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Abstract
Recent advances in deploying deep learning (DL) models have inspired the innovation of
DL compilers from both industry and academia such as Facebook Glow and TVM. Given
the importance of DL compilers, we seek for answering the important question to ease
the adoption and development of TVM: What challenges do users face when using DL
compilers and what are common challenges for developers when developing DL compilers.
This paper presents the first empirical study on identifying the challenges in both usage and
development of a DL compiler. We choose TVM as the representative DL compiler and
manually inspect 347 sampled posts from its official discuss forum. We identify a taxonomy
of challenges in usage of TVM consisting of 15 categories and seven types of common
topics about developing TVM. Furthermore, we characterize TVM bugs in total of four
impacts to obtain an initial understanding on defects of TVM through manual inspection of
44 bug reports and propose five implications for both developers and researchers in order to
improve the development practices and build more robust DL compilers.
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1 Introduction

Deep learning (DL) has been widely applied to many cutting-edge areas, e.g., machine
translation (Wang et al. 2020; Hoang et al. 2018), natural language processing (Deng and
Liu 2018), image processing (Hemanth and Estrela 2017), cancer diagnosis (Fakoor et al.
2013), self-driving cars (Badue et al. 2021). To meet the requirement of these wide appli-
cations, various DL models such as convolutions neural network (CNN) (Lecun et al.
1998), recurrent neural network (RNN) (Rumelhart et al. 1986), long-short term memory
(LSTM) (Schmidhuber and Hochreiter 1997) have been proposed. With the rapidly grow-
ing complexity of DL models, it is decisive to alleviate the efforts on programming such DL
models. Up to now, many high-performance DL frameworks such as TensorFlow (Abadi
et al. 2016), PyTorch (Paszke et al. 2019) have been proposed, allowing researchers to
quickly implement and experiment with various DL models.

Nevertheless, due to the specific data-driven programming paradigm, DL applications
often come with high computation complexity. Generally, most of the current DL work-
loads are running on general-purpose platforms, i.e., GPU, CPU. To further push the
limit of performance on DL workloads and energy efficiency, enormous effort has been
put into designing DL-specific hardware from both industrial and academia, e.g., Google
TPU (Jouppi et al. 2017), dedicated DL accelerator based on field programmable gate array
(FPGA) (Lacey et al. 2016), Apple Bionc (Kingsley-Hughes 2017), Cambricon (Liu et al.
2016).

The diversity of DL hardware and DL frameworks has witnessed the prosperity of DL
community. However, it can be tedious for developers when it comes to actually deploying
DL applications built upon different frameworks for various hardware, especially consid-
ering that DL models and operations need to be optimized for each hardware to get the
optimal performance. Besides, deployment issues are even more difficult to solve compared
to other aspects of a DL application (Chen et al. 2020). To migrate this problem and alleviate
the burden of optimizing DL models for various hardware, several DL compilers have been
proposed such as nGraph (Cyphers et al. 2018), TVM (Chen et al. 2018a), Tensor Compre-
hensions (Vasilache et al. 2018), XLA (Leary and Wang 2017), Glow (Rotem et al. 2018).
Given a DL model by one of the DL frameworks, a DL compiler parses the model defini-
tions and generates the optimized implementation for a target hardware. So DL compilers
seem to be a promising solution, however, there is a fundamental question remain unclear:
What challenges do users face when using DL compilers and what are common challenges
for developers when developing DL compilers.

To answer this question, this paper presents the first empirical study on identifying the
challenges in both usage and development of a DL compiler. Regarding the popularity of
DL compilers, this study can help DL compiler users to avoid common pitfalls in using
DL compilers and developers to be more clear about how to better help users in a more
specific way. Several potential directions have been discussed for researchers in order to
build more robust DL compilers. Building on these considerations, we select TVM as the
representative DL compiler since TVM has a outstanding performance compared to other
DL compilers (Li et al. 2021) and it has sufficient documents and discussions. We analyze
relevant posts from the TVM Discuss Forum, which is the main communication channel for
both TVM users and developers. We manually analyze 347 randomly sampled posts from
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the discussion forum including both usage and development topics. Based on these posts,
we focus on the following research questions (RQs).

RQ1: What are the challenges users may have when using TVM? To figure out
what challenges user may face when using TVM, we randomly sample and analyze 279
posts on the usage of TVM. We finally build a taxonomy of challenges consisting of 15
categories.
RQ2: What are common topics that TVM developers discuss? To have a better
understanding of the challenges and inspire future research or tool support, we carefully
analyze 22 posts on the development of TVM. We find TVM developers generally have
seven types of posts.
RQ3: What are the impacts of user- and self-reported TVM bugs? We take an initial
step to understand the impacts of the TVM bugs by analyzing 44 bug reports identi-
fied from the discussion forum and 297 bug-relevant commits crawled from the official
repository of TVM on GitHub. We finally summarized four types of impacts of TVM
bugs.

To the best of our knowledge, this is the first paper to analyze challenges in
using/developing DL compilers through mining the collective knowledge. Besides, We
make all the materials we used in this study public. The crawled Apache TVM Community
posts and the manual inspection results are made publicly available.1 Researchers interested
in conducting analysis on DL compilers may utilize this dataset. The rest of this paper is
organized as follows. Section 2 provides background knowledge about DL frameworks, DL
hardware and DL compilers. Section 3 describes methodology used to collect the posts, to
build the taxonomy. Section 4 presents the taxonomy of challenges in using TVM along
with the description of these categories. Section 5 describes the taxonomy of challenges and
common topics about developing TVM. Section 6 describes the characterization of TVM
bugs. Section 7 contains a discussion of our findings and describes several implications.
Section 8 reviews our threats of validity. Section 9 discusses related work and Section 10
finally concludes this paper.

2 Background

In this section, we describe background knowledge about deep learning (DL) frameworks,
DL hardware and DL compilers, especially TVM, i.e., the study subject of this work. All
of these three are essential to developing DL software, i.e., DL frameworks provide train-
ing and executing DL models, DL hardware provide better hardware support to enable
more efficient computation of DL models, and DL compilers support the deployment and
optimization of DL models generated by DL frameworks on DL hardware.

2.1 Deep Learning Frameworks

Deep learning frameworks provides building blocks for designing, training and executing
various DL models. In this section, we briefly introduce some popular DL frameworks
to provide an overview of DL frameworks. As shown in Fig. 1, DL frameworks are

1Dataset:https://bit.ly/3I9xohu
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Fig. 1 Deep learning frameworks

divided into recent popular frameworks, ONNX supported DL frameworks and historical
DL frameworks.

Recent Popular DL Frameworks Due to the prosperity of DL community, various DL
frameworks have been proposed from both industry and academia. TensorFlow (Abadi et al.
2016) and PyTorch (Paszke et al. 2019) are two representative DL frameworks. TensorFlow
is famous for its static computation graphs while PyTorch adopts dynamic computation
graphs and defines a neural network on-the-fly (Zhang et al. 2019).

ONNX Supported DL Frameworks Open Neural Network Exchange (ONNX) is an open
format for representing deep learning models, which allows developers to train DL model
in one framework and then export and deploy the model into other frameworks for infer-
ence (ONNX 2020). ONNX provides a definition of an extensible computation graph model
so that DL models from different DL frameworks can be transformed into ONNX format.
Most of the current DL compilers support ONNX interchange format in frontend, allowing
them to parse models from different DL frameworks. As shown in Fig. 1, ONNX is sup-
ported in frameworks such as Caffe 2, MXNet and so forth. Note that frameworks like Keras
and TensorFlow can be converted into ONNX using the converter provided by ONNX. How-
ever, such conversion is not yet officially supported by the DL frameworks (e.g., Keras and
TensorFlow).

2.2 Deep Learning Hardware

DL hardware, which can enhance the performance for DL models, has drawn attention
from Internet giants to newly startups. As deep learning requires extensive matrix-based
computations, it requires specialized hardware support. Generally, the DL hardware can be
categorized into two types: 1) general-purpose hardware, which can support DL workloads
through adding specially designed components and providing highly optimized libraries.
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2) DL-specific hardware, which is specially customized to have better performance on DL
workloads (LeCun 2019).

General-Purpose Hardware The current mainstream solution to accelerating DL work-
loads is to use Graphics Processing Unit (GPU). The massive parallelism of GPUs allows
them to speed up computations that involve matrix-based operations, which are the heart
of many DL implementations (Nguyen et al. 2019). CPU is an alternative to GPUs that
can be used as general-purpose hardware due to its flexibility. Besides, manufacturers may
offer accelerated libraries to further improve the performance of their products on DL work-
loads. For example, NVIDIA provides CUDA Deep Neural Network library (cuDNN) that
includes highly optimized primitives for deep neural networks, which can leverage special-
ized hardware components of NVIDIA GPUs and thus improves the performance (NVIDIA
2020). Intel offers oneAPI Math Kernel Library (oneMKL) to increase application perfor-
mance on Intel-based systems (Intel 2020). Except libraries from hardware manufacturers,
Open Computing Language (OpenCL) is a platform that can provide heterogeneous parallel
computing ability on cross-vender and cross-platform hardware (Tompson and Schlachter
2012).

