
https://doi.org/10.1007/s10664-022-10220-8

TestEvoViz: visualizing genetically-based test coverage
evolution

Andreina Cota Vidaurre1,2 · Evelyn Cusi López1 · Juan Pablo Sandoval Alcocer2 ·
Alexandre Bergel3,4

Accepted: 29 July 2022 /
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Genetic algorithms are commonly employed to generate unit tests. Automatically generated
unit tests are known to be an important asset to identify software defects and define ora-
cles. However, configuring the test generation is a tedious activity for a practitioner due to
the inherent difficulty to adequately tuning the generation process. Furthermore, evolution
processes are most of the time compared solely using the final results, while discarding all
the details of the iterations that are themselves important for an adequate tuning. This paper
presents TestEvoViz, a visual technique to introspect genetic algorithm-based test genera-
tion processes. TestEvoViz offers the practitioners a visual support to expose the process
and decisions made by the generation algorithm. We first present a number of case studies
to illustrate the expressiveness of TestEvoViz. We then conducted a user study involving
22 participants including researchers, students and professional software engineers. Par-
ticipants use our visual approach to analyze, compare and tune test generation algorithm
executions. All participants were able to complete the tasks. Our findings show that partici-
pants focus more on the visual components that depict information about the test similarity,
individuals coverage increments, and the final generation code coverage.

Keywords Automated test generation · Genetic algorithms · Software visualization ·
Unit testing

1 Introduction

Unit tests have become essential in the software development process. They allow us to ver-
ify on a fine-grained level if each unit (i.e., class, method, function) is behaving as expected.
Executed automatically on a regular basis as regression tests, they provide a tightly knit

Communicated by: Aldeida Aleti, Annibale Panichella, Shin Yoo

This article belongs to the Topical Collection: Advances in Search-Based Software Engineering (SSBSE)

� Juan Pablo Sandoval Alcocer
juanpablo.sandoval@ing.puc.cl

Extended author information available on the last page of the article.

Published online: 28 September 2022

Empirical Software Engineering (2022) 27:184

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-022-10220-8&domain=pdf
http://orcid.org/0000-0002-8699-4522
http://orcid.org/0000-0002-8335-4351
http://orcid.org/0000-0001-8087-1903
mailto: juanpablo.sandoval@ing.puc.cl

safety net for implementing changes and detecting bugs early in the development cycle—but
only if various unit tests are available and test all possible usage scenarios.

Unit test can be created manually or automatically. Both ways have their advantages and
disadvantages in practice. In a manual test creation, practitioners prepare a set of test sce-
narios that they believe are needed to be evaluated. Therefore, this activity, besides requiring
high manual effort, is limited to a specific perspective of a single developer or tester. Com-
plementary, automatic unit test generation helps to reduce the time to create unit tests and
cover scenarios that might be overlooked in the manually crafted unit tests.

A wide spectrum of techniques are commonly employed to generate tests, in particular
fuzzing (Zeller et al. 2019), test amplification (Danglot et al. 2019), and genetic algo-
rithms (Fraser and Arcuri 2011; Panichella et al. 2018). This paper focuses on supporting
the activity of test generation using genetic algorithms. EvoSuite1 (Fraser and Arcuri 2011)
is a popular genetically-based test generation tool. The effort related to EvoSuite has signif-
icantly strengthened the field of genetically-based test generation. EvoSuite is considered a
reference in the field and it has remarkable traction by using genetic algorithms to generate
tests (Campos et al. 2018). However, it is surprising to see that EvoSuite does not provide
much tooling for understanding and assessing how tests are effectively generated. In par-
ticular, EvoSuite does not provide any mechanism to precisely expose the decision made
by the genetic algorithm. As a consequence, developers have difficulties understanding the
roots of the final generated tests, and the effects of the hyper-parameters in the generation
process.

TestEvoViz We propose TestEvoViz, a visual introspection mechanism for genetically-
based test generation. In particular, it helps developers introspect the whole test suite
generation approach implemented by the EvoSuite tool. Introspection refers to the “obser-
vation or examination of one’s own mental [. . .] process” and “the act of looking within
oneself” 2. We qualify our visualization an introspection tool since TestEvoViz is meant
to support the observation and reflection of the evolution process of the test generation.
Figure 1 gives an example of TestEvoViz on a generation of unit tests for the classical class
Stack, describing a stack data structure. The visualization reads from top to bottom in which
each line represents an iteration of the algorithm. TestEvoViz provides a range of glyphs
detailing some aspects of the test generation. The figure shows that the test evolution goes
through 6 iterations, since there are 6 rows.

TestEvoViz is composed of four panels, reading from left to right. The first panel titled
“Test Case Similarity”, located on the left-most of the visualization, represents the static
and dynamic similarity between test individuals along the genetic evolution. Second panel
indicates the contributions made for each of the 6 iterations. The contribution of each iter-
ation is expressed using a spark circle (Sandoval Alcocer et al. 2019), which summarizes
three metrics related to test coverage: a big spark circle indicates a significant contribu-
tion of the generation in terms of covered code. The panel located in the middle represents
the evolving unit tests that contribute to the final iteration. The right-most panel plots the
evolution of test coverage evolution in terms of the best, average, and worse fitness. These
curves are relevant for assessing the diversity of the genetic information in the unit tests at
each iteration of the algorithm. This right-most panel indicates that the generated tests cover
86.7% of the base component under test in the last iteration. TestEvoViz helps developers

1http://www.evosuite.org
2https://www.dictionary.com/browse/introspection

Empir Software Eng (2022) 27:184184 Page 2 of 47

http://www.evosuite.org
https://www.dictionary.com/browse/introspection

Fig. 1 TestEvoViz - Test generation process for the Stack class as an illustrating example. The left-most panel
shows the degree of static and dynamic similarity between the unit tests (i.e., individuals) of the evolving
population. The next panel, titled Generation Evolution, indicates the coverage variation at project level
between a given generation and its direct previous generation. The middle panel, titled Test Case Evolution,
contains generated tests represented as boxes. Links associate each test with its parents. A thick box border
highlights tests that have greater coverage than their parents. The value of each box gives the percentage of
code covered by the generated test. Inner circles are new discovered methods of the tested application that
are directly called by unit tests and inner boxes are new discovered methods that are indirectly called by
unit tests. Colors represent a method. The right-most panel, called Coverage Evolution reports the coverage
evolution along generations by rendering the average, lowest and fittest coverage reached in each generation

to understand the impact of the genetic algorithm decisions in the coverage, diversity, and
individuals across generations. This information is useful when analyzing, comparing, and
tuning test generation processes.

We have applied TestEvoViz to a number of non-trivial examples and conducted a user
study with 22 participants. Participants performed three tasks that consist in analyzing, com-
paring and tuning test generation processes of four real-life software projects. The scope of
this study is to comprehend the usage of TestEvoViz from the point of view of a developer,
a student, and a researcher. By observing participants behavior, we found that participants
focus more on the visual elements that help spot crossover and mutation operations that help
increase the population coverage, together with the visual component that shows the simi-
larity between tests. This behavior stems from the relevance for our participants to consider
the coverage and the test diversity as important attributes of the generated tests.

Empir Software Eng (2022) 27:184 Page 3 of 47 184

Previous work This article is an extension of a conference paper presented at the eighth
IEEE Working Conference on Software Visualization (VISSOFT 2020) (Cota Vidaure
et al. 2020). Our previous work is extended in a number of different ways: (i) this article
improves our visualization by highlighting the similarity between test individuals along the
genetic evolution; (ii) we extend our case studies to illustrate the usefulness of the similar-
ity visualization; (iii) we performed a user study to assess the usability of our visualization
approach.

Artifact This article is accompanied with an artifact, publicly available on https://github.
com/andreina-covi/TestEvoViz. The artifact contains the video tutorial we used to train the
participants, the software TestEvoViz for three different platforms,and the case studies we
used in our experiment.

