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Abstract
This is an essay about general covariance, and what it says (or doesn’t say) about
spacetime structure. After outlining a version of the dynamical approach to spacetime
theories, and how it struggles to deal with generally covariant theories, I argue that we
should think about the symmetry structure of spacetime rather differently in generally-
covariant theories compared to non-generally-covariant theories: namely, as a form of
internal rather than external symmetry structure.
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1 Introduction

This essay is about the feature of General Relativity from which the hole argument
springs: namely, general covariance. Famously, Einstein took the general covariance
of the theory to express its commitment to a notion of “general relativity”, i.e., of the
equivalence of all states of motion (just as the special covariance of special relativity
expressed the equivalence of all inertial motion). In general, philosophers have been
unpersuaded by Einstein’s claim, pointing to two problems in particular: the fact
that general-relativistic spacetimes have a covariant derivative operator, and hence the
resources to distinguish between inertial and non-inertialmotion; and the fact that other
theories (e.g. special relativity) can also be given a generally covariant formulation,
which suggests that general covariance per se cannot be a physically significant feature
of a theory.

In this paper, I want to do two things. First, I want to retrace why one might think
that general covariance signals something like a commitment to the general relativity
of motion, by drawing on the so-called “dynamical approach” to spacetime structure.
Second, I argue that in trying to resolve the problems posed by this way of approaching
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general covariance, we are naturally led to a somewhat different way of analysing the
symmetry structure of spacetimes: namely, an analysis of it as a form of “internal”
symmetry structure.

To this end, the paper proceeds as follows. Section 2 introduces the notion of
an external symmetry. Section 3 lays out (one approach to) the dynamical approach
to spacetime theories. Section 4 applies these ideas to General Relativity, thereby
illustrating the problem with trying to apply these ideas to generally covariant the-
ories. Section 5 concerns how spacetime symmetries can be thought of as internal
symmetries. Section 6 concludes, by considering the question of how to distinguish
spatiotemporal from non-spatiotemporal structure.

2 External Symmetries

Let us start with an example: the theory of Maxwell electromagnetism on Minkowski
spacetime. Models of this theory consist of a two-form Fab and a vector field Ja on
Minkowski spacetime M (i.e. a flat affine space equipped with a Minkowski metric
ηab), satisfying the equations

∇[a Fbc] = 0 (1a)

ηabηcd∇a Fbc = Jd (1b)

where ∇ is the flat affine connection on Minkowski spacetime, ηab is the inverse
Minkowski metric, and square brackets indicate antisymmetrisation on indices. Note
that here (and throughout this paper) I use Latin letters as abstract indices: so, for
instance, Ja is a vector field, not the components of that field in some coordinate
system.

An external transformation of this theory is just a diffeomorphism from spacetime
points to spacetime points. Note that any such diffeomorphism naturally induces a
transformation from one model to another, since tensor fields may be pushed forward
under diffeomorphisms.1 We can now define an external symmetry of this theory as
a diffeomorphism f : M → M which maps models of the theory to other models:
denoting the pushforward under f of a tensor field T by f∗T , f is an external symmetry
if (Fab, Ja) satisfies (1) just in case ( f∗Fab, f∗ Ja) does. For example, an arbitrary
spatiotemporal translation is a symmetry of this theory; a time-dependent rotation is
not.2

Thus, our definitions are as follows: an external transformation is a diffeomorphism
on spacetime, and an external symmetry is an external transformation which preserves
the solutions of the theory. Note, however, that these definitions work because of a
rather special feature of the theory above: that any diffeomorphism of Minkowski

1 For details of the pushforward operation on tensor fields, see e.g. [28, §1.5].
2 Note that ηab is not acted upon by the diffeomorphism, since it is considered part of the Minkowski
spacetime rather than as a field (we will soon see what happens if it is instead treated as a field). Compare
[39]’s “final version” of diffeomorphism invariance.
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spacetime naturally induces a transformation of the fields (i.e., from (Fab, Ja) to
( f∗Fab, f∗ Ja)). In general, there are theories for which this is not the case.

Consider, for example, U (1) gauge theory. A model of this theory consists of a
section ψ of a U (1) fibre bundle E (with, say, base space B), and a connection D on
that same bundle. For readers not familiar with the fibre-bundle formalism,3 a U (1)
fibre bundle is a structure consisting of a collection of “fibres”, each of which is a
one-dimensional complex vector space equipped with a unitary inner product; one
such fibre is associated to each point of B. Consequently, given two fibres associated
to distinct points of B, there is no privileged way of identifying the points of one fibre
with those of the other.4 Let π : E → B be the projection map; i.e., the map which
takes any point in any fibre to the base-space point to which that fibre is associated.

A section of the bundle maps each point of B to a point in the fibre associated to it,
and a connection identifies the points in a given fibre with the points in infinitesimally
nearby fibres.5 If we now suppose that we are given a diffeomorphism f : B → B
of the bundle’s base space, then that does not tell us how to transform a section
or connection into another section or connection. For instance, given a section ψ ,
we want to say that its pushforward under f is the section f∗ψ such that for all
x ∈ B, f∗ψ( f (x)) = ψ(x); but since f∗ψ( f (x)) and ψ(x) live in different fibres
(respectively, the fibres associated with f (x) and x), this equality does not make sense.

In this context, therefore, we cannot define an external transformation as (just) a
diffeomorphismon the base space:wemust define it instead as a bundle automorphism.
A bundle automorphism is a pair of maps α : E → E and β : B → B such that
β ◦ π = π ◦ α, i.e., such that the following diagram commutes:

E E

B B

α

π π
β

In a context such as this, one usually defines the internal transformations to be the
vertical bundle automorphisms: i.e., those bundle automorphisms such that β = IdB .
That makes it tempting to define the external transformations to be the non-vertical
bundle automorphisms. Note, however, that doing so would mean that the external
transformations do not form a group; for this reason, it strikes me as better to identify
the external transformations with the bundle automorphisms, whether vertical or non-
vertical (which, admittedly, has the consequence that internal transformations become
a subspecies of external transformations).

I raise this issue only to warn the reader that care is needed in speaking of external
transformations in the context of a general gauge theory. For the purposes of this
essay, however, we can put this issue aside, by limiting our attention to those fibre

3 Introductions to fibre bundles for philosophers may be found in [51, Appendix 1] or [21, Appendix B].
4 Cf. Maudlin [29].
5 That is, with the points whose associated base-space points are infinitesimally close to the original fibre’s
base-space point. Note that this doesn’t typically yield an identification of arbitrary points of fibres with
one another: unless the connection is “flat”, the identification between finitely separated fibres will be
path-dependent.
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bundles in which any diffeomorphism on the base space is uniquely associated with a
bundle automorphism. The paradigm examples are tensor bundles (i.e., fibre bundles
whose fibre at each point is the set of tensors of a given rank). In a tensor bundle, any
diffeomorphism on the base space is naturally associated with a bundle automorphism
of the tensor bundle: namely, the pushforward. Thus, it is because the data for our
Maxwell theory consisted of sections of tensor bundles (i.e., a section Ja of the tangent
bundle and a section Fab of the rank-(0, 2)-tensor bundle) that we could identify
external transformations with diffeomorphisms on the base space. More generally,
we can make this identification provided that we are working with so-called natural
bundles: a natural bundle is a fibre bundle which is associated to the r th-order frame
bundle, for some finite r .6 Crucially, in a natural bundle E

π→ B every diffeomorphism
f : B → B of the base space is associatedwith a bundle automorphism f # : E → E .7

The above constitutes what I’ll call the coordinate-free approach to thinking about
external symmetries: given some theory set on a natural bundle, an external trans-
formation is a diffeomorphism of the base space, and an external symmetry is an
external transformation which maps models of the theory to other models. In the
example ofMaxwell electromagnetism, the external symmetries are precisely the auto-
morphisms of Minkowski spacetime (i.e., the external symmetries are the Poincaré
transformations). In general, though, the external symmetry group may be larger than
the automorphism group of the base space.

