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Abstract. Post-fire remote sensing provides a promising tool for assessing building
damage, destruction, and defensive actions from wildland fire. However, limited stud-
ies exist to guide image acquisitions. Consequently, we compare remotely piloted air-

craft systems and satellite post-fire imagery to ground-based assessments from the
2017 California Tubbs Fire to classify building damage, destruction, and defensive
actions in an intermix and interface community. We also geolocate defensive action
information from active fire images, videos, and eyewitness accounts. We utilize both

manual and object-based classification approaches. Both types of overhead imagery
using manual classifications had high kappa statistics ranging from 0.81 to 0.96, indi-
cating almost perfect agreement with ground-based assessments for primary building

destruction (e.g., homes). Object-based classifications of destruction had kappa statis-
tics ranging from 0.63 to 0.88 for primary buildings, indicating substantial agreement.
Additionally, manual and object-based classifications identified many destroyed sec-

ondary buildings (e.g., sheds) missed by ground-based assessments. Occlusions due to
canopy cover contribute to lower classification results in the intermix community. All
imagery missed significant damage identified in the ground-based assessment. Remo-
tely piloted aircraft systems imagery was superior to satellite imagery in identifying

defensive action indicators. Nonetheless, all image types are valuable additions to
ground-based assessments of damage, destruction, and defensive actions. Finally, we
demonstrate the importance of accounting for defensive actions in assessing building

response at wildland-urban interface fires.
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1. Introduction

The number of buildings destroyed due to wildland fires continues to increase.
The 2017 California Tubbs Fire (Tubbs Fire) saw the most destroyed buildings
(over 5,000) from any Wildland-Urban Interface (WUI) fire at the time, only to
be surpassed in 2018 by the California Camp Fire, which destroyed over 18,000
buildings [1]. Currently, we face the challenge of WUI fires during disease pan-
demics [2], a world of diminishing resources, social unrest, and other challenging
conditions. Therefore, the need to respond quickly, safely, and virtually to dam-
age and destruction from WUI incidents is a pressing concern.

However, accurately documenting building damage and destruction can be chal-
lenging in a post-fire environment. For example, consider the following ground-
based reports on buildings affected by the Tubbs Fire. The ‘‘Tubbs Fire Water-
shed Emergency Response Team Final Report’’ [3] states that the Tubbs Fire
destroyed 7,010 buildings and damaged 487. The geographic information system
(GIS) dataset of destroyed buildings from Sonoma County [4], containing damage
assessments from the California Department of Forestry and Fire (CAL FIRE),
has 6583 buildings documented as destroyed and 429 damaged buildings. CAL
FIRE [5] also lists 5636 buildings as destroyed and 317 damaged buildings. The
County of Sonoma [6] lists 6686 buildings, 112 barns, over 80 commercial build-
ings, 37 school buildings, and a church as destroyed.

The above discrepancies in reported building damage and destruction highlight
the difficulty in performing post-fire assessments from the ground alone, particu-
larly for a significant incident. The discrepancies also point out that there is no
standard approach for post-fire assessments of building destruction and damage.
For example, it appears that sometimes sheds and other secondary buildings are
documented more thoroughly than other times. This difference in assessments
could be due to the need to rapidly identify primary buildings (e.g., homes)
destruction, focusing on buildings greater than 11.15 m2 (120 ft2). Finally, lacking
in all these assessments is data that characterizes the specific building damage
(e.g., damaged roof, damaged deck, or damaged fence). Maranghides et al. [7] rec-
ommended collecting specific building damage information to identify building
vulnerabilities.

Post-fire remote sensing can provide a rapid, safe, consistent, and effective
means to aid in deriving estimates of damage, destruction, and defensive actions
at WUI incidents [8]. Object-based image classification for rapidly identifying
building destruction and defensive actions showed significant promise at the 2012
Colorado Waldo Canyon Fire [8]. Additionally, it is becoming more prevalent for
large WUI fires to have publicly available post-fire imagery to help identify build-
ing damage and destruction e.g., [[9], [10] and [11]].

Classifying defensive actions from remote sensing data can aid research into the
role of defensive actions on overall building response during WUI fires [8]. Fur-
thermore, crowdsourcing from social media, internet images, videos, and other
public sources provides additional means to identify defensive actions and timeli-
nes of burning features while providing further details about the fire. When
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integrated, ground and aerial datasets can provide information beyond what either
can give individually.

Additionally, few studies attempt to account for the influence of defensive
actions on building response. However, a growing body of evidence portrays the
importance of considering defensive actions in assessing building response e.g., [8,
12, 13, 14 and 15]. It is essential to consider defensive actions in post-fire WUI
assessments because they alter exposure to heat fluxes (from flames and embers)
experienced by nearby buildings. Such exposure is critical to consider when evalu-
ating building response e.g., [7, 13].

Despite the potential for remote sensing to further our understanding of WUI
incidents, few studies have assessed the potential of remote sensing for identifying
building damage and destruction. To our knowledge, only one study examined the
use of remote sensing to identify defensive actions [8]. Maranghides et al. [16] also
showed that identifying secondary building destruction required the combined use
of post-fire field assessments and pre-fire imagery. The Regional Municipality of
Wood Buffalo [17] utilized post-fire imagery in the 2016 Canadian Horse River
Fire. Also, Ahmed et al. [18] employed remote sensing of satellite data to assess
structural damages from the 2016 Canadian Horse River Fire.

This study uses the Tubbs Fire incident to build on the limited research to date
to assess the use of remote sensing for building damage, destruction, and defen-
sive actions. Here we utilize the unique combination of imagery from remotely
piloted aircraft systems (RPAS), satellites, and ground sensors to answer the fol-
lowing questions:

1. How do assessments of building damage using visual classifications of satellite
imagery, visual classifications of RPAS imagery, and ground-based observa-
tions compare to each other?

2. How do assessments of building destruction using the automatic classification
of satellite imagery (satellite object-based classification) and automatic classifi-
cation of RPAS imagery (RPAS object-based classification) compare with
results from visual classifications and ground-based observations?

3. Is building survival dependent on the presence of defensive actions on nearby
buildings and properties? Here, we identify defensive actions by visually classi-
fying overhead imagery and ground-based imagery and observations.

