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Abstract Considering the necessity of photothermal alternative approaches for char-
acterizing nonhomogeneous materials like maize seeds, the objective of this research
work was to analyze statistically the amplitude variations of photopyroelectric sig-
nals, by means of nonparametric techniques such as the histogram and the kernel
density estimator, and the probability density function of the amplitude variations
of two genotypes of maize seeds with different pigmentations and structural compo-
nents: crystalline and floury. To determine if the probability density function had a
known parametric form, the histogram was determined which did not present a known
parametric form, so the kernel density estimator using the Gaussian kernel, with an
efficiency of 95 % in density estimation, was used to obtain the probability density
function. The results obtained indicated that maize seeds could be differentiated in
terms of the statistical values for floury and crystalline seeds such as the mean (93.11,
159.21), variance (1.64 × 103, 1.48 × 103), and standard deviation (40.54, 38.47)
obtained from the amplitude variations of photopyroelectric signals in the case of the
histogram approach. For the case of the kernel density estimator, seeds can be differ-
entiated in terms of kernel bandwidth or smoothing constant h of 9.85 and 6.09 for
floury and crystalline seeds, respectively.

This article is part of the selected papers presented at the 18th International Conference on Photoacoustic
and Photothermal Phenomena.
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1 Introduction

The application of photothermal (PT) techniques has been extended to different areas
of science to study thermal and optical properties of a wide variety of materials includ-
ing semiconductors, graphite, plant leaves, evaluation of foodstuffs, as well as the
characterization of seeds [1–5]. PT techniques include among others photoacoustic
spectroscopy (PAS) [6] and photothermal microscopy (PTM) which in turn includes
photoacoustic microscopy (PAM) and photopyroelectric microscopy (PPEM) [7]. On
the other hand, quality evaluation and control has become increasingly important
in biology and agriculture [8]. In particular, the application of PTM techniques as
alternative methods for the characterization of nonhomogeneous materials like maize
grains, which also present great complexity in their structure, could be relevant in
the food industry [9]. One of the main reasons is due to the fact that PTM has been
applied with great advantage in biological studies to characterize materials with com-
plex structures, since this technique allows obtaining optical and thermal images,
through a nondestructive and noninvasive evaluation [7]. The PAM is an imaging
technique that acoustically detects optical and thermal contrast via the photoacoustic
effect. PAM can provide high-resolution images at desired maximum imaging depths
up to a few millimeters. Most importantly, PAM can simultaneously image anatom-
ical, functional, molecular, flow dynamic, and metabolic contrasts in vivo [10]. On
other hand, the PPEM has been extensively applied to the study of the thermal prop-
erties of condensed matter samples. The major advantages of these techniques are
their simplicity, high sensitivity, nondestructive character, and adaptation on exper-
imental restrictions for theoretical requirements [1]. It has been shown that PAS in
combination with mathematical analysis which consists of the first derivative and the
mobile standard deviation approaches, when applied to the optical absorption coeffi-
cient obtained from the amplitude of the PA signal, allows distinguishing the maximum
optical absorption peaks of maize grains with different pigmentations better [9]. As far
as the time expended by these methods is concerned, the first derivative outperforms
the mobile standard deviation when defining the maximum optical absorption peaks in
the absorption spectrum. Also thermal images of coffee-seed germ were obtained with
a difference of 12 h between them using the PAM technique. The differences observed
between images provide information that reflects degradation due to the germ cells
undergo changes as a function of time. Also, the differences observed in the thermal
and optical properties of the embryo are due to the differences in moisture content
and optical absorption coefficient [11]. Another application of PAS technique is the
Fourier transform infrared photoacoustic spectroscopy (FT-IR-PAS) which has been
applied to the problem of identifying pollen samples [12]. Construction of a spectral
library allowed pollens in the set to be correctly identified as the first match on the basis
of photoacoustic spectra at the species (99 %) or family (100 %) level. Even though a
lot of research and development work has been done on food safety and quality, more
needs to be done to find economic ways of monitoring food safety and quality [13].
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It is well known that the use of statistical methods for analyzing recollected data
from experimentation, with the purpose of decision making and scientific discovery
when the available information is both limited and variable, has become a common
practice in many scientific areas [14,15]. A fundamental concept in statistics is the
probability density function (PDF) [16], due to fact that it completely specifies vari-
ables of random behavior, indicating how probabilities are distributed over the values
that the random variable adopts [17]. In order to estimate the PDF from observed
data for modeling the underlying probabilistic structure of the data [18], parametric
and nonparametric approaches can be applied [19]. In the parametric approach, it is
considered that collected data come from one of a known parametric family of distribu-
tions. The PDF underlying the data could then be estimated by finding estimates of the
parameters from the data (i.e., the mean and variance) and substituting these estimates
of parameters into the formula for the PDF [19]. This approach has the advantage that
it is easy to apply and it yields stable estimates. The main disadvantage of the para-
metric approach is lack of flexibility [20]. To avoid restrictive assumptions regarding
the form of PDF and to estimate it directly from the data, nonparametric approaches
such as the histogram and the kernel estimators have also been proposed [19,21]. The
nonparametric models allow great flexibility in the possible form of the PDF [18].