Outline The paper is structured as follows: Section 2 gives the necessary background
to readers unfamiliar with genetically-based test generation; Section 3 describes the
TestEvoViz visualization and the introspection mechanism; Section 4 presents some exam-
ples that illustrate TestEvoViz in practice; Section 5 presents some real world case studies
that highlight the benefits of TestEvoViz; Section 6 summarizes the user study we perform
with 22 participants to assess the usefulness of our proposed approach; Section 8 gives an
overview of the works related to this paper; Section 9 concludes and presents our future
work.

2 Background: Genetically-Based Unit-Test Generation

2.1 Unit-Test Generation

A number of techniques have been proposed to automatically generate tests (Fraser and
Arcuri 2011; Fraser and Zeller 2010; Arcuri and Fraser 2011; Panichella et al. 2018;
Pacheco and Ernst 2007). In this paper, we voluntarily focus on EvoSuite (Fraser and Arcuri
2011), a testing tool suite, which uses a genetic algorithm to generate unit tests. In particu-
lar, the whole suite approach (Fraser and Arcuri 2013; Arcuri and Fraser 2014) evolves unit
tests by applying genetic operation to maximize the test coverage of a class belonging to
the base application code. Such a class represents the target component EvoSuite is generat-
ing and evolving tests for. The coverage of the target class is considered the fitness function
that the genetic algorithm is optimizing. A population of tests is evolved by EvoSuite using
primitive genetic operations.

Each individual of the population is a test, which is composed of a number of executable
source code statements. The statements contained in each test represent the genetic informa-
tion, commonly referred to as chromosomes. There are four kinds of statements considered
by EvoSuite: primitive to represent a literal value (e.g., number, boolean, string), construc-
tor to create an object from a class of the application under test, method call to send a
message to an object, and access field to access an object variable. After having built the
tests, another algorithm generates assertions by using values produced by the statements.

Each test contained in a unit test is composed of an initialization code portion and a set
of assertions. Figure 2 gives an example of a test method. Test methods are generated to
maximize the execution coverage and the whole test generation is oriented to executing the
largest portion of the target class. TestEvoViz does not visualize information related to the
assertions statements within the test. However, this point is part of our future work.

Empir Software Eng (2022) 27:184184 Page 4 of 47

https://github.com/andreina-covi/TestEvoViz
https://github.com/andreina-covi/TestEvoViz

Initial Population First, the algorithm creates N tests, and each test has M randomly gen-
erated statements. Each statement tries to benefit from the previous statements contained in
the same test by using variables previously defined. Figure 2 gives an example of a test in
which the third statement uses the variable var0 defined in the first statement.

Evolution Once the initial population is defined, four steps are performed to produce a new
iteration, and therefore a new population of evolved tests, by the algorithm:

– Coverage measurement – Each test is executed and the code coverage of that test is
measured through three different metrics, as we will see later on.

– Selection – In a given population of tests, only the better-performing tests are evolved.
The selection algorithm determines which tests have to be evolved. Many algorithms
are available (e.g., ranking selection, roulette, tournament).

– Crossover – The genetic information of two selected unit tests are combined using the
crossover genetic operation. A crossover between two tests consists in merging their
statements to generate two new tests.

– Mutation – The tests resulting from a crossover may be randomly altered using a muta-
tion genetic operation. A mutation replaces a statement with a new one or a variation
of it. Numerous mutation operators can be applied, including changing a parameter for
another (e.g., replacing a variable name for another or changing a primitive literal value
for another). Mutations are necessary to produce diversity in the genetic information.

These operations are performed multiple times to produce a new and evolved generation of
unit tests.

2.2 Challenges

The complexity of the underlying genetic algorithm makes the activity of generating test
difficult and tedious for a practitioner. In particular, a number of technical issues have to be
considered in order to properly generate unit tests of a good quality:

– Hyperparameter tuning – A hyperparameter is a parameter whose value is used to
control the test generation process. Numerous hyperparameters are associated with
genetically-based test generation: statement mutation rate, size of the population,
selection algorithm, crossover rate, just to name a few. Identifying adequate hyper-
pameter values is a process that typically follows a try-and-adjust fashion, and the

Fig. 2 Unit test as individual of
the population

int var0 = 0;
int var1 = 1;
Point var2 = new Point(var0,var0);
Point var3 = new Point(var1,var0);

int var5 = var2.x;
double var4 = var2.distance(var3);

primitive

statement kind

primitive

constructor

constructor

method call

Generated Unit Test

assertEquals(var5,var0);
assertEquals(var4,1);

Assertion

Assertion

Assertion

Empir Software Eng (2022) 27:184 Page 5 of 47 184

hyperparameters values may vary depending of the class under test (Arcuri and Fraser
2011; Shamshiri et al. 2018).

– Stopping the genetic algorithm – Generating unit tests may take hours or even days for a
non-trivial software component. A central question is when to stop the evolution of the
unit tests. This question is hard to answer in practice. The behavior that is commonly
followed by practitioners is to maximize the number of generations in order to reach the
best result. However, it frequently happens that most of the best-performing tests (i.e.,
the ones with high coverage) are generated in an early iteration. Unit test generation is a
computationally intensive process and avoiding unnecessary iterations has a significant
practical impact (Arcuri and Fraser 2011).

– Evolution comparisons – Characterizing execution details of the genetic algorithm is a
key aspect to tune hyperparemeters and to determine the stop condition. An evolution,
expressed in terms of iterations, involves many operations over the population and its
individuals. Comparing different several evolutions and drawing actionable conclusions
is therefore crucial.

– Understanding the roots of the final output – Test generation tools have different opti-
mization objectives, for instance, maximize a coverage criteria and the mutation score.
However, if the output is not as expected, for example, if there are very similar tests -
tests without assertions, or tests are asserting methods that do not belong to the target
class (indirect tests) (Panichella et al. 2020) - it is difficult to debug and understand the
roots of these odd situations.

These four problems cannot be easily solved. The coming section presents TestEvoViz,
which alleviates these problems by providing to practitioners essential information about
the test generation algorithm execution.

3 TestEvoViz

We propose TestEvoViz, a visual approach to represent the generation of unit tests using
genetic algorithms. TestEvoViz visually introspects the algorithm internally to let a practi-
tioner better understand decisions taken by the algorithm. TestEvoViz has six main visual
components to convey different aspects regarding the iterative evolution of the population
of unit tests. This section describes a data model and each one of these components using
as example Fig. 1, which illustrates the test generation for the Stack class. Table 1 details
the relation between the genetic algorithm concepts and the proposed visualization.

3.1 Data Model and Introspection

Our approach is designed to visualize how test cases are evolving across generations in order
to achieve a higher coverage. Let Gn = {g0, g1, . . . , gn} be the set of populations created
by the genetic algorithm, where g refers to a population of tests: the numerical subscript
is the iteration index, and n is the number of generations. The initial random population is
denoted g0. Each population gk consists of m tests gk = {t0, t1, . . . , tm}, where m is the size
of the population. A tuple (ti , gj) defines a test i of the population in the iteration j . Let
ancestors(ti , gj) be the set of ancestors of the tuple (ti , gj), each tuple (ti , gj) may have
one or two ancestors, depending on whether it results from a crossover operation or not.
We define ancestors(ti , gj) as the tests of the previous population in iteration j − 1 that
participate in the creation of the test ti .

Empir Software Eng (2022) 27:184184 Page 6 of 47

We have augmented the genetic algorithm to emit events at relevant steps during its
execution, e.g., before and after each iteration, application of a genetic operation. These
events are used to build a detailed logging facility from which TestEvoViz extracts relevant
information to build the visualization.

3.2 Test Case Evolution

The middle panel of TestEvoViz (Fig. 1) details the unit test evolution along the iterations.
Inspired by previous works (Beck et al. 2017), we use a node-link graph visualization.
As in different domains, it is widely used to represent the evolution between entities.
A node-link graph representation does not only allow us to show the relation between a test
and its evolution, but also group the tests corresponding to the same generation.

