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Abstract
Recent work on the hole argument in general relativity by Weatherall (Br J Philos Sci
69(2):329–350, 2018) has drawn attention to the neglected concept of (mathematical)
models’ representational capacities. I argue for several theses about the structure of
these capacities, including that they should be understood not asmany-to-one relations
frommodels to the world, but in general as many-to-many relations constrained by the
models’ isomorphisms. I then compare these ideas with a recent argument by Belot
(Noûs, 2017. https://doi.org/10.1111/nous.12200) for the claim that some isometries
“generate new possibilities” in general relativity. Philosophical orthodoxy, by contrast,
denies this. Properly understanding the role of representational capacities, I argue,
reveals how Belot’s rejection of orthodoxy does not go far enough, and makes better
sense of our practices in theorizing about spacetime.

Keywords Representation · Abstraction · Units · Isomorphism · General relativity ·
Hole argument · Models in science

1 Introduction

It is difficult to overstate just how influential Einstein’s hole argument, as revived by
Stachel [52] and Earman and Norton [24], has been within the foundations of space-
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time theories in the last three decades.1 The argument asks us to consider two isometric
relativistic spacetimes, (M, g) and (M, g̃), such that the diffeomorphismψ : M → M
giving rise to the witnessing isometry is the identity outside of an open set (the “hole”)
O ⊂ M with compact closure. A proponent of manifold substantivalism—roughly,
the view that the events of spacetime have an existence independent of their material
contents—must maintain that (M, g) and (M, g̃) are distinct because in general they
assign different metrical values to points p ∈ O . Yet the laws of general relativity
do not, from any proper initial data hypersurface outside of O , uniquely determine
whether (M, g) or (M, g̃) develops. Thus, the argument concludes, the manifold sub-
stantivalist is committed to an untoward and pernicious form of indeterminism.

Besides revitalizing discussions of the metaphysics and ontology of spacetime and
determinism, the argumentative strategies used in the hole argument have strongly
influenced a generation of literature on spacetime structure, the analysis of gauge
equivalence and symmetry, the constraints on theories of quantum gravity, and much
else [43, §10]. On its face, the argument presents a dilemma between manifold sub-
stantivalism and determinism. Earman and Norton urge the rejection of the first horn
by accepting what they call “Leibniz Equivalence,” the thesis that “diffeomorphic
models are equivalent” [24, p. 522], i.e., “they represent the same physical systems”
[43, §5]. While responses to the argument have been quite varied, essentially all of
them have been metaphysical, either denying some of the interpretational assump-
tions about general relativity needed in order to formulate the argument’s dilemma, or
explaining how a particular horn of the dilemma is metaphysically acceptable.2 This
in turn has led many to propose modifications of the formalism of general relativity
to better reflect these changed interpretational stances [22,23,31].3

Weatherall [56] has recently challenged this seeming consensus that a metaphysical
response is truly needed to the hole argument. He argues that the dilemma can be
blocked merely through more careful attention to how the mathematical structure of
models used in a physical theory constrains their capacity to represent. In particular,

isomorphic mathematical models in physics should be taken to have the same
representational capacities. [I.e.,] if a particular mathematical model may be
used to represent a given physical situation, then any isomorphic model may be
used to represent that situation equally well. [56, p. 332]

It follows that if one commits to representing relativistic spacetimes as Lorentzian
manifolds, whose isomorphisms are isometries, then there can be no ambiguity—
hence no indeterminism—regarding which metric field values are assigned in the
“hole,” for the isometry witnessing the isomorphism (which neither is nor gives rise to
the identity map on M) provides the relevant standard of comparison: the value of g
at p ∈ O is precisely the value of g̃ at ψ(p). Insofar as adopting this methodological

1 See also Earman [23]. For reviews of the vast literature on the subject, from a range of philosophical
and physical perspectives, including its bearing on broader debates about the metaphysics of spacetime, see
Pooley [45], Stachel [53], Norton [43], and references therein.
2 Exceptions includeMundy [42] and Leeds [34], to whose syntactic or formal responses Rynasiewicz [51]
has critically replied.
3 See Rynasiewicz [50] and Rosenstock et al. [47] for critical discussion of Earman’s proposal for Leib-
niz/Einstein algebras as one such formal replacement.
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thesis blocks the hole argument, it also implies that one is not dialectically forced to
modify the formalism of general relativity in response to it.

Although I agree with Weatherall’s response to the hole argument, my goal here is
not to provide an independent defense of it. Rather, I take it as a starting point and aim to
explore his thesis regarding the concept of models’ representational capacities and its
interaction with mathematical equivalence (Sect. 2), arguing in Sects. 3–5 for several
theses regarding senses in which the mathematical equivalence of models in physical
theories does constrain these capacities, and senses in which is does not.4 I then com-
pare these ideas with a recent claim by Belot [7] that some isometries—generalized
Leibnizian shifts—“generate new possibilities” in general relativity. Properly under-
standing the role of representational capacities, I argue inSect. 7, revealswhat is correct
and what is misleading in Belot’s argument, and makes better sense of our practices
in theorizing about spacetime. Analogously with the main argument in Weatherall
[56], these conclusions can be drawn directly from methodological constraints on
modeling—in particular, about representation—and do not force one to adopt meta-
physical assumptions about spacetime. Before doing so, I thus present an intermezzo
in Sect. 6 on methodology in philosophy of physics that anticipates a possible objec-
tion to this strategy in Belot [7]. Finally, I outline the conclusions of my arguments
and directions for further research in Sect. 8.

2 Representational Capacities andMathematical Equivalence

The representational capacities of a scientific model are the states of affairs that that
model may be used to represent well.5 Depending on one’s account of the ontology of
scientific representation and representational accuracy—for instance, how represen-
tations can be inaccurate yet not non-representations [30, §1]—these representational
capacities could come in degrees and might be relative to a community of users of the
scientific model (as is argued, e.g., by Suárez [54,55]). In investigating how mathe-
matical equivalence of models constrains representational capacities, though, one can
largely avoid committing to an account of representational accuracy by focusing on
structural questions about that constraint. For example: If one model may be used to
represent a state of affairs, when may another model be used to represent it equally
well? If twomodels have the same representational capacities, howmany distinct states
of affairs may they represent equally well?, etc. Asmy arguments in the rest of this sec-
tion demonstrate, one can show how equivalence ofmodels constrains representational
capacities regardless of one’s account of representational accuracy, as long as that
account allows for the possibility of making abstracted models more representation-
ally accurate by adding new properties or relations to the model.6 This is a very weak
requirement, arguably satisfied by all viable accounts of representational accuracy.

