1 share the same source, so that r(e1,1, e2,1) = 1, the second error terms come from
different sources, so that r(ej 2, €2,2) = 0, and the remaining error terms are zero (i.e.,
u(e1,3) = u(ez3) = 0). In this case, the first error term represents the systematic part
and the second the random part of the total error, and the covariance matrix reduces
to
V= [M2(€1,1)+u2(61,2) u(er,ulez1) }
= 2 2 . (10)
u(er,ulez,1) u=(ez,1) +u-(e22)

The effect of the error has many different forms. Commonly, the error may be either
constant across the measurement range,

Ei1=Ez1 =...= Eys, (1T)
where Egys is a constant absolute error, or the error may scale with the measurement,

Ek,l = ykErel,systs (12)

where Ere syst 18 a constant relative error.

We now consider cases represented by Eqgs. 11 and 12.

Case 1 The systematic uncertainties are identical, such that u(ey,1) = u(ez,1) =
u(esyst), and the random uncertainties are also identical, such that u(e; ) = u(ez2) =
u(erang)- Equation 10 then becomes
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- uz(es st) + uz(erand) Mz(es st)
V= [ y’/tz(e'syst) Mz(esyst) +>;42(erand)i| (13)

and the off-diagonal elements of the correlation-coefficient matrix are

2
u (esyst) 1
ra=ra1= = ; (14)
u2(esyst) + Mz(erand) 1+ k?

where k is the ratio of the random uncertainty to the systematic uncertainty:

k — u(€rand) (15)

u (esyst) )

In the limits as k tends to O (purely systematic) or co (purely random), the cross-
correlation terms (off-diagonals) of the correlation-coefficient matrix approach 1 or O,
respectively.

Case 2 The systematic errors are proportional to the reading, so that u(e; 1) =
Yiu(erel,syst) and u(ez;1) = yzu(Urel syst). We assume, firstly, that the random errors are
also proportional to the reading, u(e12) = yiu(€rel.rand) and u(ez 2) = ya2u(erel rand)-
Then we have for the covariance matrix

V= I:ylzuz(erel,syst) + y%uz(erel,rand) Y1 yzuz(ere],syst) i| (16)
2 2.2 2.2 ’
yiy2u (erel,syst) yu (erel,syst) + yu (erel,rand)

and the off-diagonal elements of the correlation-coefficient matrix are

Y1 y2u2 (erel,syst)
Y

rp2=rnmni=
\/Y%uz(é’rel,syst) + ylzuz(erel,rand)\/y%uz(erel,syst) + Y§u2(erel,rand)
_ ! (17)
BTN

where £ is the ratio of the random relative uncertainty to the systematic relative uncer-
tainty:

_u (erel,rand)

u(erel,syst) ’

(18)

Case 3 The systematic errors are again proportional to the reading, so that u(e;,1) =
vit(erel,syst) and u(e2,1) = y2u(urel syst), but the random errors are now constant,
u(er2) = u(ez2) = u(erand). In this case, the covariance matrix is

_ y12u2(€rel,syst) + uz(erand) y1y2u2(erel,syst)
V= 2 2,2 2 (19)
yiyu (erel,syst) you (erel,syst) + u”(erand)

and the off-diagonal elements of the correlation-coefficient matrix are
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Y1 Y2u2 (erel, syst)
Y

\/y%uz(erel,syst) + uz(erand)\/y%uz(erel,syst) + u? (erand)
1

r2=r=

= (20)
J1+E2 )1+ k2
where
ki = u(erand) and ky = u(erand) . Q1)
yiu(erel,syst) yau(erel,syst)

The covariance and correlation coefficients for larger sets of measurements can be
calculated similarly for each measurement paired with every other. The off-diagonal
elements will all be the same for cases 1 and 2 but not for case 3.

2.3 Uncertainty Budgets

The correlation-coefficient or covariance matrices for a set of measurement data may
be constructed readily if sufficient information is given in the uncertainty budget.
Ideally, each line in the budget refers to a component of uncertainty accounting for
a single error source, and it should be clear which measurements each error source
affects and whether the error affects each measurement randomly or in the same way,
though possibly subject to scaling. Note that uncertainty components of the same
type (systematic or random) that are constant over the range can be combined in
quadrature and treated as a single component for the purposes of determining the
correlation-coefficient matrix.

An example of a modified uncertainty budget to include information necessary to
calculate V and R is presented in Table 1. The off-diagonal terms of R are all the same
and, from Eq. 14, are equal to r; j; = uz(Psyst)/uz(Pmtal) = 0.85.