DL-Specific Hardware DL-specific hardware is fully customized for DL workloads to fur-
ther push the limit of performance and energy efficiency. Popular DL-specific hardware
includes dedicated hardware based on Field Programmable Gate Array (FPGA) (Lacey et al.
2016) and Google Tensor Processing Unit (TPU) (Jouppi et al. 2017).

2.3 Deep Learning Compilers

DL compilers are proposed to alleviate the engineering efforts of developers when deploy-
ing or optimizing DL models on different hardware. Given a DL model by one of the DL
frameworks, a DL compiler parses the model definitions and generates the optimized code
implementation (i.e., deployable module) for a target DL hardware.

2.3.1 The Architecture of DL Compiler

In general, the compilation process of DL compilers that transforms a model definition to
the highly optimized code implementation can be divided into four layers: 1) frontend, 2)
intermediate representation (IR), 3) optimization, 4) backend, as shown in Fig. 2.

Frontend The frontend takes a DL model from one DL framework as input and trans-
forms it into a computation graph representation (high-level IR). Then computation graph
optimization techniques will be applied to the computation graph. Finally, the optimized
computation graph will be passed to the backend for further hardware-specific opti-
mizations. TVM uses a frontend named Relay (Roesch et al. 2018), which supports to
parse DL model from almost all the popular DL frameworks and could perform various
hardware-independent optimizations.

IR There are two kinds of IR involved in the DL compilation process, namely the high-
level IR (graph IR) and low-level IR. TVM uses Relay IR (Roesch et al. 2018) which is a
functional IR that adopts both directed-acyclic graph (DAG)-based IR and let-binding-based
IR as its high-level IR. The low-level IR of TVM is based on well-known IR called Halide
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Fig. 2 Generic architecture of DL compiler

IR (Ragan-Kelley et al. 2013) and TVM has further improved Halide IR into an independent
symbolic IR.

– High-level IR is a high-level abstraction of DL models, expressed as a computation
graph and is hardware independent (Xing et al. 2019). High-level IR enables DL
compilers to perform graph-level optimizations.

– Low-level IR resides in backend of the DL compiler and can represents the compu-
tation of the DL model in a more fine-grained view. It enables the DL compilers to
utilize hardware-specific optimizations and optimized libraries regarding specific target
platform.

Optimization Since optimization is associated with IR, there are also two kinds of opti-
mization involved in the compilation process. For high-level optimization, TVM supports
standard optimizations such as fusion and constant propagation. TVM also supports tra-
ditional hardware-specific optimizations such as hardware intrinsic mapping, memory
allocations and fetching in backend for low-level optimization. Furthermore, TVM utilizes
an auto-tuning optimization based on machine learning for further optimization.

– High-level optimizations are involved in the frontend of the DL compiler and are
applied to the computation graph.

– Low-level optimizations are performed in backend of the DL compiler by using
hardware-specific optimizations, auto-tuning methods and optimized libraries.

Backend The backend transforms the optimized computation graph into low-level IR, then
performs optimization regarding the target hardware, and finally packs the generated code
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into a deployable module (Chen et al. 2018a). TVM defines the compiled object as module,
which can be deployed on the target device (TvmDeveloper 2020c).

Except the aforementioned four common components, different DL compilers may
have their specific components in order to enhance its functionality. For example, TVM
provides Versatile Tensor Accelerator (VTA), which is an open and customizable deep learn-
ing accelerator with TVM-based compiler stack. TVM regards it as an extension of the
TVM framework in order to advance deep learning and hardware innovation (TVM 2020a;
Moreau et al. 2018). Furthermore, TVM provides remote procedure call (RPC) that is useful
for cross-compilation and can alleviate users from remote testing.

2.3.2 An Example of Using TVM to Deploy DL Models

The whole TVM stack can be divided into two components, namely the TVM compiler
and TVM runtime. The TVM compiler is to perform all the compilation and optimizations
while the TVM runtime runs on the target devices. Users do not need to build the whole
TVM stack on target device, especially when target device only has limited computing
resources. TVM allows users to cross-compile a DL model on a desktop or server and
then deploy the compiled module on target device installed with TVM runtime that is very
minimal (TvmDeveloper 2020b).

Figure 3 shows an example of how to use TVM to compile a pre-trained ResNet18
model from MXNet (Foundation 2020) and deploy the compiled runtime module on
Raspberry Pi 3b+ that only has TVM runtime installed. The code snippet in the upper-left
corner will download and compile the ResNet18 model (i.e., through relay.build).

Fig. 3 An example of how a TVM user can use TVM to deploy the ResNet-18 model on Raspberry Pi 3b+
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Note that the variable target that contains the target description and the codegen module
is already simplified by TVM, i.e., TVM has built-in the target parameters for Raspberry
Pi 3b+ (tvm.target.arm cpu("rasp3b")). The complete form of this descrip-
tion is tvm.target.Target("llvm -device=arm cpu -model=bcm2837
-mtriple=armv7l-linux-gnueabihf -mattr=+neon"). Users will need to
manually specify these target parameters if their device parameters are not built-in with
TVM.

The compiled module contains the optimized computation graph (graph), module con-
taining necessary libraries (lib) and parameters of the final graph (param), and the library
is saved to “net.tar” for further deploying (i.e., through export library). When deploy-
ing the compiled module on Raspberry Pi, the first thing to do is to load the compiled
module (“net.tar”) and then to create a runtime module (module). Finally, the compiled
module could be run on Raspberry Pi. For developers, there are various areas of TVM stack
they could contribute to. For example, developers could add new operators or a compiler
pass to relay, which is related to the frontend of TVM. As for the backend, develop-
ers can implement new backend for new hardware platform regarding their demand (e.g.,
Hexagon,2 TI DSP3).

3 Methodology

To better understand the challenges in using/developing TVM, we analyze relevant ques-
tions and answers posted on Apache TVM Community,4 which is the official discussion
forum of TVM where users/developers seek for technical advices on unsolved issues. In this
section, we provide descriptions on how we selected the study subject (i.e., TVM) and data
source (i.e., the TVM discuss forum), how we collected the data for this study, and how we
performed the study.

3.1 Data Collection

Among the well-known and widely used DL compilers, i.e., TVM, nGraph, Tensor Comprehen-
sions (TC), Glow and XLA (Li et al. 2021), we focus our study on using and developing one
DL compiler, i.e., TVM, for two main reasons. First, TVM supports more DL frameworks than
other DL compilers with outstanding performance (Li et al. 2021). Second, we do not find
sufficient data to study the use and development of these DL compilers except for TVM. XLA,
which is a DL compiler supported by Google as part of TensorFlow, does not have a discussion
forum. Both Glow and Tensor Comprehensions are developed by Facebook, while Glow is
part of PyTorch and shares the discussion forum with PyTorch.5 Tensor Comprehensions
does not has a discussion forum and mostly uses a slack channel6 for discussion and most of
the messages are posted 2 years ago. nGraph is supported by Intel and it is part of the Intel
OPENVINO project. nGraph uses the OPENVINO discussion forum7 and there are only 78

2Introducing Hexagon backend: https://discuss.tvm.apache.org/t/introducing-hexagon-backend/2421
3Use TVM for TI DSP: https://discuss.tvm.apache.org/t/use-tvm-for-ti-dsp/1200
4Apache TVM Community: https://discuss.tvm.apache.org/
5Glow discussion forum: https://discuss.pytorch.org/c/glow/10
6Tensor Comprehensions slack channel: https://tensorcomprehensions.slack.com/
7OPENVINO forum: https://community.intel.com/t5/Intel-Distribution-of-OpenVINO/bd-p/distribution-openvino-
toolkit
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posts found to be related to nGraph after manual inspection. Our search of Stack Overflow for
questions on any of the abovementioned DL compilers yields very few posts. Thus, we choose
TVM to be the representative DL compiler in this study.

To study TVM, we identified a list of resources we could utilize for understanding the
challenges in developing and using TVM, namely Stack Overflow, TVM slack channel,
TVM discuss forum and TVM GitHub repository. Upon further investigation, we found that
there are few discussions about TVM on Stack Overflow. As shown in Table 1, we used
these search terms to cover all the questions related to TVM and the important compo-
nents of TVM (e.g., relay, autotvm). The “answers:1” parameter is used to ensure that the
returned results will have at least one answer. Then we manually inspected all the returned
results and only found 11 questions related to TVM. This is not surprising, as 1) TVM is an
emerging but relatively new topic (i.e., TVM released the first version in 25 October, 2017;
2) Answering TVM questions requires non-trivial expertise; and 3) the TVM community
encourages discussions on the official forum.