Similarly, for my purposes here I remain largely agnostic about most of the other
major problems of scientific representations, such as whether there is a distinction

4 While my arguments essentially use examples only from spacetime theories, I optimistically expect the
same theses to hold for physical theories generally and even any scientific theory sufficiently formalized.
5 Cf. Weatherall [56, p. 332].
6 This sense of abstraction is sometimes also known as Aristotelian idealization [29].
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between scientific and other kinds of representations, and the ontology of scientific
representations.7 I only assume that scientific representation is not “radically natural-
istic” [54, p. 225] in the sense that “whether or not representation obtains depends on
facts about the world and does not in any way answer to the personal purposes, views
or interests of enquirers” [54, pp. 226–7]. In particular, I take for granted that the
representational capacities of a mathematical model depend not just on the particular
set-theoretic object that constitutes it, but also how its users consider or intend it to be
part of a larger class—e.g., that a particular spacetime model represents spacetime as
a Lorentzian manifold. Most major proposals for theories of scientific representation
are not radically naturalistic in this sense.

This assumption about the relevance of the intentions of the community of users of
a scientific model also plays an important role in how I shall understand mathematical
equivalence. Two mathematical objects, considered as members of a certain class, are
deemed equivalent when they are judged to be relevantly the same as members of that
class.8 Typically, that class can be described as a category, and the relevant notion
of sameness is just isomorphism in that category.9 For example, isomorphism in the
category of Lorentzianmanifolds is just isometry, so two Lorentzianmanifolds (M, g)
and (M ′, g′) are equivalent when they are isometric, i.e., there exists a diffeomorphism
ψ : M → M ′ whose pushforward ψ∗ is such that g′

|ψ(p) = ψ∗(g|p) at every p ∈ M
[44, pp. 58, 90]. This commitment to a kind of mathematical structuralism (which
does not entail a commitment to “philosophical” structuralism for mathematics [2])
is justified by the broader mathematics community’s intentions and purposes.10 That
is, according to the relevant expert community of mathematicians, to commit to use a
mathematical model as amember of a specific category for some purpose is to consider
all isomorphic models to be equivalent for that purpose.

Having made these commitments about representational capacities and mathemat-
ical equivalence of models, I can state the three primary theses I will discuss in the
next three sections. Each of them connects mathematical features of models with con-
siderations about their ability to represent—they thus are neither purely mathematical
nor purely methodological. In particular, I shall argue against the following two theses
in Sects. 3 and 4, respectively:

Representational Uniqueness by Mathematical Equivalence (RUME) If two
models of a physical theory are mathematically equivalent, then there is a unique
physical state of affairs that they represent equally well.

7 For more on these debates, see, e.g., Frigg and Nguyen [30] and Boesch [11].
8 This is not the occasion for an analysis of the “representation-as” relation [30, §7], since the details thereof
should not matter for the use to which I shall put it.
9 A notable exception is the relevant notion of sameness for categories themselves, which is typically
the weaker concept of categorical equivalence rather than categorical isomorphism. For more on category
theory and the notions of isomorphism and equivalence therein, see, in order of increasing sophistication,
Lawvere and Schanuel [33], Awodey [3], and Mac Lane [36].
10 Cf. Weatherall [56, pp. 331–332]. The intended contrast with these intentions and purposes is with the
(possibly careless or misleading) statements of individual actors. This distinction plays an important role
in Sect. 6.
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Representational Distinctness byMathematical Inequivalence (RDMI) If two
models of a physical theory are not mathematically equivalent, then it’s not the
case that there is a unique physical state of affairs that they represent equally well.

Themain argument against RUME and RDMI turns on the observation that themodels
of physical theories are abstracted, so that one can represent more features of states of
affairs and relations between them by adding structure to models or relations between
models. This often results in breaking the mathematical equivalence between some
models.

Commitments to RUME and RDMI seem to be implicit in much of the literature
on symmetry and spacetime metaphysics, but it is possible to find explicit avowals
of various sorts. For example, Baker [4, p. 1161] writes that “a physical spacetime
should be given by a diffeomorphism equivalence class of mathematical spacetimes.”
Here, by “diffeomorphism” Baker means to indicate spacetime model isomorphisms
and so accedes to both RUME and RDMI by identifying all and only the isomorphic
spacetimes to represent the same physical state of affairs.

Earman also commits to RUME and RDMI, conditional on his preferred metaphys-
ical solution to the hole argument.

On behalf of the relationist I propose that two [spacetime] models should be
counted as equivalent (Leibniz-equivalent I shall say) just in case they can be
matched up by a generalized Leibniz-shift operation; …[such models] are dif-
ferent modes of presentation of the same state of affairs; that is, at base, physical
states are what underlie a Leibniz-equivalence class of absolutist models. [23,
p. 171]

A generalized Leibniz shift is just a diffeomorphism of the spacetime manifold and
the pushforwards of the geometric objects defined on that manifold. RUME and
RDMI then follow from the biconditional (“just in case”). Analogously, Norton [43]
writes11 that “If two distributions of fields are related by a smooth transformation, then
they represent the same physical systems. …They are merely different mathematical
descriptions of the same physical reality and so should agree on all observables.” This
is a conditional commitment to RUME, but is agnostic on RDMI.

One can also find authors who accept RUME but deny RDMI:

[T]he right interpretation of such a theory is one in which isomorphic models of
the putative semantics are equivalent (i.e., correspond to a single element of the
genuine semantics). …[W]e should not identify possible worlds with models,
but rather with equivalence classes of such models under isomorphism. …This
is consistent with the claim that some non-isomorphic models are equivalent:
isomorphism of models is sufficient for equivalence, but not necessary….12 [20,
pp. 31–2]

11 See also Earman and Norton [24, p. 522].
12 Dewar is restricting attention in this statement to theories with a first-order logical formulation, but this
conditional assertion of RUME and denial of RDMI is enough for my illustrative purposes.
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Mathematical Models States of Affairs Mathematical Models States of Affairs

(a) (b)

Fig. 1 Examples of the relationships between representational capacities and mathematical equivalence.
On the left, dots and the ellipses immediately around them represent, respectively, mathematical models
and their equivalence classes. Dots on the right represent states of affairs. The arrows are representation
relations. a Representational capacities under RUME and RDMI. Representation has the structure of a
injective map on mathematical equivalence classes to states of affairs. b Representational capacities under
REME only. Representation only has the structure of a relation between mathematical equivalence classes
and states of affairs

Here, Dewar is mindful of the possibility that models may be distinct in a category
merely because they differ on structure that one does not take to be representationally
significant.13

Although I shall argue that these assertions are mistaken, perspicuous observations
do lie behind them. Thus I shall argue for Weatherall’s thesis, as described in Sect. 1,
which is the following weakening of RUME:

Representational Equivalence by Mathematical Equivalence (REME) If two
models of a physical theory are mathematically equivalent, then they have the
same representational capacities.

