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Abstract
I apply homotopy type theory (HoTT) to the hole argument as formulated by Earman
and Norton. I argue that HoTT gives a precise sense in which diffeomorphism-
related Lorentzian manifolds represent the same spacetime, undermining Earman and
Norton’s verificationist dilemma and common formulations of the hole argument.
However, adopting this account does not alleviate worries about determinism: general
relativity formulated on Lorentzian manifolds is indeterministic using this standard of
sameness and the natural formalization of determinism in HoTT. Fixing this indeter-
minism results in a more faithful mathematical representation of general relativity as
used by physicists. It also gives a substantive notion of general covariance.

Keywords Homotopy type theory · General relativity · Hole argument · General
covariance

1 Introduction

Developments in the applied sciences give new solutions to some practical problems
and streamline old solutions to others. Similarly, developments in the formal sciences
give new solutions to some conceptual problems and streamline old solutions to others.
The recent confluence of algebraic topology, n-category theory, computer science,
logic, and more into a mathematical research program called homotopy type theory
(HoTT) offers tools for tackling a variety of conceptual problems.1 Indeed, the subtle
notions of sameness at play in homotopy theory and the abstract formality of type

1 I will use “HoTT” ecumenically, to refer to any research program interested in a theory the ballpark of
the theory presented in the HoTT Book [24]—which see for an introduction to HoTT. At minimum I mean
to adopt a perspective in the spirit of abstract homotopy theory interpreted as a theory of higher equalities
[23]. The theory of the HoTT Book is one way to make this precise, but my argument doesn’t turn on all of
its details.
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theory suggest that these tools can be profitably applied to any problems involving
sameness that admit formal statements. In this paper I consider the problem of when
two Lorentzian manifolds represent the same spacetime using tools from HoTT.

Specifically, I return to the problems posed by John Earman and John Norton
in their influential discussion of this problem in the context of modern spacetime
theories, particularly general relativity (GR) [12]. They are concerned to show that if
you adopt a substantivalist account of spacetime, taking spacetime points to be real,
then you are faced with two dilemmas. For if you are a substantivalist, they claim,
you must take two Lorentzian manifolds to represent the same spacetime just in case
they are identical.2 But if this is so then for any Lorentzian manifold there is some
other, isometric Lorentzian manifold that represents an empirically indistinguishable
but metaphysically distinct way the world could be. Worse, these worlds are also
dynamically indistinguishable: one satisfies the laws of GR just in case the other one
does. So at any moment there are infinitely many distinct possible futures—a massive
failure of determinism. The first problem presses a choice between verificationism and
substantivalism and the second a choice between determinism and substantivalism.
Even if you are happy to take the substantivalist horn of the verificationist dilemma,
the extremity of determinism’s failure in the indeterminism dilemma should give you
second thoughts about hanging on to substantivalism.

The most popular defenses of substantivalism respond to these dilemmas by sup-
plying a sophisticatedmodal semantics in which distinct Lorentzianmanifolds needn’t
represent distinct spacetimes [3]. From the HoTT perspective, however, this response
is underspecified; in particular, it leaves open physically significant questions about
theways inwhich the representatives of some spacetime are related. The verificationist
dilemma is concerned with a yes-or-no question: “must distinct Lorentzian manifolds
represent distinct spacetimes?” The indeterminism dilemma, by contrast, concerns the
way in which the configuration of one region of spacetime depends on the configu-
ration of other regions, and this is more than a yes-or-no question. So a response to
the first dilemma requires more than an answer the second dilemma does. That is, two
views can respond to the verificationist dilemma in the same way while disagreeing
about the indeterminism dilemma.

In this paper I establish this by way of example. On the most straightforward
reading of Earman and Norton’s arguments in HoTT, the verificationist dilemma does
not go through but the indeterminism dilemma does. It therefore differs from popular
responses that take both dilemmas to have similar resolutions. Sections 3 and 4 review
these popular responses and compare them with the natural reading in HoTT. In short,
the natural resolution of the verificationist dilemma from the HoTT point of view
is essentially the same as the resolution recently argued for by Weatherall [27]. The
verificationist dilemma fails because isometric Lorentzian manifolds represent the
same physical state of affairs, so Earman and Norton’s putative counterexamples to
verificationism aren’t mathematically distinct models after all. The indeterminism
dilemma, on the other hand, takes a different form in HoTT than in other formalisms.
This is because the notion of determinism depends on the notion of uniqueness, and
thus on the notion of identity, which HoTT treats differently from other formalisms.

2 I use the words “identical”, “equal”, and “the same” interchangeably.
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On the natural formulation of determinism inHoTT, and supposing that the category of
models of GR is the category of Lorentzianmanifolds satisfying the Einstein equation,
it follows that GR is indeterministic, regardless of whether one is a substantivalist or
not. SinceGR isn’t indeterministic, one of those suppositionsmust bewrong. In Sect. 5
I give an alternative category of models for GR and indicate one reason, independent
of the hole argument, to think that this is the category of models that’s used in practice.
So the reading of the hole argument that I give below is not just some position in logical
space. Rather, on this reading, the hole argument draws attention to structure that can
easily be—and often is—neglected by formal treatments that aren’t sensitive to the
distinctions HoTT is designed to handle.

2 Tuples and Equality in HoTT

I have been referring to the “natural reading” of various claims in HoTT. The point
of this section is to sketch the features of HoTT that make a difference in these
readings—in particular, its treatment of identity.3 I mean to use HoTT as a drop-
in replacement for standard logics in the formalization of informal or semi-formal
mathematical discourse. The debate over Earman and Norton’s arguments involves,
in part, a distinction between straightforward and sophisticated formalizations of such
discourse, and sophisticated formalizations are often required to justify their sophisti-
cation. But whether some formalization counts as sophisticated depends on the formal
system it uses. In this paper I’m interested in straightforward formalizations in HoTT.

