Empirical Software Engineering (2023) 28:43
https://doi.org/10.1007/510664-022-10258-8

®

Check for
updates

An interview study about the use of logs in embedded
software engineering

Nan Yang' © . Pieter Cuijpers'2 - Dennis Hendriks># . Ramon Schiffelers’> .
Johan Lukkien' - Alexander Serebrenik’

Accepted: 2 November 2022 /Published online: 11 February 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract

Context Execution logs capture the run-time behavior of software systems. To assist devel-
opers in their maintenance tasks, many studies have proposed tools to analyze execution
information from logs. However, it is as yet unknown how industry developers use logs in
embedded software engineering.

Objective In this study, we aim to understand how developers use logs in an embedded
software engineering context. Specifically, we would like to gain insights into the type of
logs developers analyze, the purposes for which developers analyze logs, the information
developers need from logs and their expectation on tool support.

Method In order to achieve the aim, we conducted these interview studies. First, we inter-
viewed 25 software developers from ASML, which is a leading company in developing
lithography machines. This exploratory case study provides the preliminary findings. Next,
we validated and refined our findings by conducting a replication study. We involved 14
interviewees from four companies who have different software engineering roles in their
daily work.

Results As the result of our first study, we compile a preliminary taxonomy which consists
of four types of logs used by developers in practice, 18 purposes of using logs, 13 types
of information developers search in logs, 13 challenges faced by developers in log analysis
and three suggestions for tool support provided by developers. This taxonomy is refined
in the replication study with three additional purposes, one additional information need,
four additional challenges and three additional suggestions of tool support. In addition, with
these two studies, we observed that text-based editors and self-made scripts are commonly
used when it comes to tooling in log analysis practice. As indicated by the interviewees, the
development of automatic analysis tools is hindered by the quality of the logs, which further
suggests several challenges in log instrumentation and management.

Communicated by: Sigrid Eldh, Davide Falessi, Burak Turhan

This article belongs to the Topical Collection: Software Engineering in Practice

This paper extends a published paper (Yang et al. 2021)

P< Nan Yang
n.yangl @tue.nl

Extended author information available on the last page of the article.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-022-10258-8&domain=pdf
http://orcid.org/0000-0002-3071-0244
mailto: n.yang1@tue.nl

43 Page 2 of 56 Empir Software Eng (2023) 28:43

Conclusions Based on our study, we provide suggestions for practitioners on logging prac-
tices. We provide implications for tool builders on how to further improve tools based on
existing techniques. Finally, we suggest some research directions and studies for researchers
to further study software logging.

Keywords Log analysis practice - Embedded software enigineering

1 Introduction

Execution logs, produced by software systems at runtime, capture the dynamic aspects of
the software. Log analysis tools have been proposed to aid developers in such software
engineering tasks as program comprehension (Said et al. 2018), test generation (Pradel and
Gross 2012; Dallmeier et al. 2010), and change comprehension (Amar et al. 2018; Bao
et al. 2019; Maoz et al. 2010). However, researchers have provided empirical evidence that
log analysis tools are not necessarily effective and applicable when dealing with real-world
problems (Mashhadi and Hemmati 2019). Legunsen et al. (2016) studied the effectiveness
of specifications mined from execution traces in the context of bug-finding. The authors
manually analyzed runtime violations of the specifications for 200 open-source projects and
found that most of the violations to the specifications are false alarms (i.e., not real bugs).
Another problem reported by Mashhadi et al. is that state-of-art log analysis tools failed in
processing the large volume of logs produced by a large-scale embedded system (Mashhadi
and Hemmati 2019).

We believe that understanding how engineers analyze logs and what information they
need is essential to design better log analysis tools and logging process. Li et al. (2020a)
studied the benefits and costs of logging from developers’ perspectives in the context of
open-source software development, suggesting better automated logging tools. Barik et al.
(2016) identified the tensions that emerge in data-driven cultures as event logs are used by
a variety of roles including non-engineering roles (e.g., a program manager) at Microsoft,
calling for tools that assist non-technical team members in analyzing logs. However, there is
no empirical study on developers’ log analysis practices in embedded software engineering.
Often, embedded software engineering needs specifically targeted tools (Graaf et al. 2003).
Embedded systems are often implemented as concurrent systems, have real-time constraints
and are mapped directly on real hardware. These features of embedded systems have raised
challenges in software testing (Strandberg et al. 2019), modeling (da Silva et al. 2006), and
architecture design (Antonino et al. 2016), which opens up questions of how these features
influence log analysis practices, what kind of challenges are raised in practices and how
developers deal with these raised challenges. Therefore, we focus on how developers ana-
lyze logs in embedded software engineering, with the aim of identifying developers’ needs
for future research on the techniques that are applicable to aid developers in performing
their maintenance tasks.

In order to understand how we can improve analysis tools for embedded software engi-
neering, we need to understand what information developers need from execution logs
(RQ3) and what tool support could be useful (RQ4). We believe that if the required infor-
mation could be easily provided by tools, developers could focus their effort and time on the
maintenance tasks, rather than on searching for the information. However, the expectations
developers have about tools also depend on the context of use. Therefore, first, we need to
understand the types of logs developers use (RQ1) and the purposes for which developers
analyze logs (RQ2).

@ Springer

Empir Software Eng (2023) 28:43 Page3of 56 43

To answer our research questions, in our previous conference paper (Yang et al. 2021) we
reported on an exploratory case study at ASML, a company that develops lithography sys-
tems for the semiconductor industry. We conducted a series of semi-structured interviews
with 25 software developers. We observed that developers use four types of execution logs
that record high-level machine actions and errors, low-level execution details, performance
data as well as business-critical data (RQ1). We confirmed that logs are primarily used for
analyzing software issues (Barik et al. 2016; Li et al. 2020a). In addition, we observed the
use of logs, e.g., for test code development and requirement reverse-engineering (RQ2). We
identified 13 types of information developers search for in the execution logs. We found that
the most frequently mentioned types of information are propagation of errors across sys-
tems, timestamps associated with log lines, data flow, interaction of software components,
and differences between multiple executions (RQ3). In addition to the common challenges
related to log quality (Zhu et al. 2015; Li et al. 2020a), we observed that the lack of domain
knowledge, lack of familiarity with code base and software design and presence of con-
currency raise major challenges in log analysis for such complex and multidisciplinary
systems. Particularly, developers shared that obtaining a high-level picture of component
interactions is useful for developing global comprehension on the behavior of such systems.
Such abstraction is particularly hard to obtain with currently used tools (e.g., text-based
tools). Thus, developers expect tools to help them handle the complexity by adding multi-
level abstractions to logs and comparing multiple logs on different levels of abstraction
(RQ4).

The exploratory case study at ASML is a case study. As any other case studies, it inher-
ently suffers from threats to external validity. Hence, to increase the external validity, in the
current work we extend our previous study by replicating it at four other companies. With
this replication study, we aim at understanding to what extent our findings at ASML can be
confirmed at other companies (RQ5). We would like to not only confirm our previous find-
ings, but also explore the scope of the results. To achieve the confirmatory and exploratory
goals, we conducted 14 interviews with engineers from three embedded software compa-
nies and one company which develops general applications. By involving these two types
of companies, we attempted to identify aspects that are specific to embedded software
companies and juxtapose them with findings for companies from other domains. The results
show that the practices at ASML are not company-specific (RQ5). We found that most find-
ings obtained at ASML (e.g., the challenges raised by concurrency) largely resonate with
engineers at other embedded software companies, while some findings are shared by all the
companies (e.g., challenges related to log quality) including the company which develops
general applications.

We have also collected new insights from this replication study. To address the chal-
lenges in log analysis, most of the interviewees shared that it is important to resolve several
trade-offs in logging. For example, formalized and automatic logging on one hand can help
companies govern log quality, and subsequently facilitate the analysis of logs and the evolu-
tion of logging code, but on the other hand, it reduces the freedom of developers in logging
what they need and want. Moreover, with this replication study, we collected empirical evi-
dence that the evolution of logging code has raised challenges for maintaining the artifacts
that depend on the generated logs (e.g., analytical tools or a knowledge database based on
logs).

Based on our results from the study at ASML and its replication, we synthesize the main
scenario of software logging, discuss the contextual factors (e.g., programming languages),
and formulate implications for practitioners, researchers and tool builders about log analy-
sis and logging practice. For example, we suggest researchers to study the co-evolution of

@ Springer

43 Page 4 of 56 Empir Software Eng (2023) 28:43

logs and log-dependent entities to ease any software engineering activities and techniques
that depend on the generated logs (e.g., log-based testing, pattern recognition and match-
ing, and log analysis and differencing). For tool builders, we suggest developing tools that
can help developers comprehend systems in an abstract way, categorize log differences for
providing actionable insights and link different types of logs to provide a complete picture
of executions. For practitioners, we suggest a series of logging guidelines, such as defining
logged information with the stakeholders of logs.

The remainder of this paper is organized as follows. In Section 2, we present our
exploratory study at ASML. Next, in Section 3, we report on our replication study at four
companies. Based on these two studies, we synthesize the findings in Section 4. We then
discuss the implication of our work in Section 5. We discuss threats to validity in Section 6.
Finally, we conclude in Section 7.

2 Use of Logs at ASML

In this section, we present our exploratory study at ASML about log analysis. We start with
our methodology (Section 2.1). The results of this study that answer our research questions
are then presented in Sections 2.2 (RQ1), 2.3 (RQ2), 2.4 (RQ3) and 2.5 (RQ4).

2.1 Methodology

To understand how software developers use logs in the embedded systems industry, we
conducted a case study (Runeson and Host 2009). As our research questions differ from
previous work (Barik et al. 2016; Li et al. 2020a), we opted for an exploratory rather than a
confirmatory study.

2.1.1 Context

Our study is part of an ongoing collaboration with ASML which develops high-tech produc-
tion systems for the semiconductor industry. The division that we work with is responsible
for components implementing the supervisory control and metrology of the manufacturing
process. Control and metrology have become the backbone of many high-tech systems (e.g.,
optical measurement systems and autonomous vehicles) due to the growing complexity and
the demanding precision (Kurfess and Hodgson 2007).

The software components developed by this division form a paradigmatic subsys-
tem (Flyvbjerg 2007) that coordinates machine actions and measurements, as well as
calibration of the systems based on the performed measurements. The subsystem consists
of multiple processes collaborating with each other via inter-process communication.

The division provides a typical context of embedded software engineering; the
(sub)system is implemented not only by software engineers but also engineers from dif-
ferent disciplines (e.g., mechanical or electrical engineering). Similar to other complex
embedded systems (Asadollah et al. 2015), the execution of such software systems requires
the physical layers to be present or simulated. The in-house execution of such software sys-
tems requires either a simulator called DevBench, or an environment called TestBench in
which physical layers are present.

The system is implemented with several languages. The interviewees use general pur-
pose programming languages C/C++ and Python. In addition, the division has been adopting

@ Springer

Empir Software Eng (2023) 28:43 Page 50of 56 43

model-driven engineering (MDE) to design the components that are responsible for control-
ling machine actions and production processes. Developers design these components using
a state-machine-based modeling language called ASD (Broadfoot 2005). The correctness
of software components is verified using a built-in model checker. The source code of these
components is automatically generated from these state machine models.

2.1.2 Semi-structured Interviews

We opt for semi-structured interviews as they allow us to discuss prepared questions and ask
follow-up questions exploring interesting topics that emerge during interviews (Bird 2016).
Table 1 shows our interview guide. In adherence to best interviewing practices (Bird 2016),
we conducted a pilot interview with a developer from the same division to examine our
interview settings and questions. The pilot interview took one hour and led to the rephrasing
of several questions. The study design was approved by the ethical review board of the
Eindhoven University of Technology and ASML.

Table 1 Interview guide

Background
1. What is your job title?
2. What kind of systems is your group responsible for? What is your role
and responsibility within the group?
Type of logs (RQ1)
3. Do you use any execution logs that capture the run-time behavior of software?
4. How are these logs commonly called in your team?
5. How do you obtain these execution logs?
Purpose of log analysis (RQ2)
6. For what purposes do you use them?
7. How often do you analyze logs for your purposes?
Information needs (RQ3)
8. What information is in log X (i.e., the log the developer has mentioned)?
9. What information in log X helps you for your work?
10. How does the information in log X help you?
11. Can you describe the procedure of a task in which log X is used?
Tool support (RQ4)
12. What tools do you use for analyzing execution logs?
13. How do you use these tools?
14. What are the most challenging steps in your log analysis practices?
15. How do you cope with these challenges?
16. What kind of tools would you like to have for helping you analyze logs?
17. How would you like to use these tools?
Ending
18. Having discussed some topics about log analysis, would you like to add some thoughts?
19. What is your year’s of experience as a software developer?

20. What is your education background?

@ Springer

43 Page 6 of 56 Empir Software Eng (2023) 28:43

2.1.3 Interview Participants

The selected division has seven software development groups. Each group is responsible
for the development of multiple components. We contacted the group leads from these
seven groups to recruit software developers. We encouraged the group leads to take into
account the diversity of developers’ education background, development role and gender.
Our invitation was accepted by 25 software developers (see Table 2). In the beginning of
the interviews, to establish mutual trust, we stressed that the interviewees’ identity will not
be disclosed, and their answers will not be shared with their supervisors.

Table 2 Background of interviewees

Group ID Participant ID Years of experience Current role? Gender® Education
background®
1 1 7 D M GCS
2 10 D M GCS
3 7 A M GCS
4 6 A M GCS
2 5 11 D w GCS
6 5 D M GCS
7 30 A M UOth
8 24 T M GOth
3 9 15 A M UCs
10 5 D M GCS
11 5 A M GCS
4 12 13 T M UOth
13 1.5 D M GCS
14 25 P M UCs
15 2.5 D M ucs
5 16 45 D M UOth
17 9.5 A&P M GCS
6 18 35 D M GCS
19 2 D M [S[6N
20 10.5 A M GCS
21 20 A&P M GOth
7 22 3 D M GCS
23 13 D M GCS
24 9 D M GOth
25 2.5 D W GCS

4D: developer, A: architect, T: tester, P: product owner
YM: man, W: woman, none of the participants identified as non-binary

¢GCS: graduate degree in computer science, UCS: undergraduate degree in computer science, GOth: graduate
degree in other science subjects (e.g., electrical engineering, physics and mechanical engineering), UOth:
undergraduate degree in other science subjects

@ Springer

Empir Software Eng (2023) 28:43 Page 7 of 56 43

2.1.4 Data Collection and Analysis

We collected data by recording the audio and making the transcripts. We coded the tran-
scripts (Bird 2016) using the ATLAS.ti data analysis software. Our coding process consists
of three steps. First, we performed open coding. We constantly compared and refined codes
that emerge from this process. Similar codes were then grouped into categories. Second,
we conducted axial coding to make connections between codes or categories. Finally, these
codes and categories were grouped into the topics derived from our research questions.
According to Strauss and Corbin (1997), theoretical saturation is reached when no new
insights emerge. Hence, instead of having a strict sequential order of data collection and
analysis, we interleaved these steps. The codes and categories emerged as the data is ana-
lyzed and helped us to examine whether theoretical saturation was reached. We consider
that the saturation is reached when no new codes are found. With these 25 participants,
we reached the saturation as we did not observe new codes in the last four interviews.
We present our explanation of the derived codes in the following sections. The codes are
explained with quotes of developers. We give an ID for each quote to help readers link these
codes and the explanations. An ID has a format of PX-Y where PX indicates the participant
ID and Y indicates the sequence number of quotes from the corresponding particiapnt.

2.1.5 Member Checking

Coding is an interpretative process and as such there is always a risk of misinterpreta-
tion (Holton 2007). In order to reduce this risk, we performed member checking (Buch-
binder 2011), i.e., request interviewees’ feedback to improve the accuracy of the derived
theory. We emailed each participant two artifacts, the transcript of the interview to remind
the participant what was discussed in the interview, and the codes derived from the transcript
together with the description of the codes. We encouraged participants to correct us if they
disagree with our interpretation, and add new ideas if they would like to do so. We received
20 replies of the participants, of which two required minor changes to the description of the
code and two added additional thoughts which did not result in new codes.

2.2 Type of Logs (RQ1)

The types of execution logs are summarized in Table 3.

Table 3 Four types of logs (RQ1)

Type Information Enabled by default Presence of Quote ID
physical layers

Event log Machine event & v Not necessary P20-1
(EL) €ITor message

Function trace Order of functions & X Not necessary P18-1
(FT) values of parameters

Performance data Duration of software & v Necessary P7-1
(PD) hardware actions

Functional data Business-critical data v Not necessary P8-1
(FD)

@ Springer

43 Page 8 of 56 Empir Software Eng (2023) 28:43

Event Logs contain regular events created when a machine action such as initialization
has been executed as well as error messages of the systems:“you will see errors, but also
all kinds of events indicating in what state the system is or what phase of execution is
being entered”(P20-1). Developers obtain event logs either from field productions or from
in-house test executions. Interviewees use “event log” and “error log” interchangeably.

Function Trace contains the details of the program execution. The start and the end of
a function call inside components as well as the values of parameters are logged. Com-
pared to event logs, function traces show more details of the execution:-“In the event log
you have a higher level view of the system, whereas with component tracing you have a
finer level [view] of the system” (P18-1). Due to performance concerns, function tracing
is not enabled by default. Developers can enable it before executing in-house tests. It can
be time-consuming to obtain function traces because developers need to set up the simu-
lation environment for test executions and wait for their completion: “so you have to set
up DevBench plans, and they have to run the test, and sync your code. It’s already quite
some work... sometimes the tests take hours to complete” (P21-1). To obtain function traces
from field productions, developers need to negotiate with customers: “in order to see this
I need tracing from these processes and then you look into if we can at the customer site
turn on traces for such a process” (P9-1). Interviewees use “tracing”, “function trace” or
“component tracing” interchangeably.

Since the performance (e.g., production throughput) is a key business driver of the
machines, performance data logs the sequence of function calls at component interface:
“for every component interface, you can specify throughput tag, on entry of a function or an
exit of the function, both on the client and on the server side, so you see the start and end
points of real function calls ”(P7-1). The performance data logs the duration and sequence
of software and hardware actions, showing the speed of execution. Obtaining performance
data is not trivial because in order to accurately capture the duration of software and hard-
ware actions, the software needs to run on the Testbench: “ You need these Testbenches,
which are kind of real machines. For getting access to them you need to arrange it. And
you’re competing with other people that want to do the same thing. There’s only one per-
son who can use the machine at a given moment in time” (P16-1). Interviewees also refer to
“performance data” as “throughput trace”.

Functional Data logs the business-critical data that represents the functional aspects of
the systems: “it contains details like what is the average heat of wafer” (P8-1). It can be
obtained from field productions and test executions.

RQ1 summary: Developers use different types of execution logs that record high-
level machine actions, low-level execution details, throughput information as well as
bushiness-critical data. Developers need to go through a non-trivial process to obtain the
logs because the execution of software for such systems requires hardware to be available
or simulated.

2.3 Purpose of Log Analysis (RQ2)

We identified 18 purposes and classified them into four categories. Our findings are comple-
mentary to the prior studies (Li et al. 2020a; Barik et al. 2016; Zeng et al. 2019). Consistent
with the prior studies, we found that developers primarily use logs for the purposes of ana-
lyzing issues. We also identified purposes (e.g., developing test scenario & code, reverse-

@ Springer

Empir Software Eng (2023) 28:43 Page 9 of 56 43

engineering requirements for legacy software and identifying root cause of flaky executions)
not previously discussed in the literature.