In addition, for TVM slack channel, we find that developers are advised to only use Slack
as a non-archival place for quick sync and the discussions should still happen in discus-
sion forum or GitHub.8 In the end, we decide to choose the Apache TVM Community and
TVM GitHub repository as the only data sources of this study. Specifically, we utilize the
Apache TVM Discuss Forum for studying the challenges TVM developers and users may
face and TVM GitHub repository for studying TVM bugs. The Apache TVM Community
(also referred to as the TVM Discuss Forum) is launched in April 2018 (around the same
time that TVM releases version v0.4) and has been the main communication channel for
TVM users and developers.

Step 1: Crawling the TVM discussion forum. We collected the TVM dataset by crawl-
ing the official Apache TVM Community (i.e., the TVM Discuss Forum) on November
23, 2020. We collected a dataset of 3,727 posts from 4 April, 2018 to 23 November,
2020. The crawled data of each post contains all the metadata of the post, including the
title of the post, all the replies, the link to the post, number of replies, number of views
and the time of the latest activity.
Step 2: Identifying relevant topics. We performed an initial screening on the collected
posts as some of the topics that the posts cover are not of interests to this study. In par-
ticular, we leverage the official categories associated with each post to identify relevant
topics. Table 2 shows the 10 official categories for classifying topics (second column)
and the number of posts under each category in the collected dataset. The official cate-
gories are recommended by the TVM discussion forum and are manually identified by
the forum users when posting the questions, i.e., one post can only have one associated
category.

However, after examining 50 randomly sampled posts, we found that the users loosely
follow the intention of the official categories, i.e., the standard of applying the categories
is inconsistent across the posts, especially on usage-related categories such as trou-
bleshooting. However, we noticed that one official category development is consistently
used by the posts that TVM developers publish for communicating on TVM develop-
ment issues. Hence, to facilitate the subsequent stratified sampling process, we merge
the five usage-related (i.e., non-development) official categories and produce two high-
level categories, namely, the categories Usage and Development. We manually examined

8https://discuss.tvm.apache.org/t/request-for-invite-to-the-slack-channel/2888/17
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Table 1 Questions about TVM on stack overflow

Search Term # Returned results # Results related to TVM

“tvm answers:1” 190 11

“relay tvm answers:1” 0 0

“autotvm answers:1” 0 0

“tir answers:1” 136 0

all the posts under the categories Announcement, Meetup, d2l, uTVM, and Site Feedback
and concluded that these posts are indeed irrelevant of usage and development of TVM.
Hence, we excluded these categories from the remaining of the study.
Step 3: Crawling bug-fixing pull requests (PRs). We collected bug-fixing PRs of the
official repository of TVM from July 30, 2019 to November 23, 2020 on GitHub using
the GitHub search API (git 2021). Upon examining the sampled posts from TVM discuss
forum, we notice that there is only a small portion of posts about TVM bugs, which leads
to the small number of TVM bug posts for study in the sample. Hence we include bug-
fixing PRs to enhance the dataset of TVM bugs. We followed the previous work (Garcia
et al. 2020) to collect the bug-fixing PRs that contain at least one bug-related keyword
(i.e., fix, defect, error, bug, issue, mistake, incorrect, fault and flaw). Then the first two
authors manually inspected and classified these bug-relevant PRs independently. As a
result, 297 TVM bugs are identified.

3.2 Manual Investigation

To categorize the challenges of using and developing TVM, we follow the open coding
method in Berg et al. (2004).

3.2.1 Construction of Taxonomy of Challenges in Using/Developing TVM

Step 1: Initial category distillation. In this step, the first two authors jointly inspected
50 randomly sampled posts from the crawled dataset and constructed an initial set of
categories. The detailed procedure is described as follows.

Table 2 Statistics of the TVM
Discuss Forum Topics Official TVM Category # Posts

Usage Questions 1,884

Uncategorized 721

Troubleshooting 537

Application 109

Development Development 355

Excluded Announcement 103

Meetup 7

d2l 5

uTVM 4

Site Feedback 2
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The first two authors thoroughly read all the posts to get familiar with them. All ele-
ments in the posts including title, main body, replies, code snippets will be carefully
examined. URLs mentioned in the posts will also be tracked in order to get a precise
understanding of the question.

Once the two coders have been familiar with the samples, they start assigning short
phrases as initial tags to describe the challenges behind these posts. To determine the
category of a post, we follow the method adopted in Chen et al. (2020). Specifically, for
those posts raised without deep investigation (usually in the form of “how”, e.g., “How
to schedule fused ops?”) or detailed information, the two coders often can summarize
the challenges based on the post descriptions; for those posts with detailed descriptions
of faults or unexpected results, the coders identify the challenges based on their causes.
For instance, if a developer files a post and seeks for help on an error he/she encountered
when exporting DL models and the coders can identify that the cause is the incorrect
build configuration of TVM from the descriptions, comments and replies from other
users, the coders consider build configuration as the challenge behind this post. Then the
two coders will start clustering similar tags into categories and create a hierarchical tax-
onomy of challenges. If there are conflicts between the proposed categories, an arbitrator
will be involved into the discussion and the conflicts are marked as resolved when all the
participants have reached a consensus. Finally, an initial set of categories are distilled.
Step 2: Independent labeling and constructing extended categorization. Upon con-
structing the initial set of categories, the two coders continued to analyze a statistically
sample of posts independently. We adopted the stratified sampling strategy to randomly
sample a total of 347 posts to ensure a 95% confidence level and 5% confidence interval
in the population of 3606 posts (i.e., the categories of usage or development of TVM).
The sample contains 312 posts under the category of usage and 35 posts under the
category of development.

For questions not related to usage/development of TVM, we mark these posts as False
Positives and are excluded from the dataset in this study. False Positives are posts that
are not related to both Usage and Development of TVM. As shown in Table 3, upon
manual inspection, we excluded 46 posts (two false positives and 44 bug reports) that
do not belong to neither development nor usage and corrected the corresponding cate-
gory of some posts: there are four posts about development, however marked with usage
in the sample posts, one post that is irrelevant to both usage and development of TVM,
and 11 posts marked as development are actually about usage. The posts with incorrect
categories are corrected by the authors, and are utilized to conduct RQ 1 or RQ 2 accord-
ing to its corrected category. Note that the 2 False Positives are excluded from all the
RQs in this paper. Hence we end up with 279 posts in the usage category and 22 posts
in the development category, which were used to conduct RQ 1–2. 44 bug reports were
excluded from RQ 1–2 and were used to conduct RQ 3.

During the labeling process, the two coders evolve the initial categories into the final
taxonomy in an iterative manner, in which the two coders continuously look at the existing
categories and the post being inspected to refine the taxonomy. There are two kinds of
changes that may be applied to the initial categories: 1) if any coder can not fit a post into
one of the initial categories, this post will be jointly inspected by the aforementioned two
coders with and arbitrator to determine whether a new category should be added; 2) if any
coder find a category is not representative, all the authors will meet up and discuss about
revising the corresponding category. If agreement has been reached to change a category, the
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Table 3 Distribution of posts before/after manual inspection

Topics (# posts) Corrections # Final posts

Usage (312 posts) Marked as Development (−4) 279

Marked as bug reports (−39)

False positive (−1)

Usage posts identified from Development (+11)

Development (35 posts) Marked as Usage (−11) 22

Marked as bug reports (−5)

False positive (−1)

Development posts identified from Usage (+4)

corresponding category will be modified and all the posts in this category will be inspected
and labeled again to avoid misclassification.

Furthermore, the two coders kept a note of the resolution status of the examined posts.
There are multiple ways that TVM users can mark the resolution status of the posts: 1. Users
may add “SOLVED” to the title after getting a correct answer; 2. There could an explicit
reply of the post such as “Thanks, it really works.” even if the user does not add “SOLVED”
to the title. The two coders took consideration of the aforementioned cases when marking
the resolution status of the posts.

The questions on using and developing TVM are actively viewed and discussed by TVM
community. Figures 4 and 5 show the boxplots of the number of view counts and replies
for the posts under the Usage (279 posts) and Development (22 posts) respectively. As the
figures show, the posts under both of the categories have been receiving active discussions
and attention, i.e., the median view count is 269 for Usage posts and 244 for Development
and the median of number of replies received is 4 and 4.5 respectively.