I am adopting HoTT both for reasons of convenience and reasons of substance.
The convenience comes from economy of expression. The original motivation for
HoTT was, in part, a desire for a formalism that more accurately represents the way
higher category theorists and homotopy theorists reason about their domains and the
phenomena they encounter there. In particular, the treatment of identity in HoTT gives
a clean and concise expression of the features of identity found in these areas, and
these are the features that interest me here. Thus, in using HoTT as a formal system
I mean to avoid more complicated formal treatments, such as the n-category theory
the title alludes to. A more substantial assumption I’m making is that straightforward
formalization in HoTT is the proper formalization of the informal arguments below.
This assumption needn’t make any reference to HoTT, strictly speaking; by design,
straightforward formalization inHoTT reproduces the appropriate expressions inmore
traditional formalizations of higher category theory—expressions referred to in these
contexts as “homotopically correct”. Justifying these expressions as appropriate is a
project beyond the scope of this paper; I appeal to the authority of higher category
theorists for this. The existence of HoTT as a formal system gives one way that this
practice can be made precise and consistent.

3 A comprehensive introduction to HoTT is beyond the scope of this paper. See [22] for a treatment of type-
theoretical formalization in general and [24] for a full introduction to HoTT in particular. What follows is a
compressed exposition of some aspects of the propositions-as-types paradigm [24, Sect. 1.11], dependent
types [24, Sects. 1.6 and 2.7], identity types [24, Sects. 1.12 and 2.11], and univalence [24, Sect. 2.10]. The
role of identity in HoTT, its most interesting feature for our purposes, is discussed from a philosophical
perspective by [1,8,14,15,23,26].
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NowEarman andNorton are concernedwithwhat they call local spacetime theories.
A model of such a theory is a tuple of the form (M, g, g′, . . . ) for some smooth
manifold M and geometric structures g, g′, . . . . The central example in our discussion
is GR, whose models are usually formalized as a pair (M, g) with g a Lorentzian
metric. We can formulate most other field theories using similar kinds of tuples. Much
of Earman and Norton’s discussion goes through straightforwardly in HoTT, so we
will confine our remarks to the most important differences. These are all concerned
with equality, which differs in HoTT from the equality relation in first order logic that
lies behind Earman and Norton’s formalization. Since these differences arise already
in simpler non-geometric settings we take one of these (from [27]) as a toy example.
Consider the theory of groups, which we can model with triples (S,×, e) of a set S,
a group operation × on S, and an element e of S that’s a unit for the group operation.
We would like an analysis of when two groups are equal. Two groups (S,×, e) and
(S′,×′, e′) should be equal if they have the same underlying set equipped with the
same group operation and unit element. In this section we make this rough criterion
precise.

Traditionally, mathematics is formalized using first order logic combined with a
set theory like Zermelo-Fraenkel set theory (ZF). The language of ZF is untyped, so
whether a formula is well-formed depends only on whether every logical operator
that appears has been supplied the right number of arguments. HoTT, by contrast,
is a type theory, which means that expressions can only be well-formed if they also
respect the types of their subexpressions. In this sense, it is less flexible than traditional
formalisms. For example, consider the following four expressions:

1. 3 is prime.
2. 4 is prime.
3. the set of real numbers is prime.
4. the set of all sets not containing themselves is prime.

Traditional formalisms and HoTT both agree that (1) is true, (2) is false, and (4) is
ill-formed. They disagree on (3): while it is false in traditional formalisms—i.e., the
set of real numbers is not contained in the extension of the primehood predicate—it
is ill-formed in HoTT. A set is just not the type of thing that can be prime. This is just
one of many calls that a formal system has to make. Any system must count (4) as
ill-formed, on pain of Russell’s paradox, but some restrictions are negotiable. While
I take it that (3) is mathematically meaningless, it’s obviously not a fatal problem
if some formal system is liberal enough to grant (3) a truth value, as the success of
traditional formalisms shows. HoTT is more restrictive, classing (3) with (4). This
extra restriction means that the well-formation of some expressions depends on the
truth of others: we can only intelligibly ask if x is prime if we know that x is a natural
number.

The natural formalization of mathematical claims into HoTT in a way that respects
typing restrictions is described by the propositions-as-types paradigm.4 On this
paradigm, mathematical statements are themselves types, alongside the types of nat-
ural numbers, prime numbers, Lorentzian manifolds, and so on. To assert that some

4 See the HoTT Book [24, Sect. 1.11] for an introduction to this paradigm and [22] for a book-length
treatment of natural language in this paradigm.
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proposition is true is to assert the existence of some term of the type representing that
proposition.Write ‘p : P’ tomean that p is a term of type P; if P represents a proposi-
tion then ‘p : P’ formalizes the assertion that P . Logical constructions on statements
are then of a piece with mathematical constructions on objects. So, for example, for
any sets X and Y there is a set X × Y of pairs (x, y) such that x is an element of
X and y an element of Y . And for any propositions P and Q there is a proposition
P × Q, the conjunction of P and Q. If p : P and q : Q then (p, q) : P × Q, which
formalizes the logical inference from P and Q to the conjunction P × Q. Similarly,
the conditional “if P then Q” is formalized by the type P → Q of functions from the
type P to the type Q, and the statement ‘ f : P → Q’ formalizes the assertion that P
implies Q.

Generalizing the propositions-as-types paradigm to quantified logic means intro-
ducing types that depend on terms of other types. The proposition “3 is prime” involves
a term 3 of type N and a predicate ‘is prime’ that takes one argument of type N. In the
propositions-as-types paradigm the proposition “3 is prime” is thus represented by a
type that is constructed from a term and a predicate of these types. This is where the
typing restrictions play a role: you cannot combine a term representing a set with the
‘is prime’ predicate, for example, so there is no type that could represent a claim like
“the set of real numbers is prime”. This statement is just ill-formed.

So in the propositions-as-types paradigm the claim that the groups (S,×, e) and
(S′,×′, e′) are equal should be represented by a type, and the groups are in fact equal
if this type has a term. The expression ‘x = y’ must be well-typed, and it is only
meaningful if x and y have the same type. Similarly, if we would like to ask whether
some structure on A is the same as some structure on B, that question depends on A
and B being equal. So if we suppose for now that S = S′, then we only need to check
that the group structures are the same. But this question is only meaningful because
we know that S = S′, so the answer will depend on this fact. That is, our supposition
amounts to the hypothesis that p : S = S′. Since p is a term of an equality type, I will
also call it an equality.