2.3.1 Software Comprehension

This category covers two purposes related to comprehending behavior of a system. P3, P9,
P14 and P22 use execution logs to complement the source code when familiarizing with
the software: “One of the most important things that you need to understand [is] what the
software does, you do that partially based on tracing” (P9-2). Execution logs also comple-
ment the documentation: “The software is not very well documented. We have to do reverse
engineering to get requirements... I can choose to run the current software and enable trac-
ing, and from that tracing, it shows me all the interaction between different components”
(P3-1).

2.3.2 Test Development

When developing test cases, developers adopt an incremental approach using logs: “We ana-
lyze the trace... Normally we will start with a very basic scenario of tests. We checked some
of the sequence of the essential parts... we continue to extend the test scenario, probably
with some pause or stop in the middle and resume it or inject some errors to see if the errors
can be handled correctly” (P9-3).

2.3.3 Verification and Improvement

Execution logs help developers to verify and optimize different aspects of the software. In
addition to running tests against requirements, developers extensively inspect logs to verify
whether the software behaves as expected: “I need to develop some new functionality and we
can add some tracing code to the production code then we can look into the tracing whether
the behaviors are expected” (P13-1). In particular, logs help verify that the undesired events
do not occur: “We have a list of events that we say those are not allowed to occur during a
regular test, that’s where we use the event logs” (P12-1). In order to achieve high throughput
performance, execution logs are also used to verify if actions are finished within their time
budget: “It helps us see how much time a function takes and this throughput tracing is
helping us to determine if we are within the time budget for every action that is going
on”(P16-2), and identify if any optimizations can be done: “Often we get the request to
reduce the overall timing, so to do that, you need to know the time it takes and where to
and how to reduce that” (P7-2). Moreover, as part of quality control, developers also check
the quality of logs: “We check whether there is too much logging going on, you know, log
pollution” (P19-1), or correctness of logged information: “In a project you want to log some
events or want to look into some errors, then you need to check if those errors end up in
the log” (P14-1). Since traces and logs represent the behavior of systems, it is also used as
part of the test documentation: “Sometimes we also use this produced trace as content for
our test documents that we produced to prove that the change has the intended behavior”
(P16-3).

2.3.4 Issue Analysis

Execution logs play an important role in analyzing issues. The issues could be anything
that threatens the quality of production, identified by the customers or by in-house test

@ Springer

43 Page 10 of 56 Empir Software Eng (2023) 28:43

executions. When an issue is reported, as the very first step, developers need to classify it
in one of the predefined classes such as functional issues, software issues, or infrastructure
issues: “So it’s really first thing what we try to do. It is to classify the issue. This classi-
fication helps us to know how to start debugging the code” (P21-2). By inspecting logs,
developers also get a rough idea of which group or person has the expertise to fix the issue:
“We still need to find to whom the issue is related, and then start communicating with them
to check if our assumption about the issue is correct or not” (P4-1). After the analysis and
communication, developers can localize the problems by identifying the suspicious chunk
of code that produces error messages shown in event logs: “The event log gives me an
indication that something is going wrong in this component, in this particular file and 1
cannot understand more from it other than that ”(P1-1). Problem localization helps reduce
the scope of the further investigation and answers the question of where the issue occurs.
An important step then is to reproduce the field issues in-house with simulation and testing.
Based on error messages shown in event logs, developers can confirm that the field issues
are correctly reproduced locally: “We try to mimic the scenario and try to reproduce the
error messages as much as we can” (P3-2). After reproducing the issue, to further identify
the root cause of issues (i.e., answer the question of why the issue occurs), more execution
details are needed: “So then I will turn on the tracing for that specific component for details
[of the field issue]” (P1-2). Sometimes, to understand a certain issue better, developers ana-
lyze the occurrence rate and the prevalence of the issues: “when you get some issues with
error logs, we can connect to our clients and you can see how many number of times this
happened at all the customers... to see if it’s really generic or something specific happens
at a customer at that point”(P22-1). There are various kinds of field issues. Sometimes,
the parameters (e.g., temperature) shown in functional data are useful to support customers
to perform corrections: “We read the functional data. We try to analyze different kinds of
parameters and try to suggest to the customer to run some certain amount of calibration.
Because it could be (that) the machine is a bit uncalibrated” (P22-2). For issues found by
testing, developers analyze logs to identify the root cause of regressions: “Once there are
some strange things that we obtain that weren’t present in the release before, we need to be
pretty sure on what kind of discrepancy is in the error log or the trace” (P13-2), and flaki-
ness (Luo et al. 2014):“That means they have good runs and bad runs on the same test case.
Then we want to know where the instability comes from” (P12-2).

2.3.5 Other Observations

The four types of logs serve different purposes. Event logs show high-level events that help
developers map the high-level behavior to components. Function traces provide the low-
level execution details of components. Function data are particularly used for issue analysis
while performance data are often used for performance-related purposes. A closer look at
Table 4 reveals that execution logs are primarily used to analyze issues: indeed, logs are
usually the only artifact providing the information about field issues. Applying traditional
debugging approaches to obtain low-level execution information (e.g., variable values) can
be infeasible; setting up debuggers for the software executed in the simulation environment
requires additional expertise and effort (P24-1). Moreover, debuggers can interfere with
timing behaviour and synchronisation between multiple processes: “What might happen is
that you have some timeout, so some processes hanging waiting for the process you are
debugging. If he doesn’t answer in a short time, it stops. Basically it throws an error” (P24-
2). This requires developers to log and analyze execution details in function traces to debug
such software systems.

@ Springer

Empir Software Eng (2023) 28:43 Page 11 0of 56 43

Table 4 The purposes of log analysis and the used logs for those purposes

Purposes Used logs #1 Quote ID

Software comprehension
Familiarizing with existing software FT 4 P9-2
Reverse-engineering software requirements FT 1 P3-1

Test development

Developing test scenarios and code FT, EL 2 P9-3
Verification and improvement
Verifying executed behavior vs expected behavior All 15 P13-1
Performance verification and improvement PD, FT
Verifying timing (throughput) performance 3 P16-2
Identifying opportunities of throughput improvement 5 P7-2
Log-quality qualification All
Identifying log pollution 1 P19-1
Verifying correctness of the logged information 3 P14-1
Test documentation FT 2 P16-3
Issue analysis
Classifying the type of issues All 3 P21-2
Identifying responsibilities EL 2 P4-1
Localizing problems All 12 P1-1
Confirming reproduced field issues EL, FD, FT 8 P3-2
Identifying root cause All
Identifying root cause of field issues 16 P1-2
Identifying root cause of regression test 11 P13-2
Identifying root cause of flaky (test) executions 2 P12-2
Analyzing occurrence and prevalence of issues EL 2 P22-1
Supporting customers EL, FD 3 P22-2

“#I” indicates the number of interviewees who mention the purpose during interviews

We observed differences between software developers. P6, P10 and P20 consider func-
tion traces as the last resort when analyzing issues: “In tracing you can see all the steps
within that component, and it can be a lot of data there... if you really cannot see what
is wrong then you enable that tracing. But that’s really last resort” (P6-1). P20 indicated
that the use of execution logs also depends on the type of component, e.g., analyzing com-
ponents responsible for algorithms requires different logging than to control components:
“[the component developed by] my current team is all about calculations, which is not
really about control sequence or timing. It just about the numbers. It’s a completely dif-
ferent domain. For example, we need that much better [functional] data logging” (P20-2).
Furthermore, the usage of execution logs can be changed with the shift of their roles, e.g.,
to a product owner: “I’m more responsible for making sure that the team is executing their
work correctly. I myself will not look at logs anymore” (P21-3).

RQ2 summary: Developers rely on logs to obtain low-level execution information for
issue analysis that cannot be easily obtained using traditional debugging approaches. Our
findings complement the literature and provide empirical evidences for some additional
purposes (e.g., test development).

@ Springer

43 Page 12 of 56 Empir Software Eng (2023) 28:43

Table 5 Information needs from execution logs

Information needs and sources #I Quote ID

Context of issues (EL and FT)

‘What are the settings of the machines? 3 P3-3
How does the error propagate? 10 P7-3
At which time point does the error occur? What is the machine 12 P13-3

doing when the error is raised?

Data flow and executed sequence (FT)

In which order are functions being executed? 6 P22-4
‘What is being executed under current configuration? 4 P1-3
‘What are the values of variables and how do they flow from one 10 P22-4

function/module to another?
State and interaction (FT)
How do software components interact with each other? 10 P3-4
How does the function sequence change the state of software? 2 P14-2
Timing performance (PD and FT)

Is there any time gaps between actions? 2 P7-4

Is the software action finished within the time budget? 3 P16-4
Difference between executions (EL, FT and FD)

‘What additional errors does the change introduce? 5 P19-2

How do the control sequences from different executions differ? 12 P3-5

How do the functional data from different executions differ? 7 P7-5

“#I” the number of interviewees who mention the information need during interviews

2.4 Information Needs (RQ3)

We grouped information needs into five categories as shown in Table 5. We observed that
developers tend to have common information needs; five types of information are mentioned
by more than 10 developers (>40% interviewees).

2.4.1 Context of Issues

As discussed in the previous section, developers use logs for issue analysis. Many of these
issue analysis activities (e.g., identifying responsibilities) require developers to get the con-
text of the issues: “To be able to create this picture, and later you try to somehow understand
based on this picture what went wrong with this run” (P22-3).

First, developers inspect event logs and functional data to know the settings of the sys-
tems:“we try to look which type of machine, which type of service pack it was, which part of
and which type of patch it was” (P3-3). Second, developers need to understand how the error
propagates through the system based on event logs: this requires knowledge of the system
architecture and the error handling mechanism. The systems that our interviewees work with
employ a Client-Server architecture (Noergaard 2012). ASML implements an error linking
mechanism, that is, when an exception occurs in the server component, the server compo-
nent must notify the client components. Since the same component can play the role of a
server towards a group of components, and the role of a client towards other components, it

@ Springer

Empir Software Eng (2023) 28:43 Page 13 of 56 43

is common that an error propagates from one component to a set of other components that
have direct or indirect dependencies on it. Developers inspect logs for records of error prop-
agation to identify the components that might contain the root cause, inferring for which
components they need to further inspect low-level details:“in the error logging it has a tree.
The errors are linked together, so from the error, I can trace back to the root error and to
see when and where actually it happened”(P7-3).

To further understand the behavior of a component when errors occur, developers need
the timestamp associated with the error messages, which serves as a linker between high-
level information from event logs and low-level details from function traces: “we can
search the timestamp in the software trace to find, let’s say, around that moment what had
happened” (P13-3).

2.4.2 Data Flow and Executed Sequence

Inspecting the low-level details shown in function traces, developers identify the parts of
code that have been executed given a particular setting: “So a machine to us is sometimes
a black box, like you have so many configurations and so many possible inputs, and that
changes the output or execution. So to really understand what is being executed under the
current configuration [we looked into function traces]” (P1-3). The order of function exe-
cution and the flow of data are important for developers to verify software behavior against
their expectations: “You check two things. If the sequence of the function call is as you
expected, given a certain case... and second you check if the generated output which is input
for other function, so data moving from one function to another function, is as you expected”
(P22-4).

2.4.3 Software State and Interaction

To understand the software system, developers analyze the interactions between software
components based on the function traces:“Just to know how the component behaves and
what calls went through for example the external boundary of that component and how the
component reacts with other components”(P3-4). P3, P6, P14, P15 and P22 consolidate the
interaction information by means of sequence diagrams.

Developers also analyze how the state of software changes based on function traces. For
the components developed with the MDSE approach, each of them consists of multiple
state machines that interact with each other. Interactions are realized as function calls and
recorded in function traces. Working with such components, developers inspect the interac-
tions between state machines that change the states of the system, and compare them with
function traces: “it might go to the wrong path in the state diagram. For example, when it
should go back to initialize state, but it’s going to the different state and then going to ini-
tialize state... so I can look at that trace to see what is the sequence and then look at the
model to see if they are matched or there’s something wrong” (P14-2).

2.4.4 Timing Performance

Developers analyze throughput traces to improve timing performance: “Gap is the time
between software actions. We can see that there is a gap somewhere in the sequence [in
the throughput trace] and then you need to understand where the gap comes from... gaps
can be the result of a function calling another function in another task. If the other task is
busy doing something else function execution is blocked (P7-4), and to verify the timing

@ Springer

43 Page 14 of 56 Empir Software Eng (2023) 28:43

behavior:“It helps us see how much time a function takes, and this throughput tracing is
helping us to determine if we are within the time budget for every action that is going
on”(P16-4).

2.4.5 Differences Between Executions

Developers need the information about the differences between the logs generated from
multiple executions in order to, e.g., identify regressions, and understand software changes.
This would require one to compare error messages:“So especially if an error seems to be
not consistently appearing, like that caused by some kind of instability, then I want to know
which change set most likely introduced it, and then it makes sense to run also older versions
of the code to see if it never occurred earlier or not”’(P19-2), function traces: “Everything
is inside one module and then the only thing that we can do is to generate traces in this
case, before the change and after the change. And then we say, hey, before the change, the
tracing of the external behavior of that component says that it did 12345. But after the
change it did 123, and then it jumped into 6, and then 4 and 5 are missing.”(P3-5), and
functional data:“we will look at this reference output of the calculation and compare it to the
output that will be generated by the software after it does the implementation. And if they
match each other, we say yes indeed that the calculation and implementation went well”’
(P7-5).

Often, developers compare logs generated from multiple executions of one software ver-
sion to identify the root cause of flaky tests (Luo et al. 2014):“So for those instable test
cases, this comparison is also very helpful... so we can compare the bad run with the good
run. Then we can know where the instability comes from. Otherwise, sometimes it’s really
time costly” (P12-3).

Moreover, the differences between executions can also help identify when machines
start deviating from the expected behavior. In machines, produced by ASML wafers move
through the production line in batches. The production machines repeatedly perform the
same sequence of actions in order to process all elements in the same way. These repeated
actions are controlled by sequences of function calls and eventually captured in the func-
tion trace. Sometimes, the issue in the machines result in inconsistent actions for these
elements. To identify where and when the inconsistency occurs, developers need to iden-
tify the differences between the sequences of function calls associated with different
elements.

RQ3 summary: Five types of information from logs are mentioned by more than 10
developers. Inspecting the propagation of errors is essential to localize the problem. With
the timestamp information, developers can establish the relations between different types
of log. The information about data flow and the interaction of software components is
useful to comprehend the complexity of systems. Particularly, developers need the dif-
[ferences between executions for identifying the cause of flaky tests or the deviation from
expected behavior.

2.5 Tool Support for Log Analysis (RQ4)

In this section we discuss the tools developers use, the challenges they are facing when
analyzing logs, and the tools they would like to have for log analysis.

@ Springer

Empir Software Eng (2023) 28:43 Page 15 0f 56 43

2.5.1 Tools Used

The interviewed developers are very similar in their choice of tools to analyzing logs. All
developers stated that text editors are commonly used. The developers also adopt traditional
approaches such as Linux grep or their own scripts: “if I want to do a bit more smarter
analysis other than grep and I can do it in Python. ”(P14-3). Although filtering and search-
ing are commonly used to extract information from the log data, there is no joint effort on
making a generic tool: “Now you find a lot of scripts that are used by X by Y by ZXY who
don’t know each other, but they create the script at a different time”(P21-4). When com-
paring logs generated from different executions, developers either manually inspect the two
logs which “ takes a lot of time and it’s not really productive”(P23-1) or use text differ-
ence analyzers (e.g., KDiff3, Beyond Compare and Linux dif £): “Sometimes I use Beyond
Compare for comparing logs. It compares data line by line”(P2-1).

2.5.2 Challenges in Log Analysis
Table 6 summarizes the challenges identified.

Log Availability and Quality In order to enable log analysis, developers first need to collect
logs. As mentioned in Section 2.2, due to the needs of a physical or simulated environment
for software executions, log collection can be a time-consuming process. Particularly, when
it comes to log collection from the field, logs are sometimes unavailable due to the perfor-
mance concerns: “If you turn on tracing then it slows down the system so heavily that you
impact production. It’s not something you can do at a customer [site] very easily”(P9-4); or
confidentiality: “customers are very vulnerable to expose that to us because they don’t want

Table 6 Challenges in log analysis.“#I” indicates the number of interviewees who mention the challenge
during interviews

Challenges #1 Quote ID

Log availability and quality

Absence of logs 8 P9-4, P§-2
Non-standard logging 5 P12-4
Incompleteness of trace 8 P9-5
Presence of noise 18 P8-3
Unreadable format for functions with a lot of parameters 2 P24-3
Missing categorization and overview 3 P13-4
Broken error linking 4 P1-4
Complexity
Involvement of components from different groups and domains 6 P15-1
Involvement of many state machines 2 P15-2
Presence of concurrency 8 P14-4
Presence of irrelevant differences between logs 5 P17-1,P11-1,P11-2,
P15-3,P17-2,P17-3
Expertise
Lack of domain knowledge 10 P11-3,P22-5,P22-6
Unfamiliar with code base and software design 9 P7-6,P15-4

@ Springer

43 Page 16 of 56 Empir Software Eng (2023) 28:43

that data to become visible to other customers”(P8-2). The quality of logs is also known to
influence the developers’ ability to perform the analysis efficiently (Fu et al. 2014; Li et al.
2018; Zhu et al. 2015). Indeed, we have the same observations in our context. According to
the interviewees, there is no standard way of tracing functions: “For each software compo-
nent, they [(i.e., developers)] have their own preference for the format of the tracing. You
should be able to read that trace first. Otherwise, it’s really not easy”(P12-4). Where to
log and what to log is determined by developers who wrote the code and their peers who
analyze the logs might find logging to be excessive (P8-3) or scant (P9-5).

Moreover, working with logs generated from metrology software components comes
with a particular challenge. The function calls in such components have numerous param-
eters recording measurement and modeling data, and subsequently requiring developers
to format functions and parameters in logs: “we have functions with a lot of parameters,
and often they’re big structures and big arrays and everything is converted into text in
trace... Sometimes I really spend time formatting data in a way that I can understand it”
(P24-3).

Given that logs are in size of gigabytes, and not accompanied by any kind of summary,
developers spend a lot of effort and time navigating through them: “right now all the error
messages they are combined or mixed in one file... if the event log can be structured in a
better way, then it could improve the efficiency for us to analyze” (P13-4). Another quality
related challenge mentioned by developers is that errors raised by servers are not always
linked to their clients due to implementation bugs of error logging and linking: “Often what
we experience right now is that the error links are broken. And I think this misleads the
developer quite a lot ”(P1-4).

Complexity Many challenges are related to complexity of the system: presence of multiple
interacting components, multidisciplinary context and concurrency.

Indeed, P15 has indicated that “You have tracing from multiple software components.
They all talk to each other and that makes it so difficult to understand what was the context of
the software before it got there” (P15-1). For the components that are responsible for process
control and implemented using interacting state machines (cf. Section 2.4.3), analyzing logs
requires tracking the change of states in multiple state machines: “we have 200 different
models. Then you need to check, ok, this model was in this state and then it calls that model
which calls another model and then at some point you’re looking at 10 different models and
different states, and it’s so difficult to understand all the different states.” (P15-2).