Table 1 Mapping genetic algorithm concepts in TestEvoViz

Initialization Population is composed of N

tests, and each test is composed
of M statements.

Fitness The fitness is given by the
branch coverage of each test
and is shown at the bottom of
each node. Each ring sector in
the generation evolution shows
the class, method and branch
coverage variation of each gen-
eration.

Selection Each node in the middle panel rep-
resents a test that contributes to the
final generation. These tests were
selected during the generation pro-
cess using a selection criteria (i.e.,
rank selection). Our visualization
also shows the number of nodes that
were discarded in each generation.

Crossover Tests that participate in
a crossover operation are
visually linked to their
child.

Mutation Statements that were mutated
after a crossover operation may
be detected by contrasting the
source code of a given test with
the source code of their par-
ents.

Similarity Each node is a test, and two
tests are connected if their
Jaccard similarity is above a
threshold. Left reflects method
calls contained in the tests, and
right reflects executed meth-
ods.

Empir Software Eng (2022) 27:184 Page 7 of 47 184

Nodes Each node represents a test case of a particular generation (ti , gj). Tests at a given
iteration are horizontally aligned as represented in Figs. 1 and 4. In addition, each node
is a glyph that displays the methods of the target class and their branch coverage. Let
Bcov(ti , targetClass) be the ratio between the number of executed branches in the target
class regarding the total, and Bcov(ti , m) the branch coverage of a method m.

We define the visual cues associated to a unit test node (Fig. 3) as follows:

– Border – A thick border indicates that a test case (ti , gj) has a higher branch cov-
erage than its ancestors Bcov(ti , targetClass) > Bcov(th, targetClass), for all
th ∈ ancestor(ti , gj). If the coverage remains the same or does not improve then the
box has a thin border. The goal is to highlight tests that contribute to the generation
goal, in this case, generated test that increase the coverage regarding its parents.

– Inner nodes – Each colored inner node represents a method m of the target class
that improves its branch coverage regarding the ancestor unit tests Bcov(ti , m) >

Bcov(th,m), for all th ∈ ancestor(ti , gj). Circular inner nodes represent methods that
are called directly from the test case, and Rectangular inner nodes are methods that are
called indirectly by the generated tests. To differentiate the methods, each method of
the target class has a unique color. The objective is to help developers spot which tests
are executing the same methods. Note that different tests may increase their coverage
of the same methods.

– Value – The bottom value gives the class branch coverage obtained after executing a
given test case Bcov(ti , targetClass). Since the coverage variation between tests can
be small, showing the exact coverage number help developers understand the exact
impact of a given mutation and/or crossover in the evolution.

Edges Edges connect tests and indicate the historical evolution of these tests. An edge joins
a unit test to its ancestors. A unit test may have one or two ancestors. A unit test with two
ancestors means that the unit test is the result of a crossover operation of two previous unit
tests. In some cases, a node has only had one ancestor, because either (i) the unit test was the
best of the generation and it survives due to the elitism strategy; (ii) or produced children
have a lower coverage than their parents, in this case, the algorithm chooses to let one of the
two parents survive in the next generation.

Value
test case

branch coverage

branch coverage
variation

method
coverage
variation

class coverage
variation

Generated Test Case

Inner boxes
methods of the
class under test that
increase their
branch coverage
indirectly called ()
and
directly called ()
by the test

links to
parents

links to
children

border
whether or not
a test has more

coverage
than its parents.

Generation
Coverage Variation

Inner node color
each method of the class
under test has associated

a unique color

Fig. 3 A spark circle (left side) summarizes the coverage variations of a given generation regarding the
previous one. A node glyph (right-side) represents a test and the method that it executes of the class under test

Empir Software Eng (2022) 27:184184 Page 8 of 47

Fig. 4 Highlighting ancestors
and obtaining source code

Killed unit tests To not overload the visualization, TestEvoViz does not depict unit tests
that do not contribute to the final generation. During the evolution, many generated unit tests
are poorly performing (i.e., have a low coverage), and therefore have more probability to be
killed (i.e., not considered or selected to be combined with other unit tests). This depends
on the selection strategy used by the algorithm, for instance, the rank selection algorithm
assigns more probability to survive to the test that have better fitness function (i.e., higher
coverage). However, a test with a low coverage may also survive, this is important, since
this test may cover branches that the test with more coverage does not. The amount of killed
unit tests for each generation is represented as a horizontal bar, located on the right hand
side of the middle panel (Fig. 1). The number of tests are discarded along each generation
is also indicated.

Interaction TestEvoViz provides a number of interactions to inspect the source code and
track a test case genealogical tree. Clicking on a node highlights their ancestors. Hovering
the mouse over a unit test shows the generated test code, and hovering the mouse cursor
over an inner box shows the source code of the corresponding method. Figure 4 shows all
the ancestors of a test, and also shows the source code of the selected test.

Empir Software Eng (2022) 27:184 Page 9 of 47 184

3.3 Test Case Similarity

In the case of unit test, one important aspect in the genetic evolution is the similarity between
tests (Fraser and Wotawa 2009; Alshahwan and Harman 2012). Understanding the diversity
between the individuals of the population represents an opportunity to assess the decision
taken by the algorithm and to detect potential redundant generated tests. The test case sim-
ilarity panel visualizes the similarity between tests along generations. Although there are
different alternatives to visualize similarity between elements within a graph, most com-
monly used are maps and graphs. Our visualization uses network graph for this purpose,
previous study shows that it was effective for exploring complex dynamic graphs (Muruge-
san et al. 2020). In addition, our goal is to provide a general overview of the similarity, since
fully understanding how similar two test cases are may require more sophisticated and par-
ticular tools. We do not discard that other alternatives may work similarly or better for this
purpose.

For instance, consider Fig. 5, it depicts the similarity of the penultimate generation in
the Stack example (Fig. 1). Each node within both graphs represent the resulting test after
six iterations of the genetic algorithm. Each node has a unique number within the graphs,
therefore, two nodes with the same number in both graphs represents the same test. Nodes
have two background colors: green for tests that participate in the creation of the next gen-
eration, and white for the one that the algorithm discards (e.g., t3). Nodes in both graphs are
connected according to their similarity.

Static Similarity Let be mc(ti) the set of method calls contained within the source code of
test ti . For each pair of test ti and tj of a given iteration, we measure their static similarity
using the Jaccard index:

static similarity(ti , tj) = mc(ti) ∩ mc(tj)

mc(ti) ∪ mc(tj)

Fig. 5 Static (left) and dynamic (right) similarity between unit tests of a given generation. An edge indicates
that the connected tests statically or dynamically call to the same methods. In this example, t10 statically
calls to the same methods than other tests, but executes a different set of methods, likely the result of using
particular argument values

Empir Software Eng (2022) 27:184184 Page 10 of 47

The Jaccard index, also known as similarity coefficient, is commonly used for measuring
the similarity of a sample set. It basically returns the percentage of common elements in
both sets. The static similarity measures the ratio between the similar direct method calls
between two tests, and the total of distinct method calls done by both tests. We consider
that two method calls are similar if they invoke the same method. Note that this metric does
not consider the order on which the method calls are done and neither the argument of the
receiver. For instance, Fig. 5 (left side) shows that there are a number of tests that directly
invoke the same methods (static similarity(ti , tj) = 1). Figure 5 (left side) shows that
there are five tests that directly call to the same methods (t7, t1, t6, t9, t10), t5 and t4 are also
statically similar.

Dynamic similarity To measure the dynamic similarity we detect methods that where exe-
cuted by a given test. These methods may be called directly or indirectly. Let em(ti) be
the set of executed methods by a test ti . We compute the dynamic similarity also using the
Jaccard index:

dynamic similarity(ti , tj) = em(ti) ∩ em(tj)

em(ti) ∪ em(tj)

In this case, we are measuring the percentage of methods that were executed by both tests.
For instance, Fig. 5 (right side) shows that t7, t1, t6 and t9 cover the same methods during the
execution. Note that t10 although statically contain method calls to the same methods than
t7, t1, t6 and t9 (as shown with edges in the static similarity, Fig. 5 left), during the execution
t10 calls different methods (as shown with no connecting edges in the dynamic similarity),
Fig. 5 right.