The logic of equality-dependence figures into the inference rules ofHoTT alongside
the inference rules for conjunction, disjunction, and so on [24, Sect. 1.12]. Equality is
reflexive, so for any term x there must be an equality refl(x) : x = x between x and
itself. Symmetry and transitivity of equality give new equalities from old. The other
rules implement equality’s usual substitutional inferential role. Take, for example,
the indiscernibility of identicals. For any objects a and a′ of type A and predicate
P applying to elements of A, if a and a′ are equal then P(a) implies P(a′). More
generally, suppose that P is instead some construction that takes an object a of type
A as input and gives some collection P(a) as output. Then if a and a′ are equal, any
object in P(a) must be an object in P(a′). So for any equality p : a = a′ there is
a function p∗ : P(a) → P(a′) that sends each object in P(a) to the corresponding
object in P(a′), obtained by substitution of a′ for a according to p. By the rules of
equality dependence, the function (refl(a))∗ : P(a) → P(a) induced by the equality
refl(a) : a = a is just the identity function idP(a).

Applying the indiscernibility of identicals to our hypothetical equality p : S = S′,
we can sensibly ask and answer questions about whether they are equipped with the
same structure. They have the same group operation if p∗(x × y) = p∗(x) ×′ p∗(y)
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for all x and y in S, and they have the same unit element if p∗(e) = e′. In order
to complete this approach, then, we need some way of producing an equality of sets
to use after discharging our hypothesis. In a traditional formalism, this is done with
the axiom of extensionality: two sets are the same just in case they have all the same
elements. But in HoTT this would require asking whether objects of S are also objects
of S′, and this question risks being ill-formed. Indeed, since the expression ‘x = y’
is only meaningful when x and y have the same type, if x is an element of S and y
an element of S′ then the meaning of ‘x = y’ depends on our already knowing that S
and S′ are equal, which is our question. And if this expression is meaningless, it can’t
be used as a consequent in the axiom of extensionality. So phrasing extensionality in
this way would be circular.

The extensionality principle in HoTT is the univalence axiom. For sets, this axiom
says the following. Suppose that we had some bijection f : S → S′. Then each
element s of S corresponds to a unique element f (s) of S′. And it’s hard to say what
more we could ask of an equality of type S = S′. Any statement about s can be
uniquely translated into a statement about f (s), and as such any statement about S
can be uniquely translated into one about S′ salva veritate. This arguably exhausts the
content of an equality statement. So, more formally, we suppose

The univalence axiom (for sets) For every bijection f : A → B of sets A and
B there is an equality ua( f ) : A = B such that (ua( f ))∗ = f .

So all it takes to get started in showing that (S,×, e) = (S′,×′, e′) is to provide a
bijection S → S′.

We now have all the tools necessary to show that two groups are equal. Applying
this machinery to a concrete example, we can construct an equality of groups (Z,+, 0)
and (Z,+′, 1), where +′ is defined by n +′ m = n + m − 1. These groups are equal
just in case they have equal underlying sets equipped with equal group structures.
To produce an equality of type Z = Z, it suffices by univalence to give a bijection
φ : Z → Z. Take φ : Z → Z to be the map defined by φ(n) = n + 1, giving a term
ua(φ) : Z = Z. For any n and m in Z we have

(ua(φ))∗(n + m) = φ(n + m) = n + m + 1 = φ(n)

+′φ(m) = (ua(φ))∗(n) +′ (ua(φ))∗(m)

since (ua(φ))∗ = φ by univalence. And similarly

(ua(φ))∗(0) = φ(0) = 1

Taking these three together, we have a term

(
ua(φ), refl(+′), refl(1)

) : (Z,+, 0) = (Z,+′, 1)

So φ gives a standard of comparison according to which the underlying sets of the
groups (Z,+, 0) and (Z,+′, 1) are the same, andwhenweuse this standard to compare
the group structures on either group we have equalities refl(+′) and refl(1) asserting
that they have the same group multiplication and unit.
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This result might surprise you. The integers 0 and 1 are different, and so (you
might think) the groups (Z,+, 0) and (Z,+′, 1) differ in their third entries and hence
are different groups. But this inference fails. Recall that to even intelligibly ask the
question of whether the third entries of some tuples are the same or different, we must
know that they have the same type. And this depends on our knowing that the first
entries of each tuple are the same. It depends on it in the strong sense that we use the
equality of the first entries to compare the third entries. So it’s true that 0 �= 1, but it’s
false that (ua(φ))∗(0) �= 1, and the second statement is the relevant formalization of
the statement “(Z,+, 0) and (Z,+′, 1) differ in their third entries”. Appeal to 0 �= 1
shows that there is no equality of the form (refl(Z), –) between the groups (Z,+, 0)
and (Z,+′, 1). But this is not to say that there is no equality at all.

On a straightforward reading of the HoTT formalism, Earman and Norton’s verifi-
cationist is similar to the mistaken argument of the previous paragraph; it shows that
there is no equality of tuples with a refl in the first entry and concludes from this that
the tuples are distinct. This inference fails in the case of GR just as it does in the case
of groups. But this doesn’t mean that the indeterminism dilemma also fails. The same
straightforward reading of HoTT leads right to indeterminism in exactly the places
Earman and Norton say it does.

3 The Verificationist Argument

Earman andNorton pitch the verificationist argument as a dilemma for substantivalists:
admit observationally indistinguishable but distinct states of affairs or deny substan-
tivalism. However, subsequent philosophical work has shown that this argument is
better thought of as a reductio, for there is more than one way to avoid both horns of
the dilemma. In this section, I use HoTT to articulate one response to the verificationist
argument, according to which diffeomorphic Lorentzian manifolds represent not only
the same physical state of affairs but also the same mathematical object. Thus Earman
and Norton’s argument does not give an example of observationally indistinguish-
able but distinct states of affairs. Weatherall has recently offered a similar response
to Earman and Norton [27]. In this section I contrast his response and mine, and in
subsequent sections I draw out some consequences of the difference.