In summary, 347 posts are inspected during the manual inspection, and 39.7% of the
inspected posts have an accepted answer (either marked as resolved or with an explicit
acknowledge in the replies). The inter-rater measurement of independent labeling results is

Fig. 4 Boxplot of the view counts of Usage and Development
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Fig. 5 Boxplot of the number of replies of Usage and Development

0.72 using Cohen’s Kappa (Cohen 1960), which implies substantial agreement and demon-
strates the reliability of our coding procedure. The manual inspection procedure takes about
400 man-hours. The final taxonomy is shown in Fig. 6

4 RQ1: What are the Challenges Users May HaveWhen Using TVM?

Motivation As discovered by previous studies (Zhang et al. 2019; Chen et al. 2020), devel-
oping and deploying machine-learning backed software pose unique challenges for data
scientists and software engineers. The extensive use of frameworks (e.g., DL frameworks,
DL inference engines) makes the development convenient, fast-evolving, but also introduces
overhead to practitioners. Deep learning compiler represents an emerging line of techniques
that aims to provide end-to-end model optimization and deployment. It is important and
timely to study the challenges and problems that the users of DL compilers (i.e., devel-
opers of machine-learning software) may commonly encounter. Our findings will identify
future research ideas and tool support to better facilitate the adoption of DL compilers in
the development of machine-learning software.

Method We followed the steps described in Section 3.2 and identified a total of 279 posts
(including both the questions and all the replies) on the usage of TVM. Note that we do
find some posts (39 under the category of Usage) by TVM users appear to be about trou-
bleshooting in the beginning, but later turn out to be caused by bugs in the current TVM
implementation. Such bug reports require further analysis and are beyond the scope of using
TVM. Hence we classify 39 bug reports into an individual category (i.e., not included in the
category of usage) and discuss the bug reports in RQ3. We categorized the posts based on
the challenges and problems described.

Results We describe the categories derived for the posts on the usage of TVM, present
the distribution and discuss the main challenges we identify. At the high level, we identify
three categories: troubleshooting (150/279, 53.8%), general questions (119/279, 42.6%),
and feature request (10/279, 3.6%). Figure 7 shows the distribution of the three high-level
categories and the distributions of the sub-categories under each of the high-level category.
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Fig. 6 The Final Taxonomy of the TVM challenges
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Fig. 7 Pie chart of the distribution of categories of usage

Category 1: Troubleshooting Troubleshooting covers the largest number of posts on
the usage of TVM. TVM users encounter errors and issues (e.g., compilation errors,
runtime errors) when using TVM and thus seeking for help in the discussion forum.
We further derive the following six sub-categories, namely configuration, procedure,
performance, selection/usage of API, limitation of frameworks/platforms, and lack of
documentation/examples.

Configuration (58/279, 20.8%). Improper configurations of TVM may cause severe reli-
ability issues in the client code (i.e., machine learning software), such as crashes and low
performance. There are three types of configurations that TVM users need to set when using
TVM.

– Build configuration (24/279, 8.6%).This category is about the challenges about build-
ing TVM from source and issues caused by building TVM incorrectly. To use TVM,
developers are required to build TVM from source. To build TVM, developers need
to edit configuration files (i.e., config.cmake) in order to enable external libraries
(e.g., BLAS, cuBLAS) or backends (e.g., LLVM, CUDA). Wrong configuration can
result in build failure or application crash. For example, users may forget to build TVM
with LLVM enabled. This may not have any effect during the building process, but may
raise errors when using TVM to export the deployable module. However, the official
guide of building TVM from source9 only says that it is recommended to build TVM
with LLVM to enable all the features without further explanation.

– Environment configuration (27/279, 9.7%). Using TVM requires to correctly setting up
the environment which includes configuring complex software and hardware dependen-
cies. Similar to the findings by Zhang et al. (2019) regarding using DL frameworks, we
notice configuring environment for TVM is prone to various types of challenges such
as version incompatibilities issues. For example, when running remote procedure call
(RPC) tutorial on remote device (i.e., Jetson TX2), one of the configurations a TVM

9Install from Source: https://tvm.apache.org/docs/install/from source.html
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user need to configure is the version of CUDA on both the host and target devices.
Due to a misconfiguration, a TVM user experienced runtime errors that are difficult
to resolve (i.e., costing 12 days to resolve).10 The misconfiguration is a simple CUDA
version mismatch between the host and target device. To prevent similar incorrect con-
figurations in the future, TVM developers write a complete RPC deployment tutorial
on how to configure common boards and targets.

– Compilation configuration (7/279, 2.5%). A deep learning compiler such as TVM
provides highly configurable compilation process. In fact, among the steps in the com-
plicated compilation process (as shown in Fig. 2), TVM users can opt to configure
many of the steps, i.e., quantization size, shape of the GEMM tensor, optimization level.
Incorrect or conflicted compilation options could result in crash, compilation failure,
undesired behaviors and low-grade performance. For example, if the batch size is set
too large or the optimization level is too high (opt level ≥ 2), TVM may cost too
much device memory and raise CUDA ERROR LAUNCH OUT OF THE RESOURCE
error (TvmUser 2019b).

We also find that TVM users complain about lack of sufficient examples or tutorials,
which makes the configuration problem even harder to solve than it is already.

Procedure (52/279, 18.6%). We find that users often ask for help about how to perform
a very specific task typically when users have difficulties debugging the errors caused by
their code. Despite the efforts of providing learning resources of TVM by TVM developers
(e.g., tutorials (TVM 2020d), language reference (TVM 2020c), and a book under construc-
tion (TVM 2020b)), it indicates a gap between the available learning resources of TVM and
TVM users’ needs.

This type of questions is different from more general how-to questions (later explained
in “Category 2—general questions”), e.g., “Entire procedure of compilation”, and shows
that the users have certain level of knowledge of using TVM. Due to TVM’s highly diverse
functionalities, there are seven sub-categories under Procedure.

– Adding/registering new operators/targets (5/279, 1.8%). Due to the quick involving
DL community, the operators/targets provided by TVM are insufficient for developers.
Developers may need to implement the operators (targets) and adding the customized
operator to run-time library (or a certain backend), which can be challenging for those
who are unfamiliar with TVM.

– Auto-tuning devices/workloads (16/279, 5.7%). TVM provides auto-tuning for devel-
opers to get the best performance for a specific device (workload), i.e., ARM CPU,
x86 CPU. However, the auto-tuning process is highly sophisticated and may consist
of many steps, i.e., install additional dependencies, define workload, configure tuning
setting and create tasks. Using AutoTVM (the auto-tuning module of TVM) requires
developers to write tuning templates regarding their workloads (devices). Incorrectly
written templates or configurations can result in tuning failure (TvmUser 2019c) or
performance degradation (TvmUser 2020a).

– Parallel programming issues (2/279, 0.7%). Developers may have difficulty dealing
with parallel programming, i.e., synchronization, thread scope. For example, a TVM
developer sought for help in order to do global synchronization in IR builder on
GPU (TvmUser 2018c).

10https://discuss.tvm.apache.org/t/cant-run-rpc-gpu-tutorial-on-my-own-device/564/9
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– Model quantization/dequantization (3/279, 1.1%). TVM utilizes quantization to enable
high-performance inference on edge devices (TvmDeveloper 2018b) and reduce power
and compute requirements. For this technique, developers have difficulty in quantiz-
ing a model which has a operator that is not quantized in TVM (TvmUser 2019f) or
dequantizing the weights back when needed (TvmUser 2020h).

– Pattern matching (5/279, 1.8%). TVM developers often need to identify pure data-flow
sub-graphs of the Relay (frontend of TVM) program and transform these into example
passes, i.e., fusion, external code generation and device specific optimizations, which
requires a lots of tedious boilerplate code (TvmDocs 2020). To alleviate users, TVM
provides a pattern language and APIs to enable pattern matching and pattern processing.
TVM users often have troubles writing the correct pattern to match a specific opera-
tor (TvmUser, 2020b g) or finding existing patterns regarding their purposes (TvmUser
2018f).

– Exporting/converting models (13/279, 4.7%). These posts cover the challenges in
exporting/converting models into the formats for a specific target platform to deploy the
models. Similar to the findings by Chen et al. (2020), we notice exporting/converting
models using TVM is prone to various types of challenges such as confusion about a
specific step in the exporting (converting) process. One example is “[SOLVED] How to
export model library to so file instead of tar for armv7 on x86 box” (TvmUser 2018g).
While how to export a model library as tar file is known to the user, the user had issues
debugging the compilation failures and therefore sought for help. As TVM offers highly
configurable functionalities and much flexibility, learning resources (i.e., tutorials, doc-
umentation) may not cover every aspect of such flexibility although the code snippet
that demonstrates a similar task may be covered in the tutorials.