Considering the necessity of alternative approaches for characterizing nonhomoge-
neous materials as maize seeds, the objective of this work was to analyze statistically
the random amplitude variations of PPE signals obtained from PPEM experiment
[22], in order to characterize statistically two genotypes of maize seeds with different
pigmentations and structural components. The genotype A had bluish coloration and
floury structure and genotype B had yellowish coloration with crystalline structure.
The PDF of the random amplitude variations of the PPE signals caused by the differ-
ences of the seed structural components was obtained using both the histogram and the
kernel density estimator with the purpose of identifying the distribution of the collected
data and characterize maize seeds in terms of the statistical averages such as the mean,
variance, standard deviation, as well as the optimal value of the kernel bandwidth
estimated from the time series of the collected data. To our knowledge, the statistical
analysis presented in this work has not been reported previously in the literature.

2 Materials and Methods

2.1 Biological Materials

In the present research, the PPE signals obtained from PPEM experiment of two
maize seed genotypes with different pigmentations and structural components have
been analyzed statistically. The genotype A had bluish coloration and floury structure
and genotype B had yellowish coloration with crystalline structure.

2.2 PPEM Experimental Setup

Figure 1 shows a schematic diagram of the experimental setup used for PPEM tech-
nique. In this setup, the PPE sensor was used in the inverse configuration, which is
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Fig. 1 Schematic diagram of the experimental setup used for PPEM technique

mounted on an x–y motorized stage, with spatial resolution of 70µm and the scanned
area was of 2.5mm × 2.5 mm. The excitation source is a fiber-coupled laser diode,
at 650 nm wavelength and power of 100 mW, modulated at 1Hz of frequency by the
reference oscillator of the lock-in amplifier. By using a microscope objective, the laser
beam with a diameter of 40µm was focused and periodically modulated on the pyro-
electric sensor and below this the seed sample is attached to a sensor using thermal
grease to obtain a better contact. This process generates a periodic heating that is
transferred towards the sample. The PPE signal was preamplified and sent to the lock-
in amplifier. A personal computer was used to control the scanning of the x–y stage
and also to record, from the lock-in amplifier, the experimental PPE signal amplitude
from each point of the scanned samples. The signal was recorded as a function of
the position of the incident beam over the sample to obtain through the PPE data the
thermal images of seeds, and additionally, the PPE recorded data (2809) were used to
obtain the time series of the amplitude variations for each seed.

2.3 Nonparametric Approaches for Density Estimation

The histogram is the oldest and most widely used density estimator that is mainly used
to identify the distribution of the data and decide whether a parametric or nonparametric
approach shall be applied. The histogram has the main advantage of simplicity, but it
also has drawbacks, such as lack of continuity and less accuracy in comparison to other
nonparametric estimators [20]. To construct a histogram, assume that a sample of n
real observations X1, X2, . . ., Xn, is given and whose underlying probability density
function fx (x) is to be estimated. Select a left bound or starting point xo and the bin
width �x . The bins of the histogram are defined as the intervals [xo + (i −1)�x, xo +
i�x), i = 1, 2, . . .,m. The histogram is defined as

f̂x (x) = Number of Xi as the same bin as x

n�x
. (1)

Currently, one of the nonparametric approaches used for density estimation is the
kernel density [18–21,23,24]. A kernel density is a statistical method used to estimate
a continuous and smooth distribution from a finite set of observed points [25]. This
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method has been applied in a broad variety of applications including pattern recog-
nition, computer vision, archeology, climatology, genetics, hydrology, economics
[6,24,26], among others.