Here is one way to state the verificationist argument. Suppose we take a model of
GR to be a pair (M, g) of a smooth manifold M and a Lorentzian metric g on M . Let
φ : M → M be any nontrivial diffeomorphism. Then Earman and Norton offer the
following reductio:

1. Substantivalism is true.
2. By (1), distinct mathematical objects represent distinct possible states of affairs.
3. (M, g) and (M, φ∗(g)) are distinct mathematical objects.
4. By (2) and (3), (M, g) and (M, φ∗(g)) represent distinct possible states of affairs.

We have two reasons to reject this conclusion. First, everyone agrees that (M, g)
and (M, φ∗(g)) are observationally indistinguishable, since this is what the diffeo-
morphism φ represents. So if (4) is right, then substantivalism leads to distinct but
observationally indistinguishable states of affairs. And this raises epistemic concerns
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about what reasons could underwrite our belief that these unobservable distinctions
exist. But substantivalists have lived with this problem since the beginning of (Newto-
nian) time, and I don’t suppose that this argument poses any new challenge. A second,
more worrisome problem is that taking (M, g) and (M, φ∗(g)) to be inequivalent
situations is “at odds with standard modern texts in general relativity, in which this
equivalence is accepted unquestioningly in the specific case of manifolds with met-
rics” [12, p. 522]. So while substantivalists might be able to avoid the first worry, this
argument suggests that we have to choose between substantivalism and accord with
the textbooks. This distinction is also the seed of the indeterminism argument of the
next section, which is more devastating. So we have to reject one of (1)–(3), and since
(1) looks the most controversial, it’s on the chopping block.

However, we might reject steps other than (1), as subsequent work has shown.
Substantivalism is a metaphysical thesis about spacetime, and the conclusion of (2)
is a thesis about how our mathematical representations relate to modal distinctness
facts. This inference must be underwritten by some story about how mathematical
representations relate to modal distinctness facts, and how these distinctness facts
relate to a mere existence claim about spacetime. Perhaps on a straightforward reading
(2) follows from (1), but it needn’t. There are various versions of substantivalism
that are realist about spacetime points while regarding (M, g) and (M, φ∗(g)) as
two representations of the same possible world; call these “sophisticated”, following
Belot and Earman [3,4]. The details of such a view can be worked out in a number
of ways (e.g., [5,7,13,21]), but sophisticated substantivalists are united in their denial
of the claim that distinctions in the mathematics must be reflected in the existence of
corresponding metaphysically distinct states of affairs.

I agree that (2) can be rejected, and perhaps it ought to be. But developing a more
sophisticated account of substantivalism seems to me to be treating a symptom of
the conceptual problem with the verificationist argument, rather than the underlying
disease. It seems to me that (3) is false, and there is no nearby true premise that
can rescue the argument. I take it that this reaction is common, though by no means
universal. Indeed, asWeatherall [27] argues, it seems to follow from relatively common
principles of applied mathematics. And since HoTT was developed, in part, to codify
some of these principles, it bears this reaction out in quite literal terms.5 By univalence
there is an equalityua(φ) : M = M , andwe have (ua(φ))∗(g) = φ∗(g) by the defining
property of ua(φ) and the way that diffeomorphisms act on Lorentzian metrics (i.e.,
by pushforward). So we have an equality (ua(φ), refl(φ∗(g))) between (M, g) and
(M, φ∗(g)), and if they are equal they cannot be distinct, so (3) fails. The verificationist
argument thus fails for reasons quite independent of modal semantics.

I want to be clear that I don’t think HoTT does much heavy lifting in this response
to the verificationist argument. Assuming that the natural reading in HoTT gives the
correct identity criteria, we should reject step (3) of the verificationist argument. But
the only reason I’ve given to adopt the natural reading in HoTT is that it correctly
captures certain mathematical practices, and these are independent of what formalism
we choose to adopt. So you might run this argument by appealing directly to mathe-
matical practice, avoiding any appeal to HoTT. I take Weatherall [27] to be making

5 This point has also been made by Shulman [23, p. 40].
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an argument along these lines. He explicitly adopts two positions on the application
of mathematics to physics: that “the default sense of ‘sameness’ or ‘equivalence’ of
mathematicalmodels in physics should be the sense of equivalence given by themathe-
matics” and that “[i]n most cases, the standard of sameness for mathematical objects is
some form of isomorphism” [27, p. 331]. Since (M, g) and (M, φ∗(g)) are isomorphic
as Lorentzian manifolds, these positions imply that (M, g) and (M, φ∗(g)) should be
the same for the purposes of mathematical physics. And so, like me,Weatherall denies
(3) in the verificationist argument. Indeed, something like his first principle is implicit
in my taking equal Lorentzian manifolds in HoTT to represent the same spacetimes,
and univalence is something like his second principle.

But I do want to claim something stronger thanWeatherall. HoTT isn’t necessary to
deny (3), but adopting a straightforward reading in HoTT involves more than just the
rejection of (3). Like Weatherall, I am appealing to mathematical practice, but I mean
to appeal to a more particular mathematical practice than he. Suppose, for example,
that we accepted Weatherall’s principles but opted for a traditional formalism. We
might adopt a form of sophisticated substantivalism like Pooley’s [21, p. 103] onwhich
“individual spacetime points exist as basic objects, but possible spacetimes correspond
to equivalence classes of diffeomorphic models of GR”. Then isomorphic models
like (M, g) and (M, φ∗(g)) correspond to the same spacetime, in accordance with
our principles, even when they are unequal (in the set-theoretic formalism). On this
account, presumably, the various diffeomorphisms between different models wouldn’t
matter; the only physically significant fact would be whether two models belong to
the same isomorphism class. But on the HoTT account the differences between these
isomorphisms makes a difference. So by appealing to HoTT I am committing myself
to more than I would be with an appeal to Weatherall’s principles. In particular, I am
adopting a position on how we ought to extend this view of isomorphisms to other
concepts that depend on sameness.

