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Abstract Liquids entrapped in cavities and containing quadrupole nuclei are considered.
The interaction of the quadrupole moment of a nucleus with the electric field gradient
is studied. In such a system, molecules are in both rotational and translational Brownian
motions which are described by the diffusion equation. Solving this equation, we show that
the intra- and intermolecular nuclear quadrupole interactions are averaged to zero in cavities
with the size larger than several angstroms.
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1 Introduction

In a crystalline solid, the electric quadrupole moment, eQ, of a nucleus possess-
ing a spin greater than I > 1/2, interacts with the gradient of the electric field,

∂2V
∂xi∂xj

(
xi, xj = x, y, z

)
generated by the surrounding electrons or external charges of

other nuclei. The interaction results in splitting of the energy levels which are separated by

distances proportional to the quadrupole coupling constant e2Qq
h

, where eq = ∂2V

∂z2
, and V

is the potential of the electric field and e is the proton charge [1, 2].
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Without application of an external magnetic field, in solids for which the direction of
the electric field gradient (EFG) does not vary in time, the nuclear quadrupole interaction
(NQI) creates a discrete spectrum, which can be detected by the pure nuclear quadrupole
resonance (NQR) [1–4].

Analysis of the properties of the NQI of a spin system of solids and liquids reveals some
significant similarities to the nuclear magnetic dipole-dipole interaction (DDI) [1–4]. In
particular, in an isotropic bulk liquid, continual tumbling of molecules averages the secular
parts of both interactions to zero, while the non-secular ones cause relaxation of the spin
system [1–4].

In a liquid entrapped in nanocavities the motion of molecules is restricted but they still
move randomly. The DDIs are not averaged to zero [5] and they are observed in NMR
spectrum if the characteristic time ttran of the translational diffusion is much less than the
characteristic time of flip-flop process tmag [6–12]. Estimations show that DDI in the NMR
signal can be detected if the characteristic size of a nanocavity does not exceed 103 of the
typical size of a molecule [13].

Below we show that the situation is radically different in the case of NQI. In this case the
EFG is not averaged to zero in a nanocavity if ttran < trot , where trot is the characteristic
time of the molecular rotational diffusion. The condition ttran < trot corresponds to a cavity
with a size of the order of a molecule. Only in such small cavity NQIs are not averaged to
zero and NQR signals can be detected.

2 Averaged nuclear quadrupole Hamiltonian

Let us consider a quadrupole nucleus with spin I > 1/2. Quadrupole coupling exists
between a non-spherical nuclear charge distribution and the EFG generated by the charges
in its surroundings. These field gradients are averaged to zero in liquids due to molecular
motion

To demonstrate this effect, let us assume for simplicity that the EFG is axially symmet-
ric and the rotation of a molecule occurs around an axis �l, which direction is determined
by polar θ angle in the laboratory frame (LF) [14]. The quadrupole Hamiltonian can be
presented in the following form [14]

H
(1)
Q (θ) = e2qQ

16I (2I − 1)�

(
3I 2z − �I 2

) (
3 cos2 θ − 1

)
, (1)

where Iz is the projection of the angular spin momentum operator �I on the z-axis of the LF.
In a bulk liquid, the z-axis of the laboratory frame does not point into a preferred direc-

tion, and therefore all values of the angle θ in (1) become equiprobable. Then, taking into
account the ergodic theorem [6, 7], the spin evolution in a nanocavity can be described by
the averaged Hamiltonian, which can be find by integrating (1) over the surface area

〈
H

(1)
Q

〉

(θ)
= 1

2π

e2qQ

16I (2I − 1)�

(
3I 2z − �I 2

) ∫ π

0
sin(θ)

(
3 cos2 θ − 1

)
dθ

∫ 2π

0
dϕ. (2)

The integral over θ in (2) from 0 to π equals to zero. So, the NQI necessarily vanishes at
t → ∞ if there is no obstacle to the random rotation of molecules.

It is possible that the NQI is not averaged through a limited period of time or when the
distribution of the z-axis direction is nonuniform. Among various NQIs it is useful to distin-
guish between intramolecular interactions inside a molecule and intermolecular interactions
of different molecules. It is necessary to emphasize that due to the 1

r3
dependence and the
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zero electric charge of the molecules, the charges of electrons close to the nucleus have the
most important effect. Therefore, the intramolecular NQIs make a decisive contribution to
the quadrupole energy splitting.

To estimate the time dependence of the averaged Hamiltonian,

〈
H

(1)
Q

〉
(t) = e2qQ

16I (2I − 1)�

(
3I 2z − �I 2

) (
3
〈
cos2 θ (t)

〉
− 1

)
(3)

let us consider a molecule, such as heavy water D2O.
We assume, following Abragam [3], that rotational and translational Brownian motions

of the molecules are described by the diffusion equations.

3 Rotational Brownian motion

We suppose that � (θ, t) dθ is the probability of finding the z-axis in the direction between
θ and θ +dθ at the time t and the molecule can be represented as a sphere with the effective
hydrodynamic radius of the water molecule λ and the viscosity σ in a liquid. We measure
the angle θ from the direction of the z-axis at the time t0. Moreover, we assume that the
random process is homogeneous in time and the probability of changing the direction of the
axis depends on the duration of the time t , so that, without loss of generality, we can set
t0 = 0. Under these suppositions, the probability density � (θ, t) can be described by the
rotational diffusion equation [15]

∂� (θ, t)

∂t
= 1

sin θ
Drot

∂

∂θ

(
sin θ

∂� (θ, t)

∂θ

)
, (4)

with the normalization condition
∫ π

0 �(θ, t) sin θdθ = 1 and the rotational diffusion
constant Drot is given by Stokes’s formula