Two test cases may statically call the same methods, but execute different methods.
This may be due to a number of factors, including, the methods are invoked with different
arguments, have a different object receiver, or are called in a different order. This may be
concluded with further analysis exploring the source code of test t10.

In case both tests do not contain any method call, we consider both tests as similar and
assign a similarity of 1. This is an exception to the Jaccard index, because in this situation
the divisor of the formula would be zero.

3.4 Generation Contribution

The middle panel already shows coverage information of the target class at method level.
In addition, inner nodes represent methods that increase their coverage. However, there are
other relevant information at the moment to analyze a test execution, in particular, the branch
and class coverage because a method can have multiple branches, and a test may execute
other classes within the project. Since each generation has an impact on the coverage, we
summarize the variation coverage between generations using a spark circle, a circular glyph
that shows the variation of multiple metrics. This information may be shown in different
ways, but we chose a spark circle due its compact size (Alcocer et al. 2019).

The second panel from the left-hand of TestEvoViz contains a spark circle for each gen-
eration of the evolution (Fig. 3, left-hand side). A spark circle is a small bar chart drawn in
a circular fashion. Our approach uses a spark circle with three ring sections. Each spark cir-
cle summarizes the coverage variation of a given population gj compared from its previous
population gj−1 at three levels of granularity:

– Branch coverage – Let Bcov(gj) be the ratio between the number of executed branches
by all the tests of the generation and the number of existing branches in the system. The

Empir Software Eng (2022) 27:184 Page 11 of 47 184

total number of branches is the sum of the branches of all methods of the application
under test.

– Method coverage – LetMcov(gj) be the ratio between the number of executed methods
and the number of methods of the application under test.

– Class coverage – Let Ccov(gj) be the ratio between the number of classes that have at
least one method executed regarding all the classes in the application under test.

We define the coverage variation between gj and gj−1 as follows:

�cov(gj , gj−1) = (cov(gj) − cov(gj−1))/(cov(gj−1))

This definition is used to measure coverage variation at branch (Bcov), method (Mcov)
and class (Ccov) level. In case that cov(gj−1) is zero, we consider that the variation
(�cov(gj , gj−1)) is zero if cov(gj) is also zero, and 1 if cov(gj) is greater than zero.

The execution of a generated test case may cover different methods and classes of a
system. Therefore, the height of each ring section is associated with the variation of the three
coverage metrics: branch coverage variation (green section), method coverage (red section),
and class coverage variation (blue section), as indicated in Fig. 3. In Fig. 1, we see that the
evolution brought by the tests in generations 1, 2, and 5, contribute to significant increment
the branch coverage. In generation 1 we also see that the method coverage and the class
coverage reached its maximum since these two metrics did not change in the later iterations.

In case that one coverage difference is negative the corresponding spark circle ring will
have a bold black border to highlighting this fact. Note that the coverage variation has
more probability to be positive because the selection algorithm privileges the tests with
more coverage, for instance, if a child has less coverage than the parent, the child has more
probability to be discarded. In addition, our EvoSuite implementation applies elitism, which
means that the individual with more coverage will survive next to the next generation.

3.5 Coverage Evolution

While the middle panel and spark circles show the coverage variation between generations,
none of them show the actual evolution of the coverage. The coverage evolution panel shows
the evolution of: the fittest unit test per generation (green line), the average of the unit test
coverage in a generation (blue line), and the worst unit test per generation (pink line).

4 Examples

This section describes an application of TestEvoViz to introspect the test generation of two
classes of the Pharo programming language: Stack and DataFrame. These are two popular
data structures implemented in Pharo. While the first one is a classical linear data struc-
ture, the second one is a two-dimensional structure commonly used for data analysis. We
use TestEvoViz to generate tests for these classes and introspect the generation process.
Figures 1 and 6 depict the results obtained for Stack and DataFrame, respectively. The
following paragraphs detail the test generation as executed by EvoSuite.

Initial Population The first row of the of middle panel depicts a set of the first randomly
generated test. Figure 7 shows the first population of the Stack and DataFrame example.

In the first generation, all tests create an object of the class under analysis, and call
a number of method within this class randomly. If the method or constructor have some

Empir Software Eng (2022) 27:184184 Page 12 of 47

Fig. 6 TestEvoViz on the DataFrame class

dependencies (i.e., object or primitives), these are recursively created before calling the
randomly selected method. The methods called directly by each test are depicted with cir-
cles. For instance, consider the first generation of the DataFrame example. There are three
tests, the first test (from left to right) directly calls only to one method, because there is
only one inner circle inside the test. However, there are eight inner boxes, these represent
methods that were called indirectly either by the constructor or the method that is directly
called.

Fig. 7 Initial Population: DataFrame and Stack example

Empir Software Eng (2022) 27:184 Page 13 of 47 184

Fig. 8 Crossover and mutation in the first generation: DataFrame example

In the Stack example, we can see that most of the covered methods are called directly,
simply looking to the circles. This is mainly because, most of the Stackmethods are atomic,
and do not call to other methods within the same class. Inner box colors help to detect which
tests are calling to the same methods. In the DataFrame example, we can see that the test of
the first generation directly calls different methods, because the inner circles have different
colors. In the other hand, there are couple inner boxes with the same color along the three
tests. It means that even thought test directly call different methods, these method indirectly
call similar methods.

Crossover and mutation The middle panel shows the parent-child relation between test
cases along the evolution. This relation is depicted by an edge between two nodes. Figure 8
shows the crossover operations and mutation done by the elements in the first generation of
the DataFrame example.

First note that each generation has ten individuals, however, in the case of the DataFrame

example only three individuals participate in the creation of the final generation. The result
of a crossover operation between two tests is represented by the edges, once two tests are
merged a mutation is executed over the resulting test. The child of two tests may or not
execute branches or methods that were not executed by their parents. This fact is depicted
by the inner nodes within the test. Therefore, we can categorize these nodes in two:

– With inner boxes – Nodes with inner boxes represent test cases that cover new branches
or methods regarding their ancestors. The color of inner boxes helps us differentiate
this situation. If a color does not appear before, then it indicates that a new method is
discovered, otherwise, a new branch of a previously executed method is discovered. In
addition, three of these nodes add a new method call to a test, which is represented with
a circle, and these new statements indirectly call different methods in the target class
(i.e., rectangular inner nodes).

– Without inner boxes – A node without any inner box represents a test case that has a
better coverage than its parents, but does not cover any new method or branch. This
happens when its parents cover different branches of the target class, and their child
covers part of all these branches together due to the crossover mechanism. For instance,
the third iteration of the DataFrame example has a node that increases its coverage and
does not have any new method calls.

Empir Software Eng (2022) 27:184184 Page 14 of 47

Fig. 9 Increasing method and class coverage: generation 5 - DataFrame example

Improving generation coverage Although the inner boxes help to detect which tests in an
iteration have a better coverage than their parents. It is possible that they are discovering
new branches that may be already covered by the others tests in the same iteration. The
generation contribution panel helps us identify this situation. Figure 1 shows this situation in
generation 3 and 4, although there are tests that cover new branches regarding their parents.
The coverage of the population does not increase at all. Therefore, these tests cover branches
already covered by other individuals of the population. On the other hand, in the second and
fifth iteration the new tests discover new branches (i.e., not previously discovered). This
fact is also reflected in the coverage evolution component, every time that a new test covers
new branches, both the fittest and average coverage of the population increase.