The main argument for REME consists in careful application of one’s commitments
to represent a mathematical model as an element of a certain category.

Figure 1 depicts the relationships between representational capacities and mathe-
matical equivalence under the these positions—RUME and RDMI, on the one hand,
and REME, on the other.

3 Against Representational Uniqueness byMathematical Equivalence

3.1 AWarm-up: Simple Harmonic Oscillators

Consider a block of mass m sliding frictionlessly on a flat surface and connected to a
rigid wall by a Hookean spring with spring constant k. By combining Newton’s and
Hooke’s laws, we arrive at a differential equation for its position x(t),

13 See also Dewar [21].
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d2

dt2
x(t) + k

m
x(t) = 0, (1)

whose unique solution for initial conditions x(0) = x0 and (dx/dt)(0) = 0 is

x(t) = x0 cos

(√
k

m
t

)
. (2)

Consider as well an LC-circuit consisting of an ideal inductor, with inductance L , and
an ideal capacitor, with capacitance C , connected in a loop. By Kirchhoff’s laws, we
arrive at a differential equation for its current I (t),

d2

dt2
I (t) + 1

LC
I (t) = 0, (3)

whose unique solution for initial conditions I (0) = I0 and (d I/dt)(0) = 0 is

I (t) = I0 cos

(√
1

LC
t

)
. (4)

The mathematical solutions (2 and 4) to these Eqs. 1 and 3 are not just isomorphic
as real functions of a single variable, but identical, as is evident once we perform the
substitutions

(x(t), x0,m/k) ↔ (I (t), I0, LC).

Yet they do not represent the same physical states of affairs: Eq. 2 represents the
sinusoidal displacement of the block from equilibrium, while Eq. 4 represents the
sinusoidal current in the circuit. The mathematical models for each abstract away all
sorts of physical properties and relations particular to these two kinds of systems, the
inclusion of which in the model would break their mathematical identity.

This is hardly surprising. Indeed, there is no dispute over whether isomorphic (or
even identical) mathematical models can represent different physical states of affairs
for different theories. But, I shall argue that similar reasoning can be employed to
undermine RUME as applied within a single physical theory. In particular, I shall
describe three ways in which RUME fails. First, themathematical models of a physical
theory do not determine the units of the quantities to which the models can refer.
Second, these models are almost always idealized. Their abstraction or distortion
allows isomorphic (indeed, the same) models to represent imperfectly distinct states
of affairs equally well. I’ll illustrate both of these in Sect. 3.2 using the Schwarzschild
spacetimes from general relativity. Third, RUME must fail for any theory that makes
certain non-trivial modal relational claims. In Sect. 3.3, I’ll present an example of a
jointed worldline, adapted fromBelot [7], that eventually “swerves” in some direction.
Simply put, the modal relational claim is that the worldline could have swerved in a
different direction.
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3.2 Units in andMultiplicity of Schwarzschild Spacetimes

Consider a Schwarzschild spacetime in general relativity, whose metric line element
outside its Schwarzschild radius rS—the location of the spacetime’s event horizon—
can be expressed in Schwarzschild coordinates (t, r , θ, φ) as

c2ds2 =
(
1 − rS

r

)
c2dt2 −

(
1 − rS

r

)−1
dr2 − r2d�2, (5)

where d�2 = dθ2 + sin2 θ dφ2 is the two-sphere line element. Schwarzschild space-
times thus form a one-parameter family, indexed by rS ∈ (0,∞). Now, considered as
mathematical objects, the coordinates of the line element are merely numbers, and do
not distinguish between meters and kilometers, seconds and minutes. So the mathe-
matical model given by rS = 1, say, could represent the spacetime with Schwarzschild
radius of one meter, one kilometer, etc. (One need only choose temporal units to keep
the numerical value of c, the speed of light, constant.) Indeed, each mathematical
Schwarzschild spacetime can represent any physical Schwarzschild spacetime (that is,
with any Schwarzschild radius) through an appropriate choice of units. Consequently,
RUME fails: isomorphic (indeed, identical) mathematical models can represent phys-
ically distinct states of affairs.

A possible objection to this example is that it is amisapplication of general relativity,
each ofwhosemodels (perhaps implicitly) should be distinguished by a specific choice
of units. Seemingly identical models are only isomorphic when their dimensional units
are also the same. According to this objection, then, when Eq. 5 is given, the mathe-
matical model for an (external) Schwarzschild spacetimewas not completely specified
because the units of the dimensional numbers were not indicated. Once these are in fact
indicated, it would be apparent that the twomathematical models were not isomorphic.

There are several responses to this objection. Firstly, onemay appeal to the assump-
tion of the normative relevance of the intentions of the community of users of general
relativity: it simply isn’t the case that, when they specify a relativistic spacetime, they
intend to indicate the specific units in which the dimensional quantities it invokes are
expressed. The mathematical models resulting from this additional specification add
further structure to those of general relativity (Lorentzian manifolds). Secondly, even
if one were to grant this addition, the specification of “meters” or “kilometers” as
elements of the mathematical model can still be interpreted as representing, respec-
tively, kilometers or meters. Just as with the original example, each mathematical
Schwarzschild spacetime with units added can represent any physical Schwarzschild
spacetime.

Another objection to this example might be advanced from the literature on the
metaphysics of quantities. Motivated perhaps by relationism [6], one might insist that
physical quantities such as distance should be understood as grounded in or determined
in virtue of their comparative relationships [17] such as proportions [25]. Then in
fact all the mathematical Schwarzschild spacetimes would represent a single physical
state of affairs, for all the relational distance facts in each of the models are the
same.

Like with the previous objection, though, this just changes the subject. Users
of general relativity, such as astrophysicists, clearly intend to allow for physical
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Schwarzschild spacetimes with different Schwarzschild radii when they describe
the parameters of various known black holes. Furthermore, even if relationism
really is a superior metaphysical theory about distance properties, it is not forced
upon any interpretation of general relativity according to the standards of its
users.