Consideration of the above questions builds on the work conducted by McNa-
mara et al. [8] through testing the same methods in different environments with
satellite and RPAS acquired imagery. As such, these evaluations provide new
information about the benefits and shortcomings of remote sensing platforms (i.e.,
RPAS and satellite-based) and spatial resolutions for WUI post-fire building
assessments. Additionally, through the above evaluations, we add to the findings
of McNamara et al. [8] and others e.g., [7 and 13] regarding the importance of
accounting for defensive actions, both close to and some distance from affected
buildings, when evaluating building response.
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2. Methods

2.1. Study Site

The Tubbs Fire started on the evening of October 8, 2017, traveling over 29 km
(km) in 3.25 h [19] driven by Diablo Winds. Containment occurred on October
31, 2017, after a total of 36,807 acres burned in Sonoma and Napa Counties,
resulting in the death of twenty-two people [3]. Winds were initially 18 m s-1 with
gusts up to 35 m s-1[20] when most building destruction occurred. The fire
jumped the 101 freeway, a six-lane highway, and entered densely populated subur-
ban and urban areas in Santa Rosa [20].

In this effort, we utilized the input data shown in Tables 1 and 2 in two study
sites (Fig. 1) to classify building damage, destruction, and defensive actions. The
Tubbs Fire did not see the collection of RPAS imagery throughout the fire.
Therefore, we compared the RPAS imagery (contains 2042 buildings) and satellite
imagery (contains 3402 buildings) from Coffey Park (Table 1), an interface com-
munity with a high density of buildings (Fig. 1), to building damage, destruction,
and defensive actions identified from the ground-based assessment (dataset two in
Table 1). Because the satellite imagery covered a more considerable extent, we
also expanded the assessment for satellite imagery to other suburban and urban
areas surrounding Coffey Park, resulting in more buildings assessed with the satel-
lite imagery.

To examine the use of satellite imagery for forested communities, we also asses-
sed the techniques utilized here in an intermix study site, consisting of lower-den-
sity buildings (617 buildings) and more vegetation (Fig. 1). In both study sites, we
included areas outside the final fire perimeter. This inclusion of buildings outside
the fire perimeter represented a realistic post-fire scenario where damage assessors
do not know the fire’s exact extent immediately after the fire.

We chose the Coffey Park study site because it contained post-fire RPAS ima-
gery, satellite imagery, the most building destruction of any high-density commu-
nities, and a mix of residential and commercial buildings. The intermix study area
was selected based on watershed boundaries and coincided roughly with the
Upper Mark West Creek Watershed. We selected this watershed over other water-
sheds to the south because there was a more even distribution of destroyed and
surviving buildings. The building density was also lower in this area compared to
other potential sites.

2.2. Classifications and Accuracy Assessments

We utilized pre-fire building footprints derived from Light Detection and Ranging
(LiDAR) data in both study sites and all object-based classifications. The Sonoma
County Vegetation Mapping and LiDAR Program [20] created building footprints
using the ‘‘Vectorize Buildings’’ tool in MicroStation�. This approach is similar
to that utilized by McNamara et al. [8] in that both techniques automatically or
semi-automatically extract building footprints from LiDAR point clouds. We also
digitized missed or new building footprints to add to the initial building footprint
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Table 1
Pre-Fire and Post-Fire Datasets used in this Study

Data source Characteristics Data use

1. CAL FIRE Damage Assessment

2017 [4]

Last Update: October

26, 2017

Portray destroyed and damaged

buildings at the Tubbs Fire from a

ground-based assessmentSpatial Resolution:

Building Center

Point

2. Cartographic Building Footprints

– File Geodatabase [22]

Last Update: April 22,

2014

Segment post-fire overhead images to

only include buildings. We added new

and missed buildings from datasets

three, four, five, seven, eight, and

nine in this table

Spatial Resolution:

Polygon Dataset of

Building Footprints

3. MAXAR WorldView-3 Satellite

[11]

Acquisition Date: 10/

17/2017

Perform object-based classification of

destruction and visual classification of

damage, destruction, and defensive

actions. Identify buildings missed in

Sonoma County Vegetation Mapping

and LiDAR Program [20]

Spatial Resolution:

0.46 m

Spectral Resolution: 3-

Band (Red, Green,

Blue)

4. Nadar RPAS Imagery Coffey Park

Acquired by Drone Scholars work-

ing with Sonoma County and Ala-

meda County Sheriff’s Office [10]

Acquisition Date:

October 2017 (Exact

Date Unknown)

Perform object-based classification of

destruction and visual classification of

damage, destruction, and defensive

actions. Identify buildings missed in

Sonoma County Vegetation Mapping

and LiDAR Program [20]

Spatial Resolution:

0.02 m

Spectral Resolution: 3-

Band (Red, Green,

Blue)

5 360� Drone Panoramics: Coffey

Park [21]

Acquisition Date:

October 2017 (Exact

Date Unknown)

Perform visual classification of dam-

age and defensive actions. Identify

buildings missed in Sonoma County

Vegetation Mapping and LiDAR

Program [20]

Spatial Resolution:

Unknown

Spectral Resolution: 3-

Band (Red, Green,

Blue)

6. Sonoma County Parcels—Shape-

file [35]

Geographic Informa-

tion System dataset of

parcel boundaries

Delineate primary versus secondary

properties on a single property

7. National Agriculture Imagery Pro-

gram [36]

Acquisition Date: 2014

(Exact Date

Unknown)

Identify buildings missed in Sonoma

County Vegetation Mapping and

LiDAR Program [20]. Dataset is also

used to identify locations where there

were abrupt pre-fire changes in vege-

tation conditions

Spatial Resolution:

1 m

Spectral Resolution: 4-

Band (Red, Green,

Blue, Near Infrared)
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dataset (dataset two in Table 1) based on buildings identified in datasets three,
four, five, seven, eight, and nine (Table 1).

We visually classified building footprints into primary versus secondary using
datasets two, three, four, five, seven, eight, and nine (Table 1). Primary buildings
represent buildings corresponding to the property’s primary land use (e.g., homes
on residential properties). Secondary buildings correspond to buildings that are
not related to the primary land use (e.g., a shed or gazebo on the residential prop-
erty). In some cases in the intermix study area, it was not easy to differentiate pri-
mary versus secondary buildings due to multiple large buildings on the parcel.
Consequently, some buildings we classified as not determined.

We utilized the Sonoma County Parcels dataset (dataset six in Table 2) to iden-
tify buildings on a particular property. In the interface study area, the primary
building (e.g., home) was typically more extensive in areal extent compared to sec-
ondary buildings on the respective property. However, multiple large buildings
were often on a property at the intermix study site, making the primary and sec-
ondary building classifications challenging. Nonetheless, in this analysis, we inclu-
ded buildings for which we could not determine a primary or secondary
classification because these were buildings, some of which were significant in size.
Finally, in the intermix study area, we performed a bulk spatial adjustment of the
building footprints by moving them about nine meters to the east to better align
with the satellite imagery.