– Importing/loading models (8/279, 1.8%). To deploy compiled DL models, develop-
ers also need to tackle with importing and loading models. For example, a user had
issues loading the exported parameters in big endian system (TvmUser 2018d). In
addition, users may also suffer from calling unsupported operator issues during the
importing/loading process (TvmUser 2019d).

Limitations of the underlying frameworks/platforms (8/279, 2.9%). TVM is expected to
support various hardware, DL frameworks with respect to different platforms (e.g., Linux,
Windows). However, due to the inherent differences of such variations, TVM users often
have troubles finding the solutions to resolve the problems, e.g., one TVM code works
fine at one platform but not at another. For example, a TVM user sought for help regard-
ing the difficulties to run tutorial code in Windows (TvmUser 2018a) due to the failure
of autoTVM.LocalRunner of TVM. TVM developers suggested a workaround solu-
tion. However the workaround does not provide a seamless solution, i.e., it requires extra
steps to set up in Windows compared to Linux. Another type of limitations is caused by
defects, either in the underlying frameworks/libraries or caused by the incompatibility issues
between the TVM version and the frameworks/libraries. For example, a TVM user was suf-
fering from stuck during tuning problem and the follow-up investigation shows the problem
is caused by an incompatible version of XGBoost (i.e., a widely-used gradient boosting
library, which used as the cost model when auto-tuning with TVM) suggested the user
downgrade to XGBoost 0.9.0 in order to avoid unexpected errors. (TvmUser 2020e).

Performance (12/279, 4.3%). TVM users have performance concerns about the time
spent on auto-tuning, resource usage of TVM and runtime performance of the compiled
model by TVM. Many posts complain why the performance of the compiled model is slower
than the original one. For example, a TVM user sought for help about how to limit the CPU
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usage of the TVM when performing model inference. The developer suggested the user to
directly change the number of CPU threads by using a config threadpool function,
which was not documented in the tutorials of TVM (TvmUser 2019e). Other performance
issues contain: 1) resource usage of TVM, which is usually about the usage of GPU mem-
ory and CPU usage. Some of these issues are caused by the external dependencies (e.g.
TensorFlow).11 2) The performance of the compiled model is slower than the original one.
For example, A TVM user complained about the inference time of the compiled model is
very slow. Further exploration indicated that the selection of API is the root cause for this
issue (TvmUser 2019a).

Lack of documents and examples (7/279, 2.5%). TVM users are sometimes clueless about
how to achieve a specific step when using TVM. Different from the Procedure category
where TVM users may have some clues (i.e., indicated by the code provided in the ques-
tion), TVM users may have no ideas about how to perform certain tasks due to the lack of
documents and tutorials/examples.

Selection/usage of API (13/279, 4.7%). TVM provides a large number of APIs
(more than 630 C++ APIs12) as it needs to take models of different frameworks
and output an executable target for various hardware/platform. We find that users
may be confused about which APIs to use to fulfill their demands. For example,
a TVM developer was confused about the relay.build module.build() and
relay.build module.create executor() API. These two APIs can both be used
to generate code and were used in two separate tutorials. The results turned out that there
was some subtle difference between these two APIs (TvmUser 2019i). Note that the user
is actually the lead maintainer of XGBoost and has contributed to solve a TVM issue.13

However, we found other posts in which a user complained about the performance regres-
sion after getting the DL model compiled. That user finally found that there was significant
performance difference between these two APIs (TvmUser 2019a).

Category 2: General Questions This category covers relatively high-level questions that
are not about a specific step in using TVM. We conclude the following three sub-categories.

Entire procedure of compilation (53/279, 19.0%). This category refers to general ques-
tions about the whole procedure of compiling DL models using TVM, usually raised without
any in-depth investigation.

Although TVM provides tutorials that may cover similar tasks that TVM users ask, the
users’ use cases are usually more complicated than what the tutorials provide. Furthermore,
some of the tutorial may lack of background knowledge and thus hard to comprehend by
TVM users. For example, a TVM user wanted to know how to populate a tensor after
reading the C++ deployment example.14 It seems like that the tutorials and examples are
designed to give users a “feeling” and make them understand the basic concepts, but this will
become a problem when users actually start using/modifying TVM since some background
knowledge is lost and the example is too simple.

Design/Implementation Details of TVM (44/279, 15.8%). As the TVM community
continues to draw attention, more and more developers are joining the TVM devel-

11https://discuss.tvm.apache.org/t/solved-qeustions-about-gpu-memory-usage/5309
12C++ doyxgen API: https://tvm.apache.org/docs/api/doxygen/index.html
13https://bit.ly/3nbNNH5
14https://discuss.tvm.apache.org/t/how-should-you-index-dltensors-in-c-for-the-multi-dimensional-case/
6257
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opment. This category represents a strong desire of TVM users/developers to have an
in-depth understanding of TVM. Questions are mainly about the implementation details
or design philosophy of TVM and may vary from naive ones like “Where is DLDataType
defined?” (TvmUser 2020i) to very profound questions like “TensorArray GlobalVar and
GlobalTypeVar Confusion” (TvmUser 2019h) that needs several proficient TVM developers
to work out a solution.

Conceptual Questions (4/279, 1.4%). Questions in this category are raised to understand
fundamental concepts or background knowledge about DL compilers, such as “What’s the
Model bias in TVM paper” (TvmUser 2019j). This category of questions are also spotted in
previous studies developing machine learning software (Bagherzadeh and Khatchadourian
2019; Chen et al. 2020).

How to study TVM. (3/279, 1.1%). TVM users ask questions for the purpose of learning
TVM better, i.e., steps to follow for a better understanding. For example, “What should I do
to understand tvm source code?”, “How can I understand IR?” and “Any material of Relay
for beginners?”. These questions are not related to any specific step in using TVM and it’s
not as specific as the posts in “design/implementation details”.

Development Progress of TVM. (15/279, 5.4%). TVM users may ask about the recent
development progress of TVM, especially if they are waiting for new features to be released
or bugs fixed. For example, a TVM user may file a post to ask whether dynamic shaped
tensors has been supported in TVM or are there anyone is working on this feature.15 These
posts are different from the category Lack of Doc/Example, because these users only want
to check whether TVM support the functionality they want yet.

Category 3: Feature Request (TVM Users) (10/279, 3.6%) We find that TVM users may
request for new features, e.g., support for new operations or specific hardware. TVM devel-
opers may follow up with the feature requests, e.g., some of the feature requests are later
implemented and some may be divided into several follow-up posts (i.e., multiple feature
requests) in the development category. For example, the post with largest view count (3534)
is in this category, namely the “INT8 quantization proposal” (TvmUser 2018e). This post is
further divided into two posts in Development category.

Discussions Among all the usage categories, Configuration, Procedure and Entire proce-
dure of compilation are the top three most frequently asked questions. Except How to study
TVM, Feature Request questions seems to be most difficult questions to solve, 10% of the
Feature Request questions have been resolved, compared to 41.35% of all other questions.
Limitations of underlying Frameworks/Platforms requires longest time to get an answer.
Figures 8 and 9 show the boxplot of the number of view counts and replies for inner cat-
egories under the Usage. As the figure show, the median of number of replies of these
categories is near and the median view count is also close except How to study TVM and
Lack of Documents and Examples, which is 691 and 749.5 respectively. However, the box-
plot of the response time in Fig. 10 shows that the median of the response time varies
broadly (from 314 to 10814).

15https://discuss.tvm.apache.org/t/can-tvm-now-support-dynamic-shaped-tensors/5094
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Fig. 8 Boxplot of the replies of Usage Categories

5 RQ2: What are the Common Topics that TVMDevelopers Discuss?

Motivation As deep learning compilers draw more and more attention, the TVM commu-
nity has grown significantly since 2018, i.e., the contributors of TVM has experienced a 70%
growth to 295 contributors from both academia and industry (University of Washington,
UCB, Cornell, Amazon, Huawei, etc.) according the 2019 TVM conference keynote (TVM-
Conf 2019). In fact, the current number of contributors of TVM on GitHub is 466.16 In
the process of onboarding newcomers and facilitating the fast development of new fea-
tures of TVM, TVM developers are making great use of the TVM discussion forum for an
open communication. The development and quality of TVM is utmost important in the cur-
rent development ecosystem of machine learning software. Analyzing such communication
posts closely allows us to have a better understanding of the challenges or recurring topics
during discussion to inspire future research or tool support can help.

Method Similar to RQ1, we followed the steps described in Section 3.1 and examined a
total of 22 posts on the development of TVM. Compared to GitHub issues and pull requests,
the TVM discussion forum contains more detailed information. In fact, we notice that some
PRs will even not be merged before the RFC (short for request for comment) on discussion
forum has been discussed.17 Note that when we manually examined the development posts,
we also checked the referred pull requests and GitHub issues for a better understanding if
they are referred to in the replies.