Discovering dependencies Sometimes, discovering a new branch is due to code state-
ments that involve method calls to method or classes that were not covered in the previous
iterations. This fact is also reflected in the generation contribution panel, which shows the
coverage variation at method and class level. For instance, consider the fifth generation
in the DataFrame example (Fig. 9). It shows that two tests increase the coverage of their
parents, due to a direct call to a method (inner circle), and an indirect call (inner box). In
addition, the spark circle shows that in fact new methods were covered, but in addition, a
new class was covered. This is indicated by the blue section in the spark circle.

Discarding weak tests In each generation, the selection algorithm replaces tests with low
fitness by evolved tests in a new population. This fact is shown by the gray bars posi-
tioned at the right side evolution component. Since, the purpose of the selection algorithm
is to discard weak tests from the population (i.e., poorly performing with a low coverage).
The selection algorithm is related to the metric lowest coverage on the population, which
is shown by the coverage evolution component. For instance, Figs. 1 and 6 show that the
selection algorithm does a good job, because at every generation, tests with a low cover-
age are excluded, and the lowest coverage is increasing. A particular situation is shown in
the fourth iteration in Fig. 6, because none of the tests of that iteration improves their cov-
erage. However, the lowest coverage increases. This means that even though there was no
improvement the algorithm discards test cases with low coverage.

Population diversity Test case similarity shows the diversity of the test population along
the evolution process. For instance, Fig. 10 shows the evolution of the static and dynamic
similarity of the DataFrame example. Note that the tests were becoming more similar along
the evolution. In generation four, there were two groups of tests. In generation five, most of
the tests have a strong similarity, but the last generation also has two groups of similar tests.

Empir Software Eng (2022) 27:184 Page 15 of 47 184

Fig. 10 Test case similarity along generations - DataFrame example

Focusing on the generation of tests for the DataFrame example, TestEvoViz shows the
following aspects about the generation of tests for DataFrame:

– More indirect methods were invoked by tests in the initial population (Fig. 7), when
compared to direct method calls;

– Crossover and mutation increase the population coverage in generation two (Fig. 8) and
generation five (Fig. 9);

– The similarity between tests converge to two groups of tests that invoke similar
methods, and three groups that directly invoke the same methods (Fig. 10).

5 Case Studies

This section presents two case studies on which we use TestEvoViz to analyze the test
generation of two Pharo projects. For each one of these projects, we visualize the test gen-
eration process using a different set of hyperparameters and describe the effects through
TestEvoViz of these in the generation process. We select these two projects because both
are well know not only in the Pharo community but in research and in general in the indus-
try. Both projects have a similar implementation in different programming languages and
are used in different domains.

For each case study, we generate tests for a given class using different parameter config-
urations, then we use TestEvoViz to highlight the effects of the parameter variation within
the generation process. In particular, we focus on three parameters: number of statements,
population size, and mutation rate.

Adequately selecting the hyperparameters is a complex task, as there is not a unique
best configuration for all kind of applications. Furthermore, it is often necessary to tune
the parameters according to a specific problem domain (Arcuri and Fraser 2011; Shamshiri
et al. 2018). In our cases study, we use a set of parameters that help us illustrate through
our visualization the effects of the parameter configuration. Although we initially based
our configuration with EvoSuite default values (i.e., mutation rate) and a previous study of
hyperparameter tuning (Arcuri and Fraser 2011), we choose relatively small values for the
population size and number of generations for didactic purposes.

5.1 Regex

Regex is a standard Pharo library to parse and match regular expressions. In this case study,
we use the classRxMatcher as a target class.RxMatcher is a recursive regular expression
matcher that has 27 methods.

Empir Software Eng (2022) 27:184184 Page 16 of 47

Table 2 Regex analyzed configurations

Parameters Base Conf. Conf. 1 Conf. 2 Conf. 3

Number of Statements 5 3 5 5

Number of Generations 5 5 5 5

Selection Algorithm Rank Rank Rank Rank

Population Size 10 10 20 10

Mutation Rate 1/3 1/3 1/3 2/3

Baseline For this case study, we use four configurations (Table 2). Figure 11 gives the result
of running the algorithm with the previous configuration. As we see, most of the methods
and branches are covered at the beginning of the first iteration. In the next generations
there are new test cases that cover more branches than their parents, however, the spark
circles show that there were already other test individuals that cover these branches. In the
last generation, the test individuals that survive have a similar coverage: this information
is represented in the right panel where the lowest, average, and highest coverage of the
population are close. After five iterations the tests with the highest branch coverage are
19.78%. Finally, Fig. 11 also shows that there are a number of tests with similar method
calls, and that all of the generated tests cover similar methods.

Fig. 11 TestEvoViz – Regex project (Base Configuration); number of statements = 5;
number of iterations = 5; selection algorithm = rank selection; population size = 10; and
mutation rate = 1/3

Empir Software Eng (2022) 27:184 Page 17 of 47 184

Fig. 12 TestEvoViz – Regex project (Configuration 1); number of statements = 3;
number of iterations = 5; selection algorithm = rank selection; population size = 10; and
mutation rate = 1/3

Number of statements Figure 12 depicts the generation process using the same base con-
figuration, with the exception that this time we reduce the number of statements from five to
three. Figure 12 shows that in contrast to the baseline (Fig. 11), the population achieves the
highest coverage in the last generation. The green section of the spark circle in this genera-
tion shows that the resulting test individuals cover new branches and methods of the target
class. Different from the baseline, the individuals are more diverse in terms of method calls,
but half of the individuals still cover similar methods and have similar method calls.

Along the evolution eleven tests have more coverage than their ancestors, notable
when searching for nodes with a thick border. This particular visualization shows that the
crossover operations between individuals with less statements achieve a higher coverage
compared to the baseline. With this configuration, the best generated test case covers 33%
branches of the target class, which is more than the baseline (19.78%).

Population size Figure 13 depicts the generation process using the same base configura-
tion, with the exception that this time we increase the population size from 10 to 20. The
fourth generation in Fig. 13 contains two tests that cover new branches regarding their par-
ents. These tests contribute to increasing the branch coverage of the population, as indicated
by the spark circle in the fourth generation. Similarly to the baseline, the visualization shows
that there are few tests that have better coverage than their ancestors. But in this case, the
algorithm found a new test case which got better coverage than the baseline. However, there

Empir Software Eng (2022) 27:184184 Page 18 of 47

Fig. 13 TestEvoViz – Regex project (Configuration 2); number of statements = 5;
number of iterations = 5; selection algorithm = rank selection; population size = 20; and
mutation rate = 1/3

are two groups in the last generation that have similar method calls (statically) and cover
similar methods (dynamically).

Mutation rate Figure 14 gives the generation process using the base configuration, but this
time increasing the mutation rate from 1/3 to 2/3. Note that this time, the coverage of the
last population is 35.897%, which is greater than the one obtained with previous configu-
rations. In this case, an individual of the second generation increases its coverage, then in
the following generations the remaining individuals progressively increase their coverage,
however, no new branches were discovered after generation two. The similarity panel shows
that in the fourth generation most of the individuals contain and execute similar methods.
However, in the last generation only half have covered similar methods.

5.2 NeoJSON

NeoJSON is the standard JSON reader and writer of the Pharo programming language.
In this case study, we generate tests for the class NeoJSONObjectMapping, which has 17
methods.

Table 3 Json analyzed configurations

Parameters Base Conf. Conf. 1 Conf. 2 Conf. 3

Number of Statements 10 20 10 10

Number of Generations 10 10 10 10

Selection Algorithm Rank Rank Rank Rank

Population Size 20 20 30 20

Mutation Rate 1/3 1/3 1/3 2/3

Empir Software Eng (2022) 27:184 Page 19 of 47 184

Baseline We use four configurations (Table 3). Using a greater number of generations and
statements has the effect of producing a larger visualization. Figure 15 shows the test evo-
lution process for the class NeoJSONObjectMapping. As we see, the population coverage
slowly increases along generations. The genetic algorithm is discarding tests with a lower
coverage, and in the last version, the coverage of the population is similar. This fact is shown
through the coverage evolution panel. Spark circles show that new branches were discov-
ered in generation three and five, and a new method and a new class was executed by a test
in the last generation.