Next, we visually classified building damage and destruction using the World-
View-3 satellite imagery (dataset three in Table 1) at both study sites (Fig. 1) and
the RPAS imagery (dataset four in Table 1) collected at the interface study site
(Fig. 1). Visually classifying damage in the interface area also occurred using 360�
RPAS Panoramics [21] (dataset five in Table 1) where available. Then, we com-

Table 1
continued

Data source Characteristics Data use

8. Google Earth Pre-Fire

and Post-Fire Overhead

Imagery

Acquisition Date: June

2017 – February 2018

Identify buildings missed in Sonoma County

Vegetation Mapping and LiDAR Program

[20] and areas where fire cessation corre-

sponded to vegetation changes. We used post-

fire imagery to confirm the visual classification

of destroyed buildings

Spatial Resolution:

Unknown

Spectral Resolution: 3-

Band (Red, Green,

Blue)

9. Google Earth Street

View Imagery

Acquisition Date: June

2017 – February 2018

Geolocate active fire images and videos.

Examine study areas for the presence of wood

roofs. Identify buildings missed in Sonoma

County Vegetation Mapping and LiDAR Pro-

gram [20]

Spatial Resolution:

Unknown

Spectral Resolution: Visi-

ble Imagery (Red,

Green, Blue)
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pare these classifications against building damage and destruction from the
ground-based assessments (dataset one in Table 1), representing a typical rapid
assessment conducted immediately after the incident.

Table 2
Active Fire Datasets used in this Study

Data source Characteristics Data use

Tubbs fire brought Death

and destruction to cof-

fey park [25]

This article contains eyewitness

accounts of a homeowner defend-

ing his property

Identify the location of defensive

actions by the homeowner

Tubbs Fire: California’s

Most Destructive Fire

in History [37]

This video contains descriptions

and information on defensive

actions

Identify locations of defensive

actions

Firefighter perspective –

Tubbs Fire Santa Rosa

[33]

Video from Berkely firefighters

showing the locations of Berkely

Engine 6 defensive actions

Identify locations of defensive

actions

Those first 24 hours [38] Documentary focusing on first

responders and community mem-

bers making a response

Provides a general idea of the extent

of defensive actions; the documen-

tary, while portraying community

members’ actions, shows a more sig-

nificant percentage of actions by

trained first responders than citi-

zens. Community member actions

identified in this video appeared to

be outside our study site

Santa Rosa fires: First

hours of the devastating

Tubbs fire in 9 min [39]

Video of fire behavior and defen-

sive actions

Identify defensive actions locations

and show flanking fire behavior

along the eastern side of Coffey

Park and other locations

Last October (2019) Doc-

umentary | City of

Santa Rosa, CA [40]

Describes actions of City of Santa

Rosa Workers and First Respon-

ders

Shows fire behavior and first

responders describing the inability

to ‘‘get in front of the head fire’’

due to the wind speeds and fire

intensities and the need to evacuate

lives

Santa Rosa Fire 2018 –

Coffey Park at Barns

Road [41]

RPAS video of Coffey Park after

the destruction of the majority of

homes

Identify locations of defensive

actions and fire behavior

Coffey Park drone fly

over… 10/10/2017 [42]

RPAS video of Coffey Park after

the destruction of the majority of

homes

Identify locations of defensive

actions through watermarks and

other indicators

Santa Rosa firestorm

October 10 9 17 9 2017

[43]

Headcam video of a private citizen

on a bike driving through Coffey

Park

Identifies locations of defensive

actions from first responders on

Skyview Drive

Incredible photos show

how one man’s house

was saved in Tubbs Fire

[44]

Aerial photo showing a home

defended by a homeowner using a

hose provided by first responders

Identifies the location of the one

confirmed defensive action by a

homeowner in Coffey Park
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Figure 1. Tubbs Fire perimeter with destroyed and surviving
buildings along with our two project study sites. Coffey Park is the
interface study area in the southwest corner of the image
(encompassed by a segmented black line). The intermix study area is
located in the northern portion of the image (encompassed by a solid
purple line).
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We performed an object-based classification of the RPAS and satellite imagery
for building destruction at both study sites using the approach described by
McNamara et al. [8] and further detailed in the supplemental materials to this
paper. The approach described by McNamara et al. [8] does not classify all
destroyed areas within the building footprint, even though, in most cases, the
destruction was complete within the building footprint. Consequently, as described
by McNamara et al. [8] and detailed in the supplemental materials, we calculated
the classified destroyed building percentage (classified destroyed percentage) to
normalize the classified destroyed area across buildings. We classified a building as
destroyed if the classified destroyed percentage, not the actual destroyed area, typ-
ically the entire building, is > 50%.

We also implemented the machine learning functionality in Feature Analyst�.
After the initial object-based classifications, we manually selected a small subset of
polygons for destroyed buildings improperly classified as surviving (surviving
buildings might be damaged) and a small subset of polygons that were correctly
classified as destroyed. We then re-ran the classification with these errors identified
using these results in the final analysis.

We used confusion matrices, the kappa statistic, and overall mapping accuracy
[23] to assess all image classifications’ accuracy e.g., [2]. We compared visual clas-
sifications against the ground-based assessments. We evaluated object-based classi-
fications using the combined results from the visual classifications and ground-
based assessments. The combined results included correct estimates of destruction
because the ground-based assessment sometimes missed destroyed buildings. Also,
the satellite visual classification sometimes incorrectly assigned destroyed buildings
to the damaged category.

Finally, we visually classified RPAS and satellite imagery (datasets three and
four in Table 1) for signs of defensive actions using visual indicators described by
McNamara et al. [8] and shown in Fig. 2. Also, we crowdsourced videos and ima-
ges of active fire defensive actions (Table 2) to further document defensive actions
and validate the post-fire aerial image indicators used in this study. Additionally,
we included fuel clearing (e.g., dozer or hand lines) and vegetation changes that
resulted in an abrupt stop in fire spread. Some locations with an abrupt stopping
of vegetative fires could be due to changes in fire behavior independent of defen-
sive actions. However, some of these locations are also associated with other
defensive action indicators (e.g., Fig. 2), providing evidence of the abrupt stopping
of fire associated with defensive actions in some cases. We then assessed the effec-
tiveness of defensive actions’ in stopping fire spread at Coffey Park.

2.3. Defensive Action Effectiveness

The Coffey Park assessment of defensive action effectiveness involved dividing the
buildings into (1) destroyed and damaged buildings with all their adjacent build-
ings destroyed and (2) destroyed and damaged buildings having at least one sur-
viving bordering building. Further partitioning of these two groups of destroyed
buildings occurred as defended versus not defended categories using the combined
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classifications of defensive actions from all sources (datasets three, four, and five
in Table 1 and all data in Table 2).