Results We categorize two main categories for the posts under Development, namely TVM
code evolution, development process improvement. Below we describe the findings of each
category in detail. Figure 11 shows the distribution of the two high-level categories and the
distributions of the sub-categories under each of the high-level category.

Category 1: TVM Code Evolution This is a large category that includes the posts that are
related to changes TVM developers made on TVM code, and it is further divided into 4
sub-categories.

16https://github.com/apache/tvm/graphs/contributors
17https://github.com/apache/tvm/pull/2116#issuecomment-444726352
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Fig. 9 Boxplot of the view counts of Usage Categories

Enhancing Performance/compatibility of API (12/22, 54.5%). We find that TVM Devel-
opers often seek for advice or discussion before they may need to change the implementa-
tion or design of an API in TVM. The motivation of such changes could be unsatisfactory
performance or improving compatibility. For example, a TVM developer wants to discuss
how to improve quantization accuracy in the process of developing a feature namely cal-
ibration upon observing a larger accuracy loss for one model (TVMDeveloper 2019). In
the replies, fellow developers shared their relevant experiences and suggested adding extra
models for evaluation.

Feature Request (TVM Developers) (3/22, 13.6%). Similar to TVM users, TVM develop-
ers may also request for new features in the TVM discussion forum. Compared to the ones
proposed by TVM users (in Usage category in RQ1), we find that developers tend to pro-
vide more details when requesting new features. For example, when requesting to introduce
a formal DataLayout into the node system of TVM (TvmDeveloper 2018a), a developer
clearly documented the abstract interface of the layout and provided two options for con-
crete data types while TVM users often only express the high-level idea and ask whether
there are any interest on their proposal.

Code Refactoring (1/22, 4.6%). TVM developers constantly improve the quality and
readability of TVM implementation and use the posts to seek for comments and discussion.
For example, developers often file a post to ask other developers to determine the naming
conventions in TVM code (TvmDeveloper 2020a).

Fig. 10 Boxplot of the resolution time of Usage Categories
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Fig. 11 Pie chart of the common topics discussed by TVM developers

Others (3/22, 13.6%). There are some other posts about maintaining and improving the
TVM code repository.

– Merging Repository. (1/22, 4.6%). These posts are about merging other repositories
into the TVM codebase. For example, a TVM developer suggested to incorporate an
existing Ahead-of-Time (AoT) compiler into the TVM codebase since the TVM com-
munity was targeting to bring an AoT compiler to TVM. Another developer provided
some comments to this topic and advised that the existing Relay AoT is different from
the solution they discussed before and it will need extra efforts if they decided to
incorporating the current implementation.18

– Updating Documentation. (2/22, 9%) The posts are about updating the documentation
of TVM. For example, a TVM developer noticed that there was little documentation
for the InferBound pass, and thus wrote a tutorial for it.19 The documentation was
finally merged into the TVM documentation after discussing with other developers.

Category 2: Improvement of TVM Development Process To improve the development
efficiency and the quality of TVM development in general, TVM developers constantly
discuss and adopt better software engineering practices. This category of questions differs
from “Category 1: TVM Code Evolution” as it does not related to TVM implementation.
We find that the effort to improve TVM development process comes from two aspects: tools
and practices.

Tools. (1/22, 4.6%) TVM developers propose new development tools (e.g., as IDE plu-
gins) to help the development of TVM to accommodate its peculiar characteristics. For
example, a developer proposed to develop a language server tool that can better navigating
across different programming languages (Chen 2020).

18https://discuss.tvm.apache.org/t/rfc-incorporate-existing-relay-aot-compiler-in-mainline/7393
19https://discuss.tvm.apache.org/t/discuss-contributing-new-docs-for-inferbound/2151
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Better Practices. (2/22, 9%) This category includes the posts that are raised to discuss
how to improve the development process in general, e.g., how developers can collaborate in
a more efficient way. For example, a TVM developer proposed to have a better formatted
pull requests for bug fixes (TvmUser 2020d) , e.g., adding tags [Bugfix] in the pull request.

Discussion Based on our observations, developers mainly use TVM forum as a place to
discuss about development of TVM. Among the 355 posts of the category development,
60.2% of the posts are tagged as RFC (i.e., “[RFC]” in the title). Developers often file a
post before diving into implementation details for hearing from other developers’ opinion
on their proposal. Besides, due to the complexity of TVM, TVM developers want to do
their best to avoid affecting other parts of TVM implementations. Furthermore, according
to TVM contribution guide, when major changes are proposed, an RFC should be sent to
allow discussion by the community.20 Discussion forum is one of the advised choices to
open an RFC. This can also explain why 60.2% of the development posts are tagged as
RFC. Figures 12 and 13 show the boxplot of the number of view counts and replies of for
posts under Improvement of Development Process and TVM Code Evolution. As the figure
show, the posts in Improvement of Development Process are more active than TVM Code
Evolution, i.e., the median view counts is 304 for Improvement of Development Process
and 255 for TVM Code Evolution, and the median number of replies received is 9 and 4
respectively. As Fig. 14 shows, posts in Improvement of Development Process need longer
time than those in TVM Code Evolution, the median of response time is 4170 and 3768
minutes respectively.

6 RQ3: What are the Impacts of Self- or User-Reported TVM Bugs?

Motivation The quality of DL compilers has a significant impacts on the correctness and
efficiency of the deployable modules (i.e., deployed DL models). In addition, developing
and testing DL compilers have unique challenges compared to traditional software (e.g.,
language compilers). Hence, in this RQ, we set off to obtain an initial understanding on the
defects reported by TVM users and developers, particularly their severe impacts to TVM
users and developers.

Method We include two data sources for studying TVM bugs. The first source is bug-
report posts in TVM discuss forum. The second source is bug-fixing pull requests from the
TVM GitHub repository. Both users and developers of TVM may file a post in TVM dis-
cuss forum or initiate a bug-fixing pull request to report or fix the bugs they find in TVM.
For the bug-report posts in TVM discuss forum, the main body of these posts usually con-
tains preliminary analysis of potential causes of the bug, which differs these posts from the
Troubleshooting category in Section 4. We notice that some posts may appear to be about
troubleshooting in the beginning, but through rounds of investigations and discussions,
TVM developers identified that the erroneous behaviours are caused by TVM bugs instead
of incorrect usage of TVM. For analyzing bug-fixing PRs, we include all the information
we can find, including their corresponding TVM posts and GitHub issues.

Similar to RQ1 and RQ2, we also mark the resolution status of each bug report post, i.e.,
whether or not there is an explicit [Resolved] in the title or any indications in the replies,

20https://tvm.apache.org/docs/contribute/community.html#general-development-process
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Fig. 12 Boxplot of the view counts of Development Categories

such as a link to a pull request in the replies or users acknowledging the bug was resolved
after checking out the latest commit of TVM. For bug-fixing PRs, as we only include the
PRs that are already merged, such bugs are considered resolved. Furthermore, we analyzed
the impact of the bugs regarding the usage and development of TVM. In addition, we ana-
lyzed the component of TVM that is the potential root cause of the bugs based on the fix
commits and discussion.

Results There are a total of 341 bugs in RQ3, including 44 bug reports in the sampled
posts from TVM discuss forum and 297 bug-fixing PRs from TVM GitHub repository. 22
(50.0%) out of the 44 bug-report posts are resolved and the remaining unresolved bug posts
are under the investigation. All the bug-fixing PRs are merged into the repository.

Regarding the reproducibility of the studied bugs, in general, we notice that there exists
a high level engagement of TVM developers on the 44 bug reports (i.e., at least one reply
confirming the reproduction of the reported bugs and kicking off follow-up investigations)

Fig. 13 Boxplot of the replies of Development Categories
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Fig. 14 Boxplot of the resolution time of Development Categories

and therefore we consider all the 44 bug reports are reproducible. We consider all bugs fixed
by the included bug-fixing PRs reproducible.

We identified a total of four types of impacts: compilation failure, non-compilation run-
time error (including crashes and exceptions, similar to Islam et al. (2019)), poor efficiency
and low effectiveness.

Impact 1: Compilation Failure. The TVM compiler may fail to compile the input DL
model due to various reasons such as unsupported operators and incompatibility issues. For
example, a TVM user (TvmUser 2018b) complained that TVM failed to compile an operator
for CUDA target due to unsupported operator (i.e., argmax and argmin from MXNet).
Later a TVM developer solved the issue and submitted a pull request.

Impact 2: Non-compilation Runtime Error. In addition to compilation failures, TVM also
suffers from runtime errors that are not related to compilation, i.e., crashes or exceptions.
Such errors prevent TVM users and developers continuing working on TVM. For example,
a TVM user encountered a runtime error that caused the connections get reset when cre-
ating large arrays using RPC (TvmUser 2020f). In particular, an out of memory error was
thrown from the RPC server and reset the connection. This issue was fixed by developers by
preventing a temporary buffer from being too large in order to avoid out of memory errors.