The idea underlying the kernel density estimate is that each data point X1, X2, . . . ,

Xn of a sample of size n from a random variable with a unknown probability density
function fx (x) is replaced by a specified function K (·) called the kernel, centered
at each data point X i and with a scaling parameter h called bandwidth or smoothing
constant. The kernel functions are added together and the resulting function is scaled
to have a unit area, which is a smooth curve called the density estimate of fx (x) at the
point x , given by

f̂h(x) = 1

nh

n∑

i=1

K

(
x − Xi

h

)
. (2)

The most widely used kernel K (z) is the Gaussian which is given by [21,26]

K (z) = 1√
2π

exp

(
− z2

2

)
. (3)

The efficient use of this method requires the optimal selection of the smoothing
constant or the bandwidth of kernel [26]. It determines the amount of smoothing
applied in estimating the PDF. The rule that is commonly used in practice to choose
the optimal value of h is [21]

ĥopt = 0.9σ̂

n1/5
. (4)

Usually σ̂ = min(s, IQR/1.34) is used, where s is the standard deviation of the
sample and IQR is the interquartile range of the data. The value of h is called “optimal”
in the sense that it minimizes the Asymptotic Mean Integrated Squared Error (AMISE)
in density estimation, and for the case of the Gaussian kernel the efficiency is estimated
to be 95.12 % [20].

3 Results

Figure 2 shows optical and thermal images obtained from PPEM for the two genotypes
of maize seeds. According to the thermal images obtained from PPEM, it is possible
to observe the differences in the structural components of nonhomogenous materials
as maize seeds by using a color scale. Each color represents the different values of the
PPE signal amplitude as a function of the scanned x–y coordinates. The differences of
the PPE signal are caused by the inhomogeneous nature of the thermal properties of the
structural components (i.e., endosperm, pericarp, germ, etc.). Although it is possible to
observe differences in thermal images that allow identifying two genotypes of maize
seeds that can be differentiated in terms of the thermal properties, it is also important to
obtain a quantitative description from recollected data. Figure 3 shows the plots of the
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Fig. 2 Optical and thermal images obtained from PPEM (a) Genotype A: bluish coloration and floury
structure (b) Genotype B: yellowish coloration with crystalline structure (Color figure online)

time series of the PPE signals (expressed in mV taken every 5 s) for the two genotypes
of maize seeds. For the case of floury structure maize seed (Fig. 2a), the range of
the amplitude variations is lower compared to the range of amplitude variations of
crystalline structure maize seed (Fig. 2b). In the case of the bluish coloration seed, the
pattern of behavior of the PPE signal tends to diminish with the time. In the case of
the yellowish coloration, the pattern behavior of the PPE signal tends to diminish or
to increase depending of the time interval. So, it is important to characterize them in
statistical terms. The histograms with a normalized area, total area of 1, are shown in
Fig. 4. It can be observed that the PDF obtained by histogram did not exhibit a known
parametric form; however, it is possible to establish a difference between the ranges
of amplitude variations of both signals.

According to the histogram shown in Fig. 4a, the amplitude variations of the PPE
signal for the maize seed with floury structure (i.e., bluish coloration) ranges from
1.92 mV to 158.77 mV, and for the case of maize seed with crystalline structure (i.e.,
yellowish coloration) the amplitude variations of the PPE signal ranges from 73.5
mV to 232.93 mV (Fig. 4b). It indicates that the PPE signal obtained from a maize
seed with crystalline structure is more intense when is compared with the PPE signal
obtained from a maize seed of floury structure. So to obtain a more complete statistical
characterization of the PPE signals the statistical averages such as the mean, variance,
and standard deviation were obtained and are shown in Table 1. From the values shown
in Table 1 and in accordance with the aforementioned, it can be noticed that the mean
value of the signal amplitude of the bluish coloration seed is lower than the mean value
obtained for the case of the signal from the yellowish coloration seed; this is due to the
fact that the genotype B has a crystalline structure and according to the literature the
values of thermal diffusivity and conductivity are higher in its pericarp compared with
floury seeds [27]. Moreover, as it was described in the experimental setup section,
the PPE sensor was used in the inverse configuration indicating that the obtained PPE
signals depend only of the thermal properties of the sample [22]. Additionally, the
detected signal current is proportional to the rate of temperature change [23].

Regarding the standard deviation, a lower value was obtained for the crystalline
structure seed indicating thus a lesser variability in the PPE signal amplitude because
the molecules of the crystalline seed variety are less amorphous this means that the
diffusion of heat is better [27,28]. On the other hand, the floury seeds diffuse the heat
into the seed with more difficulty due to their less structural molecular organization
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Fig. 3 Time series of PPE signals for (a) genotype A: bluish coloration and (b) genotype B: yellowish
coloration (Color figure online)

and, in this way, produces more variability in the signal level, so that the increase in
the temperature is higher at the surface. From the standard deviation values shown in
Table 1, it can be determined that the amplitude levels tend to be more concentrated in
the range of 52.575 mV to 133.665 mV for the case of floury seed, and for the crystalline
seed case the amplitude values are more concentrated at the range of 120.736 mV to
197.685 mV.