The multidisciplinary character of the software requires developers to analyze the logs
capturing the behavior of components from different technical domains: “sometime maybe
the analysis takes days... for example, especially if it is related to other functional clus-
ters [i.e., other functional domains]... I could say that it is the most time-consuming part”
(P5-1).

The machines developed by this company have high competence in processing multiple
elements concurrently. This high-level machine requirement is realised by the underlying
concurrent software: “all those process elements they end up in different lists, and then the
lists are emptied by different sub-processes... and they all do their things separately and
they synchronize on certain moments. So that makes it difficult, and that is represented and
logged in the same trace file in the sequence” (P14-4). The function trace records function
calls from different concurrent executions sequentially, i.e., developers should disentangle
interleaved executions.

Complexity does not only hinder comprehension but also introduce irrelevant differ-
ences between logs. Such differences can be introduced by time variation because*“you can

@ Springer

Empir Software Eng (2023) 28:43 Page 17 of 56 43

see the execution time of functions are sometimes different for different runs” (P17-1), and
uninitialized variables since the values of these variables “will appear on the trace state-
ment is a random, it’s garbage. And if you put this in a tool like Beyond Compare, it will
take it as a difference, but in reality, it’s not” (P17-2) Similarly, irrelevant differences can
be introduced by concurrency: “Some events are not necessarily happening in the same
order in different executions ”(P11-1), refactoring or implementation of new features: “You
could also see many differences because of refactoring or some development changes we
made”(P11-2). Excluding irrelevant differences requires domain knowledge: “So if you
understand what should be the sequences, then you can basically see, ok, in this case the
sequence was flipped but functionally it’s the same”(P15-3), effort and time: “more and
more preprocessing until you remove the most of them... It costs time. And it can even lead
you to wrong conclusions”(P17-3).

Expertise The systems are not only complex but also multidisciplinary. Working with
logs generated from such systems requires domain knowledge (e.g., how machines expose
wafers to the light): “ We can dive into the trace files etc. It is not enough. You have to know
what is actually going on here with those traces and what is the component doing” (P11-
3). The analysis is particularly challenging for newcomers: “Let’s say if you have really
huge experience in software, but without any ASML knowledge, I would say it is useless...
I remember the first year it was really hard for me somehow to understand what’s really
happening > (P22-5). Different from newcomers who get lost in the large amount of infor-
mation in logs, experienced developers such as P14 tend to take a top-down approach: P14
first inspects the interactions between the components that control and coordinate machine
actions, and other components. This allows P14 to comprehend how machines were func-
tioning and what functionalities each component have, and to conjecture which parts of
machines exhibit faulty behavior. Only then P14 examines execution details for relevant
components.

Eight developers stress importance of not only discussion with senior software develop-
ers as well as collaboration with functional developers from other engineering disciplines
“peer working at minimum two, it really helps a lot. Especially when one with nice software
skills and the other one with nice functional skills”(P22-6).

The lack of familiarity with the code base and software design also hinder log under-
standing: “you often see a trace of code you never worked on. That’s what consumes
most of the time” (P7-6). For example, in order to understand the interactions between
software components based on function traces, developers should be familiar with the
communication mechanisms between components: “some of the interactions are based on
subscriptions. So you subscribe to event and once that event happened there’s a callback. In
software tracing you just see there’s a handler of the event. If you are not familiar with the
structure of the software, you couldn’t link that trace [line] with the other component [that
gives the callback]’(P15-4).

2.5.3 Expected Tools

Creating Multi-level Abstraction Developers would like to have a tool that can help them
inspect different levels of details from logs: “On certain levels you can open and close those
Sfunctions to see what'’s internally there so that you can maintain a high level overview and
details where you need them, instead of only having all the details now, but that’s what’s
happening now, you got a whole bunch of data, and it’s all detail”’(P14-5). To provide a
“bird’s-eye view”, the tool can visualize high-level function calls with sequence diagrams,

@ Springer

43 Page 18 of 56 Empir Software Eng (2023) 28:43

state machines or Gantt charts: “Usually I end up with drawing the sequence diagrams
myself to understand it, but if you could drag and drop traces into a tool and then get
a sequence diagram, that would also be nice” (P9-6). The tool should allow developers
to select the level of details they would like to inspect: “I tend to do that by hand... The
problem is that if you generate it, you get everything, not interesting stuff... And then I do it
by hand, I just leave that out and only put the interesting sequences in there” (P17-4). For
example, as discussed in Section 2.4.3, when dealing with state machine based components,
developers inspect the function calls that change the state of state machines. The tool should
support developers performing this task by visualizing the sequence diagrams only for these
important interactions.

Automatic Log Comparison Developers would like automatic log comparison tools to pro-
vide differences at different levels of details: “I think presenting all those [comparison]
results in a single graphical user interface will be polluting... Maybe we could have maybe
multiple options or multiple levels based on what you want to check” (P18-2). Furthermore,
developers envision tools supporting identification of the cause(s) of log differences such
as concurrency, refactoring or uninitialized variables.

Providing Generic and Unified Facilities Instead of multiple scripts with (partially) dupli-
cated functionality, developers envision a tool supporting formulation of different queries
to different types of logs: “Such kind of facility would help engineer to start talk to data
instead of spending time on parsing”(P22-6), as well as inspection of the relations between
different logs generated from the same execution: “if we can show different logs in one GUI
or one window, then it is easier for us... Currently we just manually go through these logs
and find the relationships between logs”(P2-2). For analyzing errors based on logs, devel-
opers expect a knowledge base that stores error patterns identified from historical logs so
that the knowledge about errors can be shared across groups.

The tools envisioned should be unified with test and log generation facilities (i.e.,
DevBench and TestBench) to reduce switching between tools: “ I need to connect to
DevBench, fire up my test, then look at each of those files individually, write them to my
local files, open the tools like the text editor and then go through each one of them. So
basically, if you can unify all of these things at one places, which becomes seamless to go
between them, then it becomes super awesome”(P1-3).

RQ4 summary: Developers mainly use text-based tools to analyze logs. In addition to
log quality concerns, concurrency and irrelevant differences between logs bring addi-
tional challenges in log analysis. Developers indicate that they need a tool that creates
multi-level abstraction of executions, allows them to compare logs at different levels of|
abstraction and provides generic facilities that can be shared among developers.

3 Replication at Other Companies

In this section, we present our replication study at four companies. This replication study
aims at understanding to what extent our findings at ASML are generalizable to other com-
panies (RQS5). We start with our methodology (Section 3.1) and then report our findings
(Section 3.2).

@ Springer

Empir Software Eng (2023) 28:43 Page 19 of 56 43

3.1 Methodology

To understand to what extent our findings at ASML are transferable to other companies, we
conducted a replication study. We adopted convenience sampling to recruit four companies.
Shull et al. (2008) discuss two types of replication study, namely dependent replication
and independent replication. The dependent replication relies on the design of the original
study as the basis for the design of the replication, controlling the variations between the
original study and the replication. In contrast, the independent replication uses different
experimental procedures to reproduce the results. The large number of changing factors
make it difficult to interpret the observed differences between the original study and the
replication. Hence, dependent replications are recommended to come before independent
replications to gain more insights (Shull et al. 2008). In this study, we opted for dependent
replications by changing the study context while following the same research method (i.e.,
interviews).

Next, we introduce the design of our interviews, context and participants as well as data
collection and analysis.

3.1.1 Semi-structured Interviews

We used the same research method adopted in our previous study at ASML (Section 2).
However, instead of asking open questions only, we asked two types of questions during
interviews. First, we asked open questions to trigger in-depth discussion without biasing
developers. These questions are the same set of questions that were asked in our previous
study at ASML (Table 1).

The open questions are then followed by a set of closed questions. The goal of asking
closed questions is to validate whether developers from other companies share the expe-
riences of their ASML peers. To this end we compiled the codes that we derived from
our previous study at ASML (i.e., codes shown in Tables 3—6 and codes discussed in
Section 2.5.3) with a survey-like form: Fig. 1 shows an example with the closed questions
about the type of used logs. During the interview, we first explained the codes to our inter-
viewees and then asked if they share the same experience. We note that we did not include
two challenges (i.e., Broken error linking and Involvement of many state machines) in the
validation form because they are specific to the modeling tool and error handling mecha-
nism adopted by ASML. We conducted a pilot study with an industrial embedded engineer
to examine whether the questions are well phrased and presented. The engineer suggested
that engineers may tend to select all the options about possible tool support (codes discussed
in Section 2.5.3) especially if their current tools are primitive. Therefore, we dropped the
closed questions related to tool suggestions (codes presented in Section 2.5.3). In this study,
we aim at collecting more ideas about tool support with the open questions related to the
used tools, challenges, and tool suggestions.

By asking these two types of questions in this specific order, we aimed to confirm our
previous findings while still being able to trigger new insights without biasing interviewees.
This replication study was approved by the ethical review board of the Eindhoven University
of Technology and the participating companies.

3.1.2 Context and Participants

In this study, we involved three companies which develop different types of embedded
products and one company which develops code quality checkers. By interviewing both

@ Springer

43 Page 20 of 56 Empir Software Eng (2023) 28:43

Log analysis practice

* Required

Types of log

2. What type of logs do you use? *
m Event logs that capture high-level system behavior
D Execution traces that capture function calls and parameters
D Logs that capture performance (e.g., throughput) of systems
EJ Logs that capture functional data (i.e., functional aspects of the systems)

[:] None of the above
Fig. 1 Closed question about type of logs used in practice

embedded software companies and the company which develops non-embedded products,
we would like to get a better idea of the scope of our previous findings.

In this replication study, we aim for reaching a broader audience from several compa-
nies. Therefore, we opt for recruiting a smaller number of developers from each company.
This replication study is different from our previous in-depth study of a single company
(Section 2) where a larger number of developers (i.e., 25 developers) are interviewed to
ensure that the theoretical saturation is reached. Following the same recruitment procedure
as the previous study at ASML, we contacted the managers in the software development
division of these companies. We encouraged the managers to recommend six develop-
ers to us, while taking into account seniority and diversity of software engineering roles.
If the company prefers to provide a smaller number of developers due to the availabil-
ity of developers, we encouraged the managers to recommend the developers who are
experienced with log analysis and knowledgeable of company practices. In total, 14 devel-
opers accepted our interviews. Table 7 shows the overview of the invited companies and
participants.

Company A Company A is a manufacturer of essential components that are required by elec-
tronic designs. To produce a high volume of electronic components, the company has built
control systems to handle customer orders, logistics and process control. We interviewed
six engineers of different seniority levels and roles working on these control systems. The
interviewed engineers use the Ada programming language in their development work.

Company B Company B develops various kinds of electronic products which include but
are not limit to consumer electronics. In this study, we recruited three engineers. The
three engineers work as architect, product owner, and quality engineer, providing different
perspectives on the use of logs. The system is mostly developed using C# and C++.

@ Springer

Empir Software Eng (2023) 28:43 Page 21 of 56 43

Table 7 Participants

b

Company (product) D Role? Experience Focus
A (Control systems) 26 D 2 Vision components

27 D <1

28 A 1.5 Motion control systems

29 A 5

30 D <1 Data collection platform

31 A 38 Real-time control systems
B (Electronic products) 32 Q 28 System-wide quality control

33 A&P 2 Supervisory controller

34 A&R 10 System-wide design and reliability
C (Consumer electronics) 35 A 3 Data collection platform & test

automation

36 A 24.5 Controller and system interfaces
D (Code quality checker) 37 S 14 System-wide service

38 D 21 Back-end

39 D 9 Front-end

4D: developer, A: architect, P: product owner, S: service engineer, Q: quality engineer, R: reliability engineer

bYears of experience at the company

Company C Company C is specialized in developing a certain consumer electronic.! Two
engineers were recruited. One of them is responsible for a data platform that collects data
generated from the machines. Meanwhile, the engineer also contributes to the investigation
of potential test tooling by studying the state-of-the-art and attending academic conferences.
The other engineer is responsible for the software layer for high-level action control and
error handling. The system is mostly developed using C# and C++.

Company D Company D is developing code quality checkers that are used in various kinds
of software systems. We recruited three engineers. Two of them are responsible for develop-
ing the back-end and front-end of the system, respectively. The other engineer is responsible
for making sure that products at customer side are working as expected. The front-end of
the system is developed using Java and the back-end is developed using Perl.

3.1.3 Data Collection and Analysis

To collect and analyze the data, we applied the same method as our study at ASML
(Section 2.1.4). We collected data by recording audio and making transcripts available. We
then applied closed coding, which is a process of identifying and marking interesting infor-
mation using a pre-established coding scheme (Seaman 1999). In this study, we used the
coding scheme established in our previous study at ASML. We created new codes if the
information related to our research questions cannot be labeled with the established codes.
We present our explanation of the derived codes in the following sections. The codes are
explained with quotes of developers. We give an ID for each quote to help readers link these

ICompany B and C are developing different kinds of consumer electronics.

@ Springer

43 Page 22 of 56 Empir Software Eng (2023) 28:43

codes and the explanations. An ID has a format of PX-Y where PX indicates the participant
ID and Y indicates the sequence number of quotes from the corresponding particiapnt.

3.2 Generalizability (RQ5)

In this section, we present the results of the replication study. As discussed, the study has
both exploratory and confirmatory in nature, supported by both open and closed interview
questions. By asking these questions, we explore the generalizability of the findings we
obtained from ASML with respect to the types of logs (RQ1), information needs (RQ2),
challenges (RQ3) and tool support (RQ4).

3.2.1 Types of Logs

As identified in ASML (Section 2.2), developers use event logs, function traces, functional
data and performance data which are generated separately to support different maintenance
activities. Each type of log has its own logging policy and format. In the replication study,
we learned that event logs and functional data are commonly generated by companies from
ES domain (company A, B and C). Similar to ASML, event logs in these ES companies
are generated in a loose text format, while functional data is usually formally defined and
formatted through the discussions between software and functional engineers.

However, not all companies generate and use function traces and performance data as
ASML. In company A, the functional data and performance data can be generated with an
in-house instrumentation technique: “Developers can put statements in the code where they
log certain variables in their ring buffer and that ring buffer is visualized by means of a
graphical interface. So you can see how certain, for instance, the X&Y position of a motor
or piece of equipment is changing, and also software signals how long certain messages
take to get from A to B. All kinds of user defined signals can be in there. There you can see
the performance of the machine”(P29-1). Function traces are not logged at company A due
to performance concerns: “The machines we make are typically very fast. They produce 20
products per second. I estimated (that) each line of log introduces maybe 100 nanoseconds
overhead”(P31-1).

Similar to ASML, company B generates event logs, function traces, and functional data
with separate logging formats and mechanisms. The performance data is not logged as a
separate type of log. However, according to the interviewed developers from company B,
when needed, the duration of actions and events can be inferred from other types of logs
(e.g., event logs) based on the recorded timestamps.

The developers from company C shared that the company used to generate one single log
file containing different kinds of data in a loose format. But in recent years, the company
has separated functional data from the debugging logs. The logged functional data is well
formalized and automatically instrumented, and hence can be further analyzed with built-in
tools: “We created the metamodel, so we actually modeled the data that should be logged
and how the data relates with each other, and we are trying to define that more accurately by
creating a domain specific language and then within that domain specific language we will
specify what logging we expect. So in that way it is formalized. We have also the logging API
that’s actually integrated into the embedded software and then used by the software devel-
opers”(P35-1). In contrast, the debugging log is manually created by software developers in
a loose format: “There’s also no structures, just a string. So, basically all the information
that they can come up with, they can just log there”(P35-2). The free and flexible logging
mechanism of this debugging log makes automatic analysis very difficult.

@ Springer

Empir Software Eng (2023) 28:43 Page 23 of 56 43

Different from these ES companies where functional data is systematically logged, log-
ging is less formal in company D. The developers at company D manually insert logging
statements that capture information, such as events, memory consumption and function
invocations, that software developers consider useful. The information is then logged in a
single log file at runtime.

RQ5-a summary: Event logs and functional data are commonly generated by embed-
ded software companies. Similar to ASML, the embedded software companies usually
formalize functional data for further domain-specific analysis. Not all the embedded soft-
ware companies log function traces due to performance concerns. Contrary to the separate
logging for different kinds of data, company D logs various kinds of useful information
into one single file.

3.2.2 Purpose of Log Analysis

Figure 2 shows the results obtained from the closed questions about the purposes of log
analysis. It can be seen that 8 out of 14 purposes have been selected by more than ten devel-
opers, and 11 by more than half of the developers, indicating the purposes identified in the
study at ASML largely resonate with the developers from other companies. Among these
purposes, problem localization and performance improvement are selected by all the inter-
viewees (=14). Such purposes as test documentation, log-quality qualification, developing
test scenarios and code, identifying responsibilities, reverse-engineering requirements, and
Sfamiliarizing with existing software are mentioned less often (<10). Figure 3 shows the
distribution of votes for these less frequent purposes over the companies. We can observe
the differences between companies; all developers from company B have reported that log
quality qualification before delivery is one of the reasons for inspecting logs, while none
of the developers from company C recognized it as a common practice. We conjecture that
this difference may be due to the different quality control policies implemented at different
companies. Furthermore, it can be observed that none of the participants from company D
use logs for responsibility identification and code familiarization. As explained by the par-
ticipants, they can easily perform these tasks by communicating with colleagues because
the code base of their system is maintained by a small group of developers.

[
IS

4

o 12

2

2 10

2

o 8

€

S 6

o4

5,

€

S0

z
vo 4] c c c = F4 [~) v
< w £ S o o kel kel 2 > 2 4] 29 £]
i £g k=1 L= = >] & 2 s} B - 5] £
o = ® Q€] ® 5 5] 8 k] S £ a @ =
< o E o S 2 < 2 c o g = E = a o S

oo = P = T > T o 15} o o2 <) 2
o 2Q = T E 9] a® 9 c 2 o @ P =) = |4
< o £ 35 = T o £ < a o o 2 0 a0 2 o35 % a =1
= o E] g3 ° o = T g @ 4} 5 oLy @ o
Y S8 =) 3 2o 29 50 3 g3 8 s E 2 5 0
w 2 o > S & <] 5o e S 9 = o @ 2 P > = £
cE Qo 2 c oS o9 w2 s e o <2 o £ o = <
£ o = = s E - o = & c o ° b >5 8 ©]
3 a © © 3 x5 S o O s W@ oo £ 2« I
2% 8§ 5 E5 §F 8% s5° g 23 » g8 % g
I} o s e - o o £ g 0 £ & 'S c 2 = o
= Q&£ . (] 0 X 2 S c = T o >
= x5 % £ © £3 o > =S € E 39 A
5 ° B & g 3 2= Z £ s T =
w = a a < g
] < ©) =
> o} ©
Software comprehension Verification and improvement Test development Issue analysis

Purposes of log analysis

Fig.2 Frequency of purposes in log analysis

@ Springer

43 Page 24 of 56 Empir Software Eng (2023) 28:43

Number of interviewees
w

o N
#
ke

m Company A
& Company B

Company C

Test documentation

m Company D

Log-quality qualification "

0
X
E
i)
a
c
o
Q
a
4]
2
o0
c
>
&
E=]
c
[}
)

Familiarising with existing software %
Reverse-engineering software
requirements

v
-]
o
o
he]
c
©
I
o
=
©
c
o}
Q
@
o
7t
41
3
oo
c
=Y
o
[}
>
v
[a]

Software comprehension Verification and improvement Test Issue analysis
development

Infrequent purposes of log analysis

Fig.3 Infrequent purposes of log analysis over companies

As we have observed in ASML (Section 2.3.5), logs are heavily used for issue analysis
for retrieving execution details because the traditional debugger is often not applicable due
to the synchronization errors introduced by breakpoints. Our replication study confirms that
logs are indeed essential in issue analysis for embedded systems where timing requirements
are critical: “We typically have a watch dog running, so that gives you like a couple of
seconds and then the system will automatically reboot, so breakpoint is not an option... not
trying to debug with breakpoints but always with logging”(P36-1).