Figure 2. Visual indicators of defensive actions from the RPAS
imagery [10]. The image E had a video [33] of first responders and
citizens in the area. Images A, C, and F are confirmed through ground
videos [39].
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We used these groupings of buildings to perform a Chi-square analysis to test
the following hypothesis:

Hypothesis1 (H1) surviving and damaged buildings adjacent to destroyed and
damaged buildings are dependent on defensive actions on the adjacent destroyed
or damaged buildings or surrounding properties.

The above test is not consistently logical in the intermix study site because the
property sizes vary significantly, resulting in considerable variation in distances
between buildings. Nonetheless, we examined the relationship between the stop-
ping of fire spread and signs of defensive actions in the intermix study site
through visual comparison of destroyed and surviving buildings.

Defensive actions might not be the only factor contributing to the stopping of
fire spread. Changes in exposure conditions, such as reduced wind, vegetation
treatments not visible in the imagery, and building treatments, might affect fire
spread cessation. We did not examine these other factors in this study. Nonethe-
less, the dependence of the ending of fire spread on defensive actions would con-
tribute to the growing body of research that shows defensive actions to be a
critical factor when assessing building response.

Table 3
Confusion Matrix Comparing RPAS [10] Visual Classification (VC) for
Damage and Destruction to Ground-Based Assessment Results [4] in
Coffey Park

Ground-based assessment [4]

Destroyed Damaged

No damage or

not assessed Totals

Commission

errors Producer’s accuracy

RPAS VC

Destroyed 1196 0 458 1654 27.7% 72.3%

Damaged 0 5 4 9 44.4% 55.6%

No dam-

age

0 10 369 379 2.6% 97.4%

Totals 1196 15 831 2042

Omission

errors

0% 66.7% 55.6% Overall mapping accu-

racy = 76.9%

User’s

accu-

racy

100.0% 33.3% 44.4% Kappa statis-

tic = 0.49
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3. Results

3.1. RPAS Visual Classification in Coffey Park

The RPAS visual classification accuracy in Coffey Park was 76.9%, with a kappa
statistic of 0.49 (Table 3), indicating moderate agreement [24]. The ground-based
assessment (Table 1) did not identify 458 buildings identified as destroyed in the
RPAS visual classification. Of these, 447 were secondary buildings, and 11 were
primary buildings, all of which are shown as destroyed in the RPAS visual classi-
fication and missed in the ground-based assessment (Table 1). The kappa statistic
is 0.95, indicating almost perfect agreement [24], and the overall accuracy is
98.6% when considering only primary buildings.

However, there are discrepancies between damage estimates from the RPAS
visual classification and the ground-based assessment for damage, as demonstrated
through the high errors of omission and commission (Table 3). The five buildings
identified as damaged in the ground-based assessment and RPAS visual classifica-
tion consist of roof edge damages, some of which were from burning building
sides identified in the oblique imagery [21]. The four buildings identified as dam-
aged in the RPAS visual classification but not in the ground-based assessment
were secondary buildings, some of which might have been metal buildings with
contents inside destroyed. Ten buildings were identified as damaged in the
ground-based assessment but not identified as damaged in the RPAS visual classi-
fication. Six of these buildings had partially burned fences on the property, indi-
cating the presence of first responders.

Table 4
Confusion Matrix Comparing Satellite [11] Visual Classification (VC)
for Damage and Destruction to Ground-Based Assessment Results [4]
in Coffey Park and Surrounding Urban and Suburban Areas

Ground-based assessment [4]

Destroyed Damaged

No damage or

not assessed Totals

Commission

errors Producer’s accuracy

Satellite VC

Destroyed 1371 0 505 1876 26.9% 73.1%

Damaged 2 1 7 10 90% 10%

No dam-

age

4 35 1477 1516 2.6% 97.4%

Totals 1377 36 1989 3402

Omission

errors

0.4% 97.2% 25.7% Overall mapping accu-

racy = 83.8%

User’s

accu-

racy

99.6% 2.8% 74.3% Kappa statis-

tic = 0.69
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3.2. Satellite Visual Classification in Coffey Park and Surrounding Areas

The satellite visual classification accuracy in Coffey Park and the surrounding
urban and suburban areas was 83.8%, with a kappa statistic of 0.69, which Lan-
dis and Koch [24] consider a substantial agreement (Table 4). The overall accu-
racy was 76.5%, with a kappa statistic of 0.47, indicating moderate agreement
when considering the same buildings as the RPAS assessment. We portray all the
kappa statistics and overall mapping accuracies in Table 5 to compare the various
classifications.

The ground-based assessment did not identify 505 buildings identified as
destroyed in the visual satellite classification (Table 4). Three of these buildings
were small commercial buildings, 492 were secondary buildings, and thirteen were
primary buildings, all of which are destroyed in the satellite imagery and missed in
the ground-based assessment (Table 1). However, for smaller secondary buildings
(e.g., less than 120 ft2), without a clear foundation in the post-fire imagery, the
building might have been moved or removed sometime between the pre-fire ima-
gery (datasets seven, eight, and nine in Table 1) and the fire. Nonetheless, burned
areas and ash covered the ground where these destroyed secondary buildings
stood in the pre-fire remote sensing data, indicating destruction of features in that
area. If the accuracy assessment only considered primary buildings, the overall
classification accuracy is 98.0%, and the kappa statistic is 0.96, indicating almost
perfect agreement [24].

The satellite visual classification in and around Coffey Park missed 97% of the
damaged buildings identified in the ground-based assessment. Also, the satellite
visual classification incorrectly classified two destroyed buildings as damaged.
Additionally, the satellite visual classification did identify three secondary build-

Table 5
Kappa Statistics and Overall Mapping Accuracy for the Classifications
Assessed Here

Classification

Kappa

statistic

Overall mapping

accuracy

RPAS visual classification all buildings interface 0.49 76.9%

RPAS visual classification primary buildings interface 0.95 98.6%

Satellite visual classification all buildings interface 0.69 83.8%

Satellite visual classification primary buildings interface 0.96 98.0%

Satellite visual classification same extent as RPAS Interface 0.47 76.5%

Satellite visual classification all buildings intermix 0.57 78.0%

Satellite visual classification primary buildings interface 0.81 90.9%

RPAS Object-based classification Interface 0.73 91.8%

RPAS object-based classification primary buildings interface 0.88 96.4%

Satellite object-based classification interface 0.62 80.4%

Satellite object-based classification same extent as RPAS interface 0.42 72.1%

Satellite object-based classification primary buildings interface 0.88 94.0%

Satellite object-based classification intermix 0.46 78.6%

Satellite object-based classification primary buildings intermix 0.63 85.5%
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ings, three commercial buildings, and one primary building as damaged that the
ground-based assessment did not assess. Most of the buildings were partially
standing in the satellite imagery, with some portions destroyed. However, the area
classified as damaged in one of the buildings was only a shadow, and no damage
occurred. Post-fire Google Earth Imagery in 2018 (dataset eight in Table 1)
showed the other partially standing buildings as replaced, indicating destruction.