In the next two sections I show that Earman and Norton’s indeterminism argument
is one place where the isomorphism structure of GR makes a difference. The question
of determinism is one important disagreement between my HoTT-based account and
those likePooley’swhich takepossible spacetimes to correspond to equivalence classes
of diffeomorphic models of GR. One virtue of sophisticated accounts is that they
avoid a second problem that threatens to sink substantivalism: wild and intuitively
spurious indeterminism. OnmyHoTT-based picture, GR formulated using Lorentzian
manifolds is indeterministic in this way. But I take this to be a virtue of the picture.
There is a natural way to rectify this indeterminism, and if we do so then I claim we
more faithfully capture textbook GR.

4 The Indeterminism Argument

The real star of Earman and Norton’s show is the indeterminism dilemma, which
transposes the theme of underdetermination due to diffeomorphism from an epistemic
to a metaphysical key. Sophisticated substantivalism has a blanket response to both
problems: distinctions in the mathematics don’t force distinctions in the metaphysics.
If we use a straightforward semantics for HoTT, though, this blanket response isn’t
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available. Indeed, even though the verificationist argument doesn’t go through on a
HoTT reading, the indeterminism argument does.

Earman and Norton’s indeterminism dilemma tries to force a choice between sub-
stantivalism and a pathological kind of indeterminism. The technical core of the
argument is the existence of “hole diffeomorphisms”, which differ from the iden-
tity only on some nice region. For example, consider Minkowski space (R4, η). If
φ : R4 → R

4 is some diffeomorphism supported only on the unit ball centered at the
origin on R

4, then (R4, η) and (R4, φ∗(η)) are both dynamically possible models of
GR. But they are merely isometric, not equal, and so are distinct ways the world could
be—or so the substantivalist must say, according to Earman and Norton. Generalizing
this example, they claim that “the state within any neighborhood of the manifold can
never be determined by the state exterior to it, no matter how small the neighborhood
and how extensive the exterior specification” [12, p. 524]. Indeterminism this radical
suggests that something has gone wrong in our understanding, given GR’s success in
predicting gravitational phenomena.6

In light of the discussion of Sect. 3, we need to be more careful about the definition
of determinism. I will focus on the kind of determinism at issue in the initial value
problem of GR [25, Sect. 10.2], since this is the kind of determinism I take to be at
issue in Earman and Norton’s argument.7 Determinism in this context is a claim about
models satisfying physical laws. And, according to Earman and Norton, we needn’t
be much more specific about what we mean by “determinism” for their argument to
go through. As they say,

the hole corollary forces substantivalists to conclude that no non-trivial form
of determinism can obtain in local spacetime theories. The state within any
neighborhood of the manifold can never be determined by the state exterior
to it, no matter how small the neighborhood and how extensive the exterior
specification [12, p. 524].

In other words, no matter what else we mean by “determinism”, it must at least be
the case that in a deterministic local spacetime theory the state of a sufficiently small
neighborhood is determined by a sufficiently extensive exterior specification. In a
slogan, the laws of a theory are deterministic if they imply that “agreement on regions
of a certain kind… forces agreement elsewhere” [7, p. 7]. The focus on regions is due
to relativity. In nonrelativistic theories, a theory is deterministic if any two dynamically
possible models that agree at some time agree at all times. However, in GR there is not,
in general, a well-defined notion of a “moment of time”, and sowe cannot alwaysmake
sense of twomodels agreeing at some time. Sowegeneralize: ifGR is deterministic,we
should expect that fixing a dynamically possible state of the world everywhere outside
of some “nice” regionU should also suffice to fix a unique dynamically possible state
of the world inside ofU . Tolerable levels of indeterminism vary from person to person,

6 See also [21, p. 99] and [27, p. 335], for example, for similar reconstructions of Earman and Norton’s
indeterminism dilemma.
7 In particular, I set aside failures of determinism related to the extendability of spacetimes [10,16]. I also
set aside versions of the indeterminism worry that merely reclothe the verificationist argument in dynamical
terms. I take the important feature of the indeterminism argument to be that the equation of motion for GR
is diffeomorphism-invariant.
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thus so will the bounds of “niceness”. But surely the unit ball centered on the origin
in Minkowski spacetime is about as nice as can be, and if some dynamically possible
universe is Minkowski outside this ball it ought to be Minkowski inside, as well. So
the example of the previous paragraph should be a legitimate candidate example of
indeterminism on any generalization of “moment of time”. And this is why Earman
andNorton take their counterexample to apply to all non-trivial forms of determinism.8

The kind of determinism at issue in Earman and Norton’s argument is thus modal
and semantic: determinism is a claim about how many ways some region could pos-
sibly be, if we hold fixed the state of the world outside that region. This approach
to determinism is due to Montague [18], and was refined and reformulated in more
explicitly modal terms by Earman [11]. The semantic aspect should be contrasted
with characterizations of determinism in terms of which statements about the future
are deducible, such as Nagel’s [19]. And the modal aspect should be contrasted with
more recent arguments, like Dasgupta’s [9], that determinism is a hyperintensional
concept. Much of the literature responding to Earman and Norton also takes on a
modal, semantic analysis of determinism, often with explicit reference to Montague
and Earman. So while this analysis of determinism is perhaps imperfect [2,6,7,9,17], it
has been the notion of primary concern in this literature and seems to track something
of physical significance.