In Fig. 15, the similarity panel shows that at the beginning of the evolution the tests cover
different methods, but along the evolution, tests are becoming dynamically and statically
similar. This fact is due to the number of statements configuration, since the number of
statements is 10 and the number of class methods is 16, there is a higher probability of
calling the same methods.

Number of statements Figure 16 depicts the generation process using the same base con-
figuration, with the exception that this time we increase the number of statements from ten
to twenty. Figure 16 shows the visualization of this change. First, we notice that (i) the last
generation has a lesser coverage than the baseline, and (ii) most of the branches are dis-
covered in the first generation. The similarity panel shows that due to the high number of
statements, tests tend to call to the same methods since the third generation. Therefore, we

Fig. 14 TestEvoViz – Regex project (Configuration 3); number of statements = 5;
number of iterations = 5; selection algorithm = rank selection; population size = 10; and
mutation rate = 2/3

Empir Software Eng (2022) 27:184184 Page 20 of 47

concluded that in this particular case, increasing the number of statements did not help the
generation process.

Population size Figure 17 depicts the generation process using the same base configura-
tion, but uses a population size of 30 instead of 20. The coverage of the population evolves
from 20 to 40, similar to the baseline. In this case, spark circles show that generation 8, 9
and 11 discover new branches and methods. The similarity between tests varied during the
evolution, but in the last generation most tests cover similar methods.

Mutation rate Figure 18 details the generation process using the base configuration, but
this time increasing the mutation rate from 1/3 to 2/3. Figure 18 shows that the coverage
evolution is similar to the baseline. The similarity between tests is lower in the first five
generations, and new branches were discovered in the fourth and seventh generations. The
coverage of the last population is similar to the baseline.

6 User Study

In this section we describe the research questions and the methodology we follow to conduct
our study.

Fig. 15 TestEvoViz – NeoJSON project (Base Configuration); number of statements = 10;
number of iterations = 10; selection algorithm = rank selection; population size = 20; and
mutation rate = 1/3

Empir Software Eng (2022) 27:184 Page 21 of 47 184

6.1 Research Questions

The overall goal of this study is to examine the usage of TestEvoViz in the context of ana-
lyzing, comparing and tuning genetic algorithm based test generation processes. Therefore,
we state our main research question as follows:

The first part of the study is about analyzing developer perceptions of usability and cogni-
tive load of using our visualization. In addition, identify problems and advantages they have

Fig. 16 TestEvoViz – NeoJSON project (Configuration 1); number of statements = 20;
number of iterations = 10; selection algorithm = rank selection; population size = 20; and
mutation rate = 1/3

Empir Software Eng (2022) 27:184184 Page 22 of 47

while using TestEvoViz. Hence, the first part of our study address the following research
questions:

The second part of the study is about understanding how developers use the pro-
posed visualization to analyze, compare and tune the hyper parameters needed by the test
generation algorithm. Hence, our third and fourth research questions are:

6.2 Experimental Setup

6.2.1 Methodology Overview

To answer our research questions, we propose a methodology structured along six stages:

Fig. 17 TestEvoViz – NeoJSON project (Configuration 2); number of statements = 10;
number of iterations = 10; selection algorithm = rank selection; population size = 30; and
mutation rate = 1/3

Empir Software Eng (2022) 27:184 Page 23 of 47 184

1. Project under Study. We select a number of projects over which participants will
perform the experiment.

2. Video Tutorials & Training Session. We made a video tutorial and designed a training
session in which participants use the visualization to answer a number of questions in
order to get familiar with the tool.

3. Task Design. We designed tasks focused on three dimensions: analysis, comparison,
and tuning test generation processes.

4. Pilot. We perform a pilot in order to find issues and improve the tutorial, training
session, and tasks design.

5. Participant Recruitment. We recruited 22 participants to participate in our study with
different backgrounds in academia and industry.

Fig. 18 TestEvoViz – NeoJSON project (Configuration 3); number of statements = 10;
number of iterations = 10; selection algorithm = rank selection; population size = 20; and
mutation rate = 2/3

Empir Software Eng (2022) 27:184184 Page 24 of 47

6. Work Session & Data Collection. We design a work session for each participant and
define the instruments we use to collect the necessary data to answer our research
questions.

The remainder of this section elaborates on the stages described above.

6.2.2 Video Tutorial & Training Session

Before carrying out the training session, each participant receives by email a survey about
demography, a video tutorial, and a set of instructions to download and run the artifacts
needed for the experiment. During the training session, a participant has to generate unit
tests for a Stack class, which we consider as a simple toy example. This small exercises
requires the participant to interpret the visualization and remember the meaning of each
component. In addition to its pedagogical purpose, this training sessions serves to eval-
uate if the participants really understand the tutorial and gives them a chance to ask for
clarifications.

While participants were reviewing and interacting with TestEvoViz, we clarified the
doubts and questions that they asked us regarding particular components. After the clar-
ifications, all participants felt confident to understand all visual components within the
visualization.

6.2.3 Tasks

We define three tasks in order to evaluate our proposed visualization in three dimen-
sions: analyze, compare, and tune test generation processes. Table 4 describes each one of
these three tasks, and their rationale. While all the tasks focus on answering our research
questions, the task T3 mostly focuses on answering the research question RQ4.

6.2.4 Pilot

We perform a pilot with a software engineer that develops and maintains a genetically based
generator tool for Pharo. The pilot helped us: (1) clarify our questionnaire; (2) reduce the
tasks workload, since the pilot took two hours longer than we initially hoped. Before the
pilot task we asked participants to describe the important facts they see in the test evolution
of six generations.

We reduce the workload by reducing these tasks to analyze only three generations. But,
we let participants select three generations which they consider more interesting to analyze
than others. In a similar fashion, task three compared the evolution of five pairs of different
configurations. We reduced the task to compare only two pairs of configurations. After these
adjustments, we conducted a second pilot with a different engineer with experience in test
generation. The time needed to complete the task was 45 minutes, which also helped reduce
the fatigue effect between tasks.

6.2.5 Projects Under Study

To keep the task manageable, we use a code base that is relatively known to all the partici-
pants of the experiment, since these projects are part of the Pharo core. For task T1, we have
a basket of four projects: NEOJSON, a JSON parsing library. Regex, a regular expression
library, DataFrame, a popular data structure, Box2DLite, a small 2D physics engine. Each

Empir Software Eng (2022) 27:184 Page 25 of 47 184

Table 4 Tasks

T1 Concern: Analysis

Description: Choose three generations that you consider more interesting and describe the most
important fact you saw in these generations.

Rationale: The goal of this task is to evaluate how developers use the visualization to assess the genera-
tion process, and understand how they relate their conclusions with the visual components. In particular,
we are interested in understanding which aspects of the evolution process participants consider in their
conclusions and which aspects are not mentioned.

Associated Research Questions: RQ1 & RQ2 & RQ3

T2 Concern: Comparison

Description: Compare three different generation processes (each with different hyper-parameters),
summarize the differences and similarities between them.

Rationale: We provide participants three visualizations, each with a different configuration. This task
is about understanding the participant decision process about the parameters in the configuration. In
particular, we are interested in determining which factor participants are considering when choosing one
configuration over others. Subsequently, the participants have to describe the similarities and differences.
Finally, we ask participants to choose which configuration is more suitable.

Associated Research Questions: RQ1 & RQ2 & RQ3

T3 Concern: Hyperparameter tuning

Description: Configure the hyperparameters in order to improve the generated tests of a given target
class.

Rationale:We provide each participants three well know classes for which they need configure the hyper-
parameters and generate tests. Participants have to select and tune the hyper-parameters until they were
satisfied with the generated tests.

Associated Research Questions: RQ1, RQ2, & RQ4

participant performs task T1 and task T2 on a different project randomly assigned, in order
to not favor any project or task.