3.3. Satellite Visual Classification in the Intermix Area

The satellite visual classification accuracy in the intermix study area was 78.0%,
with a kappa statistic of 0.57, which Landis and Koch [24] indicate as a moderate
agreement (Table 6). There were 84 out of 617 buildings (14%) where we could
not determine the damage status due to occlusion by vegetation (Table 6). If we
only consider primary buildings, the overall accuracy improves to 90.9% and the
kappa statistic to 0.81, indicating almost perfect agreement [24].

We classified thirty-nine buildings as destroyed in the satellite visual classifica-
tion identified as having No Damage or Not Assessed in the ground-based assess-
ment. We classified only one of these buildings as a primary building, and the rest
were secondary, or the type of building could not be determined. There were 102
of the 617 (17%) buildings that we could not classify as primary or secondary
buildings. In addition, the satellite visual classification did not identify any of the
damaged buildings found in the ground-based assessment. Finally, one of the
buildings visually classified as damaged was classified as destroyed in the ground-
based assessment. Google Earth post-fire imagery from 2018 (dataset eight in
Table 1) shows this building as removed, indicating destruction and misclassifica-
tion in the satellite visual assessment.

3.4. RPAS Object-Based Classification in Coffey Park

The RPAS object-based classification accuracy in Coffey Park was 91.8%, with a
kappa statistic of 0.73 (Table 7), indicating substantial agreement [24]. The RPAS
object-based classification identified ninety destroyed buildings in the RPAS visual
assessment and ground-based assessment as surviving. Sixty-eight of these build-
ings were small secondary buildings, and twenty-two were primary buildings. The
RPAS object-based classification incorrectly identified 78 surviving buildings as
destroyed. Twenty-five of these buildings were primary buildings, and fifty-three
were secondary buildings. The kappa statistic is 0.88, indicating almost perfect
agreement [24], and the overall classification accuracy is 96.4% when only consid-
ering primary buildings.

3.5. Satellite Object-Based Classification in Coffey Park Area and Intermix

The satellite object-based classification accuracy in and around Coffey Park was
80.4%, with a kappa statistic of 0.62 (Table 8), indicating a substantial agreement
[24]. The satellite object-based classification incorrectly identified 20 destroyed pri-
mary buildings as surviving. The satellite object-based classification identified 646
surviving buildings as destroyed. One-hundred and thirty-three of these buildings
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were primary buildings, and five hundred and thirteen were secondary buildings.
When considering only the buildings within the extent of the RPAS imagery, the
kappa statistic is 0.42, indicating moderate agreement [24], and the overall map-
ping accuracy is 72.1%. The kappa statistic is 0.88, indicating almost perfect
agreement [24], and the overall classification accuracy is 94.0% when considering
only primary buildings.

The satellite object-based classification accuracy in the intermix study area was
78.6%, with a kappa statistic of 0.46 (Table 9), indicating a moderate agreement

Table 7
Confusion Matrix Comparing RPAS [10] Object-Based Classification
(OBC) for Destruction to Combined Results from Ground-Based
Assessments [4] and the RPAS Visual Classification (VC) in Coffey Park

Combined ground-based assessment [4] and VC

Destroyed Surviving Totals

Commission

errors User’s accuracy

RPAS OBC

Destroyed 1567 78 1645 4.7% 95.3%

Surviving 90 307 397 22.7% 77.3%

Totals 1657 385 2042

Omission

errors

5.4% 20.3% Overall mapping accuracy = 91.8%

Producer’s

accuracy

94.6% 79.7% Kappa statistic = 0.73

Table 8
Confusion Matrix Comparing Satellite [11] Object-Based
Classification (OBC) for Destruction to Combined Results from Ground-
Based Assessment [4] and the RPAS Visual Classification (VC) in
Coffey Park

Combined ground-based assessment [4] and VC

Destroyed Surviving Totals

Commission

errors User’s accuracy

Satellite OBC

Destroyed 1233 20 1253 1.6% 98.4

Surviving 646 1503 2149 30.1% 69.9%

Totals 1879 1523 3402

Omission

errors

34.4% 1.3% Overall mapping accuracy = 80.4%

Producer’s

accuracy

65.6% 98.7% Kappa statistic = 0.62
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[24]. The satellite object-based classification identified 98 surviving buildings as
destroyed compared to combined satellite visual classification and ground-based
assessment results. Thirty-seven of these buildings were not determined, thirty-nine
were secondary buildings, and twenty-two were primary buildings.

Also, the object-based satellite classification identified 34 surviving buildings as
destroyed. Nine of these buildings were not determined, fifteen were secondary
buildings, and ten were primary buildings. If the accuracy assessment only consid-
ered primary buildings, the kappa statistic is 0.63, indicating substantial agree-
ment [24], and the overall classification accuracy is 85.5%. Implementing machine
learning functionality in Feature Analyst� did not improve classification results in
the intermix study site.

3.6. Defensive Action Identification and Effectiveness in Interface Area

In Fig. 3, we show a map of defensive actions surrounding homes in the interface
study area. We confirmed ten locations (covering multiple properties though we
could not always determine the full extent of defensive actions in the images and
videos) in Coffey Park as defended through videos, images, and eyewitness
accounts found on the internet. There is a correlation between images, videos, and
eyewitness accounts of first responders and a homeowner actively suppressing
burning buildings with water and a building’s darkened appearance, partially
standing walls, partially burned features, or partially standing buildings compared
to neighboring lighter and entirely destroyed buildings. The unhindered complete
combustion of building materials results in white ash accumulation and a lighter
appearance with less partially burned features. The darker appearance is due to
the cessation of the combustion process through water suppression.