For example, consider the theory of Newtonian electromagnetism.8 In this theory,
the base space isNewtonian spacetime: the space T ×X , where T is a one-dimensional
Euclidean space and X is a three-dimensional Euclidean space (recall that a Euclidean
space is an affine space whose associated vector space carries a Euclidean inner prod-
uct).9 The kinematically possible models are also given by a two-form Fab and vector
field Ja , albeit on Newtonian rather than Minkowski spacetime; and the dynamically
possiblemodels are thosewhich satisfy the same equations (1) (whereηab is the inverse
of the Minkowski metric definable from Newtonian spacetime).10 For this theory, the
external symmetries are still the Poincaré transformations (on Newtonian spacetime
this time), but the automorphisms of the base space are the Newton transformations
(a strict subgroup of the Poincaré transformations).11

It is widely held that in cases such as this, the fact that the external symmetry group
outstrips the automorphism group of the base space shows there to be something defi-
cient about the theory: that is, that this shows the theory to contain “surplus structure”.
Exactly how this “symmetry-to-reality” argument goes, and what kind of response is

6 See Kolář et al. [25], and especially chapter 12, for an exposition of the theory of natural bundles.
7 Cf. the notion of an induction in Curiel [15].
8 This theory is discussed in [17, §3.5] and [19, § III.5].
9 Note that this simpler definition of Newtonian spacetime (which I learned from David Wallace) still
captures the relevant structure: the persistence of points of absolute space is represented by the projection
πX : T × X → X (i.e. two points (t, x) and (t ′, x ′) of Newtonian spacetime correspond to the same
persisting points of absolute space just in case x = x ′).
10 Let δTab be the Euclidean metric on T , δXab be the Euclidean metric on X , and any vector ξa over T × X

decompose as (ξaT , ξaX ). Then we may define ηab by ηabξ
aζ b := δTabξ

a
T ζ bT − δXabξ

a
X ζ bX .

11 See Barrett [4].
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appropriate, are matters of controversy. Since the details of that controversy are not
relevant to our purposes, I pass over them here.12

3 The Dynamical Approach

In a slogan, the dynamical approach to spacetime structure holds that (external) dynam-
ical symmetries are prior to spacetime structure.13 This slogan raises two immediate
questions. The first is what this slogan means. The second is what this slogan could
possibly mean, given the story laid out above. If the symmetries of the dynamics
are prior to the structure of spacetime, then that suggests that we must specify the
dynamics before specifying the spacetime. But that looks straightforwardly impos-
sible. Without first specifying a spacetime, how are we supposed to write down the
dynamical equations of the theory? For instance, the equations (1) contain terms such
as ∇ or ηab. Without commitment to a spacetime adequate to define those terms, what
are they supposed to refer to?14

The way out, however, is to recognise that there is an alternative way to specify
what spacetime structure one is committed to. On the approach outlined in Sect. 2,
one specifies spacetime structure by starting with a manifold, and building it up from
there. On the dynamical approach, we will specify spacetime structure by starting
with a coordinate system, and cutting down from there. This will presuppose that the
spacetime structure is some substructure of R4, but not which substructure. (Note that
these two strategies correspond, respectively, to Riemannian and Kleinian ways of
characterising geometrical structure.)15 Wallace [49] provides an extended defence of
the use of coordinate-based methods in the context of spacetime theories; the below
is closely modelled on Wallace’s treatment.

For a spacetime theory given in coordinates, we take as given 4 independent vari-
ables (t, x, y, z) and some number q of dependent variables.16 In addition, we specify
transformation rules for the dependent variables, associating every diffeomorphism
f : R4 → R

4 with a smooth map f # : R4 × R
q → R

q . For example, one might
specify that four dependent variables v0, v1, v2 and v3 are to transform “as a (four-
)vector”: that means that a transformation xμ �→ x̃μ of R4 is to be accompanied by
the (R4-dependent) transformation

vμ �→ ∂ x̃μ

∂xν
vν . (2)

Note that I use Greek letters (μ, ν, α, β, etc.) as non-abstract indices.

12 For readers who are interested in these controversies, see Friedman [19], Earman [17], Saunders [44],
Caulton [14], Dewar [16], as well as the papers in Brading and Castellani [8] and references therein.
13 The primary text for the dynamical approach is Brown [10]; but see also Brown [9], Brown and Pooley
[11], Read et al. [40], and Brown and Read [12].
14 Cf. Norton [35].
15 Norton [34] gives a detailed account of how these strategies feature in the work of Klein and Riemann.
16 For a broader discussion of symmetries in the context of coordinate-based theories, see Olver [36].
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The transformation rules are there to encode the nature of the changes to the inde-
pendent variables under coordinate changes, and hence to determine the geometric
character of the objects being described.17 This corresponds to thinking of such trans-
formations as “passive” transformations. But we also use the transformation rules to
do “active” transformations, by telling us how to move such objects around on the
manifold. Thus, given a transformation f : R4 → R

4, any function φ : R4 → R
q

can be transformed into the pushforward f∗φ, defined (for any x ∈ R
4) by

( f∗φ)( f (x)) = f #(x, φ(x)) . (3)

It is straightforward to show that, if the variables vμ transform as a vector (i.e. have
(2) as their transformation rule), then (3) is the standard definition for the pushforward
of a vector field.

We take the dynamics of the theory to be given by some set of differential equations
over the dependent variables (with respect to the independent variables); a model of
the theory is a solution to these equations. As before, an external transformation f is an
external symmetry if it preserves the dynamics: i.e., if for any function φ : R4 → R

q ,
φ is a model (solution) if and only if f∗φ is a dynamically possible model.

For example, consider the coordinate-based version of Maxwell electromagnetism.
This theory has ten independent variables: the six independent components of the anti-
symmetric matrix Fμν , and the four components Jμ (where Greek lower-case indices
such as μ, ν, α, β range from 0 to 3). The transformation rules are the following: a
transformation xμ �→ x̃μ transforms Fμν to ˜Fμν and Jμ to ˜Jμ according to18

˜Fμν = ∂xα

∂ x̃μ

∂xβ

∂ x̃ν
Fαβ (4a)

˜Jμ = ∂ x̃μ

∂xα
Jα (4b)

The dynamical equations for this theory are

∂[αFβγ ] = 0 (5a)

ηαμηβν∂αFμν = Jβ (5b)

where ημν is the inverse of the matrix of coefficients

ημν =

⎧

⎪

⎨

⎪

⎩

1 if μ = ν = 0

0 if μ 	= ν

−1 otherwise

(6)

17 This corresponds to the older way of thinking about geometric objects, prior to the introduction of natural
bundles in Nijenhuis [32]. For more on this tradition, see Schouten and Haantjes [46] and Nijenhuis [31];
for modern discussion of this tradition, see [2, chap. 1] and Pitts [38].
18 Of course, these are just the expected transformation rules for a rank-(0, 2) tensor and a vector. But the
rules are not to be thought of as manifestations of the fact that we are representing (independently defined)
geometric objects in coordinates; rather, the rules are constitutive of those objects. This is why I specify the
rules explicitly.
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Aswith the coordinate-free version (1) of this theory, the (external) dynamical sym-
metries are the Poincaré transformations: in this context, we characterise the Poincaré
transformations as those transformations xμ �→ x̃μ such that ∂ x̃μ/∂xα is constant
and SO(3, 1)-valued, i.e. such that

∂ x̃μ

∂xα

∂ x̃ν

∂xβ
ηαβ = ημν . (7)

To be clear, the fact that this is the symmetry group of the theory is not supposed to
be obvious from the mere statement of the theory’s equations: in general, working out
the symmetry group of some dynamical equations is a difficult and strenuous task.19

Now, note that we have identified the symmetries of this theory without explicitly
committing to a specific structure for spacetime. Thus, we can take the dynamical
approach to be a prescription for extracting spacetime content from a theory: namely,
that the spatiotemporal commitments of a theory are exactly those aspects ofR4 which
are invariant under the dynamical symmetry group. Note that this is, in a certain sense,
more radical than the symmetry-to-reality inference. The proposal here is not merely
that there is something virtuous about theories in which the spacetime symmetries and
external symmetries are in tune (and something vicious about theories in which they
are not); rather, the proposal is thatwhat it is for something to be a spacetime symmetry
is, in effect, for it to be an external symmetry—because what it is for something to be
spacetime structure is for it to be an invariant of R4 under external symmetries.20

Thus, for example, the theory of Maxwell electromagnetism (i.e. the differential
equations (5), supplemented by the appropriate transformation rules), is committed to
Minkowski spacetime: for Minkowski spacetime is exactly the structure of R4 invari-
ant under Poincaré transformations.21 However, it can seem a little as though we have
obtained a reductio of the dynamical approach: surely it doesn’t follow just from
Maxwell’s equations that spacetime has a Minkowskian structure, rather than a New-
tonian (or Galilean) one? After all, the view that spacetime had a non-Minkowskian
structure certainly persisted after the acceptance ofMaxwell’s equations—that is what
made Einstein’s postulation of special relativity such a profound scientific achieve-
ment! Furthermore, this view led to concrete empirical predictions: predictions which
were refuted by (inter alia) theMichelson-Morley experiment, but need not have been.
Surely if Michelson and Morley had not got a null result, we would have learnt that
spacetime was not Minkowskian, the validity of Maxwell’s equations notwithstand-
ing?