With the discussion triggered by open questions, we identified three purposes not pre-
viously discovered in our study at ASML. Participant P34 shared that Company B has
gradually started using logs for more data-driven activities such as liability analysis: “we
also started using it to derive some utilization related information, liability related informa-
tion and also look at obsolescence of certain parts. If some old PC is there in the field, you
know that that PC doesn’t support a newer version of the software or the operating system.
Then you should also need to understand how many of those getting obsolete, how should
we program the replacement and what is the cost... And then we can also correlate and say
how long it’s been running. Is it meeting what the vendor is promising in terms of reliabil-
ity?”(P34-1). As shared by all participants (P32-34) from company B and participant P35
from company C, use case analysis is emerging as a purpose of analyzing logs: “if you
have let’s say 1000 machines at customers, they would want to see what are now the typical
applications that run on the machines. And so that information is gathered by data analysis
from the functional data to see what the customers are doing actually and then to be able to
improve our products for that” (P35-3). Additionally, according to participant P35, logs are
also used for testing: *“ in our testing, we write down a couple of steps with synchronization
points. So if we have a machine action. We know that if we send a machine action, we first
have to wait until the machine is heated up, and then we do the machine action and then

@ Springer

Empir Software Eng (2023) 28:43 Page 25 of 56 43

maybe the machine needs to cool down, and then we are done. So what you see now with
test cases is that we send a command to execute the action. And then in a test case, it says
wait until in the logging it shows that the machines are warmed up and then say OK now do
the action”(P35-4).

We do not observe these additional purposes at company D. Therefore, we conjecture that
using logs for liability analysis, use case analysis and testing might be specific to embed-
ded software companies where the machines are composed of many hardware components,
interacting with the machine operators and performing actions based on the state of the
machines.

RQ5-b summary: The purposes of log analysis collected from the previous study are
largely shared by other ES companies. Among these purposes, problem localization and
performance improvement are voted by all the participants. Consistently with the previous
observation, the traditional debugger is often not applicable in ES context, emphasising
the importance of logs in issue analysis. Additionally, we identified that embedded soft-
ware companies use logs for liability analysis, use case analysis and testing, which were
not discovered in the previous study.

3.2.3 Information Needs

Figure 4 shows the results obtained from the closed questions about information needs. Out
of 13 information needs, 10 have been voted for by at least 10 developers, indicating that
the information needs identified in the previous study (Section 2.4) are greatly generalizable
to other companies. These most voted information needs are related to context of issues,
state and interaction and timing performance. It can also be observed that configuration
of executed systems, component interactions and duration of software actions against time
budget are voted by all the developers. By discussing the procedure of log inspection, we
have also confirmed the findings at ASML that experienced developers often adopt a top-

Number of interviewees
on s O o B

o = = « @ c « .
£ %] 8w &2 2 < 3 = = L g 8 °
< c o < ‘o ‘T © @ O A @ c < o @
= o o o © 2 » o E = S o S [5 2
2 =1 =] S ®© 3Ly S © D 2] < = o o

® < g3 2 = S o S S C] T o 2
2 © - Q£ S Q295 o 53 £ 3 o o £ L © A
< o~ & € 3 B = E2 3 Za 2 =] £8c HE S @
[t a < a c o o © o6 S c 2 s
= o [[T O e o P w < o it &S € » 1 © o)
£ H Sg& £S5 5% Jvg9 35 S§5¢& ©£g ¢ 522 85 €2
] @ i} <2 o z+ T == © % € 's = I}
c 3] a s c 9 v = ° o5 5 =1 T o T [J a @ (s}
s 3 3 g5 ER ¢s5 poo 2% S 2 o3 wd =g E I
) a s < bR cg $T3 25 El S e 52 £©¥2 506 &o
® £ & o & 2a 5% T 38 2@ b g9 £8 8a5 £° c g
gz & o8 TS 8% FLE $E 2r Se 85 Sef S 53
5o] g 89 o 29T wg =28 Tg wmE g£9 25 gg
s £ £ S O < ST 6 £ ° [N 25 =4 E s Q £ 2 o ox
£ = £ 3 T c S v S5S o T ° & o T L& 2o
S > o 20 z £38 3 235 LE =S 5£*¥ 89 S o
@ c by] s © O ¢ » o =T 5 2= <] o <
o © o T 53 = T o £ Ee] < ° o ¥
< v ; £ < ® T o © Bfg 2 s
= = =4 = =

o < o
“ 2 3 = S 55 E =83 2 B

° T 2 ° 2
Timing State and Low-level execution details Difference between Context of issues
performance interaction executions

Information needs of log analysis

Fig.4 Frequency of information needs

@ Springer

43 Page 26 of 56 Empir Software Eng (2023) 28:43

down approach to first get an overview of the execution flow and then drill down to the
details.

We also found that not all developers inspect the difference between executions in prac-
tice; there are seven developers comparing logs in their practice for investigating regression
problems or verifying the correctness of behavioral changes. Particularly, three developers
from company A shared that they are not only comparing the sequences of function calls
and the values of functional data but also the timing behavior. We identified that obtaining
information of how the timing behaviors from different executions vary is important for
embedded systems used in a fast manufacturing process: “We have fast machines, so you
want actually the variants of the cycle? also be minimum, because if something is interven-
ing sometimes, and you don’t know, that is difficult to oversee. You can measure the cycle.
How long does it take? How does that fluctuate? Usually this is very valuable information
to see if the responsiveness inside the system is not tampered by something special”’(P31-2).

RQ5-c summary: More than 10 out of 14 interviewees need information related to con-
text of issues, state and interaction and timing performance in their practice. Half of the
developers compare logs in their practice for regression investigation and behavioral ver-
ification. In addition to the information needs related to difference between executions
identified in the previous study, we further identify that developers extract the variants of|
timing behavior among executions when comparing logs.

3.2.4 Used Tools

The used tools by the interviewees in companies A-D are similar to the used tools identified
at ASML. When it comes to information inspection, searching, extraction and comparison,
the text-based tools such as a text editor and Linux grep are most commonly mentioned.
In-house tools have also been developed in the companies to inspect logs that capture
domain-specific information (e.g., functional and performance logs). For example, com-
pany A has developed a tool that can visualize the value of variables over time, which for
instance can help developers understand how the temperature of materials in production
changes over time. Similarly, company C has also provided tools for developers to analyze
the measurements collected in their machines. As explained by developer P35, it is easier
to provide tools for functional logs as the collected functional data is usually well-defined
against the requirements of systems and the interests of customers. In contrast, it is difficult
to provide analysis tools for event logs because these logs are usually loosely formatted as
natural language text and cannot be easily parsed automatically. Similar to what we iden-
tified at ASML, individual efforts have been made by developers in all these companies to
develop customized scripts for parsing and processing these loosely formatted logs. These
customized scripts are usually used by an individual developer or a small group of develop-
ers who work on the same part of software and share the same needs in practice: “I made
some tooling for myself where I can just visualize the interaction with the controller in
sequence diagrams”(P39-1).

RQS5-d summary: Consistent with the observations at ASML, text-based editors and
self-made scripts are dominant when it comes to tooling in log analysis practice.

2¢ycle time is the time spent on producing an item

@ Springer

Empir Software Eng (2023) 28:43 Page 27 of 56 43

[
IS

4
o 12
3
2 10
2
28
£
pous
5 6
3
2 4
£
S 2
=
0
2 o @ o
2 8 g 8 % 2 H ® g £ g @ £ z
] 5 £ £ s 3 & 5 5 3 ¥ 5 S 2
= S =1 = o =~ o0 2 © 2 £ c o
=] = S © - wn el v c 2 Y= =
> © = i} 15} U o 5] “ o s £ n © =
= 9] s o ST > = 5] S o € E =1
19 w o] [[T 3 - o] @ c s}
< > © £ o c 9 <4 o E=1 < o 9 I
) a0 £ c . 2 - s o ° =~ ° c © s
= @ c = aQ j O c - c c v < o © o
- v u — c
5] N 5 Eel = © c 2 =] = © a c o
[> o < = 4 e Il @ = o «© [£ ®© o
£ 2 5 w 2 [} i e 5 9 £ a SR o
=1 - S o P=1 : o < £ [} 8 c oo o
Q] w = 2 © S o © ° a0 w 3 =
<) 19 e N (=} © = G L G o o [
<] > = ° c =4 z =] o ° g o = a
o @ > v O o c a ~ o5 £ o
> o a =] & &« 5 s} S = &
o » © k L o] < c
o kel c g L < € 0
° = Q [© W 5 £ T =
o a 2 25 S oo = 2o
g F L2 Y o © o S E
i o 2 c £ = o > T
o @ £ 2 2 = £
= = 3 s T £
=} e = il &
£ g =
>
=)
Presence of irrelevant diffs in logs Log availability and quality Expertise Complexity

Challenges of log analysis

Fig.5 Frequency of challenges

3.2.5 Challenges

As shown in Fig. 5, almost all interviewees (13 out of 14) consider incompleteness of logs
as a challenge in log analysis. According to these interviewees, the challenges of log anal-
ysis are often rooted in the challenges of log composition and generation, i.e., if a suitable
logging strategy is not applied in the log composition and generation process, then devel-
opers have to work with bad quality logs that hinder developing or adopting log analysis
tools. With the open questions, we identified challenges related to logging trade-off, lack
of abstraction layer for logging, and co-evolution problems in logging, which were not dis-
cussed in our previous study at ASML. Furthermore, the challenges related to expertise
and complexity are recognized by more than half of the interviewees (>7). Through the
open discussion, we further identify that the coupling between hardware and software in
embedded systems has contributed to the complexity of systems.

Logging Trade-off The developers shared several trade-offs in logging. Similar to the chal-
lenges reported at ASML, it is often the case that necessary information is missing or
incomplete in the log files: “I encountered a lot of scenarios that there was just no logging
available, and I could not conclude what happens here”(P36-2). A possible solution could
be adding more logging statements, but this may lead to an overwhelming amount of infor-
mation:* the problem is you never know which part is going to be relevant beforehand, so
that’s why we put in a lot of logging and then hope when there is a problem that we have
captured the correct logging and the correct detail and the correct state. But this can lead
to a lot of data and moving around to get to the relevant part’(P36-3). Moreover, adding
more logging code might not be trivial due to project organization: “you need to formalize
request change... it can take years before adding extra logging code due to project organiza-
tion (P32-1), long release cycle: “If you want to insert logging code, you have to go through
the software release process ”(P33-1), or performance concern (see a quote from P31 in

@ Springer

43 Page 28 of 56 Empir Software Eng (2023) 28:43

Section 3.2.1). As pointed out by the interviewees, this problem reflects the questions of
what-to-log and where-to-log that developers need to answer when logging.

Developers have also reported the trade-off related to logging policy and governance:
“The other challenge, I think, is to have the right balance between complete freedom for
the developer to log whatever they want and there’s something restricting formalized on
the other side”(P35-5). On the one hand, giving the complete freedom of logging without
restriction on the information and format could cause bad log quality such as incomplete
logging, non-standard logging format and inconsistent granularity, which results in great
difficulties in comprehension and automated analysis. On the other hand, enforcing a strict
formalization on logging on what-to-log and where-to-log disallows developers flexibly to
add information that they consider useful, which subsequently may also result in missing
needed information.

Lack of Abstraction Layer for Logging Automated logging is considered by developers
as one of the ways to avoid mistakes and inconsistencies introduced by manual logging.
However, as elaborated by interviewee P29, automated logging requires developers to find a
right level of abstraction in the system: “You may want to automate the generation of log files
on the interface level. Then of course, in order to not drown into too many log files at low
level interfaces, you have to have a certain right abstraction level”(P29-2). The participant
further explained that in order to automate logging at the right level of abstraction, the right
level of interfaces has to be clearly defined in the architecture of the systems: “There’s no
properly defined abstraction level at Company A, where we can do that logging. That is also
a challenge because you do not want to do that at very high level or very low level interfaces.
You have to find the sweet spot there. We do have interfaces between modules or packages.
They’re very granular to very low level. Somewhere you have to find a bit of a higher-level
to define your interface, so you can trace them without generating too much noise, but still
have enough information to follow the internal state of your program”(P29-3).

Co-evolution Problems in Logging Three companies (B, C and D) have shared the chal-
lenges regarding logging evolution. Indeed, not only is code that realizes the functionalities
of software products evolving, but also the logging code. As a consequence, when logging
code is changed, the related entity might require adaptions to preserve its consistency or
correctness. For example, as indicated by interviewees P32 and P34, the evolution of log-
ging code affects the maintenance of behavioral patterns that they derived from logs for
characterizing known software issues. Developers from company B have been deriving log
patterns of the known issues, and storing the log patterns and the corresponding solutions
into a knowledge base. The log pattern could be any information that characterizes the issue,
such as a sequence of events that manifest the issue. The knowledge database is then shared
with developers across different groups and teams for quickly identifying the existence of
the known issue in the subsequent versions of software by automatic pattern matching. That
is, if an instance of the pattern is detected in the logs generated from the subsequent ver-
sions of software, then an issue is found and needs to be resolved with the recommended
solution. However, evolution of the software and the logging code threatens to invalidate
the patterns derived from a previous version of software: “Typically these pattern models
are affected because of accidental changes in the log statements in the code, or because
developers refactored the existing implementation, redesigned components, merged compo-
nents, or introduced a new feature... these things are quite challenging for the maintenance
of the models and patterns”(P34-2). Moreover, the evolution of logging code also raises the
challenges in updating analytical tools: “data analysis scripts are affected by the change in

@ Springer

Empir Software Eng (2023) 28:43 Page 29 of 56 43

the logging” (P35-6), updating customer about new releases: “We cannot tell our external
stakeholders that in this release these are the new logs, these are the existing logs, and these
logs we have made obsolete, so stop using them’(P34-3), and comparing logs: “so if more
logging was added or log statements were changed, then you get these differences. But these
are not a reason for different behavior or a failure”(P35-7).

Coupling Between Hardware and Software In our previous study (Section 2.5.2), we identi-
fied that log comparison is difficult in practice due to the presence of differences that are
irrelevant to their software engineering tasks. These irrelevant differences could be introduced by
concurrent execution, subtle timing variations, refactoring, uninitialized variables and new feature
implementation. In the replication study, we learned that the coupling between hardware and
software in embedded systems introduces additional challenges in log comparison. As indi-
cated by the developers from company A, the status of hardware can influence the behavior
of software:“The difference does not always indicate a problem because there is some nat-
ural difference in hardware. If you’re comparing a log from a machine that was just started
between one that has been running for some time, then the motor signals would be differ-
ent”’(P26-1). Similarly, the variations of software behavior can also influence the behavior
of hardware: “If the software takes too long to do something, then the hardware has to cor-
rect it by turning back or stopping... that will change the sequence of function calls from the
point on”(P26-2). As a result, the coupling between software and hardware results in a lot
of irrelevant differences in logs generated from different executions.

RQ5-e summary: We identified additional challenges related to the coupling between
hardware and software, logging trade-off, lack of abstraction layer for logging, and co-
evolution problems in logging.

3.2.6 Expected Tools

With the discussion triggered by the open questions, we identify three suggestions on tool
development which were not discussed in our previous interviews at ASML.

Identifying and Visualizing Dependency Between Events As agreed by interviewees
from both ASML and companies A-D, comprehending the interleaving of events introduced
by concurrency in logs is difficult. Constructing the dependency between events requires a
lot of manual efforts: “It all relies on the mental model. There is no explicit dependencies
in logs. You cannot infer the exact temporal dependency. You see a lot of interleaving but
do not know the causality between actions”(P29-4). This is agreed by not only developers
of embedded systems but also a web-developer from Company D who indicated the diffi-
culty of grouping events based on their dependencies: “The difficulty is that sometimes a
certain request is not handled by one thread but multiple. And there are many user requests
interleaving. So, it is hard to automatically group a certain request and its response for
each user” (P38-1). Not only concurrency, but also the composition of actions introduces
the dependency between events: “Based on our architecture we also have an action admin-
istration, so you could imagine for example if you have a machine action then actually a
lot of things need to happen. So maybe in the end point the action is decomposed over 500
sub-actions. ” (P35-8). To solve the problems, developers suggest developing a tool that can
automatically identify and visualize the dependency between events.

Deriving Behavioral Fingerprints As we identified at ASML, developers often manually
sketch behavioral models from logs, using them as a vehicle for team communications and

@ Springer

43 Page 30 of 56 Empir Software Eng (2023) 28:43

software comprehension (Section 2.5.3). In the replication study, developers from multiple
ES companies consistently suggest that deriving behavioral fingerprints such as behavioral
models for known issues or expected behavior could be very useful for anomaly identifi-
cation and analysis: “It’s a temporal process that’s repeating. It’s a cyclical process. So
you can easily create a model that we can visualize behavior of the normal execution. So
there could be the fingerprint of the process because the same processes are repeatedly
occurring” (P29-5). In fact, as we discussed in Section 3.2.5, company B has been deriving
patterns for known issues to build a knowledge database that is shared across groups within
the company. These patterns serve as fingerprints of known issues. However, developers
face the maintenance problem introduced by the evolution of logging code when adopting
pattern recognition and matching. To facilitate the use of behavioral fingerprints, there is a
need to develop and implement a logging strategy and policy.

Strategic Logging The developers suggest that the process of logging should be defined
and governed with company-wide strategies and policies, and tools are required to facilitate
the following activities:

(a) Creating parsable logs. As observed, these companies are still widely adopting a con-
ventional logging approach (He et al. 2021) where logs are loosely formatted. Loosely
formatted logs cannot be easily parsed automatically, and are subsequently hard to be
processed and analyzed by automatic tools. Indeed, as indicated by the interviewees,
it is currently difficult to create generic parsers that can be used by different groups.
Therefore, a better approach could be formatting the contents of log messages in the
logging code to generate parsable logs. For large-scale companies, the conventional
logging approaches and libraries have often been used for decades in a large code
base. Hence, it requires tremendous efforts to manually format all the logging code or
migrate to a new logging mechanism: “our logging library is flexible enough that peo-
ple have used it in different ways and there is no one pattern to look at how the logs are
written in the code”(P34-4). Therefore, interviewees expect tools that can automate the
re-engineering activity. As interviewee P34 suggested, the re-engineering activity may
require applying code analysis techniques (e.g., static analysis) to recognize the logged
information (e.g., parameters in each event) and migrating an old logging library to a
new one automatically.