Table 9
Confusion Matrix Comparing Satellite [11] Object-Based
Classification (OBC) for Destruction to Combined Results From Ground-
Based Assessment [4] and the Rpas Visual Classification (VC) in the
Intermix Study Area

Combined ground-based assessment [4] and VC

Destroyed Surviving Totals

Commission

errors User’s accuracy

Satellite OBC

Destroyed 99 34 133 25.6% 74.4%

Surviving 98 386 484 20.2% 79.8%

Totals 197 420 617

Omission

errors

49.7% 8.1% Overall mapping accuracy = 78.6%

Producer’s

accuracy

50.3% 91.9% Kappa statistic = 0.46
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In one location, photographers [39] filmed first responder actions that resulted
in a standing wall on the home’s defended side. This standing wall is also visible
in the RPAS imagery (Fig. 2). The building side not defended did not have a
standing wall. First responders defended this building during high wind conditions
on the fire’s flanking (eastern) side in Coffey Park [39]. Other defensive actions
also occurred on the fire’s flanking side during high wind conditions [39]. These
actions were successful at stopping fire spread in these locations to buildings and
elsewhere.

In one case, KPIX 5 CBS [25] and SFGATE [44] documented a homeowner as
actively spraying water between his home and the neighbors using a fire hose
obtained from first responders. This location resulted in a standing wall on the
surviving building side, which received water suppression and destruction of all
other walls, not receiving water suppression. By the time the fire reached this
property, the wind conditions had abated and changed directions. We found no
other ground-based videos, images, or accounts of homeowners defending in and
around Coffey Park. However, this does not indicate that no other homeowners
or business owners defended in and around Coffey Park.

The majority of areas showing an abrupt stop of fire spread in vegetation
occurred where building destruction also ceased. These locations were typically
spatially coincident with signs of defensive actions (e.g., knocked down fences).

Figure 3. Defensive actions in and around Coffey Park.
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However, the abrupt cessation of fire spread in vegetation on the northwestern
end of Coffey Park was not coincident with the end of building fire spread or
other defensive actions. These locations might have been where building fires in
Coffey Park were initiated and could represent initial and failed defensive actions
or locations where there was changing fire behavior.

The abrupt cessation of vegetative fires was not always apparent in the coarser
spatial resolution satellite imagery compared to the RPAS imagery. Signs of
defensive actions such as sprinklers on roofs, unrolled garden/fire hoses, knocked
down fences, and partially burned fences were only visible in the RPAS imagery.
Buildings with a darker appearance were evident in both the satellite and RPAS
imagery. However, the RPAS imagery provided more details regarding partially
burned features.

The chi-square results to test hypothesis 1 showed a Pearson value of 935.2 (p-
value< 0.00001). This result was consistent with the conclusion that surviving
buildings bordering destroyed and damaged buildings in and around Coffey Park
depended, in part, on defensive actions occurring on nearby destroyed or dam-
aged buildings or properties. Building owners might also need to implement previ-
ously identified building and landscape treatments e.g., [26, 27, 28 and 29] or
other unknown treatments to facilitate successful defense by first responders.

Figure 4. Defensive actions in and around the intermix study area.
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3.7. Defensive Action Identification and Effectiveness in the Intermix Area

Figure 4 shows a map of defensive actions identified from the satellite imagery
(Table 1) and one eyewitness account [30] in the intermix study area. We did not
identify any knocked-down fences, hoses, or items placed on a green lawn from
the satellite imagery. We confirmed only one location as defended through videos
and images found on the internet [30]. However, this area encompassed many
buildings.

We did not find any images or videos of first responders actively suppressing
buildings with water in the intermix area. However, four buildings with a darker
appearance were partially standing. In addition, three destroyed buildings had a
darker appearance than neighboring destroyed buildings. One building also had a
standing wall on only one side of the destruction, which we identified as an indi-
cator of defensive actions through videos in Coffey Park [39] and eyewitness
accounts [25].

We show that many surviving buildings are adjacent to or surrounded by defen-
sive action indicators (Fig. 4). Also, many areas with large clusters of destroyed
buildings have limited or no indicators of defensive actions. For example, defen-
sive actions surround the larger cluster of continuous surviving buildings partially

Figure 5. Defensive actions on the western side of the fire perimeter
in the interface study area. Defensive actions surround buildings with
no damage.
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outside the fire perimeter’s western side (Fig. 5). Furthermore, indicators of defen-
sive actions also surround the larger cluster of surviving buildings in the center of
the study area (Fig. 6). There is documentation of the property owner in this area
(Safari West) staying and defending the property [30].

Some of the indicators of defensive actions such as abrupt stopping of fire
spread at roads and changes in vegetation conditions might not have been from
active fire defensive actions. Instead, varying heat fluxes (i.e., exposure conditions)
coupled with pre-fire human intervention (e.g., roads or altered vegetation) might
have resulted in fire behavior changes in these areas. However, in some locations,
the abrupt stopping of fire spread was associated with other indicators of defen-
sive actions such as fire or garden hoses adjacent to the abrupt stopping of fire
(e.g., Fig. 2). Regardless, the outcome is similar to defensive actions because the
resulting reduction of exposure (i.e., heat fluxes) might contribute to building sur-
vival.

Figure 6. Defensive actions in the center of the intermix area.
Defensive actions do not surround clusters of destroyed buildings. The
larger cluster of buildings with no damage is mostly in the Safari West
animal park, which the owner defended [30].
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4. Discussion

Like McNamara et al. [8], we found that visual classification for destroyed build-
ings using satellite and RPAS post-fire imagery had similar results to the ground-
based assessment for primary buildings. However, the RPAS and satellite visual
classification in the interface study area was more accurate than the ground-based
assessment for identifying secondary building destruction. In part, the higher
accuracy from the RPAS and satellite imagery might be due to the ground-based
assessment focusing on buildings with footprints larger than 120 ft2 (11.1 m2) as
per California building codes requiring buildings greater than 120 ft2 (11.1 m2) to
be Sect. 7a compliant.

The visual classification also identified some destroyed primary buildings missed
by the ground-based assessment. It is unknown why the ground-based assessment
missed these buildings, and they might be data entry errors. Nonetheless, when
considering the same extent as the RPAS imagery in Coffey Park, the satellite
visual classification had a similar kappa statistic and overall mapping accuracy as
the RPAS visual classification for destroyed buildings (Table 5).

We could not determine exact building areas from the datasets used here (i.e.,
datasets two, three, four, and five) to identify building footprints smaller or
greater than 120 ft2 (11.1 m2). Nonetheless, examining the distributions of the pla-
nar building area (Fig. 8) highlights that the use of remote sensing data (datasets
three, four, and five in Table 1) identified secondary buildings not identified in the
ground-based assessment. For example, only three destroyed buildings were asses-
sed [4] in the two study areas with a planar area less than 120 ft2 (as measured
from the cartographic building footprints: dataset two in Table 1).