The answer is that, as per usual, what was empirically tested were not the bare
theories themselves, but the conjunctions of those theories with certain auxiliary

19 See [10, chap. 4] for some of the history of how the symmetry group of Maxwell’s equations was
determined.
20 See also Myrvold [30] and Acuña [1] for further discussion and defence of the idea that the claim
“spacetime symmetries are dynamical symmetries” is analytic. As Myrvold (§5) discusses, it is not clear
to what extent Brown [10] should be interpreted as supporting this way of reading the dynamical approach
(although Brown and Read [12] declare themselves sympathetic).
21 The sense in which Minkowski spacetime is a substructure of R4 is just that all the structure of the
former can be defined in terms of the structure of the latter: that is, one can define the Minkowski metric in
R
4 by ημνξμζν := ξ0ζ 0 − ξ1ζ 1ξ2ζ 2 − ξ3ζ 3.
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hypotheses. In this example, the auxiliary hypotheses concerned the behaviour of
rigid mechanical objects. In particular, pre-relativistic physics assumed that if a rigid
rod’s equilibrium state when at rest with respect to the ether is such as to occupy
a region of length L , then its equilibrium state when in motion with respect to the
ether is still to occupy a region of length L . In other words, what was refuted by the
Michelson-Morley experiment was not merely electrodynamics set upon Newtonian
spacetime,22 but that theoryplus anumber of assumptions about howNewtonian space-
time bore on the mechanics of rigid bodies. In the terms of the dynamical approach,
this amounts to assuming that the dynamics of rigid bodies are governed by dynamics
exhibiting Galilean symmetry, not Lorentz symmetry. As a consequence, the com-
bined theory, including electromechanical coupling, exhibited Newtonian symmetry
(since theNewton group is the common subgroup of the Lorentz andGalilei groups).23

This illustrates the sense in which, on the dynamical approach, spacetime structure is
associated with universality: the nature of spacetime depends upon the totality of all
dynamical interactions.

Finally, note that this approach to determining spacetime structure also puts the
covariance of the dynamics in contact with relativity ofmotion. If we apply the dynam-
ical approach, then we will be led to a spacetime in which physically significant facts
must be invariant under the covariance group of the dynamics. Where that covariance
group includes time-dependent spatial transformations, then it follows that the only
physically significant aspects of the motion of a body are those which are invariant
under such transformations. Thus, in the case of special-relativistic theories, we find
that the velocity of a body cannot be of absolute physical significance, since it is not
invariant under the Poincaré symmetries of the theory: in other words, we determine
that the theory obeys a principle of special relativity.24

4 General Covariance

Let us now try applying this story to the case of General Relativity. One immediate
complication is that General Relativity allows for much more exotic possibilities for
the global structure of spacetime than do others—in particular, it allows that spacetime
may not be homeomorphic toR4. To sidestep this, let’s just do local General Relativity:
i.e. the theory concerned with general-relativistic spacetime structure on subregions
of spacetime, where those subregions are homeomorphic to R

4. So, as per usual on
the dynamical approach, we take R

4 itself as our base space. We then take General
Relativity as a theory with 20 dynamical variables, expressed as the (independent)
components of the symmetric matrices gμν and Tμν , where gμν is non-degenerate and
of signature (1, 3); their transformation rules are

g̃μν = ∂xα

∂ x̃μ

∂xβ

∂ x̃ν
gαβ (8a)

22 Contra Friedman [19], Earman [17].
23 Barrett [4]
24 For more discussion of the relationship between symmetries and relativity principles, see Brown and
Sypel [13].
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˜Tμν = ∂xα

∂ x̃μ

∂xβ

∂ x̃ν
Tαβ (8b)

The dynamical equations are just the Einstein field equations,

Rμν − 1

2
Rgμν = 8πTμν (9)

where
Rαβ := 2∂[ρ�

ρ
β]α + 2�ρ

λ[ρ�λ
β]α (10a)

R := gαβ
(

∂[γ �
γ
β]α + �δ

α[β�
γ
γ ]δ

)

(10b)

�α
βγ := 1

2
gαμ(∂γ gμβ + ∂βgμγ − ∂μgβγ ) (10c)

with gμν being the inverse matrix to gμν .
We now note that the theory (9) is covariant under arbitrary smooth coordinate

transformations: that is, it is generally covariant (in at least one sense of that phrase).
So, applying the reasoning above, we conclude that the spacetime structure for gen-
eral relativity is the structure invariant under the group of all smooth coordinate
transformations—to wit, the manifold structure.25 It also follows that the relativity
principle associated to the theory is seemingly one of general relativity, insofar as no
aspects of motion (save for continuity and differentiability) are invariant under the
theory’s covariance group: so no such aspect of motion can be of absolute physical
significance.

Correspondingly, no differences between solutions related by such a transformation
are of physical significance. In particular, this means that if (gμν, Tμν) and (g̃μν, ˜Tμν)

are a pair of solutions to (9) related by such a transformation that goes to the identity
on the boundary of R4,26 then they should be interpreted as representing the same
state of affairs—even if we stipulate that the same coordinate system is being used
to interpret both solutions. And this is, of course, precisely the solution to the hole
argument as that problem was faced by Einstein (to wit, in terms of coordinates rather
than differential geometry).27

But, the happy resolution of the hole argument notwithstanding, this is still a prob-
lematic case for the story told in Sect. 3.28 This is so for two (interrelated) reasons.
First, there is very good reason to think that the spacetime structure of General Rela-
tivity is not captured merely by the manifold structure, but rather by the metric gab: it

25 By “manifold structure”, I mean the structure of a differentiable manifold (i.e., a set equipped with an
atlas of compatible charts).
26 The stipulation that the coordinate system go to the identity as we approach the boundary is necessary
because we are, after all, only treating some subregion of spacetime. For more discussion of the subtleties
here, see Belot [6].
27 See Norton [33] for further discussion.
28 This need not be a criticism of the dynamical approach per se, insofar as the dynamical approach could
perhaps be adapted to generally covariant theories (by, for instance, dropping the claim of ontological
reduction): see [10, chap. 5] and [24, §3]. (I thank an anonymous referee and James Read for pressing this
point.)
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is this structure, after all, that has chronometric significance (i.e., which is associated
most directly with the behaviour of rods and clocks). Putting the point in terms of
motion rather than spacetime structure, the problem is that (as many commentators
since Einstein have pointed out) General Relativity does not enact any kind of princi-
ple of general relativity of motion, given that the theory distinguishes between inertial
and non-inertial trajectories.29

Second, a wide variety of theories can be stated in a generally covariant form: in
fact, for almost all the spacetime theories we know of, there is an equivalent theory
which is generally covariant.30 For example, the electromagnetic theory considered
earlier can be expressed in generally covariant form as follows:

∇[αFβγ ] = 0 (11a)

gαμgβν∇αFμν = Jβ (11b)

Rα
βγ δ = 0 (11c)

But this threatens to undermine the possibility of Sect. 3’s ontological reduction (of
spacetime to dynamics): how can the dynamical symmetry group of a theory be a
guide to spacetime structure, if that group can be made arbitrarily large? And we most
naturally regard a generally covariant formulation of a theory as being just that—a
different formulation of the same theory. But that suggests that the spatiotemporal
commitments of a theory are not invariant under reformulation, i.e., that the theory
itself (as opposed to its various formulations) has no spatiotemporal commitments per
se.31

5 Internal Lorentz Transformations

The resolution of this problem, I suggest, lies in the following straightforward observa-
tion: that making a theory generally covariant involves treating spacetime structures as
dynamical fields. All I mean by this is that in the generally covariant version, we intro-
duce extra dependent variables to codify (what we would previously have identified
as) spacetime structure, and add new dynamical equations to ensure that this structure
behaves in the appropriate fashion. (So, for instance, I don’t mean that the spacetime
structure is “dynamical” in the Anderson-Friedman sense of varying from one model
to the next.) In the generally covariant electromagnetic theory (11), for example, our
new dynamical variables are the components gμν , and the new dynamical equation is
the condition (11c).