As aforementioned, the histogram method has the advantage of being a simple
method; however, it also has disadvantages such as lack of continuity and less accu-
racy in comparison to other nonparametric estimators [20], so that the kernel density
estimation method based on the Gaussian kernel [21,26] was applied to obtain the
PDF of the amplitude variations of the PPE signals for the two genotypes of maize
seeds.

By using the kernel density estimation approach, the PDF of the amplitude varia-
tions of the PPE signal in terms of the Gaussian kernel for the bluish coloration maize
seed can be described as

f̂h−b(x) = 1

nhb

n∑

i=1

K

(
x − Xi

hb

)
= 1

nhb
√

2π

n∑

i=1

e
− (x−Xi )

2

2hb , (5)
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Fig. 4 Normalized histograms of the amplitude variations of the PPE signals and their comparison with
the estimated PDF using the Gaussian kernel for two genotypes of maize seeds (a) genotype A: bluish
coloration and (b) genotype B: yellowish coloration (Color figure online)

where n = 2809 and hb = 9.8582 for the bluish coloration and floury structure seed.
In a similar way, the PDF of the amplitude variations of the PPE signal using the

Gaussian kernel for the yellowish coloration maize seed is given by

f̂h−y(x) = 1

nhy

n∑

i=1

K

(
x − Xi

hy

)
= 1

nhy
√

2π

n∑

i=1

e
− (x−Xi )

2

2hy , (6)

where n = 2809 and hy = 6.0943 for the yellowish coloration and crystalline structure
seed.

The estimated PDF using the Gaussian kernel for genotype A (i.e., floury) and
genotype B (i.e., crystalline) as well as its comparison with the histograms are shown
in Fig. 4.

From Fig. 4, it can be observed the smooth and continuous shape of the PDF
estimated by means of the Gaussian kernel. According to the PDF estimated, the
amplitude values for the genotype A maize seed (Fig. 4a) range from −27.658 mV
to 183.346 mV, and for the genotype B (Fig. 4b) the amplitude values range from
55.253 mV to 251.212 mV, confirming in this way that the crystalline seed produces
higher PPE signal amplitude values regarding to the PPE signal amplitudes obtained
from a floury maize seed. It is noteworthy that from the determined smoothing factor
or bandwidth of the kernel, it is also possible to identify differences between maize
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Table 1 Statistical values obtained by the histogram and kernel density estimation approaches from PPE
signals

Type of maize
seed

Mean Variance Standard deviation Smoothing
constant

Genotype A: Floury
structure bluish
coloration

93.118 1.644 × 103 40.547 9.8582

Genotype B: Crystalline
structure Yellowish
coloration

159.210 1.480 × 103 38.475 6.0943

seeds with different structures. For the crystalline structure maize seed, the required
bandwidth of the kernel is lower compared to the floury structure, finding that the PPE
signal exhibits less variability in the amplitude levels requiring thus less smoothing for
determining the PDF, confirming thus the feasibility of the use of statistical approaches
that could be applied for differentiate seeds with different structures from PPE signals
obtained from them. The main advantage of the kernel density estimation is because it
allows great flexibility to estimate a continuous and smooth distribution from a finite
set of observed points. It is also important to point out that it is possible to obtain a
quantitative description from recollected data.

4 Conclusions

From the statistical analysis presented in this research, it has been demonstrated the
feasibility of the statistical methods for the identification of seeds using the time series
of the PPE signals, obtained from experimentation of two genotypes of maize seeds
with different structures and pigmentations, by means of nonparametric approaches
for estimation of the PDF from the signal amplitude variations. In the case of the
histogram approach, due to its lack of continuity and less accuracy in comparison
with other density estimators, it is important to determine the statistical averages
such as the mean, variance, and standard deviation in order to have a more precise
identification of seeds because it was not possible to identify a known parametric form
of the PDF. From these values it is possible to obtain a quantitative differentiation of
seeds expressed in terms of the mean, variance, and standard deviation values of
93.11, 1.64 × 103, 40.54 and 159.20, 1.48 × 103, 38.47 for the case of the floury
and crystalline seeds, respectively. By using the kernel density estimation approach,
we have observed that maize seeds with different structures and pigmentations can
be identified in terms of the optimal kernel bandwidth or smoothing constant, which
determines the performance of the kernel. For the case of the studied seeds, the value
of smoothing constant was 9.8582 and 6.0943 for the floury and crystalline seeds,
respectively.
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