In comparison, the RPAS visual assessment identified 432 destroyed buildings
with a planar area less than 120 ft2 (Fig. 8). These discrepancies could be because
damage inspectors did not focus on smaller buildings (i.e., less than 120 ft2), could
not identify smaller secondary buildings in the field, or both. Additionally, we
could not perform a ground-based assessment before the fire to verify the presence
of the smaller secondary buildings (e.g., less than 120 ft2).

Regardless, the missed secondary buildings point to a possible underestimation
of secondary buildings’ role in destroying primary buildings, but further study is
required to confirm this hypothesis. In addition, one of the few studies attempting
to account for the role of secondary buildings when assessing building response to
WUI fires found that detached secondary buildings can cause significant risk to
primary buildings [31]. Finally, identifying partially burned fences and knocked
down fences provides evidence of the hazard due to combustible fences and the
need for first responders to extinguish fences once ignited.

These results highlight that the ground-based assessment did miss some
destroyed secondary buildings due to logistical difficulties in field identification.
For example, logistical difficulties could include identifying a small building with
no foundation from a pile of ash, time constraints due to the emphasis on assess-
ing primary building damage and destruction, not examining the entire property
due to size, safety, and other constraints. Given these logistical difficulties with
ground-based assessments, we show remote sensing can be a promising addition
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to ground-based assessments to efficiently and effectively identify destroyed build-
ings.

Visual classification of satellite and RPAS imagery was rapid in both study
areas requiring only one operator (less than three hours). Satellite imagery can be
collected relatively quickly after the incident. However, satellite imagery can suffer
from occlusion from smoke and clouds, which was the case for some post-fire
satellite imagery shown in Google Earth (Table 1).

Acquiring RPAS imagery can, at times, occur below the smoke and cloud
cover. Also, certified specialists can mobilize quickly for RPAS imagery. However,
such teams’ mobilization might not be efficient everywhere. Satellite imagery is
available globally e.g., [11]. Other areas with destruction had RPAS image acquisi-
tions demonstrating the utility of this type of imagery for the safe assessment of
high-density building areas. However, acquiring RPAS imagery over large areas is
challenging, given current regulations in some countries.

Visually classifying RPAS imagery missed damage identified from ground-based
observations. This damage appeared to be on the side of a building or in the inte-
rior. Visually classifying satellite imagery missed almost all the damage due to its
relatively coarse spatial resolution. Nonetheless, damage inspectors can use the
correlation between destroyed buildings, partially burned fences, damaged build-
ings, partially burned vegetation, and adjacent destroyed buildings to focus on
collecting RPAS oblique imagery in these areas. This focus can reduce potential
exposure to toxic debris by ground-based damage inspectors.

Unlike McNamara et al. [8], remote sensing did not identify any roof damage
missed in the ground-based assessment. Presumably, all the roof damage was due
to exposure from the building’s sides’ burning. In addition, there did not appear
to be wood roofs in the interface area, whereas the study site examined by McNa-
mara et al. [8] had numerous wood roofs.

The object-based classification of primary buildings using RPAS and satellite
imagery had similar overall results (Table 5), particularly when considering only
primary buildings. However, the object-based satellite classification had more diffi-
culty identifying small destroyed secondary buildings due to the coarser spatial
resolution resulting in more high texture values along roof edges that encom-
passed the entire small building footprint. Additionally, object-based classifica-
tions produced more commission and omission errors than those found in
McNamara et al. [8]. In part, the more significant number of commission and
omission errors was due to taller trees and more vegetation cover occluding build-
ing areas in both study sites compared to the study site assessed by McNamara
et al. [8].

The satellite imagery collected data at an off-nadir look angle, resulting in lean-
ing tall features such as trees and standing buildings. This leaning can result in
long shadows or occlusion from vegetative cover within building areas. The
object-based classification did not classify these occluded or shadowed areas as
destroyed, resulting in higher omission errors for destroyed buildings in both the
intermix and interface study area using the satellite imagery than the RPAS ima-
gery. In addition, more leaning trees and higher canopy cover contributed to
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lower classification results for satellite imagery in the intermix area than the inter-
face area.

There also appeared to be more significant spectral variability within the
destroyed building footprints in the satellite imagery than the RPAS imagery,
resulting in lower classification accuracy for satellite imagery and the need for
more training sites. Atmospheric reflectance could, in part, account for this vari-
ability. Therefore, corrections for atmospheric reflectance might normalize the
satellite imagery and improve classification results.

The time of year of image acquisition contributed to the higher errors regarding
committing destroyed buildings to the surviving building category using the
object-based classification compared to McNamara et al. [8]. The imagery used in
the McNamara et al. [8] study was acquired in June when the sun was more
directly overhead. The lower solar angle for the Tubbs Fire imagery produced
wider variation in some buildings roofs’ spectral reflectance. This variation (high
texture values) resulted in more classified destroyed areas being committed to sur-
viving buildings in the RPAS and satellite classifications than the imagery used by
McNamara et al. [8].

Also, the buildings in this study area had more solar panels on the roofs than
the McNamara et al. [8] study area. These solar panels resulted in high texture
values and classification of some surviving buildings as destroyed. Finally, a more
significant misalignment of building footprints to the satellite and RPAS imagery
reduced classification accuracies, in some cases, compared to the McNamara et al.
[8] study, which had better alignment between footprints and post-fire imagery.

The Feature Analyst� machine learning did not correct commission errors
resulting from high texture values produced by roof tile or shingle shadows. Also,
the machine learning implemented here will not account for significant spatial
misalignment between building footprints and imagery or surviving buildings with
high texture values due to complicated roof configurations, small building foot-
prints, or significant obtrusions (e.g., solar panels). Finally, the machine learning
implemented here does not account for misclassification caused by canopy occlu-
sions. Post-fire LiDAR data, which might penetrate the canopy better than pas-
sive remote sensing techniques examined here, could improve classification results,
but further study is required.

Spectral and textural similarities between destroyed and surviving buildings
(Fig. 7 a and b, and e and f) contributed to classification errors in the intermix
study site. Buildings with complicated roof patterns produced high texture values
exaggerated by the coarser spatial resolution (Fig. 7 c and d). Mottled patterns in
buildings covered by vegetation resulted in surviving buildings that were spectrally
similar to destroyed buildings in some cases (Fig. 7 a and b). Finer spatial resolu-

bFigure 7. Surviving (a, c, d, and e) and destroyed (b and f) buildings
with similar characteristics producing classification errors. High
texture values typically do not cover surviving buildings unless there
is a complicated roof geometry (e.g., c and d) or canopy cover (e.g., b
and f).
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tion data might improve results in intermix areas with such features. Future stud-
ies should also examine the use of additional machine learning algorithms e.g.,
[32].