Alternatively, for large data sets where the different error sources apply over dif-
ferent parts of the range, the uncertainty budget can be included line by line, as in
the simple example of Table 2. In this case, all systematic and random components of
uncertainty are represented as appropriately labeled columns, although not all rows
will necessarily have a corresponding entry for each column. The variance for each
measurement is found by adding the squares of all the components in that row. The
covariance between measurements represented by two rows is found by adding in
quadrature those systematic components in each row that have a corresponding com-
ponent in the other row and then multiplying the two quadrature sums together. The
resulting correlation-coefficient matrix is shown in Fig. 2.

3 IAPWS-95

The IAPWS-95 equation for the specific Helmholtz free energy, f, of fluid water is
expressed in terms of a dimensionless quantity ¢ (o, T) = f (o, T)/(RwT), where p
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Table 1 An example of modification of a measurement data uncertainty budget to enable calculation of a
correlation-coefficient matrix. Here the components are all constant

Source of uncertainty in pressure Symbol Uncertainty (Pa) Type

Calibration uncertainty (sensor and Pealib 50 Syst Constant
indicator unit)

Long-term stability (sensor and Parift 50 Syst Constant
indicator)

Temperature coefficient Prempco 10 Syst Constant

Resolution and accuracy or linearity Preg 1 Rand Constant
(indicator unit)

Stability of the pressure (standard Pyiab 30 Rand Constant

deviation of readings)

Combined systematic uncertainty u(Psyst) 714
Combined random uncertainty u(Prand) 30.0
Total combined standard uncertainty u(Protal) 77.5
Symbol Coefficient
Off-diagonal correlation coefficients Tij 0.85

and T are the density and temperature of the fluid, respectively, and Ry is the specific
gas constant of water. This equation can be expressed as the sum of an ideal-gas
part and a residual part, ¢ (o, T) = ¢° (8, ) + ¢" (8, ), where the reduced density
8 = p/pc and reduced inverse temperature T = 7./ T, and p. and T, are the critical
density and critical temperature, respectively. The ideal-gas part of the equation, ¢°,
and its parameters were derived from the well-established equation of Cooper [9]
for the isobaric heat capacity in the ideal-gas state, ¢, (T'). The residual part of the
equation, ¢", contains 56 fitted parameters—one for each of 56 regressors—and a set
of unfitted coefficients and exponents for each of the regressors.

Following a structural optimization that determined the functional form of the
TAPWS-95 equation, the TAPWS-95 authors used a nonlinear weighted least-squares
method to fit the 56 parameters to ~6000 data points corresponding to 16 data types,
each drawn from many different data sets. Each data type corresponds to a different
quantity, such as pressure, speed of sound and heat capacity, modeled as a function
of partial derivatives of ¢ (p, T'), such as for ¢, in Fig. 1. The data were treated as
uncorrelated, no uncertainties were derived for the fitted parameters, and uncertainties
were given for just 6 of the 16 calculable quantities (e.g., ¢, in Fig. 3).

4 Nonlinear Fitting (NLF)

NLF [5] is a general purpose curve-fitting program that will fit any curve or hyper-

surface of the form y = f(x1,x2,...,x,;a1,a2,...,ay) to a set of M data points
(M <100, 000) in (n + 1)-dimensional space, (x1,;, X2,i, ..., Xn,, i) fori = 1to
M. The function can have up to 30 real variables, xz(k = 1 to n), and up to 99 real
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Table 2 Modified table of measurement data to include an uncertainty budget to enable calculation of a
correlation-coefficient. The rows numbered L1, L2, ... and H1, H2, ... correspond to measurements using
the same transducer, in low and high dew-point humidity generators, respectively. Some components are
specific to the generator, and others are associated with the transducer. The corresponding correlation-
coefficient matrix is given in Fig. 2

Components of uncertainty in measurement of saturation pressure (Pa)

Saturation  Calibn. Drift Temp.co. Resoln. Stab.  Grad. sat. Grad.sat. Grad.  Grad.

pressure tubing  tubing
(Pa)
Ps Syst Syst  Syst Rand  Rand  Syst Syst Syst Syst
L1 427479 45 50 10 1 200 10 30
L2 374769 42 50 10 1 200 10 30
L3 334368 39 50 10 1 180 10 30
L4 302652 36 50 10 1 160 10 30
L5 277250 35 50 10 1 140 10 30
L6 256556 34 50 10 1 120 10 30
L7 239403 33 50 10 1 100 10 30
HI 204264 33 50 10 1 61 15 40
H2 193544 33 50 10 1 58 15 40
H3 184430 33 50 10 1 55 15 40
H4 176617 33 50 10 1 52 15 40
H5 169867 32 50 10 1 49 15 40
H6 163994 32 50 10 1 46 15 40
H7 158846 32 50 10 1 43 15 40
H8 115280 32 50 10 1 40 15 40
parameters, a; (j = 1to N). The software allows each parameter to be treated as a

constant or as a fitted value. Uncertainties for all the input data values can be included
and used to define weights for weighted nonlinear least-squares fitting, and correla-
tions for any pair of input values may be specified, allowing generalized nonlinear
least-squares fitting to be performed.