(b) Identifying logging changes. To cope with the problems during the evolution of logging
code, identifying the changes that developers made to logging code becomes essential.
Developers expect a tool that can identify the changes in logging code and generate an
overview of the made changes: “Did you accidentally remove the entire logging? Did
you just change the meaning of the log itself? So every bit of information in the log
should be checked. And that should be checked at the development time itself. So when
you deliver your code, you should be able to quickly check and say you are breaking
an existing log. They should be able to go back and, revert the change and provide
Jjustification if they want to go ahead with changes. ”(P34-5). The generated overview
of logging changes can enable further analysis, such as interpreting the differences in
the logs generated from two versions of software.

(c) Impact analysis of logging changes. As identified, developers face co-evolution prob-
lems in logging. The entities such as analytical tools, behavioral fingerprints, and
knowledge databases are impacted by the changes in logging code. In order to
evolve these entities to preserve their consistency and correctness, developers expect
a tool that can analyze the dependency between the changed logging code and these
log-dependent entities, suggesting the required adaptions to developers.

@ Springer

Empir Software Eng (2023) 28:43 Page 31 0of 56 43

RQS5-f summary: In order to tackle the challenges, the interviewees suggested tools that
can identify dependencies between events in logs, derive behavioral fingerprints from logs
and support strategic logging. In particular, tools are suggested to support the adaptions
of log-dependent entities that are affected by the evolution of logging code.

4 Result Synthesis

In this section, we synthesize the two studies presented in Sections 2 and 3. We first dis-
cuss the main scenarios of software logging identified in these two studies. As presented
in Section 3, the findings about types of logs, and purposes, information needs, and chal-
lenges of log analysis identified in ASML are applicable in other companies. However, we
also observe that some contextual factors (e.g., different types of components and program-
ming languages) may lead to variations of logging and log analysis practices (e.g., using a
certain type of logs more often). In this study, with a limited number of interviewees from
different development groups and companies, we do not focus on the exploration of these
influencing factors. Instead, we report our observations and formulate our hypotheses that
can further be validated later by a survey or repository mining study.

4.1 Main Scenarios of Software Logging

By synthesizing the data collected from 39 engineers, we observe a main scenario of log-
ging. As we discussed in Sections 2.3 and 3.2.2, Issue analysis is the main purpose for
which engineers analyze logs. We observe that this purpose often appears with information
needs Context of issues, State and interaction, Data flow and executed sequence and Dif-
Sference between executions. The co-occurrence indicates that these types of information are
most essential for analyzing software issues. This is aligned with the general procedure that
developers often follow to analyze software issues. Understanding the context of issues is an
important step to recognize the symptoms and localize the issues (i.e., identifying the sus-
picious components). This involves the inspection of error propagation shown in the event
logs with a top-down approach: “so usually we start with the error message that is impor-
tant on the highest layer... It might be that always something went wrong there and there
is no lower layer involved. And if it’s indeed going down one layer... and then we go to
hardware layer, what’s going on there” (P11-4). As indicated by developers, understanding
the context of issues requires developers to have a very broad knowledge of systems and
their architecture. Once the suspicious layer and components in the layer are identified, the
interactions between these components (shown in function traces) are inspected by filter-
ing function traces on the function calls across components. This activity helps developers
inspect the external behavior of components, requiring them to have a mental model of
how a cluster of components interacts with each together. If the interactions between com-
ponents deviate from the expected high-level system behavior, developers further dive into
the internal behavior of components by inspecting Data flow and executed sequence shown
in function traces and functional data. We can observe that the architectural knowledge of
systems plays an essential role in scoping and localizing the issue for such complex and het-
erogeneous systems, while knowledge of low-level code behavior is essential for identifying
the root cause of issues.

Often times, developers may not have sufficient architectural and code knowledge (espe-
cially junior developers). Comparing logs generated from failing and passing executions
serves as a way to identify the log information that may point to the location and root

@ Springer

43 Page 32 of 56 Empir Software Eng (2023) 28:43

cause of issues. This comparison is often performed for different types of logs, as discussed
in Section 2.4. For example, by comparing the function sequences that show component
interactions of two executions, one can identify if the issue is caused by the violations of
interaction protocols between components. The comparison practice, however, is challeng-
ing due to the large number of irrelevant differences returned by text comparison tools (as
discussed in Sections 2.5.3 and 3.2.6). Log comparison is particularly effective for analyz-
ing the root cause of flakiness. In this case, logs are generated from multiple executions
of one software version (see quote P12-4). The comparison result between them does not
contain the differences caused by software modifications, but only the differences that are
likely to uncover the non-deterministic runtime behavior.

Apart from log comparison, junior developers leverage additional information to comple-
ment their partial knowledge of the domain and architecture. As discussed in Section 2.5.2,
peer-working with functional engineers is useful to interpret log information. Moreover,
correlating the log information with the development activities can help them identify the
cause and effect. The interviewees often check the software repositories to identify recent
code changes that may introduce the issues. Being aware of the development activities of
other groups that are responsible for the interfaced components is also useful for developers
to quickly identify the possible violations of the specified interaction protocol.

It is worth noting that, as the interviewees indicated, there is no fixed way to analyze soft-
ware issues. Depending on the types of issues, the pre-knowledge developers have about the
issues, and the type of software components which cause the issues, the procedure may vary.

4.2 Contextual Factors in Logging Practice

Based on our interviews with the developers from different companies, domains and
development groups within a company, we hypothesize that types of systems, types of
components, architecture and complexity of systems, and used programming languages
are contextual factors that may influence developers’ practices. In this subsection, we pro-
vide observed evidence that support this hypothesis, which should be further explored and
validated with a systematic empirical approach.

4.2.1 Types of Systems

To explore the scope of our findings, we involved four embedded software companies (i.e.,
ASML and companies A-C) and one company that develops general applications (i.e., com-
pany D). Since no new insights about the types of logs, purposes of log analysis, information
needs, challenges and expected tool support are identified from the interviews with com-
pany D, we conjecture that most of our findings from embedded software companies are
not specific to the context of embedded systems. However, we expect that companies which
develop different types of systems may perceive the severity of these challenges differently.
As observed, on the one hand, log analysis is essential because it is often the only way
to inspect the internal states and execution details of embedded systems. Logs are heav-
ily used by developers for such systems because of the difficulties of using a traditional
debugging approach. This observation concurs with the theory of probe effects—traditional
debuggers are ill-suited for concurrent systems because the injection of breakpoints (i.e.,
delays) may change the system behavior (Gait 1986). On the other hand, logging statements
introduce overhead that may violate the critical timing requirements of embedded systems.
On top of that, it can be a very iterative, and resource and time consuming process to
execute the systems and collect logs (as discussed in Section 2.2). It is therefore consid-

@ Springer

Empir Software Eng (2023) 28:43 Page 33 of 56 43

ered by most interviewees a challenging task to log minimal but sufficient information
for embedded systems. This paradoxical observation emphasizes the importance of effec-
tive logging techniques and guidelines for embedded systems. In contrast, developers from
company D stress less concern on performance overhead but more on identifying relevant
information from a large amount of log information.

4.2.2 Types of Components

An embedded system is composed of many types of components. Often, different types of
components have different logging strategies and for analyzing the issues caused by them
a different log analysis practice is followed. For example, P20 has worked in two different
groups of the company. According to P20, different types of components require different
testing strategies to expose issues, use different logging approaches, and rely on different
kinds of log information, and use different logging approaches and strategies. The previ-
ous group is responsible for the control actions of the machines, while the current group
is responsible for the algorithmic applications (e.g., calibration algorithms) running on the
machines: “it is a completely different domain with different problems. Their way of test-
ing is very different. They usually need some online system tests where you actually expose
wafers in order to find problems in testing. And in my current team it’s all about calcula-
tions, which is not really about asynchronicity or timing. It is just about the numbers...we
tried to set things up as like small modules without any external dependencies, like stan-
dalone stuff and that does allow us to make more unit tests”(P20-3). Due to the differences,
the previous group relies on event logs, funtion traces and performance data which show
action synchronization and timing while the current group relies on functional data produced
by the calculations and measurements (see quote P20-2). The properties and requirements
of components also influence how much logging a component allows without impacting the
overall performance of machines.

4.2.3 Architecture and Complexity

Different embedded systems may have different architectural designs, and exhibit different
levels of complexity. P29, who is currently working in Company A, has worked at ASML
before. The interviewee shares views about the systems developed by these two compa-
nies: “The architecture of ASML systems definitely makes tracing easier because they have
a natural interface. They explicitly defined their interfaces for components, and that makes
a very natural boundary for tracing... But ASML systems are much bigger. So it’s easier
for our company in that sense because our systems are less complicated” (P29-6). Indeed,
ASML defines the interface between components and traces the function calls at the inter-
face, which allows developers to inspect the interactions between components. In contrast,
Company A has interfaces at a more granular level, which may generate too many details
(see quote P29-3). This comparison shows that architectural design and complexity of sys-
tems are important factors that contribute to the difficulties of software logging practices. It
emphasizes the importance of taking logging into account at the design phase of systems,
and properly defining the abstraction level for software logging.

4.2.4 Programming Languages

Embedded systems can be implemented by different programming languages, which may
lead to different software logging practices. P30 from Company A, who uses the Ada

@ Springer

43 Page 34 of 56 Empir Software Eng (2023) 28:43

programming language, shares that the ability of specifying constraints in the language may
lead to less logging: “ so, I was grown up with C and C++. But Ada is way better in its
type system. Now you can define all the constraints on the type, and then you can always
be sure that your type is correctly constructed and then if you set these pre-conditions or
post-conditions for your function correctly, then there is no need to log these parameters
and functions in my perception”(P30-1). We observed similar ideas in ASML where a state
machine modeling language is adopted to verify the correctness of software behavior. P14,
who adopted this modeling language in their project, expects the verification will reduce
the needs for software logs: “Maybe the question is how relevant are event logs and traces?
Because it’s expected that there will be fewer issues, in the sense that it prevents the devel-
oper from adding logic errors in software, but we are not sure yet if that is indeed the case.
Let’s say, at least from a practical point of view, we need to live with it for a while and see
what happens”(P14-6). This hypothesis is supported by P3 and P7, who have used the mod-
eling language for a while: “we use state machine models and these state machine models
are formally verified. We are let’s say 95% sure that the problem is not in the generated
code”(P3-6).

5 Discussion

There are two lines of work in the field of software logging. One line of work is empiri-
cal studies which aim to help researchers understand developers’ practices, gaining design
knowledge for the development of techniques that can solve real-world problems. This
line of work collects empirical evidence by mining software repositories or surveying
developers. Another line of work focuses on proposing techniques that solve a certain prob-
lem in software logging. Our work, collecting the perceptions from industrial developers,
contributes to the first line of software logging research.

We study the relevant empirical studies about software logging practices that appear in
several literature studies about software logging (Gholamian and Ward 2021a; He et al.
2021; Chen and Jiang 2021). In particular, we compare our work against recent empirical
studies on software logging practices. We compare our work against the relevant empirical
work in three ways. First, we summarize the context and topic of the relevant studies and
discuss the complementary nature of our work to the existing body of research (Section 5.1).
Second, we provide the refined taxonomy obtained from our work and compare the taxon-
omy with relevant work (Section 5.2). Third, we highlight the main findings of our work
and discuss their alignment with relevant empirical work (Sections 5.3 and 5.4).

Finally, we discuss the recent research about log analysis techniques at ASML
(Section 5.5) since the completion of our exploratory study at ASML. These research stud-
ies confirm the usefulness of our findings and implications for researchers and tool builders.
Furthermore, they demonstrate how the research outcome of our study can be transferred
by other researchers to solve real-world problems.

5.1 Topic and Context of Relevant Work

Table 8 summarizes the research approach, type of research, context, and type of applica-
tion. Our work is complementary to existing literature.

First, our work focuses on a different phase of software logging practices. Chen and
Jiang (2021) conduct a systematic literature review on software instrumentation and divide
software logging into two main phases: log instrumentation and log management. Log

@ Springer

Empir Software Eng (2023) 28:43

Page 350f 56 43

Table 8 Literature about logging practices

Reference Topic Method Context Domain Language
Yuan et al. (2012) Log prevalence and A mining study of four 0SS Various -
modification projects
Chen et al. (2017) Log prevalence and A mining study of 21 0SS Various Java,
modification Apache projects Cand
C++
Pecchia et al. (2015) Logging ponits, A mining of three Industry Critical Cand
purposes and systems, inspection of system C++
challenges 2.3 millions log entries
and query feedback
from the development
team
Li et al. (2020a) Benefit and cost A survey of 66 develop- 0SS - -
of logging ers and a case study of
223 logging-related
issue reports.
Rong et al. (2020) Logging intentions A series of interviews Industry Big-data Java
and concerns and a mining study of technology
three projects
Rong et al. (2018) Consistency of A mining study of 28 0SS Various Java
logging practice projects
Harty et al. (2021) Logging prevalence A mining study of 57 0SS Mobile Java
and information projects App
Fuetal. (2014) Logging points A mining study of two Industry Cloud ap- C#
systems and a question- plication
naire survey with 54
developers
Zeng et al. (2019) Logging purposes A mining study of 1,444 0SS Mobile Java
projects and an email App
interview
Barik et al. (2016) Logging purposes An interview study with Industry Cloud ap- -
and challenges 28 software engineers, plication
and a quantitative survey
of 1,823 respondents
Kabinna et al. (2016) Impact of logging A mining study of 233 0SS Various Java
library migration Apache projects
Gholamian and Ward ~ Logging overhead An experimental study 0SS Distributed Java
(2021b) on seven Spark bench- system
marks
Kabinna et al. (2018) Logging modification A mining study of four OSS Various Java
and stability projects
Shang et al. (2014) Information needs A qualitative analysis of 0SS Distributed -
of users 15 email inquiries and system

73 inquiries from web
search about different
log lines

2

indicates that the information is unspecified in the corresponding paper

@ Springer

43 Page 36 of 56 Empir Software Eng (2023) 28:43

instrumentation refers to the steps of the integration of a logging library and the com-
position of logging code. Log management refers to the steps where logs are generated,
collected and used for the analysis of system behavior. The majority of existing work
focuses on the phase of log instrumentation (e.g., where-to-log, what-to-log and how-to-
log). Our study focuses on log management phase, where log collection and analysis are
involved to achieve developers’ intentions with logging. We focus on this phase because
we believe that by understanding the challenges that developers (as end users) face in log
analysis, we can better recognize the problems that lie in the phase of log instrumentation
(e.g., how well is the logging?) and identify the techniques that can aid developers in the log
management.

Second, our study contributes to the understanding of log analysis practices for embed-
ded systems. We can see from Table 8 that previous studies are conducted for various types
of systems (e.g., cloud applications and Mobile App). As identified by Gholamian and
Ward (2021a), who conduct a comprehensive systematic review on the subject of software
logging, including practices and analysis techniques, domain-specific studies about soft-
ware logging practices are needed because different types of systems may require different
practices (e.g., recording different types of information).

5.2 Refined taxonomy for log analysis

As we can see from Table 8, we study several overlapping topics (e.g., logging purposes
and challenges) with existing work in a different context. Next, we discuss the alignment
in details. We revise the taxonomy for log analysis presented in Section 2 and augment it
with the results of the replication study presented in Section 3. Table 9 shows a refined
taxonomy. The replication study added three additional purposes related to verification and
improvement, one information need related to difference between executions, two challenges
related to presence of various kinds of log differences, three challenges related to logging
and three suggestions on tool support.

When comparing the refined taxonomy with recent studies on logging practices, we can
see that our study adds new codes to existing empirical literature of logging practices in
terms of types of logs, purposes, information needs, challenges and tool support. Table 10
summarizes the main findings of our study and their alignment with existing literature. Our
findings are related to the phases of both log instrumentation and log management. Next,
we discuss the findings in details.

5.3 Log Instrumentation

Among the challenges identified in Table 9, seven are related to log availability and qual-
ity. The interviewed companies largely follow the method of conventional logging (Chen
and Jiang 2021) that gives developers a lot of freedom to manually place logging state-
ments scattering across the code base and generates free-formed logs, which subsequently
introduces difficulties in the analysis steps. This observation triggers the difficult question
of to what extent and how logging policies should be enforced. Indeed, as discussed by
the interviewed developers, when logging software systems, developers need to make sev-
eral trade-offs. A significant amount of effort has been made in the research community to
study such questions as where to log (Fu et al. 2014; Li et al. 2018), what to log (Zhu et al.
2015), how to log (Chen et al. 2017) and how to use logs (Gupta et al. 2018); and such chal-
lenges as absence of logs (Li et al. 2020a), non-standard logging (Pecchia et al. 2015), and
presence of noise and incomplete logging (Li et al. 2020a).

@ Springer

Empir Software Eng (2023) 28:43

Page 37 of 56 43

Table9 Refined taxonomy for log analysis

Types of logs
Event log
Function trace
Performance data

Functional data

Purposes
Software comprehension
Familiarizing with existing software
Reverse-engineering software requirements
Test development
Developing test scenarios and code
Verification and improvement

Verifying executed behavior vs expected behavior

Performance verification and improvement
Verifying timing (throughput) performance
Identifying opportunities of throughput improvement

Log-quality qualification
Identifying log pollution
Verifying correctness of the logged information

Test documentation

Testing™

Use case analysis*

Liability analysis*

Issue analysis

Classifying the type of issues

Identifying responsibilities

Localizing problems

Confirming reproduced field issues

Identifying root cause

Identifying root cause of field issues

Identifying root cause of test issues

Identifying root cause of flaky (test) executions
Analyzing occurrence and prevalence of issues

Supporting customers

Ref./New

Pecchia et al. (2015)
Pecchia et al. (2015)
New

Pecchia et al. (2015)

Ref./new

Li et al. (2020a)
New

New

Li et al. (2020a),
Barik et al. (2016)

Zeng et al. (2019)
Zeng et al. (2019)

New
New
New
Barik et al. (2016)
Barik et al. (2016)
New

New
Li et al. (2020a)
Zeng et al. (2019)

New

Li et al. (2020a),
Rong et al. (2020),
Chen et al. (2017),
Zeng et al. (2019),
Barik et al. (2016)

Li et al. (2020a),
Barik et al. (2016)

New

New

Li et al. (2020a),
Barik et al. (2016)

Quote ID
P20-1
P18-1
P7-1

P8-1

Quote ID

P9-2
P3-1

P9-3

P13-1

P16-2
P7-2

P19-1
P14-1
P16-3
P35-4
P35-3
P34-1

P21-2
P4-1
P1-1
P3-2

P1-2

P13-2

P12-2
P22-1
P22-2

@ Springer

43 Page 38 of 56

Empir Software Eng (2023) 28:43

Table9 (continued)

Information needs
Context of issues
What are the settings of the machines?
How does the error propagate?

At which time point does the error occur? What is
the machine doing when the error is raised?

Data flow and executed sequence
In which order are functions being executed?
What is being executed under current configuration?

What are the values of variables and how do they
flow from one function/module to another?

State and interaction

How do software components interact with each other?

How does the function sequence change the state of software?

Timing performance

Is there any time gaps between actions?

Is the software action finished within the time budget?
Difference between executions

What additional errors does the change introduce?

How do the control sequences from different executions differ?
How do the functional data from different executions differ?