Drot = kT

8πλ3σ
. (5)

Since the expression in the last brackets in (3) may be expressed in terms of sine, following
Leontovich [15] let us calculate the average square of the sine

〈
sin2 θ

〉
=

∫ π

0
�(θ, t) sin3 θdθ. (6)

Using (4) we will find the time dependence of
〈
sin2 θ

〉
assuming that

〈
sin2 θ

〉 = 0 at t = 0.
Multiplying (4) by sin2 θ and integrating over the angle θ , we get

d
〈
sin2 θ

〉

dt
=

∫ π

0
sin3 θ

∂� (θ, t)

∂t
dθ = Drot

∫ π

0
sin2 θ

∂

∂θ

(
sin θ

∂� (θ, t)

∂θ

)
dθ. (7)

Converting the right part of (7) by double integration by parts and using (4), we obtain

d
〈
sin2 θ

〉

dt
= 2Drot

(
2 − 3

〈
sin2 θ

〉)
. (8)
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Solving (8), we get
〈
sin2 θ

〉
(t) = 2

3

(
1 − e−6Dr t

)
. (9)

Substituting (9) into (3), we obtain

〈
H

(1)
Q

〉
(t) = e2qQ

8I (2I − 1)�

(
3I 2z − �I 2

)
e−6Drot t . (10)

To estimate the diffusion coefficient Drot for heavy water D2O, we use (5) with the follow-
ing parameters at room temperature: σ = 8.94 × 10−4 Ns

m
; λ = 2 × 10−10 m, which gives

Drot = 4. 3 × 1010 1
s
. Thus, for heavy water, the NQI is averaged to zero during the time of

the order t ≈ 1
6Drot

= 3. 9 × 10−12 s.

4 Translational Brownian motion

In the case of restricted geometry, random Brownian motion of the molecules is also limited,
that in turn restricts rotational motion. The restriction can prevent averaging NQI to zero, as
it occurs in the cavities with dimensions on the order of nanometers for the DDI [6–12]. In
order to estimate sizes of the cavity where the NQI does not vanish, let us estimate the time,
during which a molecule arrives at the cavity wall, using the one-dimensional diffusion
equation [15]

∂W (x, t)

∂t
= Dtran

∂2W (x, t)

∂x2
, (11)

for the probability W (x, t) which means that the water molecule, located at a point with
coordinate x at t = 0, at least once achieves a boundary (x = a or x = b). ∂W(x, t)

∂t
dt

determines the probability that a molecule will reach one of the boundaries in the time
interval between t and t + dt . Translational diffusion constant Dtran is given by

Dtran = kT

6πλσ
(12)

At the boundaries x = a and x = b the probability for each t is W (a, t) = W (b, t) =
1. For all values of x inside of the interval (a, b) at t = 0 the probability equals zero:
W (x, 0) = 0.

Using (11), we can find the average time required by a water molecule, initially located
at point x inside of the interval (a, b), to reach the boundaries. This time is determined as
[15]

〈t〉 (x) =
∫ ∞

0
t
∂W(x, t)

∂t
dt, (13)

The average time should satisfy the differential equation, which can be obtained in the
following way. First, (11) is differentiated respect to t , then multiplied by t and integrated
over t from 0 to ∞ [15]:

∫ ∞

0
t
∂2W(x, t)

∂t2
dt = Dtran

∂2

∂x2

∫ ∞

0
t
∂W(x, t)

∂t
dt. (14)

Integrating by parts the left side of (14), we have
∫ ∞

0
t
∂2W(x, t)

∂t2
dt = −1. (15)
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Substituting this value into (14), we obtain the differential equation for the average time of
achievement of the boundaries

Dtran

d2 〈t〉 (x)

dx2
= −1 (16)

with the boundary condition 〈t〉(a) = 〈t〉(b) = 0.
Solution of (16) is

〈t〉 (x) = (b − x) (x − a)

2Dtran

(17)

and it has a maximum

〈t〉max (x) = (a − b)2

8Dtran

(18)

at x = 1
2 (a + b).

Substituting (5), (12) and (18) into (10) we have

〈
H

(1)
Q

〉
(t) = e2qQ

8I (2I − 1)�

(
3I 2z − �I 2

)
e
−

(
3(a−b)

4λ

)2

. (19)

Therefore, even in relatively small cavities with a characteristic size of a few molecular
diameters, the NQI is averaged to zero. Only if the index of the exponential function is on

the order of unity
(
3(a−b)

4λ

)2 ∼ 1, then the quadrupole splitting of the energy levels in liquid

can be observed.

5 Conclusion

It was shown that the both kinds of NQI, intramolecular and intermolecular, are averaged to
zero even for extremely small cavities with size of a few times larger than size of molecules.
NQR signals can be detected only in materials with very small cavities with the size of few
angstroem. This is a significant distinction from DDIs. The intramolecular DDIs are also
averaged while the NMR signals due to intermolecular DDI are observed till the size of
cavities of 750 nm.

In gases at low pressures, the probability of intermolecular collisions is small, and the
direction of the z-axis, around which the molecules rotate, is not changed. Therefore, in
gases at low pressures one can observe the effects of the NQI [1]. The fact of observing
NQR can be taken as an evidence of a preferred orientation of the z-axis.

We note that the considered model can be easily extended to the case of with non- axially
symmetric of the EFG.

In conclusion, we note that the results obtained in this paper are also valid for the case
when the spin system is located in an external magnetic field. The quadrupole part of the
Hamiltonian is described by the same (1) [14].

The observation NQR signals is possible if the water molecules stick to the walls of the
cavity. In this case, the rotation of the molecules occurs around axes fixed in space, that
does not lead to averaging the NQI.
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