A range of fitting algorithms are available, including the Levenberg—Marquardt
method [10] and the downhill simplex method (Amoeba) [11]. Algebraic functions
can be entered into the software directly, but more complicated functions, such as
numerical integrals and iterative equations, can be coded as user-defined functions
within dynamic link libraries (DLLs). The user interface is shown in Fig. 4.

Outputs include:

o Fitted parameters, parameter uncertainties and parameter correlation matrix;

e Fitted curve, residuals plot and propagated uncertainty curve;

o Sensitivity coefficients dy/dxy ;, dy/dy;, daj/0xk; and da;/dy; for each data
point (i = 1to M), for each independent variable, x; (k = 1 to n), and for each
parameter, a; (j = 1to N).

Re-fitting the residual part of IAPWS-95 (¢") to the original data with uncertainty
required the generation in the NLF software of a user-defined function containing all
16 of the IAPWS-95 models representing the different physical quantities (all functions
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Fig. 2 Correlation-coefficient matrix calculated using the information in Table 2. Cells are shaded red to
blue for smallest to largest correlations (Color figure online)
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Fig. 3 Uncertainty in ¢, as presented in IAPWS-95

of the same 56 parameters, labeled n; in Figs. 1 and 6). The parameters were fitted
simultaneously to the entire data set. Because of the complexity of IAPWS-95, it is
not possible to write the equations in algebraic form, so the IAPWS-95 equations were
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Fig.4 A screenshot of the NLF interface as used to re-fit Cooper’s equation for the isobaric heat capacity for
water [9] to the data calculated by Woolley [12] over the range from 140 K to 2000 K. The parameters shown
are used for ¢°. Fitting using NLF provides uncertainty for the fitted parameters (here a3 to ag representing
no3 to npg in IAPWS-95) and the parameter correlation coefficients. Note, the other parameters were
determined by the IAPWS-95 authors in the phase of structural optimization and are treated as constant
here (see Sect. 3)

written into a DLL. While each of the 16 different physical quantities is a function of
7 and § (or of T alone), the experimental data are in terms of 7 and p (or p) which are
represented in NLF by the independent variables x; and x2. An additional variable,
x3, was required to select the specific TAPWS-95 function (from the 16 functions)
appropriate to each data point. A further variable, x4, was required to specify the
phase—liquid or vapor—for those quantities, such as isobaric heat capacity and speed
of sound, where p needed to be calculated from the measured p at each iteration.

While no information regarding the measurement data covariance was available, it
is likely that within data sets, the data are highly correlated. For the purposes of initial
investigation, it was assumed that systematic and random errors were proportional to
the measured value, as in Case 2 in Sect. 2.2, which yields for each data set a submatrix
R with the same constant off-diagonal correlation coefficients. Consequently, several
model sparse matrices with up to 36 x 10° elements were constructed with each block
of off-diagonal elements, corresponding to each individual data set, successively set
to 0.1,0.3,0.5,0.7 and 0.9. A small portion of one such correlation-coefficient matrix
is shown in Fig. 5, and the effect of different degrees of correlation on ¢, is shown in
Fig. 9.

A preliminary version of the matrix of the correlation coefficients for the 56 fitted
parameters, obtained by applying the NLF software to the data, is shown in Fig. 6.

5 GUM Tree Calculator (GTC)

GTC [6,7] is a software tool designed to simplify the application of the GUM
[8]. It also extends the approach recommended for real-valued quantities so that
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Fig.5 A small portion of a model correlation-coefficient matrix with » = 0.7 for the approximately 6000
measurement data
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Fig. 6 Preliminary matrix of parameter correlation coefficients for the residual part parameters of [APWS-
95. Cells are shaded blue and red for r(n;,nj) > and < 0, respectively, and more darkly as |r(n;, n ;)|
increases (Color figure online)

problems involving the uncertainty of complex-valued quantities can be handled.
GTC can be used as an interactive calculator or as a batch processing tool. It is
self-contained (requiring no supporting software), programmable (using the Python
language) and can be configured for specific applications. GTC provides full sup-
port for uncertainty in data processing calculations by using a special data type,
called an uncertain number, to represent quantities that have been measured, or esti-
mated in some way. They are the key feature of GTC that distinguishes it from
other data processing tools. An uncertain number in GTC is a variable data struc-
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Representing the parameters as uncertain numbers
ureal (value, uncertainty, dof, label)

ni = la.array ([

ureal (0.0125, 0.0028, inf, "nl1"),
ureal(7.896, 0.047, inf, "n2"),

ureal (0.318, 0.037, inf, "nb56"),
1)

Setting the correlations

corr ninj = la.array ([

[1, -0.824, 0.7857, ..]