Earman and Norton turn this feature of GR into a reductio against substantivalism
by attributing a particular method of possibility-counting to substantivalists, and this
method is what sophisticated substantivalists disavow. For Earman and Norton sub-
stantivalism is just the denial of the claim that isometric Lorentzian manifolds always
represent the same spacetime. The indeterminism argument shows that if you take
models of GR to be Lorentzian manifolds and you take some isometric Lorentzian
manifolds to be distinct models of GR, then you are committed to the indeterminism
of GR. The sophisticated versions of substantivalism that have been developed in light
of Earman and Norton’s argument all deny this characterization of substantivalism—
that is, they argue that one can be a substantivalist while still counting isometric
Lorentzian manifolds as representing the same possible spacetime. What Earman and
Norton really establish is that a certain method of reckoning possibilities leads to
indeterminism, and that substantivalists are prima facie committed to this method
of reckoning. And so as with the verificationist argument, the literature on the hole
argument has mostly focused on the relationship between substantivalism and modal
distinctness facts and whether this prima facie impression survives closer inspection.
Indeed, from this point of view the verificationist and indeterminism arguments come
down to essentially the same issue: can the substantivalist take isometric Lorentzian
manifolds to represent the same physical spacetime?

As in the case of the verificationist argument, I findmyself convinced that the sophis-
ticated substantivalist needn’t adopt the problematic possibility-counting method that
Earman and Norton think they must, but I also think that other features of the inde-

8 Alternatively, we could follow Butterfield [7] by investigating a ramified notion of S-determinism, where
S is “a kind of region that occurs in manifolds of the kind occurring in the models [of the theory]” [7, p. 7].
Each generalization of “moment of time” would then give a different S, giving rise to a different notion of
determinism. The Minkowski space example will then be relevant as long as agreement outside of the unit
ball induces agreement on some region of kind S; this should be the case for any reasonable S.
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terminism argument deserve more scrutiny. In particular, I think that generalizing
Montague’s analysis of determinism to theories like GR involves subtleties that HoTT
makes plain. For a local spacetime theory to be deterministic by Earman and Norton’s
lights, there must be some sufficiently small region whose state is uniquely fixed by
the state exterior to it, by the contrapositive of the argument quoted above. If the state
space for this small region is just a set the state is uniquely fixed if there is one element
in the subset of states that are compatible with the exterior region. But if the state
space is a type in HoTT, or a (higher) category, then uniqueness means something
more. Recall that, in HoTT, reasoning with equalities requires an appeal to particular
equalities. The indiscernibility of identicals is an inference rule that takes four things
as inputs: objects a and a′ of type A, a predicate P that applies to objects of type
A, and an equality p : a = a′. In order to conclude p∗ : P(a) → P(a′), we must
have a particular p onwhich to rely. Similarly, sentences involving equality statements
refer to particular equalities. So when we consider a conditional in which two mod-
els agree on some region, we are considering some particular equality φ witnessing
the agreement. And when we ask whether the two models agree everywhere under
this conditional hypothesis, we are asking whether they also agree outside the given
region with respect to the same equality, which gives the standard of sameness for
the underlying manifold.9 So a theory is deterministic if any equality of regions of a
certain kind induces a unique equality of the models, not just some equality or other.

Let me repeat this analysis without HoTT, since I claimed above that my use of
HoTT is, in part, merely for convenience of expression. To translate out of HoTT
and into category theory, we replace types with categories and equalities with isomor-
phisms. An equality of models in HoTT is an isometry of Lorentzian manifolds in
the category-theoretic semantics. A pair of models that agree on some region consists
of two triples (M, g, S) and (M ′, g′, S′)—where (M, g) and (M ′, g′) are Lorentzian
manifolds and S and S′ are submanifolds of M and M ′, respectively—along with a
diffeomorphism φ : M → M ′ such that φ(S) = S′ and φ∗(g) = g′ when restricted
to S′. The analysis of determinism given in the previous paragraph says that GR
is deterministic if any such φ is also an isometry between (M, g) and (M ′, g′). In
other words, GR is deterministic by this criterion if the category of initial data is
equivalent to the category of dynamically possible models of GR. This criterion is
stronger than the requirement that isomorphism classes of initial data be in bijection
with isomorphism classes of dynamically possible models, because every equivalence
of categories induces a bijection on isomorphism classes but not vice versa. It’s also

9 Why the same equality, rather than an arbitrary equality? After all, as I said above, any term of an
equality type gives a unique translation between statements involving the terms flanking the equality.
But this translation is only unique relative to a choice of some equality—i.e., we need some particular
equality on which to rely, and different choices give different translations. The antecedent of the conditional
defining determinism supposes that the two models agree on some region with respect to some standard
of sameness, while the consequent of the conditional states that these models also agree outside of the
given regions. The consequent is only well-formed if it relies on a particular equality, which grammatically
can only be supplied by the equality already referred to by the antecedent. Switching to some heretofore
unmentioned equality halfway through the conditional would be like switching the referent of a pronoun
to some heretofore unmentioned person halfway through a conditional. So this analysis of determinism is
similar to a conditional donkey sentence: the “agree” of the consequent is tacitly anaphoric on the equality
tacitly referred to by the “agree” of the antecedent [22, Sect. 3.7].
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more appropriate: the standard of identity for categories is equivalence, not bijection
of isomorphism classes.10

For a sophisticated substantivalist like Pooley [21], for whom possible spacetimes
are given by isomorphism classes of Lorentzian manifolds, Earman and Norton’s
indeterminism argument does not go through on the analysis of determinism just
given. If possible spacetimes are represented by isomorphism classes then there are
no nontrivial equalities between spacetimes: two equivalence classes either have the
same elements or they don’t. And the same goes for regions of spacetime. So there is
at most one equality between any two isomorphism classes, making any uniqueness
requirements on isomorphisms inert. The requirement that an equality of spacetimes
induce an equality of regions of a particular kind is also trivialized—there is at most
one equality between equivalence classes and it restricts to the only possible equality
between an equivalence class of regions. Thus, if we assume that possible spacetimes
are givenby isomorphismclasses ofLorentzianmanifolds, the criterion of determinism
I have just described essentially reduces to the analysis of determinism offered by
Butterfield [7, p. 9] under the name “Dm2”. In this case there is no distinction between
equivalence of categories and bijection of isomorphism classes, and so the analysis of
determinism in HoTT coincides with the kind of analysis used by Earman and Norton
and subsequent literature.