But this means that it would be extraordinary to expect information about the
spacetime structure to be encoded in the external symmetries of the theory. If spacetime

29 Cf. Norton [34].
30 This observation, of course, goes back to Kretschmann [26].
31 Alternatively, one could argue that the theory’s spatiotemporal commitments should be the intersection of
the commitments of its various formulations. But it’s not clear tomewhat themotivation for thismovewould
be, beyond a vague appeal to supervaluationist semantics; and in any event, the effect of such a prescription
will be to claim that any theorywith a generally covariant formulation is—atmost—committed to spacetime
being a manifold.
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is now being represented as a dynamical field, then we should expect the relevant
symmetries to be internal symmetries. So first, let us briefly review what an internal
symmetry is. As mentioned in Sect. 2, in the context of the fibre-bundle formalism an
internal transformation is a vertical bundle automorphism. In the context of coordinate-
based theories of the kind discussed in Sect. 3, an internal transformation is a map
χ : R4 → (Rq → R

q ): specifically, we associate a diffeomorphism R
q → R

q to
every point ofR4. Either kind of transformation induces a transformation on dynamical
data (i.e. on sections and connections, or on functions from R

4 to Rq ); and as before,
an internal transformation is a symmetry just in case it maps dynamically possible
models to dynamically possible models.

This suggests a way in which we might be able to maintain the dynamical approach
even for generally covariant theories: rather than (analytically) identifying the space-
time symmetries with the external symmetries, we identify them instead with (some
appropriate subset of) the internal symmetries.32 As a first pass at implementing this
idea, suppose that we consider linear transformations of gαβ : specifically, those of the
form

gαβ �→ Mμ
α M

ν
β gμν (12)

where Mμ
α is a matrix whose components are functions of R4. Now, gαβ (at any

point in the base space) is a real, nondegenerate symmetric matrix (equivalently, a
nondegenerate symmetric bilinear form onR4). Thus, there exists a group of matrices
of the form Mμ

α , such that for any matrix in the group, Mμ
α Mν

β gμν = gαβ :33

this group will, as a group, be the Lorentz group O(1, 3).34 So we could consider
transformations whose action at each point is given by such a matrix, which evidently
will preserve solutions to equations in which gαβ features (assuming we don’t change
anything else).

However, this is a little delicate. For one thing, we might be perturbed by the fact
that “applying” such a transformation is, in some sense, amisnomer: all that we have in
fact done is left every solution well alone. More seriously, though, we need to spell out
the sense in which a transformation like this “preserves the dynamics”. The problem
is that that means reassuring ourselves that we are applying the same transformation
to every solution, and seeing if that transformation maps solutions to solutions. Now,
the latter part is fine, since every solution (and non-solution) is invariant under this
transformation. However, the above transformation is not solution-independent: the
prescription was to find, for each solution (gαβ, . . . ) a specific transformation Mμ

α

such that gαβ is preserved. But that kind of fine-tuning is against the spirit of a dynam-
ical symmetry; to assess whether a certain transformation preserves the dynamics, we

32 How to pick out the appropriate subset will be addressed in Sect. 6.
33 Trivially, of course, whatever gαβ were this claim would be true for the group {δα

β }. But the existence of
a nontrivial group of transformation matrices, under which gαβ is invariant, reflects important facts about
gαβ .
34 I say “as a group” because the matrices themselves will not be the “Lorentz matrices” �

μ
ν one some-

times meets in introductions to special relativity: those are the real-valued matrices which preserve the
coefficients ημν , i.e., which preserve the diagonalised form of the metric. But as discussed below, there are
transformations which transform between ημν and gμν ; these same transformations will transform between
�

μ
ν and Mμ

ν , constituting a group isomorphism between the two sets of matrices.
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need to be able to apply one and the same transformation to different models of the
dynamics.35 Moreover, note that this second problem isn’t that we somehow under-
specified things: in general, a transformation which preserves gαβ on one solution will
not preserve it on another.

However, we can do things slightly differently, by reformulating our theory some-
what. Consider again a specific gαβ . At any given point xμ ∈ R

4, Sylvester’s law of
inertia tells us that we can find a matrix e�

α , where 0 ≤ � ≤ 3, such that

gαβ = e�
α e

�
β η�� (13)

where η�� is the diagonal Minkowski matrix we previously labelled as ημν (in (6)).
The reason to use uppercase Greek letters (e.g. �,�) as indices arises from the trans-
formation law for e�

α . Clearly, we want a transformation law that will preserve the
transformation law (8a) for the metric gαβ . Since η�� is a fixed matrix,36 and so
invariant under coordinate transformations, the transformation rule for e�

α under the
coordinate transformation xμ �→ x̃μ must be

ẽ�
α = ∂xμ

∂ x̃α
e�
μ (14)

The use of an uppercase Greek index also enables us to stipulate—without risk of
ambiguity—that the inverse matrix to e�

α is eα
� (so e�

α e
α
� = δ�

� , and eα
�e

�
β = δα

β ).
We can now interpret the generally covariant electromagnetic theory (11) as equa-

tions for the dynamical variables e�
α , Fμν and Jα . This theory has the following

(internal) dynamical symmetry:

e�
α �→ ��

�e
�
α (15)

where ��
� is an SO(3, 1)-valued function of R4: that is, it is a map R4 → R

16 such
that at any point p ∈ R

4,

��
�(p)��

ϒ(p)η�� = η�ϒ (16)

The reason that (15) is a symmetry of (11) is straightforward: themetric gαβ is invariant
under the transformation (15) (and as a result, so are the structures derived from it
such as ∇). Of course, it also follows that the other theories we have formulated in
terms of a Lorentzian metric (and associated connection), such as (9), will admit the
transformation (15) as a symmetry.

Let us nowaskwhat kindof surplus structure the symmetries of these theories reveal.
First, we should take a moment to analyse the implications of the general covariance
of these theories: what does that imply about the geometric structures being employed
here? As is well-known, gαβ can be interpreted as the components of a metric tensor,
and Tαβ as the components of a tensor. But it is worth saying something about the

35 Without a proviso of this sort, we would end up counting arbitrary permutations of the space of models
as dynamical symmetries (cf. Belot [5]’s “Fruitless Definition” of symmetry).
36 It is a “confined object” in the sense of Pitts [37].

123



306 Foundations of Physics (2020) 50:294–318

fields e�
α . Given the coordinate transformation (14), we should interpret each e�

α (for
each value of �, i.e. for � = 0, 1, 2, or 3) as representing a covector field e�

a ; and we
should interpret each eα

� as representing a vector field ea�.
We then turn to the internal symmetry. The internal symmetry maps a quadruple of

covector fields (e0a, e
1
a, e

2
a, e

3
a) into a quadruple of covector fields (̃e0a, ẽ

1
a, ẽ

2
a, ẽ

3
a). To

give a geometrical interpretation that incorporates this symmetry, it’s easiest to think
about the effect of the transformation when we imagine “feeding” the covector fields
an arbitrary vector field Xa : the effect of the transformation is then a map

e�
a Xa �→ ��

�e
�
a Xa (17)

At each point p, this is exactly the action of a linear transformation in a vector space
which we can call Vp: that is, we are motivated to interpret e�

a Xa |p as the components
of a vector eIa X

a |p ∈ Vp (switching from non-abstract uppercase Greek indices to
abstract uppercase Roman indices).37 Moreover, since the symmetries are all Lorentz
transformations, Vp is equipped with a Minkowski inner product ηI J—i.e., it is a
Minkowski vector space. In turn, this implies interpreting the set of covectors e�

a |p
as the components of a map from TpM to Vp. And finally, we interpret the set of
fields e�

a as the components of a bundle section eIa : namely, a section of the bundle
T ∗M ⊗ E , where E is the (Minkowski) vector bundle with standard fibre V . By
analogous reasoning, we interpret ea� as the components of a section eaI of T M ⊗ E∗.

From this perspective, then, General Relativity or generally covariant Maxwell
electromagnetism are theories whose spacetime structure is given by a section of
T ∗M ⊗ E : using such a section eIa , one can define a metric on the base space gab :=
ηI J eIae

J
b , define the Levi-Civita connection from that, and then proceed as normal.

Thus, what we have effectively done here is to recover a (well-known) motivation for
the so-called “tetrad” formulation of a relativistic theory: it lets us capture the Lorentz
symmetry of generally-covariant relativistic theories.38 Although I don’t have the
space to discuss this here, it is straightforward to extend this kind of analysis to pre-
relativistic theories, so as to capture their Galilei symmetry in an analogous tetrad
formalism.39

However, there’s a worry that this is just giving with the one hand and taking away
with the other. We’ve picked up this symmetry because of our decision to express the
metric field gαβ in terms of e�

α : there is an underdetermination in which e�
α expresses

gαβ , an underdetermination which is exactly tracked by (15). Haven’t we just manu-
factured a gauge symmetry?