[.., 0.1870, -0.9903, 1]
1)
for i in range(1l,56):
for j in range(i+1,57):
set_correlation(corr ninj[i-1,3j-1], ni[i-1], ni[j-1])

Fig.7 Sample GTC code setting the IAPWS-95 parameter covariance in uncertain number representation

ture containing a value, a standard uncertainty, a number of degrees of freedom and,
optionally, a label. Correlation coefficients for any two uncertain numbers can also be
assigned.

When using Python, for example, coding is carried out with uncertain number vari-
ables in the same way that normal single-value variables would be used, in whatever
algorithm is required to calculate a quantity of interest. GTC automatically propagates
the uncertainties through these calculations, using the method of automatic differentia-
tion, which implements the chain rule of calculus, to implement the GUM propagation
law [8]. GTC delivers a value, standard uncertainty and number of degrees of freedom
for the quantity of interest.

The propagation of uncertainty through large equations such as IAPWS-95 is
immensely simplified using GTC. In this case, the first step was to rewrite the
TAPWS-95 equations in Python. Secondly, the parameters, their uncertainties and
the correlations between them, as derived from NLF, were represented by uncer-
tain numbers—sample code is given in Fig. 7. Thirdly, executing the equations
in GTC gave the usual value calculation, as well as the standard uncertainty and
degrees of freedom. Furthermore, uncertainty budgets for the calculated quantities
are available and the correlation coefficients between calculated quantities can be
obtained directly. Note that other variables, such as temperature and density, were
also represented as uncertain numbers and their uncertainties propagated accord-
ingly.

Figure 8 shows uncertainties in ¢, calculated using GTC for a series of isobars in
the range given in Fig. 3 from IAPWS-95. Here, in addition to the uncertainties in
the ¢" parameters reported in [4], uncertainties in the ¢° parameters were included by
fitting Cooper’s equation [9] to Woolley’s data [12] assuming relative uncertainty in
each data point of 0.01 %. The uncertainties in ¢, are considerably less than those esti-
mated in IAPWS-95, but increase when possible correlations within each data set are
included using NLF, as demonstrated in Fig. 9 for the 22.064 MPa (critical pressure)
isobar.
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Fig. 8 Uncertainties in ¢ calculated using GTC as a function of pressure and temperature. These are
considerably less than the corresponding IAPWS-95 uncertainties given in Fig. 3
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Fig. 9 Comparison of the IAPWS-95 uncertainties at 22.064 MPa with those calculated using GTC and
based on different estimates of input data correlation

6 Discussion and Conclusions

Empirical equations can summarize a vast range of measurement data and underlying
physics. However, if such equations are merely used to calculate quantities—that is,
without any information regarding the uncertainty in those quantities or the covariance
of two calculated quantities—then the full power and usefulness of the equations are
not being realized. For example, the increasing usefulness and importance of empirical
equations, such as TEOS-10 and the many IAPWS reference equations, highlight the
need to: (a) be able to adequately characterize the uncertainty (and hence potential
error) in the large number of quantities calculated using them; (b) provide a means for
the user to readily obtain the uncertainty in the calculated result along with the result
itself; and (c) provide a means to pass on the calculated quantity with all covariance
information for further processing.
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We have shown here how the covariance matrix (or, equivalently, the correlation-
coefficient matrix) of the input data can be generated from an appropriate uncertainty
budget. The NLF software developed at MSL enables a generalized least-squares fit-
ting routine to propagate this covariance of the measurement data into the parameters
of fitted empirical equations. We have further shown how MSL’s GTC uncertainty cal-
culator enables simultaneous calculation of the uncertainty, covariance and uncertainty
budget for the quantity of interest, without needing to consult tables and interpolate
table entries. These two tools can provide the means to unleash the power of empirical
equations. GTC can also be a useful tool in post-processing measurement data so it
can be published in a form enabling transportability of the measurement covariance. It
can also be used to pre-process the measurement data uncertainty budgets to provide
measurement data correlation-coefficient matrices suitable for use by NLF and other
fitting programs. NLF can also be used to probe and quantify otherwise unrecognized
systematic error in measurement data.

Itis important to realize that, at this stage, the work described here is still exploratory.
For example, it may not be possible to modify the existing IAPWS equations so that
they incorporate full parameter covariance while retaining the same parameter values.
It should also be noted that the uncertainty propagated using NLF only reflects the
uncertainty and correlations in the input data. However, it is not yet clear how to
include uncertainties arising from differences between the assumed functional form
of the model and the underlying physics. Nevertheless, we suggest that it will be
useful for experimenters to provide a suitably formatted uncertainty budget for each
measurement. Such budgets would make available all systematic (shared by at least
one other measurement) and random (independent) components of uncertainty, each
stemming from a single error source. These then can be combined appropriately into
measurement correlation-coefficient matrices depending on which measurements are
required.
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