Crowdsourcing of active fire data provides valuable information about WUI
fires. However, given the large number of individuals present at the fire (e.g., first
responders and evacuees), there may be a far greater number of images, videos,
and first-hand accounts of defensive actions and fire behavior recorded than we
found on the internet. In addition, the traumatic nature of the event for evacuees
and first responders, coupled with concerns of liability, might reduce the availabil-
ity of active fire images, videos, and first-hand accounts. (Fig. 8).
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The images and videos used here also lacked temporal information in some
cases. Geolocating active fire images is a time-consuming process. We examined
significantly more images and videos than listed in Table 2 as many of these did
not portray information for our study sites. We found geolocation more difficult
in the intermix area partially due to buildings being further from the road and
more difficult to correlate with pre-fire Google Street View imagery (Table 1).

Similar to McNamara et al. [8], we found a significant dependence between
stopping fire spread and defensive actions at the interface study area. It is more
difficult to statistically test the effects of defensive actions in the intermix study
area due to the more significant variation in building spacing. Nonetheless, defen-
sive actions, some possibly pre-fire (e.g., abrupt changes in vegetation conditions),
are correlated with clusters of surviving buildings. Other factors likely contributed
to the ability of first responders to stop fire spread. For example, some first
responders [33] stated that diminished and changing wind conditions aided their
efforts (i.e., winds moved from the northeast to the southwest, toward the direc-
tion of previously destroyed buildings in the Coffey Park area).

Additionally, we presume that based on the number of apparatus seen entering
Coffey Park [33], the assessment of defensive actions presented here underesti-
mates defensive actions’ full extent. We could not identify from overhead imagery
defensive actions occurring under canopied areas or the interior of buildings.
Also, defensive actions identified by remote sensing do not account for the total
quantity and type of defensive actions, nor does remote sensing identify failed
defensive actions readily [8].

Regardless, the use of remote sensing to rapidly identify defensive actions high-
lights the importance of accounting for defensive actions when assessing building
response in both interface and intermix areas at the Tubbs Fire. As with the 2012
Waldo Canyon Fire [8], a thorough building response assessment would consider
buildings initially ignited in the study sites and buildings not ignited during the
passage of the wildland fire front that received similar heat fluxes. Identification of
this population of buildings is challenging in any post-fire environment.

It is common in post-fire assessments of building response to assess all buildings
within the fire perimeter. However, this sample selection can be arbitrary, as
shown when examining Figs. 5 and 6. Buildings outside the fire perimeter (Fig. 5)
may have survived due to defensive actions, which are often not considered in
assessing building response. Additionally, some buildings inside the fire perimeter
(Fig. 6) survived, in part, because of defensive actions. In effect, they are outside
the fire perimeter in terms of assessing building response.

Furthermore, the consequences of active fire (Fig. 5) and pre-fire (Fig. 6) defen-
sive actions relatively far from surviving buildings might have consequences for
building survival. Conditions far from buildings are typically not considered in the
assessment of building response. Further study is needed to understand defensive
actions and WUI treatments nearby and relatively far from buildings to under-
stand where and under what conditions to focus pre-fire and active fire efforts.

While this study does add to the growing body of evidence supporting the need
to consider defensive actions when assessing building response to WUI fires e.g.,
[12, 13, 14, 15 and 16], further study is required to understand the complex inter-
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action between environmental factors (e.g., building materials, code compliance,
vegetation properties, and others), WUI fire behavior, defensive actions, and
building response. The techniques presented here can aid in understanding the
location of defensive actions. Nonetheless, identifying specific information on
defensive actions (e.g., failed actions and equipment type) requires automated
vehicle logs, images and videos with time stamps, and information from fire wit-
nesses e.g., [1 and 7].

Finally, identifying specific damaged features rather than the percent of building
damage provides a means to identify building vulnerabilities. Also, rather than
proving that current WUI treatments are effective, which is almost impossible,
identifying failures of current WUI treatments in specific locations could help
improve WUI mitigation advice. The improved efficiency resulting from remote
sensing for building destruction might facilitate this detailed assessment of the
building vulnerabilities and mitigation failures.

5. Conclusions

This study provides additional evidence of remote sensing’s usefulness to assess
building damage, destruction, and defensive actions. Synergistic use of ground-
based and remote sensing assessments is required to fully assess damaged features
and features occluded by canopy cover, tall buildings, clouds, and shadows. Auto-
mated and semi-automated techniques also show promise for the rapid identifica-
tion of destroyed buildings.

Satellite, fixed-wing e.g., [8], and RPAS image acquisitions all have advantages
and disadvantages. The acquisition of open imagery from satellite sources e.g.,
[11] is becoming commonplace at large WUI fires. It promises to provide a consis-
tent source for the assessment of building destruction from WUI fires. RPAS ima-
gery provides more detail on damage and defensive actions but might be more
challenging to acquire for large areas and some locales. Fixed-wing acquisitions
might be challenging to acquire due to mobilization requirements but can provide
high-spatial-resolution data, similar to RPAS, over a large area. Regardless, syn-
ergistic use of various types of image sources, as available, can increase the effi-
ciency and safety of ground-based damage assessments at WUI fires.

Despite the usefulness of active fire images, videos, and personal accounts on
the internet, there is a need for discussions e.g., [1] or coordinated electronic
crowdsourcing of fire witness observations. Nonetheless, the coordinated acquisi-
tion of videos and images of active fire conditions and actions should be an initial
step to reconstructing the fire timeline and defensive actions. This crowdsourcing
can, in part, occur through electronic applications [34], thereby more efficiently
guiding discussions. Also, both first-responders and other fire witnesses should be
encouraged to openly share active fire images, videos, and accounts using stan-
dard protocols to help future communities affected by WUI fires.

It is challenging to identify the surviving population of buildings that received
heat fluxes (i.e., exposures from flames and embers) similar to buildings destroyed
by WUI fires, confounding building response assessment. Identifying surviving
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buildings based on their inclusion within the fire perimeter or adjacency to
destroyed buildings might be an arbitrary sampling approach. Consequently, iden-
tifying damaged building components and WUI mitigation failures is useful. Fur-
thermore, studies attempting to assess building response should include
comparisons to outcomes at nearby WUI treatments and some distance from
affected buildings.

In conclusion, this study builds on the growing body of evidence supporting the
synergistic use of post-fire imagery (e.g., building destruction) and ground-based
assessments (e.g., building damage) to provide efficient and safe approaches to
identifying damaged, destroyed, and defended buildings. Crowdsourced informa-
tion from active fire images and videos is also a valuable source of information
for post-fire assessments. The more ubiquitous use and availability of these data
sources promise to increase our understanding of WUI fires and factors leading to
building destruction and survival.
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