In particular, consider an arbitrary fibre bundle—say, theU (1) bundle discussed in
Sect. 2. We could, of course, introduce a copy of this bundle, with a “monad field”
linking the two (i.e., playing the same role that the tetrad field plays in linking the

37 My use of uppercase indices for internal vector spaces follows Weatherall [51].
38 For more on the tetrad formalism, see Rovelli [43] and Wallace [48]. Read et al. [40] offer an alternative
analysis of how to get at the Lorentz symmetry of a generally-covariant theory, by seeking to show that
minimally coupled dynamical equations will be invariant under (only) Poincaré transformations. However,
they are using a somewhat different sense of “invariant”: see Appendix 1.
39 For discussion of and references on the tetrad formalism applied to Newton-Cartan theory, see Read and
Teh [41].
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tangent bundle with E). If we then take the unitary inner product to reside on the fibres
of the new bundle, with such an inner product being induced on the fibres of the old
bundle via the monad field, then there will (of course) be an underdetermination of the
latter inner product by the former: if I apply aU (1) transformation to the monad field,
then the induced inner product stays numerically identical. But it is hard to believe
that we have really gained any new insight through this rigmarole; what is different
about the analysis above?

The difference, put simply, is that the tetrad field is not merely linking one fibre
bundle with another: it is linking a fibre bundle with the tangent bundle.40 This means
that it is a necessary step in analysing spacetime symmetries as internal symmetries
(unlike the case of theU (1) gauge theory, where the original bundle was perfectly apt
for internal transformations). To explain this fully, we need to say a little more about
why the tangent bundle is not just any old bundle. There are two perspectives from
which we can make the point: the intrinsic geometric perspective utilised in Sect. 2,
and the coordinate-based perspective used in Sect. 3.

From the geometric perspective, the difference is that the tangent space (and the
tensor bundle more generally) enters into special relationships with material on the
manifold, and those relationships will not be preserved by “internal” transformations
of the tangent bundle. For example, if we apply such a transformation to a vector field,
then the integral curves of the new vector field (if they exist) will not be the same as the
old. Similarly, if a one-form field is the exterior derivative of a function f , its transform
will (in general) not be the exterior derivative of f : indeed, its transformed version
may well not be the exterior derivative of any function whatsoever. For example, on
the punctured plane R2 \ {0}, we could transform the one-form dar into the one-form
daθ ; and the latter, its formal name notwithstanding, is not an exact one-form.

From the coordinate-based perspective, the difference is that our freedom to choose
internal coordinates is independent of our freedom to choose external coordinates.
Sure, we could (in principle) choose internal coordinates such that the inner product
on our U (1) gauge bundle has to be represented by a set of coefficients, rather than
being encoded by the natural inner product on C—but why would we bother? (Note
that there is an advantage to being coordinate-free, but essentially no advantage to
being coordinate-general, in the context of internal structure.)

By contrast, our choice of tangent coordinates is uniquely fixed by our choice of
external coordinates. That means that we are far more constrained in whether we can
find tangent coordinates with nice properties, or rather, in whether we can find tangent
coordinates with nice properties over any finite region. Riemann normal coordinates
are important because they yield tangent coordinates with nice properties at a point—
but in general, that’s the best we can do. By contrast, internal coordinates can be chosen
so as to be nice over neighbourhoods. (Note that even internal coordinates can’t be
chosen so as to be nice globally, in general: e.g. one can’t give global coordinates for
the Möbius strip. But they can be chosen so as to be nice locally: this is essentially
what is expressed by the condition of local triviality on fibre bundles.)

Either of these perspectives draws out the difference between our tetrad field and
the monad field. The monad field sets up a pointwise isomorphism between two inter-

40 Cf. Weatherall [51].
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nal vector bundles; this means that it doesn’t give us any new or helpful resources for
analysing the structure of that bundle, since we were already able to apply vertical
bundle automorphisms to the U (1) bundle. The tetrad field, by contrast, sets up a
pointwise isomorphism between the tangent bundle and an internal vector bundle (the
bundle we called E earlier). One cannot apply (nontrivial) vertical bundle automor-
phisms directly to the tangent bundle, on pain of disrupting the relationships between
vector fields (sections of the tangent bundle) and their integral curves; one cannot
change tangent coordinates without changes to the external coordinates. However, we
can apply vertical bundle automorphisms to the auxiliary bundle E (provided wemake
appropriate compensating changes to eIa , so that those changes do not “feed through”
into the tangent bundle); and we can always use internal coordinates for E in which
its Lorentzian inner product is expressed by the fixed matrix η��, even as we change
the external coordinates (provided we make appropriate compensating changes to e�

μ ,
so that the external coordinate changes do not “feed through” to the coordinates on
the auxiliary bundle).

The challenge with which we began this section ran as follows: according to the
dynamical approach, the symmetries of the dynamics should reveal the structure of
spacetime; yet this idea seemed to trivialise in generally covariant theories, since their
external symmetry group is the full diffeomorphismgroup.Wehave now seen that ifwe
turn our attention to internal symmetries, we can “rediscover” a nontrivial symmetry
structure which is naturally taken as expressing the spacetime structure. In the non-
generally-covariant electromagnetic theory of Sect. 2, it was the symmetries captured
by (7) which picked out the spacetime commitments of the theory; in the generally-
covariant electromagnetic theory (11), it is the symmetries captured by (15) which do
so. Hence, there is good reason for advocates of the dynamical approach to broaden
their gaze so that it includes internal symmetries as much as external symmetries—
and, in the context of generally covariant theories, to think that spacetime structure is
expressed by the former rather than the latter.

6 Identifying Spacetime Structure

However, there is still one issue that needs addressing. Suppose that we carry through
the above analysis. At the end, we are left with some fields, residing on a four-
dimensional manifold. Some of these fields (such as gab) are spatiotemporal in
character; some of them (such as Fab) are not. What makes it the case that gab is
a part of the “structure of spacetime”, in a way that Fab is not? Previously, we could
have said: because the spacetime structure is whatever substructure of R4 is invariant
under external symmetries; but now that we are taking spacetime structure to be a
species of internal structure, this answer will no longer do. Having severed the link
between external symmetries and spacetime structure, we must find some other way
to determine how spacetime structure is distinguished from other forms of physical
structure: equivalently, given the storywe have told, wemust determine how the space-
time symmetries are to be identified within the broader class of internal symmetries
to which they now belong.
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I don’t have a definitive answer to this question; it is too large a topic to be set-
tled here. All I’ll do here is sketch a potential answer, based on Knox’s “spacetime
functionalism”—just to show that the advocate of the dynamical approach does have
resources to draw upon in answering it. The spacetime functionalist holds that a cer-
tain kind of physical structure is spacetime in virtue of playing the role of spacetime.
The best-known candidate for spacetime’s functional role is Knox’s view, that “the
spacetime role is played by whatever defines a structure of local inertial frames”.41

The idea here is that the characteristic spatiotemporality of the metric arises via the
role of the Strong Equivalence Principle, formulated by Brown as follows:

There exist in the neighbourhood of each event preferred coordinates, called
locally inertial at that event. For each fundamental non-gravitational interaction,
to the extent that tidal gravitational effects can be ignored, the laws governing
the interaction find their simplest form in these coordinates. This is their special
relativistic form, independent of spacetime location.42

By way of reminder, locally inertial coordinates (also referred to as Riemann normal
coordinates) at p are coordinates such that in those coordinates, (i) gμν = ημν and (ii)
�

ρ
μν = 0.43 Note that the caveat “insofar as tidal forces can be ignored” is important:

as Read et al. [40] discuss, laws containing curvature terms will not reduce to the
special-relativistic laws in locally inertial coordinates (since derivatives of the metric
tensor of order higher than one will, in general, not vanish in such coordinates).

However, this proposal deserves unpacking a littlemore.What is it about these coor-
dinates that makes the nomenclature “locally inertial” appropriate? It cannot merely
be the fact that they are Riemann normal coordinates, since that will not generalise to
other spacetime contexts (in a pre-relativistic spacetime, for instance, where spacetime
structure is not encoded in a metric tensor). More subtly, it cannot just be that these are
coordinates in which the connection coefficients vanish and the spacetime tensors take
a diagonal form; although this would cover pre-relativistic spacetimes, it presupposes
that we can identify which terms in our field equations are to be interpreted as “con-
nection coefficients”, which is just the question of how to distinguish spatiotemporal
from non-spatiotemporal structure.44

41 Knox [24]. Note that as Robertson [42] observes, almost any theoretical quantity could be taken to be
functionally defined by its total role in that specific theory; the hard (and interesting) project is finding
smaller functional roles that are present in distinct theories, and so let us identify physical quantities across
theories.
42 [10, p. 169]
43 The existence of such coordinates is related to the considerations raised in Sect. 5: if ξμ are Riemann
normal coordinates for p, and xμ are our original coordinates, then the matrix given by the value at p of
∂ξμ/∂xα will diagonalise the metric in the manner of equation (13). But the presence of inertial coordinates
is stronger than the possibility of such a diagonalisation, for two reasons: (a) diagonalising amounts to a
choice of basis at each point, with no requirement that it be a coordinate (or “holonomic”) basis; (b) inertial
coordinates have the further property that the connection coefficients vanish.
44 In the context of Newtonian gravitation, for instance, Knox [23] argues that the local inertial frames
are the free-fall frames, and hence that the spacetime structure is encoded in the curved Newton-Cartan
connection rather than the flat Galilean connection: in other words, that the connection coefficients are not
the Galilean coefficients �

ρ
μν , but rather the Newton-Cartan coefficients �

ρ
μν + tμνhρσ ∇σ φ (where φ is

the gravitational field).
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Fortunately, Knox has provided an analysis or definition of what inertial frames
are:45

1. Inertial frames are frames with respect to which force free bodies move with
constant velocities.

2. The laws of physics take the same form (a particularly simple one) in all
inertial frames.

3. All bodies and physical laws pick out the same equivalence class of inertial
frames (universality).

As Knox discusses, the application of this definition to General Relativity is a delicate
matter (the above is intended, in the first instance, as a definition of inertial frames
in Newtonian and special-relativistic theories). But it fits well with the analysis given
above, since it helps us answer the question: why is the tetrad field necessary? The
tetrad field serves (among other things) to establish a pointwise isomorphism between
the Minkowski vector bundle and the tangent bundle. (When it is being thought of in
this form, one often refers to the tetrad field as a “solder form”, as it “solders” the
Minkowski vector bundle to the tangent bundle.) But why is this needed? What would
be insufficient about a theory of a connection on a Minkowski vector bundle? I claim
that a part of the answer (at least) lies in the fact that such a theory would be unable to
draw any distinction between natural and unnatural motion: as with any other theory
of a connection on a fibre bundle, a connection on a Minkowski vector bundle does
not pick out certain curves as privileged geodesics.

Ironically, this means that in most of the theories above, we do not immediately
have the resources to identify spacetime structure—since most of these are merely
field theories, having only field equations rather than equations of motion. On this
account, it is only when they are supplemented by equations of motion (Newton’s
Second Law, the geodesic equation, force laws, etc.) that we get an understanding
of how the theory constrains the motion of bodies, and hence of what structures are
playing the spacetime role.46

This is not the only approach one could take to identifying spacetime structure,
of course. For example, Read et al. [40] focus on the metric’s chronogeometric role,
and argue that this is grounded in the local coincidence of the dynamical and metrical
symmetries (although see Appendix 1 for some concerns about their analysis). Or,
one could look to historical approaches to the question “what is space?” for inspira-
tion: for instance, the work of Helmholtz or Weyl on the so-called Problem of Space
(Raumproblem).47 Even within spacetime functionalism, one need not subscribe to
Knox’s specific claim that the functional role of spacetime is the fact that it charac-

45 [22, p. 348]
46 That said, there are ways in which one can see the role of spacetime structure in the field equations as
being what gives rise to such equations of motion [52]: one can use a variational analysis to ground a certain
kind of conservation condition, and then employ that condition to prove an appropriate equation of motion.
The best-known example of this kind of construction is the geodesic theorem in GR, but one can similarly
prove a geodesic theorem in Newtonian theories [50], and the Lorentz force law in electromagnetism [20].
47 von Helmholtz [47], Weyl [53]; for contemporary discussion, see Bernard [7], Scholz [45], or Eisenthal
[18].
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terises inertial frames.48 All I have sought to show here is that there exists at least one
way of determining what represents spacetime that is compatible with the argument
of Sect. 5.

7 Conclusion

To summarise, the dialectic of this paper runs as follows:

• On a standard way of thinking about external symmetries—as automorphisms of
bundles—the dynamical approach’s central slogan (that dynamical symmetries are
prior to spacetime symmetries) appears not so much false as incoherent.

• We can resolve this by (following Wallace [49]) working with a coordinate-based
theory in the first instance, and thinking of the dynamical approach as telling us
which bits of the mathematics are merely artefacts of the coordinates.

• But even this understanding of the dynamical approach turns out to founder on
generally covariant theories: it appears to recommend that any such theory is
committed merely to spacetime having the structure of a manifold.

• This problem can be resolved by treating Lorentz symmetry—and spacetime sym-
metrymore generally—as a species of internal symmetry, associated to an auxiliary
vector bundle (soldered to the tangent bundle by the tetrad field).

• Finally, the question of how spacetime structure is to be distinguished from other
forms of internal structure is (or at least, could be) answered byKnoxian spacetime
functionalism.

None of this is to claim that there might not be other ways of understanding the
dynamical approach, or of carrying out elements of what I’ve canvassed here. In
particular, my treatment of the last point has been very programmatic; I hope to discuss
this issue more fully in future work.

Acknowledgements I’m very grateful to the participants in the conference “Thinking About Space and
Time” (University of Bern) for their comments and questions, and to James Read and two anonymous
referees for comments on earlier drafts.

Covariance, Unvariance, and Transformations

[40, Appendix A] seek to show that “minimally coupled dynamical equations in GR
manifest local Poincaré symmetry, whenwritten in normal coordinates at any p ∈ M .”
Here, I critically review their proof.

Read et al. begin by assuming that any minimally coupled dynamical equation in
GR is of the form

O1 + O2 + · · · + Om = 0 (18)

where each Oi is either:

• a tensor;

48 Lam and Wüthrich [27], Baker [3]
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• a partial derivative of a tensor; or
• a partial derivative of a connection coefficient.

The reason to exclude (undifferentiated) connection coefficients—according to
Read et al.—is that we are assuming the equation (18) is written in normal coor-
dinates, in which (at the point p under consideration) connection coefficients vanish.
However, this already risks introducing confusion. There is, I claim, a significant dif-
ference between an equation involving a partial derivative, and an equation involving
a covariant derivative whose connection coefficients happen to be zero, even though
the formal expression of these two equations will be the same. Specifically, two such
equations will involve different transformation rules, and hence will have different
invariance properties.

To see this, consider the two equations

∇μ J
ν = 0 (19)

and
∂μ J

ν = 0 (20)

and suppose that we are in a flat space to which our coordinates are adapted, such that
∇μ J ν = ∂μ J ν (since �

ρ
μν = 0). It follows that the two equations pick out exactly the

same class of solutions. However, if we apply a coordinate transformation

xμ �→ x̃μ (21)

then we transform ∇μ J ν as a rank-(1, 1) tensor, but transform ∂μ J ν as the partial
derivative of a components of a vector. This means that our two equations are trans-
formed into

∂ x̃α

∂xμ

∂xν

∂ x̃β
˜∇α

˜Jβ = 0 (22)

and
∂ x̃α

∂xμ
˜∂α

(

∂xν

∂ x̃β
˜Jβ

)

= 0 (23)

respectively. The first of these is equivalent to ˜∇α
˜Jβ = 0 (in the sense of having the

same solutions), and so equation (19) is invariant under the coordinate transformation;
but the second is not equivalent to ˜∂α

˜Jβ = 0, and so equation (20) is not invariant
under the coordinate transformation. Another way of seeing what’s going on here is
to observe that equation (19) is more fully expressed as

∂μ J
ν + �ν

μρ = 0 (24)

and although�ν
μρ takes the value zero, its transformation rulemeans that the coordinate

transformation (21) will (in general) transform it away from zero—in just such a way,
of course, as to cancel out the extra terms arising from the transformation of ∂μ J ν .
Equation (20), on the other hand, has no connection coefficients figuring at all (whether
zero-valued or not); so such coefficients cannot step out from the shadows to guarantee
invariance, in the way they do for equation (19).
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What this means is that we should include connection coefficients on the list of
possible ingredients for our equation: although such coefficients might be zero in the
coordinate system we start with, if we are assessing which coordinate transformations
preserve the form of the equations, we need to check that they will preserve the
vanishing of those connection coefficients! Fortunately, adding them to the list of
ingredients doesn’t make a significant difference to Read et al.’s next observation: that
for affine coordinate transformations, all the ingredients transform tensorially. Recall
that an affine coordinate transformation is a transformation of the form

xμ �→ xμ = Mμ
ν x

ν + aμ , (25)

where Mμ
ν and aμ are constant. Note that

∂xμ

∂xν
= Mμ

ν (26)

and
∂xμ

∂xν = M μ
ν (27)

where M μ
ν is the inverse to Mμ

ν (i.e. is the matrix such that Mα
μ M μ

β = δα
β ). As

is well-known, connection coefficients transform tensorially under affine coordinate
transformations (since the non-tensorial part of the transformation rule features a
second partial derivative). In the interests of space, I do not reproduce Read et al.’s
proof that partial derivatives of tensors or partial derivatives of connection coefficients
transform tensorially under affine transformations.