Impact 3: Poor Efficiency. TVM aims to optimize the performance of DL models. How-
ever, bugs in TVM lead to poor performance of the compiled DL models from TVM, e.g.,
unexpected long inference time, consuming a large amount of resources. For example, a
TVM user TvmUser (2020c) found that after merging the latest pull request, there had been
a significant performance regression. Later a TVM developer confirmed this performance
regression and was able to fix it. The performance regression was caused by a refactoring
commit, which incorrectly modified an attribute and lead to this performance regression.

Impact 4: Low Effectiveness. The compiled DL models by TVM may show poor accuracy
and abnormal behaviours after compilation. For example, a TVM user reported that the
compiled GluonCV SSD model kept outputting incorrect inference results on ARM Mali
due to that one of the supported operators by TVM that are required by the model (i.e.,
operator vision.get valid counts) did not work correctly on Mali GPU (TvmUser
2019g). This issue was solved by two subsequent pull requests.
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Discussion Based on the analysis, Compilation Failure (101/341, 29.6%) is the most com-
mon bugs in TVM. Table 4 presents the distribution of the 341 bugs in different TVM
components (i.e., frontend, IR, backend, VTA and RPC) and the impacts. Note that the
component will be marked as “Unclear” if there is no indication or discussion about the
component of the bug. As explained in Section 2.3, frontend, IR and backend are the com-
mon components in DL compilers and not unique to TVM. Both VTA and RPC are unique
components in TVM. VTA is a customizable deep learning accelerator with a TVM-based
compiler stack. RPC is provided by TVM in order to perform cross-compilation and allevi-
ate users from remote testing. All of these components are important to the correct use of
TVM and any bugs in these components will prevent the compiled DL models from func-
tioning properly. Among all the components, frontend and backend contributes the largest
number of bugs. This is not surprising since the frontend needs to deal with many DL frame-
works and the backend needs to generate codes for various hardware, which makes them
subject to problems such as compatibility issues, unsupported operators.

7 Discussion and Implication of Our Findings

Generality of Our Findings Although our study is conducted on TVM, we believe our tax-
onomy of challenges in using/developing TVM is prevalent and most of our findings can
be generalized to other DL compilers. The main reason is that most DL compilers share a
common process flow (e.g., frontend, IR, high-level optimization, low-level optimization,
backend) (Xing et al. 2019). As an example, Environment configuration under Usage-
Troubleshooting-Configuration reveals environment-related challenges. It is well-known
that DL software or DL library compilation may often suffer from challenges in setting up
the environments. We believe these findings can apply to other DL compilers since most DL
compilers require users to prepare an environment with sophisticated dependencies (e.g.,
compatible CUDA toolkit, cuDNN library) in order to generate optimized modules for a
specific target platform. For instance, the installation guide of Tensor Comprehension asks
the users to be careful about the CUDA toolkit dependency problem.21 Furthermore, we
collected 15 posts (all posts with “ngraph” in its title) from the official forum of nGraph,
30 randomly sampled posts from the official forum of Glow, and 30 bug-related PRs from
their GitHub repositories. Then we use the taxonomy we summarized in Fig. 6 and four
impacts of TVM bugs to classify these posts/PRs. The results show that all these posts/PRs
can be classified using the findings from our study, which further proves the generality of
our findings. The labeling results are also made publicly available.22

Lack of Benchmark for Performance Evaluation During the labeling process, we notice
that there are a non-trivial number (13/279, 4.7%) of the sampled posts discussing about
the performance of the compiled models by TVM. Some users may have no idea about
whether their model has been tuned to achieve the optimal performance. There has been a
study on the comparison of DL compilers (Xing et al. 2019), which provides a benchmark
for evaluating the performance of seven DL compilers including TVM on six deep neural
networks (DNNs). TVM community has also released an official benchmark (TvmDevel-
oper 2018c). However, such efforts are far from covering the need of users and preventing

21https://facebookresearch.github.io/TensorComprehensions/installation.html#
advanced-development-mode-installation
22https://bit.ly/3I9xohu
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Table 4 The distribution of TVM bugs based on impacts and TVM components. Note that the results are
based on 44 bug-report posts on TVM discuss forum (i.e., the first number in brackets) and 297 bug-fixing
PRs (i.e., the second number in brackets)

Frontend IR Backend VTA RPC Unclear

Non-compilation Runtime Error 29 (4|25) 46 (0|46) 12 (0|12) 2 (2|0) 2 (2|0) 10 (4|6)

Compilation Failure 32 (7|25) 18 (0|18) 33 (8|25) 0 (0|0) 2 (1|1) 16 (3|13)

Poor Efficiency 1 (1|0) 10 (1|9) 11 (6|5) 0 (0|0) 1 (1|0) 0 (0|0) 3

Low Effectiveness 28 (3|25) 39 (0|39) 26 (0|26) 2 (1|1) 0 (0|0) 9 (4|5)

Total 90 113 82 4 5 35

performance regressions as TVM is rapid evolving. For example, the official benchmark
has not been updated since October 2018. Although it is be impractical to cover all the deep
neural networks and hardware, the developers and researchers may take a survey and pro-
vide a benchmark of popular DNNs and hardware in a larger scale as needed, which will be
helpful for both users and developers as a reference.

Needs for Continuously Improving and Updating Documentation and Tutorials Our
study shows that many users and developers ask basic questions due to lack of understanding
of the basic concepts in TVM. We believe that providing better documentation especially
more comprehensive tutorial examples will ease the onboarding process for newcomers and
flatten the learning curve. In summary, we have the following advice for TVM developers
as well as research community. Future research work can utilize crowd sourcing to auto-
matically collect more examples and update existing examples and documentation as TVM
evolves.

– Improve the quality of documents. We find that, How to use TVM, Conceptual Questions
and Selection/usage of APIs occupies 19.2% of the sampled posts. This suggests that
many users and developers lack basic understanding of TVM and there is insufficient
resource to cover such an aspect. Furthermore, we notice that users often complain
about not being able to find the examples in need or outdated tutorials. A continuous
effort to improving the quality of such learning resources will alleviate these issues.

– Enrich the contents of update announcements. TVM is under rapid evolution, which
has a large number of undergoing and future API changes and the corresponding com-
patibility changes. However, such changes often are not included in the current TVM
change.23 This may lead to API misuse and confuse the TVM users. Thus, TVM devel-
opers should provide more detailed change logs (e.g., compatible library version) to
better help users become aware of these changes and avoid potential compatibility
issues.

– Adding documentation/tutorials for more diverse use cases. We notice that sometimes,
TVM users or developers ask about how to perform certain tasks with the guidance from
existing learning resources, which describe how to perform similar but not identical
tasks. However, due the differences between the desired task and the task (e.g., differ-
ent devices, different compilation options, and different DL frameworks) described by
learning resources, TVM users and developers are still having a difficult time to figure

23TVM Change LOG: https://github.com/apache/tvm/blob/main/NEWS.md
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out how to complete the tasks. Providing more comprehensive learning resources by
considering more diverse use cases will help resolve such challenges.

Needs for Automated Test Generation Support From the previous discussion in RQ3, we
have noticed that the TVM not only suffers from various bugs like traditional software but
also have some unique bugs due to its functionality. Consider its importance as the founda-
tion of deploying DL application, it is critical and urgent to have more efficient techniques
that can provide automated test generation support in order to make DL compilers to be
more robust. On one hand, TVM could benefit from some of the existing automated test
generation techniques, such as fuzzing the input (i.e., DL models) to create more test cases.
On the other hand, TVM’s unique characteristics could be exploited to improve its qual-
ity assurance practice. For example, TVM supports various DL frameworks and different
devices, which could be utilized by differential testing techniques to test the frontend and
backend of TVM.

Needs for Better Logging Practice and Debugging Support After inspecting bug reports
and troubleshooting posts in RQ1 and RQ3, we notice that the logging information of TVM
is not always very informative. While some TVM developers may not have difficulties
in identifying the corresponding component to inspect benefiting from their familiarity of
TVM codebase, TVM users are often confused about the error messages and have no idea
about how the solve the problem. To better assist users in performing troubleshooting prac-
tice, we suggest TVM developers to improve the logging format of TVM and add more
informative logs in critical code locations. Also, traditional debugging techniques may not
work well for DL compilers due to the peculiarity of the input, i.e., DL models. Future
research efforts can be paid to propose specialized debugging techniques for debugging DL
compilers, such as BigDebug (Gulzar et al. 2016) for Spark.