Another way in which isomorphic (or even identical) mathematical spacetimes
need not represent a unique physical spacetime is through abstraction or idealiza-
tion [35]. To illustrate this, take again the example of a Schwarzschild spacetime.
Suppose that an astrophysicist is interested in modeling, say, a binary black hole
merger, in which two black holes of the same Schwarzschild radius coalesce into
one. Much before the collision, each of the two black holes may be modeled as its
own mathematical Schwarzschild spacetime—perhaps truncated at large distances
from the horizon—with the same Schwarzschild radius. Despite their mathemati-
cal models being identical, the physical states of affairs they represent are distinct,
for otherwise no collision could occur! In contrast with, say, a universe contain-
ing only two qualitatively identical iron spheres [10], the astrophysicist does not
intend her model to represent a universe empty of everything except two quali-
tatively identical black holes. This is possible in part because other features that
might distinguish the two black holes, e.g., their positions relative to each other and
other matter, have been abstracted away—thus the aptness of describing the repre-
sentational targets of mathematical models “states of affairs” rather than possible
worlds.

This feature invites the objection that RUME should apply when the mathematical
models represent not just (proper) states of affairs, butwhole possibleworlds.However,
such a restriction is ad hoc, and indeed nearly all the mathematical models used by
scientific theories are not intended as representing whole possible worlds. If modern
physical cosmology is an exception to this, it does not mean that the application
of general relativity is restricted to the whole universe, as the astrophysicist’s trade
exhibits.14 Even when general relativity is applied to cosmology, its models are still
idealized, abstracting or distorting features so that quite different universes can be
represented with the same mathematical model.

3.3 A JointedWordline: Directions to Swerve

Consider Minkowski spacetimes with a distinguished worldline representing, say, the
history of a particle of interest. At first the particle is unaccelerated, i.e., its worldline is
geodesic, and then at some event it begins to accelerate at a constant rate in a particular
direction. In standard coordinates (t, x, y, z) of the frame of reference determined by
the particle while it moves inertially, its worldline could be given by

14 In contrast with Belot [7], this is not to say that general relativity needs two sectors of models with
different identity conditions, one of which is used for cosmology and another for localized astrophysical
modeling, independently of the intentions of the users of those models. I will return to this point in Sect. 7.
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t(τ ) =
{

τ if τ ≤ 0,

(c/a) sinh(aτ/c) if τ > 0,

x(τ ) =
{
1/a if τ ≤ 0,

(c2/a) cosh(aτ/c) if τ > 0,

y(τ ) = 0,

z(τ ) = 0,

where τ is a parameterization of the particle’s proper time and a is its constant (proper)
acceleration after τ = 0.

In fact, the details of the worldline are not so important as the fact that it begins
to swerve in a particular direction at some time.15 Users of relativity theory, I claim,
would intend for the theory to endorse that the particle could have swerved (at the
same acceleration) in another direction, even at another time, than it did in the above
model. Such alternative states of affairs could be realized by a spatial rotation or time
translation acting on the above model. Yet the resulting model is in fact isomorphic to
the one above—the isometrywitnessing this is just that generated by the spatial rotation
or time translation. Yet if RUME were true, these mathematical models would have to
represent exactly the same state of affairs. Just as with the case of the Schwarzschild
spacetimes, whether some sort of relationism, according to which there is only one
state of affairs to represent, is metaphysically preferred is not relevant for the point
at issue, which is how to represent the theory that does take there to be many such
distinct states of affairs. Proposals to identify isomorphic but non-identical models
in various ways [4,23,31], which are often motivated by a desire for representational
uniqueness (perhaps for metaphysical ends), also must face the awkward problem of
how to represent these distinct states of affairs with a single model.

4 Against Representational Distinctness byMathematical
Inequivalence

Consider again the Schwarzschild spacetimemetric (Eq. 5) and the (proper) homothety
gab 
→ Cgab, with C > 0 and C �= 1. Let r ′

S = √
CrS , so that one can write

Cc2ds2 =
(
1 − rS

r

)
c2

(
r ′
S

rS

)2

dt2 −
(
1 − rS

r

)−1
(
r ′
S

rS

)2

dr2 −
(
r ′
S

rS

)2

r2d�2,

=
(
1 − r ′

S

r ′

)
c2dt ′2 −

(
1 − r ′

S

r ′

)−1

dr ′2 − r ′2d�2,

by setting r ′ = (r ′
S/rS)r and t ′ = (r ′

S/rS)t . Thus, a change of variables reveals
that this homothetic spacetime has a metric which can be put into the same form as

15 The example is an amalgam of Wilson’s buckling beam [59] and Belot’s Epicurean-fashioned swerve
theory [7], set in Minkowski spacetime.
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a Schwarzschild spacetime with Schwarzschild radius r ′
S . But by the arguments of

Sect. 3.2, this spacetime can in fact represent any physical Schwarzschild spacetime.
It follows that each spacetime homothetic to somemathematical Schwarzschild space-
time can represent equally well each physical Schwarzschild spacetime—i.e., with any
Schwarzschild radius.16 Yet the models are not isometric to one other, i.e., they are
not mathematically equivalent as Lorentzian manifolds, for their Schwarzschild radii,
which are coordinate-independent, are numerically distinct. Hence RDMI is false.

The core observation of the above argument is that two mathematical models of a
theory may have different mathematical structures—they may fail to be isomorphic as
members of their intended category—that do not make a difference to their representa-
tional capacities. Not all structures that make a mathematical difference betweenmod-
els needmake a representational difference—cf. the “qualified realism” of Dewar [21].

This observation also invites the objection that theorieswhosemathematicalmodels
have structure that does not make a difference to their representational capacities are
somehow defective: they represent excess structure that ought to be eliminated—e.g.,
by expanding the maps which count as isomorphisms—as with the vector-potential
formulation of electromagnetism [57,58] or symmetries more generally [19]. Such
motivations underlie a similar response to the hole argument [4,23,31]. But, as with
similar objections raised in the previous sections, this one just changes the subject:
Even if there are in general good reasons for preferring theories without excess struc-
tures over those with it, this does not preclude the latter from representing physical
states of affairs legitimately.