How do the timing behavior from different executions differ?*

Challenges
Log availability and quality
Absence of logs
Non-standard logging

Incompleteness of log
Presence of noise
Unreadable format for functions with a lot of parameters
Missing categorization and overview
Broken error linking
Complexity
Involvement of components from different groups and
domains
Presence of concurrency
Presence of various kinds of differences between logs
caused by:
Uninitialized variables
Concurrent execution
Timing variation
Refactoring
New feature implementation

Coupling between software and hardware*

@ Springer

Ref./new

New
New

New

New
New

New

New

New

New

New

New
New
New

New

Ref./new

Li et al. (2020a)

Pecchia et al. (2015),

Rong et al. (2018)
Li et al. (2020a)
Li et al. (2020a)
New
New

New

Barik et al. (2016)

New

New
Gulzar et al. (2019)
Gulzar et al. (2019)
Gulzar et al. (2019)
Gulzar et al. (2019)
New

Quote ID

P3-3
P7-3
P13-3

P22-4
P1-3
P22-4

P3-4
P14-2

P7-4
P16-4

P19-2
P3-5
P7-5
P31-2

Quote ID

P9-4,P8-2
P12-4

P9-5
P8-3
P24-3
P13-4
P1-4

P15-1

P15-2

P17-2
P11-1,P15-3,P17-3
P17-1

P11-2

P11-2

P26-1, P26-2

Empir Software Eng (2023) 28:43 Page 39 of 56 43

Table9 (continued)

Change of logging code* New P35-7
Expertise
Lack of domain knowledge New P11-3,P22-5,P22-6
Unfamiliar with code base and software design New P7-6,P15-4
Logging*
Logging trade-off* Li et al. (2020a), P35-5
Pecchia et al. (2015)
Lack of abstraction layer for logging* New P29-2,P29-3
Co-evolution problems in logging* New P34-2,P35-6,P34-3,P35-7
Tool support Ref./new Quote ID
Creating multi-level abstraction New P14-5,P9-6,P17-4
Automatic log comparison Gulzar et al. (2019) P18-2
Providing generic and unified facilities New P2-2,P1-3
Identifying and visualizing dependency between New P29-4,P38-1,P35-8
events*
Deriving behavioral fingerprint* New P29-5
Strategic logging* Pecchia et al. (2015), P34-4,P34-5

Rong et al. (2020),
Li et al. (2020a)

“x” indicates the codes that are newly discovered in the replication study but not in the exploratory study.
“Ref./New” indicates the reference of related literature that is aligned with the corresponding code or a new
code that has not been observed in prior work

5.3.1 Logging in Embedded Systems

Embedded systems are comprised of various types of components, structured in different
abstraction layers, and implemented with multiple programming languages (Vogel-Heuser
et al. 2015; Graaf et al. 2003; Lee 2008). As we discussed in Section 4, the major chal-
lenges of software logging faced by developers from Company D and Companies A-C are
different. Performance overhead remains the major concern when it comes to logging for
embedded systems. Indeed, it has been shown that different types of systems have differ-
ent logging practices. Zeng et al. (2019) find that logging in mobile apps is less pervasive
and modified than server and desktop applications. By comparing the app performance
between enabling and disabling logging, they find that logging can induce a statistically
significant performance overhead. Another example can be seen in the mining study con-
ducted by Gholamian and Ward (2021b) where the impact of different logging granularities
are evaluated in the context of distributed systems. As a result, they observe on average
8.01% and 268X overhead in the execution time and storage when the trace log level
(e.g., the more detailed logging level) is enabled versus the info level (e.g., the coarser
logging level).

There is no quantitative study (e.g., repository mining) on the logging practice for embed-
ded systems. The relevant questions remain unanswered: what developers actually log in
their systems, to what extent logging impacts the performance of such systems, and whether
the logged information satisfies developers’ information needs that are identified in this

@ Springer

Empir Software Eng (2023) 28:43

43 Page 40 of 56

(1) sse1 eoueuurew 1oddns 03 SodUIIIIP

30 JO sasned pue $92IN0S Ay} SurkJNup]

(1) swaysAs jo axmord aarsueyardwod
B ure)qo o3 s30[jo sadA) ordnnuw Sunjury

uonesrduy

“(d) s30] jo s1opjoy
-aye)s im Juowrdororap walsAs Jo aseyd A[red

ay e A39rens JuiSSof oqerns e Surdojoasg

"(¥) speau uonewIojul s10do[eAdp POppaqUIR SATYSTIES

Qonoead Sur33o1 JUALIND AY) JUIIXD JeyMm 0)
(Z pue ‘(y) swaIsAs poappaquid jo syred JUAIIJIP
uo Jur33of jo joedwr oy (] :SWISAS pOppaquId
ur onoead Sur33of Jo sarpnis Sunonpuo)

uonesrduy

-oonoeid ur ooey
Koy sauaq[eyd ay) pue aredwods jo adK) oy
[re3ap am ‘Apms ano uf (6107 ‘Te 10 Fez[nn) 9[3000
pue (910T T8 19 J[Heg) 1JOSOISIA Ul PALNUSPT

os[e ud9q sey uosLredwod 3o 10J pasu Y],
*SWA)ISAS POPPAqUI JO JXUOD) UI UOT)BULIOJUT
Surwmn jo souepodwi ay) smoys Apnis InQ
*SIXQ)UOD JUAIAHIIP Ul paurioyrad (y107) Te 10 Sueys
pue ‘(170g) ‘e 12 AeH

“(ST0T) ‘Te 12 BIY0I9d Aq SIIPNIS 9 UT PIAIISQO OS[E ST

uonewojur o[Jo sad£) ordnynu Jo asn ayJ,

QINJEINI]

-aInyeu Aq

AreurdiosIpnnui ST yorgm UIBWOP PAppaquia ay) ut
[enuassa Are[noned st s1opjoyaye1s yim aseyd
u31sop Je suoIs1oop Jur330[Suryew Jey) SIssans
Apmis INo ‘S[0T JUAIJJIP PIM SIQAUISUD PIPPAqUID
Jo uondaoiad ay) uo pased (0z0T) '[& 12 Suoy
woJj uonsa3sns e yym pausie st saseyd uSisop

) ur suorsioap Jurdor Suryew jo vapr Ay,

"SWRISAS PApPaqUIa JO 1XAJU0D) Ul
wopqoid ay) Jo Ayeono Ay seziseydwa Apnjs InQ
“(2202) '1e 12 nD “(1270T) ‘& 10 9 satpms [eotndurd
Kuew £q passnosIp uaaq sey peay1aao Jur3so|

AINJeINI]

*SOOUQIQJJIP JURAS[MIT AuBw Jo aouasaid

QY 03 anp JNOJIp St s3o[Jurredwod
ISASMOY *SSQUIE[J PUE UOISSIITAI SIBMIJOS
JO UOT)BSIISIAUL SB YONS SANIANOR SNOLIBA

105 s1adofasap Aq paonoeid st uostredurod 3o

*9onoead J1ay) ur sourwIojrad

Surwm pue UOT)OBIAIUI PUL 9Je)S ‘SANSST JO

JXQ)JUOD 0} PAJB[aI ISOW UOTBUWIIOJUT JORIIXD 0)
s1odo[oAaap £q pasn a1e s3of Jo sad4) aidnnn

juowageuew 0]

"uoIjoRI)SqR JO [9AJ] 9[qelns e Je 3ur33of oddns 03
PRIOAYOIL-T[OM 3q 0) PAAU SWRYSAS ‘A[TR[NonIEd
*sy[se) J121) J0J UOT)EULIOFUT SO [BNULSSO
Sursstw 20udL1adx? [[e oym SI2QUISUD pappAqUId
Jo so[o1 Jua1dpyIp Aq pauordureyd st Swd)SAS
Jo dwmn ugisap 03 suoIsAP urdsor SunJiys
*9[qISeaJ 10U UA)JO
QIe S1933NnQap [eUONIPRI) 9SNBIIQ SISATRUR INSST
J10J [BTUASS? ST ‘puBy JAYI0 Y} UO PUB ‘DAISSIOXD
s1 3ur330[J13093J9 9qoid oy} WoIJ SIAYYNS UJo
‘puey QU0 UO ‘SWI)ISAS pappaquid ul Surggo|

uonejuoWNLSUI S0

Apmns 1no jo suoneordur pue s3urpury Iolejy QL ajqelL

pringer

A's

Page 41 of 56 43

Empir Software Eng (2023) 28:43

stouonnoerd 10§ . J,, Pue ‘SI9p[Ing [00) 10§ I, ‘SIQUIILasal 10} suonedridur sajedIpur 3, ‘uwnjod uonedrjdwr ur jayoriq ayj uy

() swadeuew Jof (910 ‘T 19 ueg
pUE UOTBIUSWNISUI FO[JO JIe-9Y)-JO-aJe)s pue {0102 T8 19 Aopue) soruedwiod JY)0 Ul PIAIISqO ‘soruedwod parpnis Ay ur 9onoeld uowwod
donoeId-Jo-ajels oY) ueamiaq sded Jurkynuopy uQ3q Sy SIONPA 1X3) YIIM SIsA[eue [enuejy B QIE SI0JIPd JX3))M SISA[eUR [enueyl
'swa[qoId UONN[OA-09 JO IOUIPIAD SOpIA0Id
Apmys sno1adxd ou ‘19AMOH (9107 'Te 30 euuIqey] *9pood 3uI330] Jo uonN[oAd
$L10T T8 19 uayD ‘Z10T ‘Te 10 uenyk) siodofoadp £q 9y} 03 onp SIN220 sannue juepuadap-Sof pue
(¥) sisATeue o[ur uonnjoad-0d Junioddng payyipou st 9pod Sur330][Jey) MOys SAIPNIS AUBI s30] U0aMIAq UONN[0AI-0I JO wR[qoad Ay,

's30[uo paseq sjopowt

[eIo1ARYq Suryolays Aq uonoensqe

urejqo pue ‘yoeoidde uonosadsur umop
*(Y79]) UOTIBWLIOJUT [EUOT)IPPE (M -do) & jdope 0 puey s1edojessp pesusrradxy
s3o[Sunuow3ne (g pue ‘(1) uosredwod *SWRISAS JO SUOTINOIXS JUALINOUOD JO ddudsald
pue uonoadsur o1 110ddns 03 suonNOIXI ‘uorsuayardwod Fof Q) pue ‘a3pa[MOoUy UreWop pue 9pod JO Jor[

Jo uonoensqe [Ad-nnw Sunear) (1 noqe sSurpury pairodar sey Apmys reorridwe oN A £q pazopury ualjo st uoIsudydIduwod 01

(panunuoo) 0L 3|qeL

pringer

A's

43 Page 42 of 56 Empir Software Eng (2023) 28:43

study. Getting insights into these questions can help researchers propose techniques and
guidelines to resolve the logging trade-off for embedded systems. Our study further sug-
gests that the type of components and programming languages should be taken into account
while conducting such studies.

As observed in our study, different types of components in an embedded system and
different used programming languages lead to different logging needs (see Section 4.2). It
is conjectured in the literature that OSS projects with a different programming language
may have different logging practices: Chen et al. (2017) conducted a replication study with
Java projects and obtained quite different results from the original study which was con-
ducted with C/C++ projects by Yuan et al. (2012). With the evidence shown in our study
and the literature, we suggest researchers to deepen the understanding of software logging
for embedded systems by taking these contextual factors into account.

5.3.2 Logging Decisions at Design Phase

The interviewees suggest that the design and implementation of logging approaches should
be considered at the design phase of system development. This suggestion from intervie-
wees is aligned with a suggestion from Rong et al. (2017). Moreover, missing logging
guidelines that systematize the logging process have been reported by existing studies (Rong
et al. 2017; Pecchia et al. 2015). Indeed, this follows the conventional wisdom in data-
intensive activities: garbage in, garbage out. We compile two suggestions for practitioners
about logging practices based on our observations in this study.

By nature, embedded systems are developed and maintained by multidisciplinary groups
of engineers. As observed, not only software developers but also engineers who are respon-
sible for function design, customer service and quality assurance also use logs in their daily
work. These engineers with different roles have experienced difficulties in log analysis,
such as information missing in logs. This observation emphasizes the need for defining
what-to-log and where-to-log with the stakeholders who use logs for their engineering tasks.
Furthermore, a set of terms and their semantics should be defined through discussions to
represent the domain-specific concepts. Furthermore, consistent with a suggestion provided
by literature (Chen and Jiang 2021), the developers suggest considering automatic log-
ging at certain locations (e.g., interfaces of software modules) following designated rules.
As further discussed by the interviewees, in order to automatically instrument software
with an appropriate and consistent granularity, the systems need to be well-architected with
an appropriate level of abstraction. This idea concurs with the widely accepted software
engineering practice that various stakeholders should be actively involved in requirement
engineering activities (Mishra et al. 2008; Pandey et al. 2010). That is, the requirements
of logging should be considered as system requirements which are discussed at the phase
of system design with stakeholders. Particularly, the heterogeneous nature of systems and
logging needs also lead to questions about how to standardize software logs that are
generated from components using different logging libraries in different programming lan-
guages. Moreover, to ensure the quality of logs, methods and practices such as automatic
checkers or code review should be adopted to identify and govern the modification of
logging code.

5.4 Log Management

In addition to the findings about log instrumentation, we have several findings related to the
management and analysis of logs.

@ Springer

Empir Software Eng (2023) 28:43 Page 43 of 56 43

5.4.1 Multiple Types of Logs

As shown in Table 9, we observed that developers use four types of execution logs and
five categories of log information in their embedded software engineering practice. Pecchia
etal. (2015) analyzed the codebase of an industrial critical system and found that developers
logged the value of critical variables, invocations of functions, and occurrence of events of
interest, which corresponds to the event logs, function traces and functional data identified
in our study. Harty et al. (2021) identified four types of information are usually logged in
Mobile Apps: business events, user interface events, failures and/or unexpected situations,
and other information. By analyzing 15 email inquires and 73 inquiries from web searches
for three open source systems, Shang et al. (2014) identified five types of information (i.e.,
meaning, cause, context, solution and impact) that users needed about logs. The users, who
are not necessarily familiar with the underlying details of the systems, query diagnostic
information about the unexpected log lines while monitoring the health of systems. We
have taken a complementary perspective and focused on information needs of an engineer.
As opposed to users, engineers, responsible for maintaining the systems, not only need the
diagnostic information (e.g., the context of error messages) but also execution details (e.g.,
interactions between components). Moreover, our study identified that performance data,
which captures the duration of software and hardware actions, is essential for improvement
and verification on timing performance for embedded systems.

We observe that developers often need to manually recover the links between different
types of logs (see Sections 2.4.1 and 2.5.3) to gain a more comprehensive understanding
of an execution. Tool builders can consider recovering the links between different types
of logs, e.g., using timestamps. Such tools would allow developers to inspect what func-
tions and software actions are executed, and what critical functional data are produced
when a specific high-level event occurs. In addition, we suggest tool builders to leverage
semantic information (i.e., the textual elements in logs) to recover the links. Establishing
links between software artifacts using the concept of semantic coupling (i.e., the seman-
tic similarity between entities) has been demonstrated for many maintenance tasks such as
traceability (Asuncion et al. 2010) and change impact analysis (Kagdi et al. 2010).

5.4.2 Log Comparison

Our study suggests that developers inspect not only one single log, but also a set of logs gen-
erated from multiple executions. To support developers in comparing logs, techniques have
been developed to compare behavioral models extracted from logs generated from multi-
ple executions (Goldstein et al. 2017; Amar et al. 2018; Bao et al. 2019; Maoz et al. 2010).
However, these techniques may not meet our developers’ expectations because these tools
require non-trivial configuration, e.g., the length of the minimal “interesting” sequence that
differentiates two logs. For example, 2KDiff (Amar et al. 2018) compares two logs by high-
lighting the sequences of length k that belong to one log but not the other. All the differences
based on the user-defined k are visualized on the models. Given the size of industrial logs
(in gigabytes), inspecting such differences for two large executions might require significant
cognitive effort to identify interesting information. Having concerns that it might require
a lot of cognitive effort to identify interesting information from all the k-differences, Bao
et al. (2019) extend 2KDiff by taking the frequencies of behavior found in logs into account.
The proposed tool visualizes statistically interesting differences by requesting users to set
the target distance between probabilities, and the statistical significance value, in addition
to the parameter k. However, configuring such tools properly might be difficult and require

@ Springer

43 Page 44 of 56 Empir Software Eng (2023) 28:43

iterations of parameter tuning because these parameters are related to the underlying
statistical differencing model rather than to the nature of the software.

Based on the interviews, we believe that linking log differences to their sources and
providing automatic categorization of log differences can help developers perform main-
tenance tasks: whether a log difference is introduced by change of software code, logging
code or variants of runtime behavior (e.g., concurrency). For example, when identifying a
root cause of regression based on logs, developers can ignore the differences belonging to
the categories of concurrency because these differences are not expected to influence the
final outcome. To recognize the differences caused by code modifications such as refac-
toring and functional modifications, tool builders may consider to leverage existing tools
from the fields of code differencing (Fluri et al. 2007) and refactoring detection (Tan and
Bockisch 2019). Chen et al. (2017) demonstrate how to identify the change of logging code
among all kind of code changes using regular expressions to match the source code. To
identify log differences related to concurrency, tool builders can leverage previous work
on log analysis that identifies interleaving events by logging the partial ordering relations
between events (Beschastnikh et al. 2020a; Edwards et al. 2006; Liu et al. 2007). The par-
tial ordering relation between events can be captured with logical clock timestamps (Fidge
1987; Mattern et al. 1988) with which logical timestamps are generated for events in the
system, and their causal relationship is determined by comparing those timestamps. Tool
builders can consider adopting the methods from these studies to identify the differences
caused by concurrency. The obtained information can be incorporated into log comparison
to help developers recognize the useful log differences for their tasks.

5.4.3 Log Comprehension

No previous study has investigated how developers comprehend logs. As discussed in
Section 2.5.2, lack of familiarity with existing code and lack of domain knowledge can hin-
der log comprehension, especially for multidisciplinary systems: interpreting information
from logs might require expertise from multiple engineering disciplines, while commu-
nicating with engineers of different disciplines is the commonly used method to obtain
the expertise. Indeed, as observed (Section 2.5.2), working with logs from such systems
requires software engineers to work with colleagues from other engineering disciplines to
understand functional requirements of the systems and to interpret the information shown
in logs. This observation is consistent with earlier findings (Graaf et al. 2003): the combi-
nation of software engineering with other engineering disciplines requires communication
between engineers of different disciplines. In addition, we learned from the study at ASML
(Section 2.5.2) and other ES companies (Section 3.2.2) that concurrent design and time-out
mechanisms, implemented in embedded systems to optimize and limit software execution
time (Silva et al. 2006; Henzinger and Sifakis 2007), also hinder log comprehension. We
further observed that interleaving of concurrent executions incurs challenges not only in
program comprehension (Artho et al. 2007; Fleming and Stirewalt 2009) but also in log
comprehension (see Section 2.5.2). Indeed, when inspecting logs, developers need to recon-
struct the logical relations and order between interleaved function executions, as well as
identify the differences between multiple executions that affect the execution outcome.

To cope with the complexity, we learned that experienced developers tend to adopt
a top-down approach when inspecting logs. This concurs with a study on the relevance
of application domain knowledge in program comprehension (Shaft and Vessey 1995)—
developers who are familiar with the application domain use a top-down approach to
conserve efforts, developing a global hypothesis about the overall program based on

@ Springer

Empir Software Eng (2023) 28:43 Page 45 of 56 43

high-level information, and then verify their hypotheses with more program details. The top-
down method is known to be effective for system comprehension, which requires developers
to understand the structure of the system: the main components and the communication
paths between these components (Levy and Feitelson 2019). As opposed to code compre-
hension, system comprehension shifts the focus from the code to its structure, which is
essential to comprehend large volumes of code. This is in line with our observation on devel-
opers’ information needs—to understand the behavior of large scale software systems based
on logs, developers need both structure information such as interactions between modules,
and low level execution details (see Section 2.4).