Needs for More Descriptive Pull-Request Description During the inspection of bug fix
pull-requests in RQ3, we notice that the description body of a TVM pull-request is not
always informative, 24.8% of the bug fix commits do not have a description body. While
TVM community requires a commit must be reviewed by at least one active TVM contrib-
utor,24 a bug fix commit may add new bug to the codebase considering the complexity of
TVM. To prevent technical debt for long-term in fixing the involved bugs, we suggest TVM
developers to maintain a more descriptive pull-request description, i.e., the root cause of the
bug, how this bug is fixed, which part of TVM may be affected.

Needs for Integrated Bug Knowledge Database with Improved Traceability and Man-
agement In the process of manually analyzing discussion forum posts, including reading
relevant sources such as links to GitHub issues and pull requests, we notice several ineffi-
ciencies of current management of bug knowledge. First, often a bug needs to be reported
for several time before eventually being resolved. This shows the lack of trackability and
traceability within the same database, i.e., the problem of duplicate bug reports. Second,
with multiple venues involved (i.e., GitHub issues, pull requests, and discussion forum), the
materials of one bug are often scattered across different knowledge databases. For example,
developers often forget to post the solution to an issue even if they have fixed it on GitHub.

24TVM Community Guideline: https://tvm.apache.org/docs/contribute/community.html#reviewers
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Based on these considerations, we think there should be an integrated bug knowledge base
for better traceability.

8 Threats to Validity

In this section, we will discuss about the threats to validity of our work.

Selection of Data Source In this study, we utilize the official discussion forum of TVM
as the only data source to investigate the challenges that users/developers encounter when
using/developing TVM. As a consequence, we may neglect constructive insights from other
sources. In the future, we plan to further validate our results by conducting in-depth inter-
views with researchers and developers. However, since 1) the official discussion forum may
contain both experts’ and novices’ posts; 2) the fact that most modern DL compilers share
a common architecture (Xing et al. 2019); and 3) our experimental results of generalizing
our findings on nGraph and Glow, we believe our findings are still valid.

Selection Strategy of the Posts for Initial Taxonomy Distillation When constructing the
taxonomy, we chose to start with 50 randomly selected posts in order to distill an ini-
tial set of taxonomy and then iteratively refine the initial taxonomy, which may introduce
threats to the findings. First, we agree that starting with N posts (N is greater than 50)
may yield a slightly different initial taxonomy, it may not have much impact on the final
taxonomy, due to having rounds of refinement. Second, there exists no golden standard
regarding how many instances should be selected for an initial taxonomy. Third, the differ-
ences between the initial taxonomy and the refined taxonomy are expected to some extent.
For example, in Humbatova et al. (2020), the authors added 13 new leaf categories in their
final round of refinement. Moreover, we would like to clarify that the differences in our
study are not that significant: most of the differences are about replacing the old category
with a more representative name instead of changing the definition of one category, for
example, Non-development to Usage, Configuration-Installing/Building TVM framework to
Configuration-Build Configuration. Last, we would like to emphasize that during the label-
ing process, if we decided to change a category, all the posts previously under that category
will be checked again to avoid possible mis-classification.

Subjectivity of Inspection Our study involves manual inspection on posts from the discus-
sion forum. These subjective steps may introduce bias and present threats to the validity
of our taxonomy. Furthermore, some of the sampled posts may change their topics upon
further investigation. For example, a TVM user complained about the performance of the
compiled module (subject to Performance) and then the user were confused about two APIs
that both can generate code and there were a significant performance difference between
these two APIs (Selection/usage of API). To reduce this threat, two authors are employed to
separately inspect the posts and the inconsistent cases are resolved with the help of a arbi-
trator. Besides, the inter-rater reliability is relatively high, exhibiting the reliability of the
coding procedure.

9 RelatedWork

In this section, we discuss the following lines of closely related research.
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Deep Learning Compilers The development and adoption of deep learning compilers have
drawn much attention in both academia and industry due to the increasing interests to
perform hardware-specific optimization on model deployment. Many deep learning com-
pilers have been proposed and evaluated till this end, e.g., TVM (Chen et al. 2018a),
nGraph (Cyphers et al. 2018), Tensor Comprehension (Vasilache et al. 2018), Glow (Rotem
et al. 2018), XLA (Leary and Wang 2017) and DLA (Abdelfattah et al. 2018). Such deep
learning compilers differ in their design architectures, IR designs and optimization methods,
which are studied and elaborated in a recent survey paper on deep learning compilers (Li
et al. 2021). Xing et al. (2019) concluded a general DL compiler flow and furthermore per-
formed an in-depth comparison among DL compilers regarding the internal components,
e.g., optimization strategies and intermediate representations.

Follow-up research has been proposed to further improve the efficiency of deep learning
compilers based on the common architectures. Chen et al. (2018b) present AutoTVM that
optimizes tensor programs based on workloads. Boemer et al. (2019) extended nGraph to
perform computation on encrypted data so that data privacy can be preserved. These prior
studies focus on the development and improvement of deep learning compilers, but have not
studied the usage and development of deep learning compilers, especially the challenges
users and developers may encounter during the process are not yet studied. Through this
study, we concluded the common types of challenges users may have when using one of
the most popular deep learning compiler, i.e., TVM. Our research findings call for future
research efforts on providing better tool support for TVM users.

Studies on Developing and Deploying ML/DL Applications Due to the increasing pop-
ularity of machine learning applications, many empirical studies have been performed
to obtain a deep understanding on the new challenges posed during the development of
machine learning applications. A recent study by Zhang et al. (2019) categorize common
challenges in developing deep learning applications through manually investigating 715
Stack Overflow questions. In particular, their study categorized and concluded the top three
challenges are related to program crashes, model deployment and implementation. Chen
et al. (2020) investigate the challenges in deploying machine learning applications and
present a taxonomy of such challenges, through an analysis of 769 StackOverflow posts.
Different from previous work on general development and deployment of machine learning
software, this study focuses on the usage and development of one deep learning compiler
and the common challenges shared by users and developers. While a deep learning compiler
like TVM is used for model optimization in model deployment, general-purpose knowledge
sharing websites, such as StackOverflow, may have very limited discussions on TVM usage
(as shown in Section 3.1). Hence, our analysis on TVM complements these prior studies on
the aspect of deep learning compilers, which is not yet studied.

In addition, many studies are performed to characterize the defects that occur in machine
learning applications. Zhang et al. (2018) examined the root causes and symptoms of the
bugs found in TensorFlow programs. Furthermore, Islam et al. (2019) et al. present a com-
prehensive study of bugs (e.g., the root causes, the impact) from a larger set of deep learning
libraries, i.e., Caffe, Keras, Tensorflow, Theano, and Torch. A following work by Humbat-
ova et al. (2020) present a taxonomy of real faults in deep learning systems through a manual
examination of 1,059 commits and bug issues. Zhang et al. (2020) analyzed the impact of
adversarial defects on DL models and concluded the patterns of such adversarial defects.
In this study, through an analysis of user-reported bugs, i.e., bugs in either TVM or TVM
usage, we investigate the impacts of TVM bugs may have on DL software. Our preliminary
investigation on TVM bugs calls for specialized testing techniques for DL compilers.
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Studies on Bug Reports and Feature Requests Issue-tracking systems such as Jira and
Bugzilla provide rich information to improve many lines of software engineering research,
such as fault localization and debugging (Wang and Lo 2016; Saha et al. 2013), automated
program repair (Liu et al. (2013), and feature tracking (Fischer et al. (2003). The quality,
components, and characteristics of issue reports and they impact software engineering tasks
have been well studied by previous work. Zimmermann et al. (2010) studied the essential
criteria and elements to produce good reports and proposed a tool to measure the quality of
bug reports. Chen and Chen (2021) studied the quality of logs in the bug reports and how that
may affect fault localization techniques. As TVM does not employ Apache Jira for devel-
opment communication (e.g., reporting bugs and requesting features), hence in our study,
we use the posts from the TVM discuss forum, which is an active platform used by both
users and developers. Through our manual analysis, we find that TVM forum posts provide
complementary knowledge on critical software development procedures and decisions, such
as fixing bugs and requesting new features, in addition to Github issues. Future research
should consider using forum posts as an alternative data source in addition to Github issues
and StackOverflow posts.

10 Conclusion

This paper initiates the first step towards the usage and development challenges of DL
compilers. We manually inspect 347 posts from the official discussion forum of TVM and
identify a taxonomy of challenges about the usage of TVM consisting of 15 categories and
seven types of common topics which TVM developers discuss. Among all the categories,
procedure, configuration, and how-to questions are the top three most frequently asked
questions. Furthermore, four kinds of bug symptoms are summarized to better understand-
ing the common defects of TVM. Finally, we discuss our implications for developers and
researchers in order to help them to have a better understanding of developing DL compilers.
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