5 For Representational Equivalence byMathematical Equivalence

5.1 Intentional Commitments

Even though (in Sect. 3) I have argued that RUME is false, a weakened version of
it, REME, should hold: mathematically equivalent models have the same representa-
tional capacities. Much of the argument for it has already been given in Sect. 2. When
one selects a category of mathematical models with which to represent a range of
physical states of affairs, one is representing those states affairs asmodels of that sort.
Consequently, any differences, e.g., in set-theoretic construction, between mathemat-
ical models that are equivalent are representationally superfluous. To assert that one
model represents a state of affairs better than another, it seems, demands some dif-
ferences between the models to make the representational difference between them.
But if those differences are not sufficient to make the models inequivalent, then in

16 Belot [9, p. 331] suggests that homothetic spacetimes in general are “physically equivalent” for those
motivated by relationism to “deny that there are possible worlds that agree about distance ratios but disagree
about matters of absolute distance.” However, the arguments of Sect. 3.2 show that no such metaphysical
assumption is needed for this conclusion (if one reads “physically equivalent” as “having the same repre-
sentational capacities”). (A further caution: Belot describes homotheties as “scaling symmetries,” but this
description may be misleading when matter fields introducing their own length and time scales are present.)
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fact they violate the intention to represent the states of affairs as models of a certain
sort.17

By analogy, consider an architectural scale model: as a scale model, it represents
the physical dimensions and relative positions of the elements of an architectural
design.Whether the model is constructed from pieces of metal, plastic, wood, or paper
makes no difference. So if onewere presented with two dimensionally equivalent scale
models constructed from different materials, yet demanded that the twomust represent
different architectural designs, then one could not consistently be considering the
modelsmerely as scalemodels. Commitment toREME, simply put, follows fromone’s
intentional commitments to represent a state of affairs as an object from a specified
category.18

5.2 Relations between and Additional Structure onMathematical Models

One concern that might arise about accepting REME but rejecting RUME is that
it precludes a resolution of the hole argument, adumbrated in Sect. 1, in favor of
determinism. If two relativistic spacetimes, represented as Lorentzian manifolds, are
related by a hole transformation, then they are isometric, i.e., related by a map that
is an isomorphism in the category of Lorentzian manifolds. That means, by REME,
that they have the same representational capacities, but not necessarily that they must
represent the same unique physical state of affairs. Yet if this represented state of
affairs is not unique, then the problem of indeterminism seems to rise again, forcing
one to confront a metaphysical dilemma anew.

The error implicit in this concern is the assumption that Lorentzian manifolds, as
mathematical models, represent all properties of a physical relativistic spacetime (and
its “contents”). As I argued in Sect. 3, that some properties are abstracted away—
such as the representation of units or additional structure, e.g., additional fields—is
true here just as it is in essentially all other contexts of mathematical modeling and
scientific representation. Lorentzian manifolds may not exemplify properties of the
states of affairs they represent, but all the properties they do exemplify—those not
abstracted away—are the same for isomorphic manifolds. This is precisely encoded
in themathematicalmodels themselveswith the interpretation of isomorphic objects in
amathematical category as being equivalent as objects in that category. And a claim of
isomorphism is just an existence claim that there is a bijective map of a certain sort that
preserves the structures comprising the mathematical object in question. So any puta-
tive representational differences among isormorphic models, such as spacetime point
haecceities, is not reflected at all in the models themselves as members of category

17 Within the hole argument literature, Butterfield [15] and Maudlin [38,39] developed positions which are
incompatible with REME, in the sense that once one has set a particular Lorentzian manifold to represent
a spacetime, those related by to it by a non-identity isomorphism do not. (As I discuss in Sect. 5.2, whether
they do in fact depends on a choice of map by which to compare the two.) For discussion of these positions,
including their demerits, see also illuminating discussion in Rickles [46, ch. 5] and Pooley [45]. Perhaps
others have on other topics, but I have not canvassed the literature.
18 For more arguments that could be mustered in favor of REME, see Dewar [20, ch. 2]. Although Dewar’s
thesis is in fact RUME, much of his argumentation could be adapted in support for REME in light of the
considerations of Sect. 3.
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they are taken to be—there is no mathematical correlate of those differences definable
in the category.19 Thus, the fact that the mathematical models do not determine these
putative properties, rather than being surprising and substantive, is entirely expected
and benign. This sort of conclusion, that the only properties left undetermined are those
we should have expected were so, is not itself new in the literature, but they had previ-
ously been argued only through a commitment to a particular spacetime metaphysics
such as substantivalism [12–14]. By contrast, I have arrived at the same conclusion
without any such commitments about the metaphysics of space, time, or events.

Just because the elements of a collection of mathematical models are isomorphic,
however, does not mean that “equivalence” is the only interesting relationship among
them. As I argued in Sect. 3.3, one reason to reject RUME is that many distinct
states of affairs ought be represented by isomorphic mathematical models. To show
how this works, consider models of the swerving particle worldline from Sect. 3.3
and the claim that the particle could have swerved in a different direction and at a
different time than it did in a particular model representing it. First, we can describe
the former as tuples (M, η, γ ), where M is diffeomorphic to R

4, η is the Minkowski
metric, and γ : R → M is the swerving worldline. Importantly, the supplement
to the usual Minkowski spacetime structure by the worldline γ is not essential for
the models of the swerve theory to represent the many different possible histories of
the particle, but it does make them more representationally complete. (This addition
of structure, which distinguishes the “swerve” case from the hole argument case,
will play an important role in Sect. 7.) Second, let Tt : M → M represent a time-
translation of Minkowski spacetime by t units, and Rρ,φ : M → M a rotation of
angle φ about the spatial axis ρ centered on the origin. Next one must pick a standard
of comparison—a particular isomorphism in the category, which we will take as our
standard for evaluating relations between models.20 For the sake of generality, let it be
some diffeomorphism, ψ : M → M , and its pushforward, ψ∗, acting on Minkowski
spacetime.