In case of task T3, hyper parameter tuning, participants need to have strong knowledge
about the class under test in order to assess the quality of the generated tests. In addition, par-
ticipants will generate tests multiple times with different parameters, therefore, the project
under analysis has to be relatively small in order to reduce the overhead needed for the gen-
erator tool. Otherwise, participants will spend more time waiting for the tool than analyzing
the generation process. For this reason, and inspired in previous works, for this task, we
considered three popular classes as classes under tests: ATM, Rectangle, and Vector. The
first target class is taken from the Pharo core package, the second is an implementation of
the main functionalities of ATM, and the third is taken from the PolyMath project.

6.2.6 Participants

We sent an open invitation to the Pharo developer community and the authors university stu-
dent and alumni mailing list. The Pharo community is composed of academics, researchers,
developers and student from different countries. In addition, we invited researchers that
work in test generation and software testing, searching in them in conferences in the area.

In total, we have 22 volunteers that participate in our experiment. We picked the partici-
pants according to their expertise in software testing and programming experience. Six PhD
students, two postdoctoral researchers, six professional engineers, one associated professor,
one university lecturer, a master student, and four undergrad students. Their programming

Empir Software Eng (2022) 27:184184 Page 26 of 47

Table 5 Participants (P.E. = Programming Experience (years); T.E.= Testing Experience (years); T.G. =
Familiar with Test Generation Tools (Yes/No); T1, T2, T3 = Participation in a particular task)

experience ranges from 1 to 30 years. 19 of them have 5 years of experience or more, and
only 3 of them have less than 5 years of experience. Note that the undergrad students that
participate in the experiment, already work in the software industry, in parallel to their stud-
ies. Twelve of them are familiar with test generator tools, and all of them have experience
in unit tests.

Due the time constraints not all participants perform all the three tasks, we balance the
effort and we ensure that each task was performed by 14 participants. Table 5 details the
experience and the task each participant perform during the experiment. Note that all par-
ticipants participate in the video tutorial and in the learning session. These 22 participants
are different, to the ones that perform the pilot.

6.2.7 Work Session & Data Collection

Figure 19 gives an overview of the work session and the data collection. The session of each
participant is structured as follows:

1. Demographic Questions – We first ask the participants to indicate their current
occupation, programming, testing, and test generation tools experience.

2. Video Tutorial & Training Session – All participants review the video tutorial, and per-
form the training session on which analyze the test generation process of one of the
projects under study assigned randomly.

3. Task Execution – Due time constraints all participants could not execute the three tasks.
For this reason, each participant was assigned to perform one or two tasks. Table 5
gives the task assigment of each participant. Each task was performed by exactly 14
participants. For task T1 and T2, we assign randomly a project under analysis, balancing

Empir Software Eng (2022) 27:184 Page 27 of 47 184

Fig. 19 Work session & data collection overview

the assigment across participants. In case of task T3, participants perform the activity
for the three target classes, but we randomly assign the order.

4. NASA Task Load Index (TLX) – After completing each task participants fills a NASA
TLX 3 to detail their perceptions of the cognitive load of each one of the tasks
Lopez Luro and Sundstedt (2019).

5. System Usability Scale (SUS) Form – After completing all their assigned tasks each
participant fill a usability using the SUS form 4, to evaluate the usability of the proposed
visualization Brooke (1996).

6. Feedback – Finally, each participant verbally provides the advantages and disadvan-
tages, improvement suggestions, and other commnet that they have about TestEvoViz.

We monitor the completion of the tasks and record participant’s screen during all the
experiments. Furthermore, we invite the participants to speak out on their thoughts, ques-
tions, and indications about their progress while carrying out the tasks. For this last point,
we previously ask for participant consent. The answers of all participants are anonymous
and available online 5.

6.3 Results

6.3.1 RQ.1 What are Developers Usability Perceptions of TestEvoViz?

Each participant uses a Likert scale to rate each one of the affirmations done in the ques-
tionnaire. Figure 20 lists the questions and participant answers in the system usability scale
form (SUS). We sum up the score for each participant, and then multiplied the score by

3https://humansystems.arc.nasa.gov/groups/TLX/
4https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
5https://bit.ly/3xHh6Yw

Empir Software Eng (2022) 27:184184 Page 28 of 47

https://humansystems.arc.nasa.gov/groups/TLX/
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
https://bit.ly/3xHh6Yw

Fig. 20 SUS Scale Results. The system usability scale (SUS) consists of a ten item questionnaire with five
response options for respondents; from Strongly disagree to Strongly agree (in a 5 point likert scale). This
figure summarizes the answers of 22 participants about the usability of TestEvoViz

2.5 to convert the original scores of 0-40 to 0-100, as advised in the original description of
the SUS form Brooke (1996). Participants’ usability score ranges from 42.5 to 100, with a
median of 70.

In total, 18 participants agreed TestEvoViz was easy to use. Three participants (P1, P8,
P9) said that it was not as easy and P7 found TestEvoViz complex. Regarding confidence, 19
of the 22 participants felt confident or partially confident using it. P7 did not feel confident
because the participant doubted the usefulness of the information shown in the visualization
tool, P18 said the middle panel (TestCase Evolution) was hard to understand because it does
not have a description of the components meaning (it is easy to forget its meaning).

On the other hand, two participants (P2, P8) manifested that they would not use it fre-
quently, since they do not use test generation techniques frequently either, and P7 said: “I
would not say frequently, perhaps I’d use it sometimes“. Other perceptions of the partici-
pants related to the tool were: P13 - “I had problems to understand the tool, but even I’m
not very familiarized with genetic algorithm and test generation, I could use it and I think
this speaks well of the tool“. P16 - “The tool helps me to see if it is of any use to change
these things, for example the number of generations, if it is of any use to increase or not“.

Empir Software Eng (2022) 27:184 Page 29 of 47 184

P6 - “The times I’ve used the generated tests, I’ve always asked which was the similarity
degree between the tests and many times I didn’t have it clear. It means, I generated a lot of
tests with EvoSuite, a big amount, and I used to say to myself that I don’t see the diversity
between the generated tests, then I think this tool lets me see the panorama in those cases“.

Overall, eight participants’ scores were equal or greater than 85, ten participants scored
from 60 to 75, two participants scored 47,5, and one participant scored 55, and the other
42,5.

Conclusions According the comments of the 22 participants about the tool, we can
conclude:

– Most of the participants agreed the tool was easy to use and felt confident using it;
– Considering the threshold of 68, commonly used to qualify usability systems (Brooke

1996), we can claim that the usability of TestEvoViz is acceptable.

6.3.2 RQ.2 What are Developers Cognitive Load Perceptions of TestEvoViz?

Figure 21 shows that participants perceive more physical demand during task T3. This is
mainly because, task T3 consists in tuning hyperparameter values which implicitly requires

Fig. 21 NASA-TLX Cognitive Effort Summary. Each color correspond to a task

Empir Software Eng (2022) 27:184184 Page 30 of 47

analyzing and comparing visualizations to understand the effect of different parameters.
Tasks T1 and T2 are less constrained since participants have to characterize and compare
the test generation process without having to modify any values. Six and seven participants
score this task higher than the average.

We do not set any time restrictions for any of the three tasks. Some participants completed
the task faster than the other participants. The range of the time for completing the task T1

was from 5 minutes to 37 minutes. For task T2 the range was from 6 minutes to 30 minutes.
And for task T3 was from 20 minutes to 87 minutes.

The wide time gap in performance for task T3 is because participants explore different
parameter configurations until they get satisfied with the generated tests. 11 participants
perceived their performance from good to perfect in the three tasks. But some participants
(two in the tasks T1, T2, and three in the task T3) felt kind of frustration while doing the
tasks because they forgot the usefulness of some components, or they could not get a higher
coverage.

Regarding, the cognitive effort perceptions in mental demand, temporal demand, effort,
and frustration. Figure 21 show small differences between mean values, however, there is
not a strong difference between tasks. In these particular, the box plots in these dimensions
are overlapping each other without any clear difference.