Another coping strategy experienced developers adopt for log comprehension is to sketch
and derive behavioral models based on logs. The derived models and patterns abstract
the details of execution away, and are subsequently used for system comprehension, com-
munications between team members and issue detection. There has been a lot of studies
on automatically inferring models and patterns from logs (Lo et al. 2009; Walkinshaw
et al. 2016; Biermann and Feldman 1972; van der Werf et al. 2009; Mashhadi et al. 2019;
Beschastnikh et al. 2020b) for various software engineering activities. Beschastnikh et al.
(2020b) designed a tool that helps developers comprehend distributed systems by visualiz-
ing the communication patterns between hosts. To help the debugging process, Mashhadi
et al. (2019) proposed a semi-automated technique that automatically abstracts the control
flow from an execution trace with state machines, and then asks developers to interactively
configure the tool to abstract the data-specific behavior. The empirical evidence collected
from our study emphasizes the practical value of model inference techniques, and calls for
more industrial applications of these existing techniques.

Our findings about log comprehension have two implications. First, our findings stress
the importance of establishing multi-level abstraction of executions to support log inspec-
tion and log comparison. Many tools aim at abstracting away details from execution logs
by deriving state machines (Lo and Maoz 2012; Walkinshaw et al. 2016; Krka et al. 2014),
sets of temporal properties (Lemieux et al. 2015), and execution patterns (Zaidman and
Demeyer 2004). These kinds of trace abstraction tools often rely on heuristics to create
abstraction. For example, in order to extract a compact state machine model from traces, the
underlying algorithms iteratively merge similar states based on heuristics, which can result
in overgeneralization (e.g., containing behavior that is not observed in the trace) or under-
generalization (e.g., without abstraction) in models (Yang et al. 2019). Moreover, these
tools provide only one level of abstraction, not meeting the expectations of the interviewees
(see Section 2.5.3) because the important information might be lost by showing only
a certain level of detail. Several studies addressed this limitation (Jerding et al. 1997;
Beschastnikh et al. 2020b; Feng et al. 2018) by allowing developers to inspect information
at different levels of detail. However, these tools do not guide developers in informa-
tion navigation, e.g., one needs to manually identify the relevant component interactions
when analyzing issues with tools that generate sequence diagrams (Jerding et al. 1997,
Beschastnikh et al. 2020b).

This leads us to the second implication that tool builders may take the context of
use into account, incorporating information from other sources (e.g., source code or bug
reports) to guide developers to navigate through information at different abstractions for
their tasks. In literature, the knowledge obtained from different software artifacts, e.g.,
source code and documentation, has been leveraged to assist software maintenance tasks,
such as de-duplicating bug reports (Aggarwal et al. 2017), ranking relevant files for bug
reports (Ye et al. 2014), mining requirement knowledge (Lian et al. 2016) and code
summarization (McBurney et al. 2014).

@ Springer

43 Page 46 of 56 Empir Software Eng (2023) 28:43

We believe that a similar research effort is required to understand what code and domain
knowledge developers need for log analysis and to leverage code and domain knowledge in
log analysis tools. An example of such domain knowledge required for log analysis is the
communication mechanism between components (see quote P15-4 in Section 2.5.2). We
expect that augmenting logs with additional knowledge derived from source code and docu-
mentation, can reduce the time and effort that developers spend in searching for information
that is currently spread over multiple sources such as source code, documentation and logs.

5.4.4 The Problem of Co-evolution

Our work extends the discussion of the evolution of logging code (Yuan et al. 2012; Chen
et al. 2017; Kabinna et al. 2016). Kabinna et al. (2018) mined four open source projects
and found that 20-45% of the logging statements are modified by developers at least once
during their lifetime. Our study further provides empirical evidence on the co-evolution
problems in software logging (Section 3.2.5), such as the challenges in maintaining the
behavioral fingerprints of software issues derived from logs. Our finding implies the need
for a deeper understanding of evolution of logging code and supporting the co-evolution
of log-dependent entities. There have been some studies focusing on evolution of logging
code. Studies of Yuan et al. (2012) and Li et al. (2020b) have shown that most of the modifi-
cations of logging code are made to the content of log messages such as verbosity, variables
and text. Li et al. (2020b) further discovered that logging code with similar context may
need similar modifications. Therefore, the authors trained a machine learning model to pre-
dict modifications of logging code based on logging revisions, achieving a promising result.
Unlike co-evolution of other software artifacts such as production and test code (Zaid-
man et al. 2011), metamodels and models (Cicchetti et al. 2008; Mengerink et al. 2016),
and requirements of different components (Etien and Salinesi 2005) that have been widely
studied to help developer adapt these co-dependent artifacts, co-evolution of logging code
and log-dependent artifacts is rarely addressed in the scientific literature. Research efforts
are needed to aid developers in co-evolving log-dependent entities (e.g., behavioral finger-
prints). Moreover, researchers should take the evolutionary nature of software logging into
account when designing log analysis techniques (e.g., to what extent would the accuracy of
the machine learning models be affected by the evolution of logging code?).

5.4.5 Manual Analysis with Text Editors

Consistently with the previous study at Microsoft (Barik et al. 2016), we found that devel-
opers mainly use text editors for their log analysis activities. Given that many log analysis
tools have been proposed over the years, the observation implies a gap between research
prototypes and industrial practice. The reason why developers use text-based tools could be
that 1) practitioners are not aware of other existing techniques, 2) the existing techniques
proposed by researchers cannot address the challenges that developers face, 3) the tech-
niques that address the challenges have not been turned into products by tool builders, or
4) the tool adoption is hindered by extensive training and additional cost. To address these
problems, we propose three types of studies for researchers to further identify and bridge
the gaps between the state-of-practice and state-of-the-art.

First, we propose researchers to gain more insights into current practice of software
logging. As collected by He et al. (2021), over the years, commercial (e.g., Splunk 2005)
and open-source tools (e.g., GrayLog (2020)) have been made available for practitioners.
Empirical studies should be conducted to get a comprehensive overview of the technical

@ Springer

Empir Software Eng (2023) 28:43 Page 47 of 56 43

and non-technical influencing factors in the adoption of log analysis tools. One of the possi-
ble obstacles implied in our study is the difficulty of obtaining structured logs to enable the
use of advanced analysis tools (i.e., the cost of parsing logs or migrating logging code for a
large code base). The observation shows that many challenges stem from other steps of soft-
ware logging (e.g., log instrumentation). Therefore, we believe research efforts should also
be made to dive into the industrial practice of log instrumentation (e.g., logging approach
and library) and management (e.g., log collection and analysis). For example, interesting
research questions about log instrumentation could be: what logging methods and libraries
do companies use? what is the rationale behind their decisions? what kind of challenges are
they facing with the used methods? We believe that gaining more understanding about the
practice, challenges and tool adoption is the first step toward solving the problems.

Second, we suggest researchers to create a mapping of the industrial challenges and the
existing techniques that could potentially address the challenges. To achieve this goal, it
is essential to obtain an overview of the state-of-the-art techniques that support log instru-
mentation and management through a literature study (e.g., systematic literature review and
systematic mapping study). Many literature studies have been conducted to understand dif-
ferent activities in software logging and log analysis, such as log instrumentation (Chen and
Jiang 2021) and log abstraction (El-Masri et al. 2020). However, a systematic and in-depth
mapping of current practice and existing techniques is still missing. We believe such map-
ping studies are important for researchers and tool builders to understand the gaps and the
potential useful techniques that deserve further explorations and improvements.

However, the mapping studies may only give indications on promising techniques. In
order to transfer the state-of-the-art techniques to practice, it is important to conduct exper-
imental studies in the field (Storey et al. 2020) where researchers can apply the techniques
in a natural software development setting and study the possibility of integrating the tech-
niques into the existing development process and infrastructure. To understand the impact
of different solutions and environment settings, researchers can consider to conduct field
experiments (Storey et al. 2020), which allows them to controls certain aspects of the setting
(e.g., human factors). For example, to explore whether the state-of-the-art log comparison
techniques can help developers efficiently identify the root cause of regressions, researchers
can design a field experiment which involves the comparison of the promising techniques
to the text-based comparison tools that developers used in their natural development set-
ting. By experimenting with the techniques in the field, researchers can better understand
the limitations of the techniques and the additional cost (e.g., training) the techniques may
require. Iterations of refinement and experiment should be expected before the techniques
are matured enough to be integrated into the development process.

With these three types of studies, we can better understand the nature of challenges in
logging and log analysis, and the real-world design contexts, producing design knowledge to
guide the development or improvement of techniques that address the identified challenges.

5.5 Technique Development at ASML

ASML has been developing techniques that address some of the challenges presented in our
exploratory study at ASML (Section 2). Hooimeijer et al. (2022) presented a technique that
infers multi-level state machine models from execution logs generated by component-based
systems. Instead of using heuristics that often don’t match system characteristics and are
difficult to configure for practitioners, the technique learns multi-level state machine models
that represent the behavior of systems, using the knowledge of the component-based soft-
ware architecture. By showing the learned models to ASML developers, the authors validate

@ Springer

43 Page 48 of 56 Empir Software Eng (2023) 28:43

that the models adequately provide ASML developers the software behavior abstraction that
they currently lack (see discussion in Section 2.5.3).

As suggested by the interviewees in our study, such learned models can be used for soft-
ware comprehension or serve as behavioral fingerprints of systems. To utilize the potential
benefits of the learned multi-level state machine models, Hendriks et al. (2022) extended
this technique with a methodology that allows developers to automatically compare state
machine models learned from execution logs, e.g., from different software versions, and to
inspect the comparison results at various levels of details. By comparing software logs at
six levels of abstraction with this methodology, developers can zoom in on relevant differ-
ences, and manage the complexity of large systems. The effectiveness of this methodology
is demostrated with several case studies using ASML (sub-)systems. It is shown that the root
cause of software regressions can be identified with the comparison methodology. Based on
our study, we further suggest researchers to extend this methodology to link the behavioral
differences obtained from the comparison to their sources, and to provide developers with
actionable insights (as discussed in Section 5.4.2).

The existence of these techniques, as well as their positive empirical validations, confirm
that our findings and implications are insightful for researchers and tool builders to address
log analysis challenges for embedded systems. Furthermore, they provide an example of
how the research outcome of our study can be transferred to solve real-world problems.

6 Threats to Validity

As any empirical study, ours is subject to threats to validity.

Threats to construct validity examine the relation between the concept being studied
and its observation. One threat could be that developers have different definitions of logs.
To migrate this risk, we provided our definitions of software logs.

Threats to internal validity concern factors that might have influenced the results. First,
developers might have misunderstood our interview questions. For the first study, we mit-
igate this risk by conducting a pilot interview with a developer who works at ASML, and
rewording the questions as necessary. For the second study, we piloted both open and closed
questions with an industrial embedded software developer and provided the explanation of
individual options (i.e., codes) in the closed questions.

Second, our interviewees might hesitate to discuss the difficulties in their current practice
or the issues in the tools they use. For example, it could be because that they were aware that
the result will be published. We reduced their concern by explaining data privacy rights and
guaranteeing them full anonymity. Third, the coding we applied to the interview transcripts
is an interpretive procedure. Moreover, the coding tasks were single-handedly performed
by the first author. This decision was made because of the technical knowledge, such as the
state machine modeling language used by developers, required to interpret the information
shared by our interviewees. To limit the researcher bias, we performed member checking.
Developers were encouraged to correct our interpretations and add additional thoughts. For
the first study at ASML, we have obtained 20 replies out of 25 interviewees, and the revi-
sions requested by the interviewees were minor, suggesting high degree of validity of our
interpretation. In addition, the recent research at ASML related to log analysis techniques
has shown the usefulness of our suggestions for researchers, increasing our confidence in
our findings.

Threats to external validity concern the generalizability of our conclusions beyond the
studied context. For our first study at ASML, we opted for convenience sampling selecting

@ Springer

Empir Software Eng (2023) 28:43 Page 49 of 56 43

the company that we have on-going collaboration with. We expect that this company pro-
vides a representative context because the products of this company have been considered
as a typical example of complex embedded systems in many studies (Graaf et al. 2003).
In this study, we explored log analysis practices for control and metrology software which
is a typical module in complex embedded systems. To select interviewees from the divi-
sion that is responsible for the module, we opted for purposive sampling (Baltes and Ralph
2020) by encouraging each group lead from this division to recommend developers with
different education backgrounds, genders, and roles. However, there is a risk that group
leads might prioritize other factors (i.e., developers’ availability) over diversity. To ensure
saturation, we conducted interviews and coding tasks in an interleaved manner. We made a
detailed report on the study context to support the transfer of results to other similar con-
texts. To increase external validity of our findings, we conducted a dependent replication
study at multiple companies using the same method (i.e., interviews). Convenience sam-
pling is adopted to recruit companies that we have contact with. The selected companies
from embedded domain are developing different kinds of embedded products.We discussed
the contextual factors of logging in embedded systems (Section 4) that deserve further inves-
tigation to increase external validity and build theories. A future work could be conducting
an independent replication study which uses different experimental procedures and involves
more changing factors.

7 Conclusion

We explored how developers use logs in embedded software engineering by conducting an
exploratory study at ASML. To refine the findings, the study was then replicated at four
other companies. As the final result obtained by interviewing 39 developers in total, we
identified four types of logs developers use, 21 purposes for which developers use logs,
14 types of information developers search in logs, 17 challenges faced by developers in
log analysis, and six suggestions on tool support. The most prevalent information needs
are related to context of issues, state and interaction and timing performance. We observed
that text-based tools (e.g., Notepad++ and Linux diff) are commonly used for inspecting
and comparing logs, despite that many log analysis tools have been proposed in literature.
Our study identifies the challenges in log analysis. We observed that the unsatisfactorily
log quality, lack of expertise and high complexity of systems raise major challenges in log
analysis. Moreover, our study provides evidence that the evolution of logging code also
introduces challenges. For example, log-dependent entities (e.g., log analysis tools) are
affected by the change made to logging code.

Based on the study, we provide suggestions for practitioners on logging practices, tool
builders on how to further improve log analysis tools, and researchers on the research direc-
tions. Our observations suggest practitioners to design and implement a suitable logging
process where logging approach, library, content and location as well as log generation and
collection are systematized. We suggest tool builders to develop advanced log compari-
son tools that can categorize log differences to provide actionable insights for developers.
Furthermore, our study also calls for more research efforts in supporting the evolution of
log-dependent entities.

Data Availability The interview transcripts that support the findings of this study are not openly available
due to the confidentiality agreement made with the participating companies.

@ Springer

43 Page 50 of 56 Empir Software Eng (2023) 28:43

Declarations

Conflict of Interest The authors declare no conflicts of interest.

References

Aggarwal K, Timbers F, Rutgers T, Hindle A, Stroulia E, Greiner R (2017) Detecting duplicate bug reports
with software engineering domain knowledge. J Softw Evol Process 29(3):e1821

Amar H, Bao L, Busany N, Lo D, Maoz S (2018) Using finite-state models for log differencing. In:
ESEC/FSE, pp 49-59

Antonino PO, Morgenstern A, Kuhn T (2016) Embedded-software architects: it’s not only about the software.
IEEE Softw 33(6):56-62

Artho C, Havelund K, Honiden S (2007) Visualization of concurrent program executions. In: COMPSAC,
pp 541-546

Asadollah SA, Inam R, Hansson H (2015) A survey on testing for cyber physical system. In: ICTSS, pp 194—
207

Asuncion H, Asuncion A, Taylor R (2010) Software traceability with topic modeling. In: ICSE (1), pp 95-104

Baltes S, Ralph P (2020) Sampling in software engineering research: a critical review and guidelines.
arXiv:200207764

Bao L, Busany N, Lo D, Maoz S (2019) Statistical log differencing. In: ASE, pp 851-862

Barik T, DeLine R, Drucker S, Fisher D (2016) The bones of the system: a case study of logging and telemetry
at microsoft. In: 2016 IEEE/ACM 38th international conference on software engineering companion
(ICSE-C). IEEE, pp 92-101

Beschastnikh I, Liu P, Xing A, Wang P, Brun Y, Ernst MD (2020a) Visualizing distributed system executions
29. https://doi.org/10.1145/3375633

Beschastnikh I, Liu P, Xing A, Wang P, Brun Y, Ernst MD (2020b) Visualizing distributed system executions.
TOSEM 29(2):1-38

Biermann A, Feldman J (1972) On the synthesis of finite-state machines from samples of their behavior.
IEEE Trans Comput 100(6):592-597

Bird C (2016) Interviews. In: Perspectives on data science for software engineering. Morgan Kaufmann

Broadfoot GH (2005) Asd case notes: costs and benefits of applying formal methods to industrial control
software. In: International symposium on formal methods. Springer, pp 548-551

Buchbinder E (2011) Beyond checking: experiences of the validation interview. Qual Soc Work 10(1):106—
122

Chen B, Jiang ZM (2021) A survey of software log instrumentation. ACM Comput Surv (CSUR) 54(4):1-34

Chen B et al (2017) Characterizing logging practices in java-based open source software projects—a
replication study in apache software foundation. Empir Softw Eng 22(1):330-374

Cicchetti A, Di Ruscio D, Eramo R, Pierantonio A (2008) Automating co-evolution in model-driven engi-
neering. In: 2008 12th International IEEE enterprise distributed object computing conference. IEEE,
pp 222-231

da Silva AJ, Linhares MV, Padilha R, Roqueiro N, de Oliveira RS (2006) An empirical study of sysml
in the modeling of embedded systems. In: 2006 IEEE international conference on systems, man and
cybernetics, vol 6. IEEE, pp 4569-4574

Dallmeier V, Knopp N, Mallon C, Hack S, Zeller A (2010) Generating test cases for specification mining.
In: ISSTA, pp 85-96

Edwards D, Simmons S, Wilde N (2006) An approach to feature location in distributed systems. J Syst Softw
79(1):57-68. https://doi.org/10.1016/j.jss.2004.12.018

El-Masri D, Petrillo F, Guéhéneuc YG, Hamou-Lhadj A, Bouziane A (2020) A systematic literature review
on automated log abstraction techniques. Inf Softw Technol 122:106276

Etien A, Salinesi C (2005) Managing requirements in a co-evolution context. In: 13th IEEE international 31
conference on requirements engineering (RE’05). IEEE, pp 125-134

Feng Y, Dreef K, Jones JA, van Deursen A (2018) Hierarchical abstraction of execution traces for program
comprehension. In: ICPC, pp 86-96

Fidge CJ (1987) Timestamps in message-passing systems that preserve the partial ordering. Australian
National University, Department of Computer Science

Fleming SD, Stirewalt R (2009) Successful strategies for debugging concurrent software: an empirical
investigation. Michigan State University, Computer Science

Fluri B, Wursch M, PInzger M, Gall H (2007) Change distilling: tree differencing for fine-grained source
code change extraction. TSE 33(11):725-743

@ Springer

http://arxiv.org/abs/200207764
https://doi.org/10.1145/3375633
https://doi.org/10.1016/j.jss.2004.12.018