Now, consider the model (M, η, (Tt ◦ Rρ,φ ◦ ψ)[γ ]). Because we have chosen ψ

as our standard of comparison, we act on the model by ψ−1 and its pushforward, as
is appropriate,

(ψ−1[M], ψ−1∗ [η], (ψ−1 ◦ Tt ◦ Rρ,φ ◦ ψ)[γ ]) = (M, η, (ψ−1 ◦ Tt ◦ Rρ,φ ◦ ψ)[γ ]),
checking whether it is the same as (M, η, γ ). Evidently this occurs if and only if
t = φ = 0. So, except in this case, (M, η, (Tt ◦ Rρ,φ ◦ ψ)[γ ]) represents a time
translation and spatial rotation of (M, η, γ ), relative to ψ . If, by contrast, one had
used instead Tt ◦ Rρ,φ ◦ ψ , for some fixed t , ρ, and φ as the standard of comparison,
then it would not represent any difference at all. So, changing which isomorphism one
uses as a standard of comparison can change the relations between different models,
but such changes do not affect any fact about the existence of models bearing these
relations: these are invariant under isomorphism. While each model in a collection

19 Of course, this is compatible with a skeptical attitude towards such properties but in this case no problem
about determinism arises.
20 As Weatherall [56, p. 334] emphasizes, “All assertions of relation between mathematical objects—
including isomorphism, identity, inclusion, and so on—are made relative to some choice of map.”
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may be isomorphic to each other, the collection as a whole, with the relations that hold
between them, may not be isomorphic to the singleton collection!21

Further, there is nothing representationally distinguished about any of the isomor-
phisms. In particular, it is often computationally convenient to chose the identity map
forψ , but that privilege does not extend to its representational features. Similarly, “the
fact that the identity has certain mathematical properties that distinguish it from other
maps does notmean that it is privileged for the purposes of characterizing relationships
between mathematical objects” [56, p. 334n].

These sorts of conclusions too—that, e.g., the swerve models do not represent
exactly one state of affairs, endorsing the claim that the swerve could have happened
at a different time and in adifferent direction—arenot new in the literature.But theyhad
heretofore required increasingly sophisticated investigations into the metaphysics and
interpretation of Lewisian counterpart theory [1,7,8,13,14,20,40].22 By contrast, I have
arrived at the same conclusion without any such commitments about the metaphysics
of possible worlds or the counterpart relation holding between objects in them.23

(Although a choice of diffeomorphism ψ does serve to compare models, the choice
thereof is essentially conventional, as described in the previous paragraph.) Whether
this undercuts some of the motivation for investigating the metaphysics of counterpart
theory for spacetime theory I shall let readers decide, but it is nonetheless surprising that
ametaphysical investigation can be side-stepped by a commitment to amethodological
principle, REME, about how mathematical structure constrains representation.

6 Elvis Has Left the Building

In Sect. 7, I will apply the foregoing considerations to the case of general relativity,
comparing them with recent claims by Belot [7] that some isometries “generate new
possibilities.” Before I do so, in this section I address a methodological objection to
this comparison that one could reconstruct from Belot [7].

In Sect. 2, I described how I am assuming that the representational capacities of
a mathematical model have an intentional component, in the sense that they depend
on how its users intend it to be a part of a larger class. And I have taken the relevant
class of users to be mathematicians and mathematically grounded scientists.24 It could
be objected, though, that this is the wrong class: one should look instead to the per-
haps distinct methods and practices of the broader class of relativists. Any attempt to
impose considerations extrinsic to that community’s, whether philosophical or math-

21 There is an analogy here with Muller’s [41] defense of spacetime structuralism against the charge by
Wüthrich [60] that each event of a homogeneous spacetime has the same profile of properties, so if events
are discerned from one another by such properties, then there would only be one such event. Muller simply
points out events may be discerned not only by their (absolute) properties but also their relations with other
points.
22 See also Dees [18, ch. 5] for metaphysical arguments in parallel to mine about the representation of
physical units in Sect. 3.2.
23 Cf. the position of Weatherall [56] vis-à-vis those of Butterfield [15], Brighouse [12], and Pooley [45,
§7].
24 Cf. the demand that “we need to be sure that we are using the formalism correctly, consistently, and
according to our best understanding of the mathematics” [56, p. 330].
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ematical, would be misplaced in understanding how representation and equivalence
work in general relativity, especially if the physicists outnumber philosophers and
mathematicians.

Belot explicitly endorses this kratocratic account of possibility and representation
when it comes to spacetime theory:

About some things—such as the fact that Elvis was peachy-keen—his legions
of fans could not be wrong, just because there were so many of them. Similarly,
might makes right whenever a large group of people uses a word or a concept in
a certain way…[T]here is a large community of people [physicists] according to
whose modal concepts shifts generate new possibilities—large, that is relative to
the number of philosophers interested in these matters. So shiftless philosophers
are engaged in a revisionary project of trying to construct new modal concepts
to replace ones in common use. [7, pp. 1, 9]

In Belot’s terminology, a “shift” is an isometry of spacetime—temporal and spatial
“shifts,” as we find them discussed in the Leibniz-Clarke correspondence and the
literature around it, are the most familiar examples. Philosophers who are “shiftless”
are those who deny that isometries “generate new possibilities.” In the next section
I will bring attention to what this could mean exactly in the context of RUME and
REME. But what is important here is Belot’s methodological claim about the priority
of physicists’ “modal concepts” over philosophers when it comes to spacetime theory
and the grounds for it—this is why the title of Belot [7] is “Fifty Million Elvis Fans
Can’t Be Wrong.”

I agree with Belot that it would be likely fruitless to hold physicists to methods,
standards, or ideas extrinsic to their work and goals. But one can and should engage
in critique of physicists’ use of “modal concepts” with methods, standards, and ideas
to which the physics community is already committed. Just as Belot [7, p. 23] empha-
sizes that the mathematical models of a scientific theory are not “a mere jumble”
but have structure, the commitments of a community are not well captured by bare
descriptions of what the plurality say or do. In the first place, one cannot “read off”
these commitments literally from what they say any more than one can “read off” an
interpretation of a theory from its formalism more generally [21,35]. Neither can one
do so from what they do, for this would reify blunders as well as real commitments. In
the case at hand, one of those commitments is to the use of mathematical methods and
concepts, asmuch as is possible, as they are best understoodmathematically. Although
physicists do not demand complete mathematical rigor, they are always receptive to
concerns about the misuse of well-understood mathematics.25 For example, commit-
ting a mathematical mistake is grounds for criticism in the physics community, even
if there is no explicit norm about that particular mathematical affront. In this sense,
the physics community is indeed committed to representing mathematical models as
members of a particular category in the same way mathematicians are.

It is important to emphasize that this commitment is not born from or justified by
mathematical considerations alone: the reasonsmathematicians have adapted the com-

25 The qualification, “well-understood,” is important here, for physicists’ attitude towards less understood
formalism is more liberal, as the historical use of infinitesimals, Dirac delta functions, etc., attest.
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mitments they have is partly through interactions with and sensitivity to applications
in the physical sciences. To defuse a similar concern in the context of the account of
her naturalistic metaphilosophy, Maddy [37, pp. 349–350] describes how

One might worry that this leaves the well-being of science at the mercy of
the mathematician’s whim. …Though they may not be primarily motivated
by physical applications, providing tools for natural sciences remains one
among the overarching goals of the practice of mathematics; …Contempo-
rary mathematicians—like contemporary scientists—take for granted that a tool
doesn’t work well for no reason; they tirelessly pursue explanation.