However, if we take the equalities of models of GR to be isometries then Earman
and Norton’s example gives a counterexample to determinism in the sense I have been
discussing. If φ : R4 → R

4 is a diffeomorphism that is the identity outside of the unit
ball centered at the origin, then the identity diffeomorphism idR4 : R4 → R

4 gives an
equality of the triples (R4, η, Bc) and (R4, φ∗(η), Bc), where Bc is the complement
of the unit ball centered at the origin. This is because φ is the identity on Bc, and
so φ∗(η) = η there. But idR4 is not an isometry between the Lorentzian manifolds
(R4, η) and (R4, φ∗(η)), since (idR4)∗(η) �= φ∗(η) in the unit ball. So on the analysis
of determinism taken from HoTT, specifying the metric on almost all of Minkowski
space does not suffice to fix it everywhere. This kind of example generalizes as Earman
and Norton say, and so “the state within any neighborhood of the manifold can never
be determined by the state exterior to it” [12, p. 524].

To be clear, this version of the hole argument isn’t Earman and Norton’s. Their
argument is not about the difference between equivalence of categories and bijection
of isomorphism classes, it is an argument against one method of possibility count-
ing. The argument just given is an argument against a different method of possibility
counting—one that a sophisticated substantivalist endorses, but also one that Earman
and Norton themselves likely endorse. On their analysis of determinism it seems that a
bijection of isomorphismclasses suffices, and so the situation of the previous paragraph
is not an example of indeterminism. After all, the diffeomorphism φ : R4 → R

4 also
gives an equality of the triples (R4, η, Bc) and (R4, φ∗(η), Bc), and it is also an isom-
etry between the Lorentzian manifolds (R4, η) and (R4, φ∗(η)). So the isomorphism

10 The distinction in HoTT between inducing a unique equality and inducing some equality or other and
the distinction in category theory between equivalence of categories and bijection of isomorphism classes
can both be cashed out in terms of the distinction between contractibility and connectedness that can be
found in both theories. Corfield [8] gives a more detailed treatment of definite descriptions in HoTT that
makes the role of this distinction explicit.
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class of the exterior specifications (R4, η, Bc) and (R4, φ∗(η), Bc) corresponds to the
isomorphism class of the Lorentzian manifolds (R4, η) and (R4, φ∗(η)) in a bijec-
tion between exterior specifications and Lorentzian manifolds satisfying the Einstein
equation. But such a bijection between isomorphism classes of exterior specifications
and isomorphism classes of spacetimes isn’t induced by an equivalence of categories,
because there are more isomorphisms in the category of exterior specifications than
there are in the category of Lorentzian manifolds. So if we take the category of models
of GR to be the category of Lorentzian manifolds satisfying the Einstein equation then
GR is indeterministic in the sense the sense appropriate to theories whose collections
of models are categories.

Of course, GR isn’t indeterministic, so something has gone wrong in this analysis.
On my view, the source of the error is that it has neglected the fact that GR is a
gauge theory—a fact which plays a role in proofs that the initial value problem for
GR is well-posed [25, p. 260]. Indeed, I take the indeterminism argument as I have
just presented it to be a sign that “diffeomorphisms comprise the gauge freedom of
general relativity” [25, p. 438], just as the similar failure of determinism in Yang–
Mills theories is a sign that the gauge freedom there has been neglected. So in the next
section I describe a theory in which diffeomorphisms are taken to be gauge structure
and contrast it with the formulation of GR in terms of Lorentzian manifolds. Adding
gauge structure in HoTT amounts to adding equalities between configurations of the
metric tensor fields; in the categorical semantics this means adding isomorphisms,
producing a gauge theory in the sense of Nguyen et al. [20]. In addition to fixing the
indeterminism we just encountered, this gauge structure impinges on other parts of
GR.

5 Generally Covariant LorentzianManifolds

We can regain determinism in GR by inserting the equalities that seem to be missing.
This is a kind of quotient, since we are identifying possible futures if they restrict to
equal initial data. This might sound like the version of sophisticated substantivalism
that takes spacetimes to be given by diffeomorphism classes of Lorentzian manifolds.
But it is importantly different. Taking equivalence classes in the usual sense eliminates
any nontrivial equality dependence, since there is at most one equality between any
two equivalence classes. If we apply a weaker quotient by inserting more equalities,
then we can avoid the indeterminism of Lorentzian manifolds without completely
collapsing the equality structure. This equality structure is used in GR—for example,
in perturbation theory—so we ought to use these weakly quotiented models, instead.

A precise statement of the quotient procedure would require us to identify exactly
which diffeomorphisms cause problems for determinism. I will call these hole diffeo-
morphisms, and I will take them to at least include those diffeomorphisms generated
by a vector field. Exactly which diffeomorphisms are hole diffeomorphisms is a sub-
stantive question beyond the scope of this article. Leaving this unspecified, the result
of the quotient is the following
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Definition 1 A generally covariant Lorentzian metric on a manifold M is specified
by a Lorentzian metric g, and an equality g = g′ of generally covariant Lorentzian
metrics on M is a hole diffeomorphism ψ : M → M such that ψ∗(g) = g′. A
generally covariant Lorentzian manifold is a pair (M, g) of a smooth manifold M and
a generally covariant Lorentzian metric g on M . Thus, an equality (M, g) = (M ′, g′)
of generally covariant Lorentzian manifolds is a pair (φ,ψ) of a diffeomorphism
φ : M → M ′ and a hole diffeomorphism ψ : M ′ → M ′ such that ψ∗(φ∗(g)) = g′.
A generally covariant Lorentzian manifold is not the same thing as a Lorentzian man-
ifold. For example, for any hole diffeomorphism φ : M → M there is an equality
between (M, g) and (M, φ∗(g)) given by (refl(M), φ). So there is an equality of the
form (refl(M), –), which there is not for Lorentzian manifolds, as we saw in con-
sidering the verificationist argument. And this allows generally covariant Lorentzian
manifolds to avoid the refined indeterminism argument of the previous section. The
problem, recall, was that the equality (refl(R4), refl(Bc), refl(g′)) between (R4, η, Bc)

and (R4, φ∗(η), Bc) did not induce a unique equality between (R4, η) and (R4, φ∗(η)).
But now it does: it induces the equality (refl(R4), φ) of the generally covariant
Lorentzian manifolds (R4, η) and (R4, φ∗(η)). And indeed, one can show that any
equality of models that agree on some nice region induces an equality of the entire
generally covariant Lorentzian manifolds, so determinism is regained and the verifi-
cationist argument still fails at the third step.11