However, they then proceed to say

We have found that each of the Oi featuring in anyminimally coupled dynamical
equation in GR, written in normal coordinates at a point p ∈ M , is covariant—
i.e., transforms tensorially—under affine coordinate transformations. However,
we have yet to show that all such equations are invariant—i.e. take the same
form—under affine coordinate transformations. In fact, this is in general not the
case.

Prima facie, this claim is somewhat surprising. For consider again the expression (18).
In order for the left-hand-side to be well-formed, each Oi must have the same index
structure: i.e., they must have the same free covariant and contravariant indices (where
a “free index” is one that has not been contracted with another index). But if two terms
have the same index structure, then when they are transformed tensorially, they will
pick up the same partial derivative terms; owing to the linearity of tensor calculus these
terms can then be uniformlymultiplied away, as we did in observing that equation (22)
is equivalent to ˜∇α

˜Jβ = 0. And note that the presence of bound indices (those which
have been contracted) doesn’t make any difference: if we have an expression of the
form

T ...μ...
...μ... (28)
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then applying the tensorial transformation rule yields

Mμ
α M

β
μ

˜T ...α...
...β... = δβ

α
˜T ...α...

...β... = ˜T ...μ...
...μ... (29)

and so such indices “cancel out”.
Read et al. argue that this doesn’t hold, in general, “due to the potential contraction

of indices in some terms with respect to the metric” (p. 11). As an example, they give
(in my notation)

∂νF
μν = Jμ (30)

They argue that the affine transformation (25) transforms this (again, using my nota-
tion) into

Mμ
α M

ν
β M

γ
ν ∂γ F

αβ = Mμ
α M

ν
β M

σ
γ ηνσ ∂

γ
F

αβ = Mμ
α J

α
(31)

and that this latter equation is only equivalent to (30) if Mν
β M

σ
γ ηνσ = ηαβ ; i.e., if

Mμ
ν is a Lorentz transformation (and hence, (25) a Poincaré transformation).
Now, this last assertion is correct in the sense that the right-hand equality in (31) is,

indeed, only equivalent to (30) if Mμ
ν is a Lorentz transformation. But the left-hand

equality also only holds if Mμ
ν is a Lorentz transformation: that’s the only way to use

η to raise or lower indices and convert Mμ
ν into M ν

μ .49 And if we look at the leftmost
term in equation (31), we observe that—just as our general discussion of contracted
indices would lead us to expect—we have a matrix term Mν

β and its inverse M γ
ν ;

cancelling these out, we see that (30) transforms into

Mμ
α ∂βF

αβ = Mμ
α J

α
(32)

and (32) is equivalent to (30). Thus, the supposed counterexample is invariant under
arbitrary affine transformations (not just Poincaré transformations).

Indeed, it seems to me that we have good grounds to expect equations formed
from minimal coupling to be invariant under arbitrary coordinate transformations
(not just affine transformations)—i.e. to be generally covariant. The reason why the
above proof was limited to affine transformations is that, in general, partial derivatives
and connection coefficients will transform non-tensorially, and hence we will get
“extra” terms showing up in the transformed equation—terms which will prevent the
transformed equation from being equivalent to the original. But if partial derivatives
and connection coefficients show up together, then it may be that the extra terms from
the one cancel out the extra terms from the other, and we do get invariance under
(non-affine) coordinate transformations.

The condition under which such cancellations happen is, of course, that the partial
derivatives and connection coefficients in the equation are such as to form a covariant
derivative—indeed, the whole point of covariant differentiation is that the result of
applying a covariant derivative to a tensor is, itself, another tensor (as reflected in the
transformation (22)). But now consider Read et al.’s definition of minimal coupling
(pp. 2–3):

49 Assuming that this is how the left-hand equality is meant to be justified.
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Minimally coupled dynamical equations for matter fields in GR are con-
structed from dynamical equations for matter fields featuring coupling to a fixed
Minkowski metric field ηab and no curvature terms, by replacing all instances
of ηab with a generic Lorentzian metric field gab, and replacing all instances
of the torsion-free derivative operator compatible with ηab with the torsion-free
derivative operator compatible with gab.

Thus, on the face of it, one would expect a minimally coupled dynamical equation to
consist of tensors and covariant derivatives of tensors (with respect to the torsion-free
derivative operator compatible with gab)—that is, tensors and tensors. And clearly, if
all the terms Oi in (18) are tensors (with the same index structure), then (18) will be
invariant under arbitrary coordinate transformations.

The above, I claim, is the standard argument for the claim that generally covari-
ant equations—including those obtained through minimal coupling—to be invariant
under arbitrary (smooth) coordinate transformations. However, there is a different
analysis one can give.50 Suppose that our dynamical equation features the metric;
very schematically, we give it the form

· · · gμν · · · = 0 (33)

Now, if we have written this equation in normal coordinates, then gμν = ημν , where
ημν denotes the matrix of coefficients (6). What is it for this expression to “retain the
same form” under a coordinate transformation, from xμ to x̃μ? First answer: it is for
it to be (or to be equivalent to) an equation with the same syntactic structure, albeit
with tildes over everything; schematically, the form is preserved if (33) is transformed
into something (equivalent to)

·̃ · ·̃gμν ·̃ · · = 0 (34)

(A non-schematic example is given by the comparison of (30) with (32).) This first
answer is the answer that the argument above assumed, and so this is the sense in
which its conclusion holds.

Second answer: it is for it to have the same syntactic structure, and for certain
simplifying identities to continue to hold. In the case at hand, this will mean that the
form is preserved if (33) is transformed into something equivalent to (34), and—in
addition—g̃μν = ημν . In defence of this answer, one can argue that part of what
makes the normal-coordinate form the “simplest” form is that writing the equation out
in components would be considerably simpler if the metric diagonalises than if it does
not; and it is in this sense that a transformation away from normal coordinates makes
the equation into one with a less simple form, and so ipso facto one with a different
form.51

Evidently, if we require this second (stronger) sense of invariance, then any equation
featuring the metric will be invariant only under coordinate transformations which are
Poincaré in form, i.e. where

50 The remarks below draw heavily on correspondence with James Read.
51 This paraphrases an argument put to me by Read (in correspondence).
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∂ x̃α

∂xμ

∂ x̃β

∂xν
ηαβ = ημν , (35)

since it is only these equations which preserve the metric’s being diagonal.
Thus, the question becomes which of these two senses is more appropriate. The

problem with the latter sense is that it risks overgenerating, and will lead us to under-
estimate the size of a theory’s symmetry group. In the context of electromagnetic
theory on curved spacetime, for example, there will exist at any point Riemann nor-
mal coordinates with respect to which Jμ = (ρ, 0, 0, 0). Adopting those coordinates
will simplify the dynamical equations, just as the adoption of Riemann normal coor-
dinates does; and such equations will be preserved only under spatial translations and
rotations. This suggests that on the stronger sense of invariance just canvassed, the
equations of electromagnetism turn out to be invariant only under the Newton group
of transformations. This seems to me a reason to prefer the former, weaker, notion of
invariance.

References

1. Acuña, P.: Minkowski spacetime and Lorentz invariance: the cart and the horse or two sides of a single
coin? Stud. Hist. Philos. Sci. Part B 55, 1–12 (2016)

2. Anderson, J.L.: Principles of Relativity Physics. Academic Press, New York (1967)
3. Baker,D.J.On spacetime functionalism [preprint]. (2019). Retrieved 24April 2019, fromhttp://philsci-

archive.pitt.edu/15860/
4. Barrett, T.W.: Spacetime Structure. Stud. Hist. Philos. Sci. Part B 51, 37–43 (2015)
5. Belot, G.: Symmetry and equivalence. In: Batterman, R.W. (ed.) The Oxford Handbook of Philosophy

of Physics. Oxford University Press, New York (2013)
6. Belot, G.: Fifty million elvis fans can’t be wrong. Noûs 52(4), 946–981 (2018). https://doi.org/10.

1111/nous.12200
7. Bernard, J.: Riemann’s and Helmholtz-Lie’s problems of space from Weyl’s relativistic perspective.

Stud. Hist. Philos. Sci. Part B 61, 41–56 (2018)
8. Brading, K., Castellani, E. (eds.): Symmetries in Physics: Philosophical Reflections. Cambridge Uni-

versity Press, Cambridge (2003)
9. Brown, H.R.: The origins of length contraction: I. The FitzGerald–Lorentz deformation hypothesis.