Moreover, scientists’ adherence to mathematicians’ commitments regarding, e.g.,
mathematical equivalence does not depend on some slavish tracking of the mathe-
matical community, but rather the functional role that mathematical practice plays in
science [37, p. 351]. That’s to say that scientists accept these commitments aboutmath-
ematical equivalence not in virtue of mathematicians’ practices in doing mathematics
qua mathematics, but because of the success and fruitfulness of applied mathematics,
which also shapes mathematical practice.

To see how this response would apply to a different but still analogous concrete
case, compare Belot’s quotation above to the fictional “Jordan Benot” writing a bit
before 1950 in favor of a kratocratic account of physical quantities:

There is a large community of people [physicists] according to whose princi-
ples only measurements provide meaning to physical quantities—large, that is
relative to the number of philosophers interested in these matters. So realist
philosophers are engaged in a revisionary project of trying to construct new
principles to replace ones in common use.

This is not an ahistorical fiction, for Benot could have well been speaking about the
dominance of Heisenberg’s thinking on measurement in quantum mechanics:

It would be difficult to find a textbook of the period [1930–1950] which denied
that the numerical value of a physical quantity has no meaning whatsoever until
an observation has been performed. [32, p. 246]

Benot’s kratocracy about physical quantities would entail that the philosophers and
wayward physicists who struggled to convince the broader physics community about
the importance of the measurement problem [28] were at best conceptual revision-
ists, at worst simply wrong: Heisenberg’s concept of physical quantity could not
have been wrong, just because there were so many who endorsed it. By contrast,
we can understand why these philosophers and physicists were justified by appeal to
the commitments that the physics community already endorses and strives (however
imperfectly) to fulfill: conceptual clarity and logical consistency.

There is, of course, a difference between unobserved physical quantities and phys-
ical possibilities. But the relevant point of analogy is that Heisenberg’s position about
unobserved quantities, as described above, entails a position about what possibili-
ties there are and are not, namely, that there are no possible unobservered physical
quantities. The nonconformist philosophers and physicists working on the measure-
ment problem were not just concerned with unobservables, but all that follows from
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theorizing about them, including what’s possible and not, according to the physics
community’s commitment to follow the consequences of a theory wherever they may
lead. This is how fifty million Elvis fans can be wrong: by their own lights, rabid
cheers for encore are no longer apt when Elvis has left the building.

7 Belot’s Two Sectors

In his [7], Belot presents several arguments regarding when various isomorphisms of
spacetimes structures “generate new possibilities.” He considers both relativistic and
non-relativistic spacetimes, as well as esoterica such as Yang–Mills–Higgs solitons.
In this section, I restrict attention to his claims regarding general relativity.26

Belot [7, p. 14] notes that “very nearly everyone seems to agree that on an acceptable
interpretation of general relativity, no generalized shifts generate newpossibilities.” (A
“generalized shift” here is simply an isometry.) By contrast, hewishes to argue “thatwe
should take some generalized shifts to generate new possibilities in general relativity”
[7, p. 4, emph. added]. In particular, Belot distinguishes between two “sectors” of
general relativity, that for cosmology and that for (what can be characterized at first
pass as) isolated systems. These divide the spacetime models of general relativity
by the (typical) intention with which they are used by relativists. The first includes
only relativistic spacetimes that are intended as models of the universe. These are the
ones to which the consensus about generalized shifts applies: spacetimes are isometric
here if and only if they are “gauge equivalent,” meaning that “they have to be viewed
as representing the same possible situation (because they jointly represent just one
possibility)” [7, pp. 15–16].

But this is not so for isolated systems. They are modeled by spacetimes that are
asymptotically flat (at spatial infinity), whosemodels are triples (M, g, η), whereM is
a manifold isomorphic toR4, g is a Lorentzian metric on M , and η is a “non-physical”
Minkowski metric on M . They satisfy the additional property.

that if one goes far enough towards spatial infinity in any direction, one can
find sufficiently small regions of [the manifold M] such that the geometry of
such a region according to g is arbitrarily similar to the geometry of that region
according to η. [7, pp. 19–20]

For our purposes, it is not so essential to give a precise characterization (for which see
[16]) as to note that, for Belot,

This extra “background structure at infinity” allows us to make finer-grained
distinctions between isometric solutions than we can in the cosmological case—
it becomes possible, e.g., to think of two such solutions as differing by a “time
translation at infinity.” [7, p. 21]

Belot has in mind here diffeomorphisms φ : M → M that induce an isometry of g
and of η, where that induced for the latter is in particular a time translation (or at least

26 I think my conclusions drawn here also extend to Belot’s claims about non-relativistic spacetimes, but
I shall not argue my case here.

123



Foundations of Physics (2020) 50:228–249 245

asymptotically so). Similar conclusions are supposed to hold for other elements of the
Poincaré symmetry group acting on η.

In order to evaluate Belot’s conclusions about the two sectors in light of the above
arguments against RUMEand forREME, onemight first askwhat itmeans for an isom-
etry to “generate new possibilities.” On this question, Belot does not give an explicit
answer. From the contrast he draws between the cosmological and asymptotically flat
sectors in terms of “gauge equivalence,” it would at first seem that “generating new
possibilities” entails the rejection of RUME. It is further natural to read it as declar-
ing that the representational capacities of the new mathematical model—the result of
the “generalized shift”—are not contained in those of the first: the shifted model can
represent possibilities that the unshifted model cannot, which would be a rejection of
REME as well. Yet, he writes in a footnote that he takes “for granted that isomorphic
solutions are always representationally equivalent” [7, p. 29] and on one occasion
glosses his position seemingly more weakly as being that “even in general relativity,
isomorphic solutions can sometimes be capable of representing distinct possibilities”
[7, p. 27]. This all fits with the interpretation that Belot indeed rejects RUME, and
what is generated by the appropriate shifts in asymptotically flat spacetimes are rather
non-trivial inter-model representational relations, in the sense described in Sect. 5.2
between models of the swerve theory: if one model is taken to represent a certain state
of affairs, then another related by a non-trivial isometry would represent a distinct
state of affairs.