Empir Software Eng (2023) 28:43 Page 51 of 56 43

Flyvbjerg B (2007) Five misunderstandings about case-study research. Sage

Fu Q, Zhu J, Hu W, Lou JG, Ding R, Lin Q, Zhang D, Xie T (2014) Where do developers log? An empirical
study on logging practices in industry. In: ICSE, pp 24-33

Gait J (1986) A probe effect in concurrent programs. Softw Pract Exp 16(3):225-233

Gholamian S, Ward PA (2021a) A comprehensive survey of logging in software: from logging statements
automation to log mining and analysis. arXiv:211012489

Gholamian S, Ward PA (2021b) What distributed systems say: a study of seven spark application logs. In:
2021 40th International symposium on reliable distributed systems (SRDS). IEEE, pp 222-232

Goldstein M, Raz D, Segall 1 (2017) Experience report: log-based behavioral differencing. In: ISSRE,
pp 282-293

Graaf B, Lormans M, Toetenel H (2003) Embedded software engineering: the state of the practice. IEEE
Softw 20(6):61-69

GrayLog (2020) A leading centralized log management solution. https://www.graylog.org

Gu S, Rong G, Zhang H, Shen H (2022) Logging practices in software engineering: a systematic mapping
study. IEEE Trans Softw Eng

Gulzar MA, Zhu Y, Han X (2019) Perception and practices of differential testing. In: 2019 IEEE/ACM 41st
international conference on software engineering: software engineering in practice (ICSE-SEIP). IEEE,
pp 71-80

Gupta M, Mandal A, Dasgupta G, Serebrenik A (2018) Runtime monitoring in continuous deployment by dif-
ferencing execution behavior model. In: Pahl C, Vukovic M, Yin J, Yu Q (eds) ICSOC, Springer, Lecture
Notes in Computer Science, vol 11236, pp 812-827. https://doi.org/10.1007/978-3-030-03596-9_58

Harty J, Zhang H, Wei L, Pascarella L, Aniche M, Shang W (2021) Logging practices with mobile analytics:
An empirical study on firebase. In: 2021 IEEE/ACM 8th international conference on mobile software
engineering and systems (MobileSoft). IEEE, pp 56-60

He S, He P, Chen Z, Yang T, Su Y, Lyu MR (2021) A survey on automated log analysis for reliability
engineering. ACM Comput Surv (CSUR) 54(6):1-37

Hendriks D, Meer Avd, Oortwijn W (2022) A multi-level methodology for behavioral comparison of
software-intensive systems. In: International conference on formal methods for industrial critical
systems. Springer, pp 226-243

Henzinger TA, Sifakis J (2007) The discipline of embedded systems design. Computer 40(10):32-40

Holton JA (2007) The coding process and its challenges. The Sage handbook of grounded theory, vol 3, pp
265-289

Hooimeijer B, Geilen M, Groote JF, Hendriks D, Schiffelers R (2022) Constructive model inference: model
learning for component-based software architectures. In: 17th International conference on software
technologies (ICSOFT), pp 146-158

Jerding DF, Stasko JT, Ball T (1997) Visualizing interactions in program executions. In: ICSE, pp 360-370

Kabinna S, Bezemer CP, Shang W, Hassan AE (2016) Logging library migrations: a case study for the
apache software foundation projects. In: 2016 IEEE/ACM 13th working conference on mining software
repositories (MSR). IEEE, pp 154-164

Kabinna S, Bezemer CP, Shang W, Syer MD, Hassan AE (2018) Examining the stability of logging
statements. Empir Softw Eng 23(1):290-333

Kagdi H, Gethers M, Poshyvanyk D, Collard ML (2010) Blending conceptual and evolutionary couplings to
support change impact analysis in source code. In: RE, pp 119-128

Krka I, Brun Y, Medvidovic N (2014) Automatic mining of specifications from invocation traces and method
invariants. In: ESEC/FSE, pp 178-189

Kurfess TR, Hodgson TJ (2007) Metrology, sensors and control. In: Micromanufacturing. Springer, pp 89—
109

Lee EA (2008) Cyber physical systems: design challenges. In: 2008 11th IEEE international symposium on
object and component-oriented real-time distributed computing (ISORC). IEEE, pp 363-369

Legunsen O, Hassan WU, Xu X, Rosu G, Marinov D (2016) How good are the specs? A study of the bug-
finding effectiveness of existing java api specifications. In: ASE, pp 602-613

Lemieux C, Park D, Beschastnikh I (2015) General ITL specification mining. In: ASE, pp 81-92

Levy O, Feitelson D (2019) Understanding large-scale software—a hierarchical view. In: ICPC, pp 283-293

Li H, Chen THP, Shang W, Hassan AE (2018) Studying software logging using topic models. EMSE
23(5):2655-2694

Li H, Shang W, Adams B, Sayagh M, Hassan AE (2020a) A qualitative study of the benefits and costs of
logging from developers’ perspectives. TSE

Li S, Niu X, Jia Z, Liao X, Wang J, Li T (2020b) Guiding log revisions by learning from software evolution
history. Empir Softw Eng 25(3):2302-2340

@ Springer

http://arxiv.org/abs/211012489
https://www.graylog.org
https://doi.org/10.1007/978-3-030-03596-9_58

43 Page 52 of 56 Empir Software Eng (2023) 28:43

Lian X, Rahimi M, Cleland-Huang J, Zhang L, Ferrai R, Smith M (2016) Mining requirements knowl-
edge from collections of domain documents. In: 2016 IEEE 24th international requirements engineering
conference (RE), pp 156-165

Liu X, Lin W, Pan A, Zhang Z (2007) WiDS checker: combating bugs in distributed systems. In: 4th
Symposium on networked systems design and implementation, NSDI 2007, pp 257-270

Lo D, Maoz S (2012) Scenario-based and value-based specification mining: better together. In: ASE, vol 19,
pp 423-458

Lo D, Mariani L, Pezzé M (2009) Automatic steering of behavioral model inference. In: Proceedings of the
7th joint meeting of the European software engineering conference and the ACM SIGSOFT symposium
on the foundations of software engineering, pp 345-354

Luo Q, Hariri F, Eloussi L, Marinov D (2014) An empirical analysis of flaky tests. In: FSE, pp 643—653

Maoz S, Ringert JO, Rumpe B (2010) A manifesto for semantic model differencing. In: MODELS. Springer,
pp 194-203

Mashhadi MJ, Hemmati H (2019) An empirical study on practicality of specification mining algorithms on
a real-world application. In: ICPC, pp 65-69

Mashhadi MJ, Siddiqui TR, Hemmati H, Loewen H (2019) Interactive semi-automated specification mining
for debugging: an experience report. Inf Softw Technol 113:20-38

Mattern F et al (1988) Virtual time and global states of distributed systems. Univ. Department of Computer
Science

McBurney PW, Liu C, McMillan C, Weninger T (2014) Improving topic model source code summarization.
In: Proceedings of the 22nd international conference on program comprehension, pp 291-294

Mengerink J, Schiffelers RRH, Serebrenik A, van den Brand M (2016) Dsl/model co-evolution in industrial
emf-based MDSE ecosystems. In: Mayerhofer T, Pierantonio A, Schitz B, Tamzalit D (eds) Proceedings
of the 10th workshop on models and evolution co-located with ACM/IEEE 19th international conference
on model driven engineering languages and systems (MODELS 2016), Saint-Malo, France, October 2,
2016, CEUR-WS.org, CEUR Workshop Proceedings, vol 1706, pp 2-7. http://ceur-ws.org/Vol-1706/
paperl.pdf

Mishra D, Mishra A, Yazici A (2008) Successful requirement elicitation by combining requirement engi-
neering techniques. In: 2008 First international conference on the applications of digital information and
Web technologies (ICADIWT). IEEE, pp 258-263

Noergaard T (2012) Embedded systems architecture: a comprehensive guide for engineers and programmers.
Newnes

Pandey D, Suman U, Ramani AK (2010) An effective requirement engineering process model for software
development and requirements management. In: 2010 International conference on advances in recent
technologies in communication and computing. IEEE, pp 287-291

Pecchia A, Cinque M, Carrozza G, Cotroneo D (2015) Industry practices and event logging: assessment of a
critical software development process. In: ICSE (2). IEEE, pp 169-178

Pradel M, Gross TR (2012) Leveraging test generation and specification mining for automated bug detection
without false positives. In: ICSE, pp 288-298

Rong G, Zhang Q, Liu X, Gu S (2017) A systematic review of logging practice in software engineering. In:
2017 24th Asia-Pacific software engineering conference (APSEC). IEEE, pp 534-539

Rong G, Gu S, Zhang H, Shao D, Liu W (2018) How is logging practice implemented in open source soft-
ware projects? A preliminary exploration. In: 2018 25th Australasian software engineering conference
(ASWEQ). IEEE, pp 171-180

Rong G, Xu Y, Gu S, Zhang H, Shao D (2020) Can you capture information as you intend to? A case study
on logging practice in industry. In: 2020 IEEE International conference on software maintenance and
evolution ICSME). IEEE, pp 12-22

Runeson P, Host M (2009) Guidelines for conducting and reporting case study research in software
engineering. Empir Softw Eng 14(2):131

Said W, Quante J, Koschke R (2018) Towards interactive mining of understandable state machine models
from embedded software. In: MODELSWARD, pp 117-128

Seaman CB (1999) Qualitative methods in empirical studies of software engineering. IEEE Trans Softw Eng
25(4):557-572

Shaft TM, Vessey I (1995) The relevance of application domain knowledge: the case of computer program
comprehension. ISR 6(3):286-299

Shang W, Nagappan M, Hassan AE, Jiang ZM (2014) Understanding log lines using development
knowledge. In: ICSME, pp 21-30

Shull FJ, Carver JC, Vegas S, Juristo N (2008) The role of replications in empirical software engineering.
Empir Softw Eng 13(2):211-218

@ Springer

http://ceur-ws.org/Vol-1706/paper1.pdf
http://ceur-ws.org/Vol-1706/paper1.pdf

Empir Software Eng (2023) 28:43 Page 53 of 56 43

Silva E, Freitas EP, Wagner FR, Carvalho FC, Pereira CE (2006) Java framework for distributed real-time
embedded systems. In: 9th IEEE international symposium on object and component-oriented real-time
distributed computing (ISORC’06). IEEE, p 8

Splunk (2005) http://www.splunk.com

Storey MA, Ernst NA, Williams C, Kalliamvakou E (2020) The who, what, how of software engineering
research: a socio-technical framework. Empir Softw Eng 25(5):4097-4129

Strandberg PE, Enoiu EP, Afzal W, Sundmark D, Feldt R (2019) Information flow in software testing—an
interview study with embedded software engineering practitioners. IEEE Access 7:46434-46453

Strauss A, Corbin JM (1997) Grounded theory in practice. Sage

Tan L, Bockisch C (2019) A survey of refactoring detection tools. In: EMLS, pp 100-105

van der Werf JMEM, van Dongen BF, Hurkens CAJ, Serebrenik A (2009) Process Discovery using Integer
Linear Programming. Fundam Inform 94(3-4):387-412

Vogel-Heuser B, Fay A, Schaefer I, Tichy M (2015) Evolution of software in automated production systems:
challenges and research directions. J Syst Softw 110:54-84

Walkinshaw N, Taylor R, Derrick J (2016) Inferring extended finite state machine models from software
executions. Empir Softw Eng 21(3):811-853

Yang N, Aslam K, Schiffelers R, Lensink L, Hendriks D, Cleophas L, Serebrenik A (2019) Improving model
inference in industry by combining active and passive learning. In: SANER, pp 253-263

Yang N, Cuijpers PJL, Schiffelers RRH, Lukkien J, Serebrenik A (2021) An interview study of how develop-
ers use execution logs in embedded software engineering. In: 43rd IEEE/ACM International conference
on software engineering: software engineering in practice, ICSE (SEIP) 2021, Madrid, Spain, May
25-28, 2021. IEEE, pp 61-70. https://doi.org/10.1109/ICSE-SEIP52600.2021.00015

Ye X, Bunescu R, Liu C (2014) Learning to rank relevant files for bug reports using domain knowl-
edge. In: Proceedings of the 22nd ACM SIGSOFT international symposium on foundations of software
engineering, pp 689-699

Yuan D, Park S, Zhou Y (2012) Characterizing logging practices in open-source software. In: 2012 34th
International conference on software engineering (ICSE). IEEE, pp 102-112

Zaidman A, Demeyer S (2004) Managing trace data volume through a heuristical clustering process based
on event execution frequency. In: CSMR, pp 329-338

Zaidman A, Van Rompaey B, van Deursen A, Demeyer S (2011) Studying the co-evolution of production
and test code in open source and industrial developer test processes through repository mining. Empir
Softw Eng 16(3):325-364

Zeng Y, Chen J, Shang W, Chen THP (2019) Studying the characteristics of logging practices in mobile
apps: a case study on f-droid. Empir Softw Eng 24(6):3394-3434

Zhu J, He P, Fu Q, Zhang H, Lyu MR, Zhang D (2015) Learning to log: helping developers make informed
logging decisions. In: 2015 IEEE/ACM 37th IEEE international conference on software engineering, vol
1. IEEE, pp 415-425

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

@ Springer

http://www.splunk.com
https://doi.org/10.1109/ICSE-SEIP52600.2021.00015

43 Page 54 of 56

Empir Software Eng (2023) 28:43

@ Springer

Nan Yang is currently pursuing the Ph.D. degree with the Intercon-
nected Resource-Aware Intelligent Systems (IRIS) Research Cluster
at Eindhoven University of Technology in the Netherlands. She
is conducting empirical studies to understand software engineering
practice for high-tech systems, aimed at proposing software ana-
lytics tools for addressing the complexity of such systems. Her
research interests include reverse-engineering, log analysis, model-
driven engineering, and open-source software ecosystems.

Pieter Cuijpers is an Assistant Professor of Quantitative Formal
Modelling and Analysis of Cyber-Physical Systems at Eindhoven
University of Technology in the Netherlands, and visiting Associate
Professor at Aalborg University in Denmark. His current research and
educational efforts focus on development of suitable syntactic and
semantic models, as well as suitable modeling and analysis meth-
ods, aimed at real-time properties of communication standards used
in industrial and in-vehicle networking, and computer-aided proof
checking of those properties.

Dennis Hendriks is a Senior Research Fellow at TNO-ESI, a Dutch
applied research center. He also has a part-time position at the
department of Software Science at the Radboud University in the
Netherlands. He works with both industry and academia, bringing
them together to address the complexity challenges of the high-tech
industry. In his applied research, he makes academic formal methods
ready for industrial use. His current work focusses on methodologies
for model inference and change impact analysis of software behavior,
and Synthesis-Based Engineering of supervisory controllers.

Empir Software Eng (2023) 28:43

Page 55 of 56 43

Ramon Schiffelers is a Senior Software Architect at ASML, world’s
leading provider of lithography systems for the semiconductor indus-
try, and an Assistant Professor of Model Driven Software Engineering
at Eindhoven University of Technology. His research focuses on
theory, methods and tools towards cost effective, industrial scale
model-driven system/software engineering. Ramon is positioned at
the interface between scientific knowledge and its application in
industry. Next to innovative products, this resulted in long-term
collaborative research between ASML and academia.

Johan Lukkien is full professor in System Architecture and Net-
working since 2008. His research interests are in embedded software
systems, and in particular in their architecture, evolution and perfor-
mance. He has been involved in numerous national and international
projects on networked systems: software intensive and with resource
and timing constraints. Aims of this research include understanding
and improving the design trajectory as well as the evolution of such
systems. Johan Lukkien is an IEEE senior member.

Alexander Serebrenik is a Full Professor of Social Software Engi-
neering at Eindhoven University of Technology. His research goal
is to facilitate evolution of software by taking into account social
aspects of software development. He has co-authored a book “Evolv-
ing Software Systems” (Springer Verlag, 2014), and more than 100
scientific papers and articles. He has won several distinguished paper
and distinguished review awards.

@ Springer

43 Page 56 of 56 Empir Software Eng (2023) 28:43

Affiliations

Nan Yang' © . Pieter Cuijpers'2 . Dennis Hendriks3* - Ramon Schiffelers'> .
Johan Lukkien' - Alexander Serebrenik’

Pieter Cuijpers
p.j.L.cuijpers@tue.nl

Dennis Hendriks
dennis.hendriks @tno.nl; dennis.hendriks @ru.nl

Ramon Schiffelers
r.r.h.schiffelers @tue.nl

Johan Lukkien
j-j-lukkien@tue.nl

Alexander Serebrenik

a.serebrenik @tue.nl

Eindhoven University of Technology, Eindhoven, The Netherlands
Aalborg University, Aalborg, Denmark

3 ESI(TNO), Eindhoven, The Netherlands

Radboud University, Nijmegen, The Netherlands

5 ASML, Veldhoven, The Netherlands

@ Springer

http://orcid.org/0000-0002-3071-0244
mailto: p.j.l.cuijpers@tue.nl
mailto: dennis.hendriks@tno.nl
mailto: dennis.hendriks@ru.nl
mailto: r.r.h.schiffelers@tue.nl
mailto: j.j.lukkien@tue.nl
mailto: a.serebrenik@tue.nl

	An interview study about the use of logs in embedded software engineering
	Abstract
	Introduction
	Use of Logs at ASML
	Methodology
	Context
	Semi-structured Interviews
	Interview Participants
	Data Collection and Analysis
	Member Checking

	Type of Logs (RQ1)
	Event Logs
	Function Trace
	Functional Data

	Purpose of Log Analysis (RQ2)
	Software Comprehension
	Test Development
	Verification and Improvement
	Issue Analysis
	Other Observations

	Information Needs (RQ3)
	Context of Issues
	Data Flow and Executed Sequence
	Software State and Interaction
	Timing Performance
	Differences Between Executions

	Tool Support for Log Analysis (RQ4)
	Tools Used
	Challenges in Log Analysis
	Log Availability and Quality
	Complexity
	Expertise

	Expected Tools
	Creating Multi-level Abstraction
	Automatic Log Comparison
	Providing Generic and Unified Facilities

	Replication at Other Companies
	Methodology
	Semi-structured Interviews
	Context and Participants
	Company A
	Company B
	Company C
	Company D

	Data Collection and Analysis

	Generalizability (RQ5)
	Types of Logs
	Purpose of Log Analysis
	Information Needs
	Used Tools
	Challenges
	Logging Trade-off
	Lack of Abstraction Layer for Logging
	Co-evolution Problems in Logging
	Coupling Between Hardware and Software

	Expected Tools
	Identifying and Visualizing Dependency Between Events
	Deriving Behavioral Fingerprints
	Strategic Logging

	Result Synthesis
	Main Scenarios of Software Logging
	Contextual Factors in Logging Practice
	Types of Systems
	Types of Components
	Architecture and Complexity
	Programming Languages

	Discussion
	Topic and Context of Relevant Work
	Refined taxonomy for log analysis
	Log Instrumentation
	Logging in Embedded Systems
	Logging Decisions at Design Phase

	Log Management
	Multiple Types of Logs
	Log Comparison
	Log Comprehension
	The Problem of Co-evolution
	Manual Analysis with Text Editors

	Technique Development at ASML

	Threats to Validity
	Conclusion
	Declarations
	References
	Affiliations