Am. J. Phys. 69(10), 1044–1054 (2001)
10. Brown, H.R.: Physical Relativity: Space-Time Structure from a Dynamical Perspective. Oxford Uni-

versity Press, Oxford (2005)
11. Brown, H.R., Pooley, O.: Minkowski Space-Time: A Glorious Non-Entity. In: Dieks, D. (ed.) The

Ontology of Spacetime, vol. 1, pp. 67–89. Elsevier, Amsterdam (2006)
12. Brown, H.R., Read, J.: The dynamical approach to spacetime theories. In: Knox, E., Wilson, A.

(eds) The Routledge Companion to Philosophy of Physics, page 25. Routledge, London. Forthcoming
(philsci-archive: 14592) (2018)

13. Brown, H.R., Sypel, R.: On the meaning of the relativity principle and other symmetries. Int. Stud.
Philos. Sci. 9(3), 235–253 (1995)

14. Caulton, A.: The role of symmetry in the interpretation of physical theories. Stud. Hist. Philos. Sci.
Part B 52, 153–162 (2015)

15. Curiel, E.: On Geometric Objects, the Non-Existence of a Gravitational Stress-Energy Tensor, and
the Uniqueness of the Einstein Field Equation. Studies in History and Philosophy of Science Part
B: Studies in History and Philosophy of Modern Physics. Forthcoming. References are to draft of
February 2nd, 2017 (2017)

16. Dewar, N.: Sophistication about symmetries. Br. J. Philos. Sci. Forthcoming (2017)
17. Earman, J.: World Enough and Space-Time: Absolute versus Relational Theories of Space and Time.

MIT Press, Cambridge, MA (1989)

123

http://philsci-archive.pitt.edu/15860/
http://philsci-archive.pitt.edu/15860/
https://doi.org/10.1111/nous.12200
https://doi.org/10.1111/nous.12200


Foundations of Physics (2020) 50:294–318 317

18. Dewar, N., Eisenthal J.: A raum with a view: Hermann Weyl and the problem of space. In: Beisbart,
C., Sauer, T., Wüthrich, C. (eds.) Thinking About Space and Time. Springer. Forthcoming

19. Friedman, M.: Foundations of Space-Time Theories: Relativistic Physics and Philosophy of Science.
Princeton University Press, Princeton, NJ (1983)

20. Geroch, R., Weatherall, J.O.: The motion of small bodies in space-time. Commun. Math. Phys. 364(2),
607–634 (2018). https://doi.org/10.1007/s00220-018-3268-8

21. Healey, R.: Gauging What’s Real. Oxford University Press, Oxford, UK (2007)
22. Knox, E.: Effective spacetime geometry. Stud. Hist. Philos. Sci. Part B 44(3), 346–356 (2013)
23. Knox, E.: Newtonian spacetime structure in light of the equivalence principle. Br. J. Philos. Sci. 65(4),

863–880 (2014)
24. Knox, E.: Physical relativity from a functionalist perspective. Stud. Hist. Philos. Sci. Part B (2017)
25. Kolář, I., Michor, P.W., Slovák, J.: Natural Operations in Differential Geometry, Electronic edn.

Springer-Verlag, Berlin, Heidelberg (1993)
26. Kretschmann, E.: über den physikalischen Sinn der Relativitätspostulate, A. Einsteins neue und seine

ursprüngliche Relativitätstheorie. Ann. Phys. 53(16), 575–614 (1917)
27. Lam, V.,Wüthrich, C.: Spacetime is as spacetime does. Stud. Hist. Philos. Sci. Part B 64, 39–51 (2018).

https://doi.org/10.1016/j.shpsb.2018.04.003
28. Malament, D.B.: Topics in the Foundations of General Relativity and Newtonian Gravitation Theory.

University of Chicago Press, Chicago, IL (2012)
29. Maudlin, T.: Suggestions from Physics for Deep Metaphysics. In: Maudlin, T. (ed.) The Metaphysics

Within Physics, pp. 78–103. Oxford University Press, Oxford (2007)
30. Myrvold, W.C.: How could relativity be anything other than physical? Stud. Hist. Philos. Sci. Part B

(2017). https://doi.org/10.1016/j.shpsb.2017.05.007
31. Nijenhuis, A.: Theory of the Geometric Object. PhD thesis, Universiteit van Amsterdam (1952)
32. Nijenhuis, A.: Natural bundles and their general properties. Differ. Geom. Honor of K. Yano, Kinoku-

niya, Tokyo 317, 334 (1972)
33. Norton, J.D.: Coordinates and covariance: Einstein’s view of space-time and the modern view. Found.

Phys. 19(10), 1215–1263 (1989)
34. Norton, J.D.: Geometries in Collision: Einstein, Klein and Riemann. In: Gray, J.J. (ed.) The Symbolic

Universe: Geometry and Physics 1890–1930, pp. 128–144. Oxford University Press, Oxford; New
York (1999)

35. Norton, J.D.: Why constructive relativity fails. Br. J. Philos. Sci. 59(4), 821–834 (2008)
36. Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer-Verlag, New York (1986)
37. Pitts, J.B.: Absolute objects and counterexamples: Jones-Geroch dust, Torretti constant curvature,

tetrad-spinor, and scalar density. Stud. Hist. Philos. Sci. Part B 37(2), 347–371 (2006)
38. Pitts, J.B.: The nontriviality of trivial general covariance: How electrons restrict ‘time’ coordinates,

spinors (almost) fit into tensor calculus, and 716 of a tetrad is surplus structure. Stud. Hist. Philos. Sci.
Part B 43(1), 1–24 (2012)

39. Pooley, O.: Background independence, diffeomorphism invariance, and the meaning of coordinates.
In: Lehmkuhl, D., Schiemann, G., Scholz, E. (eds.) Towards a Theory of Spaceme Theories, number
13 in Einstein Studies. Birkhäuser, Basel (2017)

40. Read, J., Brown, H.R., Lehmkuhl, D.: Two miracles of general relativity. Stud. Hist. Philos. Sci. Part
B 64, 14–25 (2018). https://doi.org/10.1016/j.shpsb.2018.03.001

41. Read, J., Teh, N.J.: The teleparallel equivalent of Newton–Cartan gravity. Class. Quantum Gravity
35(18), 18LT01 (2018)

42. Robertson, K.: Functionalism fit for physics. Unpublished (2018)
43. Rovelli, C.: Quantum Gravity. Cambridge University Press, Cambridge, New York (2004)
44. Saunders, S.: To what physics corresponds. In: French, S., Kamminga, H. (eds.) Correspondence,

Invariance and Heuristics, number 148 in Boston Studies in the Philosophy of Science, pp. 295–325.
Kluwer, Dordrecht (1993)

45. Scholz, E.: The problem of space in the light of relativity: The views of HermannWeyl and Elie Cartan.
In: Bioesmat-Martagon, L. (ed.) Eléments d’une Biographie de l’espace Géométrique, pp. 255–312.
Presses Universitaires de Nancy, Nancy (2016)

46. Schouten, J.A., Haantjes, J.: On the theory of the geometric object. Proc. Lond. Math. Soc. s2–42(1),
356–376 (1937)

47. von Helmholtz, H.: über den Ursprung und die Bedeutung der geometrischen Axiome. In: Vorträge
Und Reden, volume 2, pp. 1–31. Vieweg, Braunschweig, 4th edition (1896)

123

https://doi.org/10.1007/s00220-018-3268-8
https://doi.org/10.1016/j.shpsb.2018.04.003
https://doi.org/10.1016/j.shpsb.2017.05.007
https://doi.org/10.1016/j.shpsb.2018.03.001


318 Foundations of Physics (2020) 50:294–318

48. Wallace,D.: Fields asBodies:Aunified presentation of spacetime and internal gauge symmetry. (2015).
arXiv:1502.06539

49. Wallace, D.: Who’s afraid of coordinate systems? An essay on representation of spacetime structure.
Stud. Hist. Philos. Sci. Part B. Forthcoming (2017)

50. Weatherall, J.O.: The motion of a body in Newtonian theories. J. Math. Phys. 52(3), 032502 (2011)
51. Weatherall, J.O.: Fiber bundles, Yang-Mills theory, and general relativity. Synthese 193(8), 2389–2425

(2016)
52. Weatherall, J.O.: Conservation, inertia, and spacetime geometry. Stud. Hist. Philos. Sci. Part B. Forth-

coming (2017)
53. Weyl, H.: Mathematische Analyse des Raumproblems. Verlag von Julius Springer, Berlin (1923)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/1502.06539

	General-Relativistic Covariance
	Abstract
	1 Introduction
	2 External Symmetries
	3 The Dynamical Approach
	4 General Covariance
	5 Internal Lorentz Transformations
	6 Identifying Spacetime Structure
	7 Conclusion
	Acknowledgements
	Covariance, Unvariance, and Transformations
	References