If this interpretation is correct, then I agree with Belot’s “baldly heretical” [7,
p. 1] conclusion in this case, with two important qualifications. As I described in
Sect. 5.2, whether two isomorphic models satisfy a relation of representational dis-
tinctness depends on a choice of map by which to compare the two. In implicitly using
the identity map for these purposes, Belot does not acknowledge this relativity; if he
had chosen differently, it would have lead to a different representational relation—
perhaps even the identity, in which case no new representational relations would be
generated. So, whether the relation between two isometric models is one of represen-
tational distinctness is not an absolute matter, as Belot seems to suggest, but is always
relative to a choice of isomorphism by which one compares them.

Second, the use of asymptotic flatness to define a special sector in which RUME
fails and isometries represent non-trivial inter-model representational relations is a bit
of a red herring. It is true that physicists use general relativity tomodel different sorts of
states of affairs, some cosmological and some astrophysical. And, as Belot [7, pp. 22–
25] points out, the relation between asymptotic structure and various types of global
conserved quantities is important to characterize properties of those spacetimes such
as total mass and angular momentum and their connections with analogous concepts
from other parts of physics. Although it is tempting to let oneself be dazzled by the
sophisticated mathematical gadgetry used in modern spacetime theory, this gadgetry
isn’t particularly relevant to why RUME fails: the arguments of Sect. 3 apply whether
or not a spacetime is equipped with extra structure such as a reference Minkowski
metric with respect to which asymptotic flatness is defined.

Comparison with the swerve theory is helpful here. In that case, the addition of
structure to a model of Minkowski spacetime (M, η)—the distinguished worldline
γ : R → M representing the history of the swerving particle—allows us to better
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represent the different ways the world could be. Relative to, say, the identity map
on M , models related to (M, η, γ ) by a non-trivial temporal translation Tt or rotation
Rρ,φ represent the swerve occurring at a different time or in a different direction. But if
that structure were removed, yielding standardMinkowski spacetime again, one could
stillmaintain the same conclusions about the different ways a particle worldline could
swerve. For, any worldline satisfying the constraints for the swerve could represent the
particle equallywell.Minkowski spacetime (M, η) is not as detailed of a representation
as (M, η, γ ) because it has abstracted away exactly which points represent the particle
worldline, but it can still represent the particle nonetheless. Analogously, one can
represent an asymptotically flat spacetime (M, g, η) as a spacetime (M, g) without
altering the conclusions drawn from it. In that case, one only needs the existence of a
Minkowski metric which the actual spacetime metric g approximates asymptotically;
it needn’t be added as a new piece of spacetime structure to do so. Although η is not
intended to represent an object as γ is, so that there isn’t the issue of having a less
detailed representation, the two cases are relevantly similar because the conclusions
about what spacetimes (and their “contents”) represent are the same.

This leads me to my disagreement with Belot about RUME in the cosmological
case. Belot accepts what he takes to be the orthodox conclusion of the hole argument
that endorses RUME when, e.g., there are no asymptotic boundary conditions like
asymptotic flatness imposed. One of his principle reasons for this is that, in the latter
case, there are isometries which do not entail a kind of indeterminism.

At best, the [hole] argument shows that we should deny that certain generalized
shifts generate new possibilities—namely, those that involve us in indeterminism
if they are not handled that way. But it does not obviously follow that we should
deny that any generalized shifts generate new possibilities. [7, p. 14]

However, the starting point in this paper has been Weatherall’s response to the hole
argument, which points out that it does not force us into a metaphysical dilemma
regarding a kind of indeterminism: once we have committed to representing rela-
tivistic spacetimes as Lorentzian manifolds and to REME, either there is no ambiguity
regarding the spacetimemetric inside the “hole,” or any ambiguity that persists consists
only in properties that have not been represented at all. With the specter of substan-
tive indeterminism vanquished, the argument for adopting RUME is undermined, in
consonance with my arguments against it in Sect. 3.

8 Conclusions and FutureWork

AlthoughWeatherall [56] assessed his argument regarding the hole argument’s force as
largely negative, I am inclined to say that it reveals how themetaphysical cast of the lit-
erature on the hole argument has obscured the more significant considerations it raises
for scientific representation. In particular, by basing his argument on commitments
about how mathematical equivalence constrains representational capacities—REME,
in particular—Weatherall has invited a new positive direction to the literature. Accord-
ingly, one of my goals in this article (Sect. 2) has been to articulate some of the
theses about these sort of constraints—RUME, RDMI, and REME—that are implic-
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itly assumed but rarely explicitly discussed in much of the literature. I argued that,
contrary to many, we should reject RUME (Sect. 3) and RDMI (Sect. 4) in general
but accept REME (Sect. 5). The rejections arose because of the abstracted nature of
mathematical models, from the referents of particular physical units for, e.g., distances
and times, and from the need to represent modal relations between even isomorphic
models. But our commitments to represent the states of affairs of relativistic space-
times as Lorentzian manifolds just means that we have taken differences between
Lorentzian manifolds to not make a difference in their representational capacities
(REME), as befits the physics community’s commitment to mathematical norms. This
is in contrast with Belot’s modal kratocracy [7], which we should reject (Sect. 6).

I also compared my conclusions with the recent proposal by Belot [7] to consider
some isometries of asymptotically flat spacetimes to “generate new possibilities.” If
one interprets this notion of “generation” as the production of an inter-model relation
of representational distinctness, then my conclusions dovetail with Belot’s, with the
qualification that these relations are not absolute but always relative to a choice of
comparison map. However, contra Belot, the addition of asymptotic boundary condi-
tions is not actually relevant for this conclusion. Accordingly, his primary reasons for
coming to different conclusions for the asymptotically flat sector of general relativity
than for the cosmological sector no longer hold, which leads to the general rejection
of RUME that I espouse.

The implications of rejecting RUME and RDMI but accepting REME need further
exploration for other theories of spacetime, but also for those of matter and other
scientific disciplines. For example, debates about the interpretation of unitary equiv-
alence [49] and broken symmetries for infinite quantum systems [5] hinge on similar
questions regarding the relationship between mathematical equivalence and represen-
tational capacities—perhaps Feintzeig’s [26,27] interventions in these debates can be
understood in these terms. And generally, rejecting RUME undercuts much of the
motivation for proposals to quotient the models of theories (such as general relativity)
by isomorphism [22,23,31], for in doing so one identifies models that might repre-
sent different states of affairs. This may suggest a new way of understanding the role
and interpretation of gauge theories [58], including answering the apparent puzzle of
why their alleged use of surplus structure is so scientifically useful [48]—perhaps it
is because it is representationally useful. Far from being stagnant, thinking about the
hole argument in representational terms promises to yield new answers and fruitful
research directions to many other lines of inquiry.
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