I take generally covariant Lorentzian manifolds to be a better formalization of
models of GR than Lorentzian manifolds. This isn’t only because they avoid the inde-
terminism of the refined indeterminism argument (though that helps), but also because
theymore accurately captureGRas found in textbooks. The difference between the two
can be hard to find. While the indeterminism argument distinguishes them, the differ-
ence doesn’t much arise in everyday GR life. And for good reason: generally covariant
Lorentzian manifolds are obtained by quotienting the type of Lorentzian manifolds,
and we generally work with quotients by doing manipulations on the unquotiented
objects and then showing that these manipulations are preserved by the quotient. We
think nothing of treating a fraction as a pair of integers, even though it’s really an
equivalence class of such. We just make sure not to manipulate them in a way that
violates the equivalence relation: we allow definitions like a/b+c/d = (ad+bc)/bd
but not like a/b�c/d = (a + c)/(b + d). Since any Lorentzian manifold gives a
generally covariant Lorentzian manifold, and any equality of Lorentzian manifolds
gives an equality of generally covariant Lorentzian manifolds, we can usually work
with regular Lorentzian manifolds, just as we work with pairs of integers when treat-
ing fractions. Moreover, if we have an equality (ua(φ), ψ) : (M, g) = (M ′, g′)
of generally covariant Lorentzian manifolds then there is a corresponding equality
(ua(ψ ◦ φ), refl(g′)) : (M, g) = (M ′, g′) of Lorentzian manifolds, so if we only
care about whether there is some equality or other between two objects, Lorentzian
manifolds and generally covariant Lorentzian manifolds amount to the same thing.
We can only see the difference if we pay attention to particular equalities.

Though the differences are inconspicuous in many contexts, they are crucial in
others. The defining difference is that for a fixed manifold, two generally covariant

11 This is essentially the claim that the initial value problem of GR is well-posed [25, Theorem 10.2.2].
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metrics g and g′ can be equal in more than one way. This feature is most familiar from
classical gauge theories, and so we should expect the difference between Lorentzian
manifolds and their generally covariant cousins to manifest wherever gauge structure
manifests—e.g., in perturbation theory, in initial value problems, and in the structure
of fields “at infinity”. Indeed, the claim that “diffeomorphisms comprise the gauge
freedom of general relativity” [25, p. 438] is textbook GR, and this freedom is found
in all three of these situations [25, Eqs. 4.4.9, 10.2.32, p. 467 fn. 2]. We lack the space
to deal with all of these, so let’s consider just the first.

In the weak-field approximation of GR, we consider the infinitesimal neighborhood
of a flat model likeMinkowski space (R4, η). To do this, we fix a backgroundmanifold
like R4 and some metric like η, and we parametrize the space of configurations on R4

by writing any metric g as g = η + γ . If we are working with Lorentzian metrics,
then the equality facts in this space are trivial: two metrics η + γ and η + γ ′ are equal
just in case γ = γ ′. On the other hand, if we are working with generally covariant
Lorentzian metrics, then the equality facts in this space are more complicated: an
equality of metrics η + γ and η + γ ′ is a hole diffeomorphism φ : R4 → R

4 such
that φ∗(η+γ ) = η+γ ′. This parametrizes the neighborhood of Minkowski space, so
to restrict attention to infinitesimal perturbations we demand that γ be infinitesimal.
If we are working with Lorentzian metrics, then the equality facts don’t change: two
metrics are equal just in case γ = γ ′. But if we are working with generally covariant
Lorentzian metrics, then the equality facts must also become infinitesimal. So an
equality between η + γ and η + γ ′ with γ and γ ′ infinitesimal is given by a vector
field ξ such that γ +£ξ η = γ ′, where £ξ is the Lie derivative along ξ . To decide which
of these is the correct space of infinitesimal perturbations off of Minkowski space we
just need to check what the equality facts about perturbations are according to a GR
textbook. As Wald [25, Eq. 4.4.9] says, a gauge transformation (in our parlance, an
equality) in this context is a transformation taking γ to γ + £ξ η. So the correct space
of perturbations comes from generally covariant Lorentzian metrics.12

6 Conclusion

I have argued that even if we take isomorphic models of GR to represent the same
spacetime we have something to learn from Earman and Norton’s hole arguments. I
do not think their verificationist argument goes through, for reasons similar to those
recently advanced byWeatherall [27]. But, I have argued, a response to the verification-
ist argument needn’t directly carry over to a response to the indeterminism argument.
If one attends to the isomorphism structure of the theory, and if one treats it in the
spirit of HoTT, then the indeterminism argument still poses a problem.

The natural solution is to move to what I have called generally covariant Lorentzian
manifolds. On this reconstruction, the hole argument shows that any diffeomorphism-
invariant dynamics on an ordinary Lorentzian manifold will lead to indeterminism,

12 This discussion of perturbation theory in GR in HoTT is admittedly far too brief to be convincing. I
gesture at it only to indicate that general covariance in my sense has substantive consequences and they are
the correct ones. A detailed treatment of perturbation theory, as well as initial value problems and boundary
conditions, will be given elsewhere.
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and that a substantive notion of general covariance rectifies this problem. I take this to
be an advantage of my account insofar as it corroborates the feeling many physicists
have that general covariance is a substantive notion, and that the hole argument tells
us something important about it [3]. In most cases, the difference between generally
covariant Lorentzian manifolds and their plainer cousins is irrelevant. But when the
difference makes a difference—for example, in perturbation theory—physicists use
the generally covariant structure.
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