Conclusions According the answers of the participants about their cognitive load percep-
tions, we argue that:

– Participants perceive task T3 as more physical demanding than task T1 and T2, since the
activity of tuning hyperparameters requires also comparing and analyzing the resulting
visualizations;

– Participants have less confidence in their performance during task T3, since they were
unable to achieve higher coverage during the parameter tuning;

– All the tasks have similar perceptions about mental demand, temporal demand, effort,
and frustration.

6.3.3 RQ.3 How do Developers use TestEvoViz to Analyze and Compare Test
Generation Processes?

Task 1: Analyze This task is about selecting 3 generations and detailing the facts during
the evolution process that participants found the most important. Most selected genera-
tions were the ones that increased the branch coverage or presented more colorful inner
boxes. However, P3 selected the generation that contained a test with many descendants, P4
selected the first generation since most of the branches are discovered in this generation.
Six participants (P2-P6, P9) noticed the similarity between the tests in these generations.
Participants were curious about the generated code (using the popup), mainly to analyze
the similarity between tests. All of them prioritized the tests that contain inner nodes,
since they represent individuals that discover new branches regarding their ancestors. Three
participants (P2, P3, P9) used the interactions to highlight the ancestors of a given test in
order to understand why some tests were similar. Spark circles and the branch evolution
chart were only used to confirm that a given test or generation contributes to the coverage
increment.

Task 2: Comparison In this task, participants analyzed two visualizations, each one gener-
ated with a different set of hyperparameters. Participants had to highlight the most relevant

Empir Software Eng (2022) 27:184 Page 31 of 47 184

differences between two evolution processes, select the one they consider most useful, and
justify their selection. All participants essentially focused on the final branch coverage value
as a principal attribute for their final decision. Eight of 14 participants (P1, P2, P4-P9)
highlighted the importance of the test similarity in the final generation (note that we had
22 participants, however each task was carried out by 14 participants to avoid overloading
the participants). Consequently, participants highlighted the generated tests that have more
coverage than their parents, and analyzed how these tests contribute to achieving a higher
coverage in future generations. Only three participants (P6, P8, P9) related the differences
among values in the configurations and their impact in the generation process. However, P2,
P3 and P7 expressed their expectancy to get better results on visualizations configured with
a larger population size.

Conclusions By observing the 14 participants completing the tasks T 1 and T 2 (which are
related to RQ.3), we make the following claims:

– All participants paid attention to the final branch coverage value as a principal attribute
for their final decision;

– 8 of 14 participants highlighted the importance of the test similarity in the final
generation.

6.3.4 RQ.4 How do Developers use TestEvoViz to Tune Hyperparameters?

Task 3: Tuning The task T3 consists in tuning the hyperparameters of three different classes
(ATM, Rectangle, and PMVector) and selecting a configuration that generates better tests
according to their personal criteria. A script with a default setting of the hyperparameters
values was given, for each class, and the participants were able to change these values,
execute the script, and watch the effect of those changes in the visualization tool. The
participants could modify the values as many times they deemed necessary.

Figure 22 shows a visual summary of three participant sessions, in which the contrast
of the patterns are notorious (figures in Appendix show the visual summary of all the
participant sessions). Each row represents a participant session, in particular, (i) the hyperpa-
rameters the participants modify and (ii) the visual components they use to analyze the test
generation process. Each participant tunes hyperparameters for the three classes under study.
During the session participants generated tests multiple times with different parameters,
each test generation execution is represented with a dotted line.

Each row is split into two parts with a bold line. The top part displays the visual compo-
nents that participants analyze during the session. Each visual component is associated with
a color and the component name is on the left side. The bottom part shows the values of the
hyperparameters. The numeric hyperparameter is visualized with a circle where the ratio of
the circle is proportional to the hyperparameter value. This helps us identify if a hyperpa-
rameter was changed. The selection strategy kinds are depicted with a triangle. We assign
a color to each selection strategy, the figure legend shows the supported strategies and their
associated colors.

We observe that the main goal considered for all participants was the increasing of the
test coverage. Figure 22 shows the components observed, and the hyperparameter values
modified by each participant for the test generations. 10 of the 14 participants (P2, P12,
P14-P16, P18-P22) observed the middle panel at least 50% of the time after executing the
tool with a given configuration. In similar way, it happened with the Coverage Evolution
panel, which was looked at by nine participants (P2, P3, P5, P11, P16, P18-P19, P21-P22)

Empir Software Eng (2022) 27:184184 Page 32 of 47

at least 50% of the times after test generations were made. The principal reason because
these two components were more considered, in comparison with the rest, is because they
contain the coverage information achieved through the generations, also they show how the
evolution goes, i.e. if there is an increasing of the coverage in the generation or not, the
covered methods or branches of the target class, which tests were selected to survive until
the last generation, etc. Another important component for nine participants (P3, P5, P12,
P14, P16-P20) is the Similarity panel, the participants modified the hyperparameter values
not just to get higher coverage, but also a greater diversity between tests. And finally, four
participants (P15, P17, P18, P21) paid attention also in the Contribution panel, because they
took in consideration the method and class coverage increasing for tuning the values.

Participants change different hyperparameters during task T3. Five participants (P15,
P16, P3, P5, P12) reduced the number of generations in some executions because they saw
that after a certain number the coverage did not increase anymore. Three participants (P16,
P5, P21) increased the generation number because they observed that there was a gradual
increase in the coverage and they wanted to see if the coverage would still increase. While
eight participants (P2, P5, P11, P15, P17, P19, P20) considered, besides the coverage, also
the gradual evolution. It means, they took into account the newmethods or branches covered
in the next generations after the first. And four participants modified the mutation rate in
order to diversify the tests.

Conclusions Based on our observations, to complete the task related to hyperparameter
tuning, participants had the following behaviors:

– 10 of the 14 participants observed the evolution panel (middle panel) at least 50% of
the time after executing the tool with a given configuration to analyze the tests that
increment the coverage regarding their parents;

– 9 of the 14 participant observed the evolution panel to analyze the coverage variations
along generations;

– 9 of the 14 participant observed the similarity panel to get an overview of the test
diversity;

– The two most changed hyperparameters are the population size and the number of
generations.

6.3.5 Discussion & User Feedback

A number of items are worth discussing.

Customization P1 suggested that some components of TestEvoViz could be optional for
regular users of visualization, this participant said that the center panel showing the test
case evolution is the most important, and the rest can be activated on demand. A similar
suggestion is of P22, who said that the coverage value achieved is very important, and if any
user would like to see details about the evolution (the similarity, methods or branches that
were covered), the other panels could be activated. On the other hand, P3 suggested that very
similar tests could be visually grouped in a box, and a way to see the differences between
tests of the same generation would be helpful. While P19, P21, and P22 proposed the tool
be capable of showing code differences between parents and children. Other suggestions
were given by P7, P3, and P22, who proposed highlighting tests of the similarity chart when
a user is interacting with a test of the center panel and vice versa. P13, P14, P18, and P20

Empir Software Eng (2022) 27:184 Page 33 of 47 184

Fig. 22 Session visual summary – Summary of the session of three participants during Task T3. The visual
summary of the remaining participants may be found in the Appendix

Empir Software Eng (2022) 27:184184 Page 34 of 47

suggested incorporating descriptions of the components of the tool, in order to have quick
access to the information in case of forgetfulness.

Discarded tests To reduce the width of the visualization and the amount of information,
TestEvoViz does not show generated tests that do not contribute to the final generation.
However, P6 and P17 were curious to understand which test cases were discarded to see if
these tests were responsible for the increment of the class coverage.

Branch granularity analysis The test similarity metrics consider similarity at method level
and not at branch level, however, two participants (P3 and P9) wanted to contrast the
branches that were executing two tests to understand the exact difference in a number of
cases. That comparison can be possible through inner boxes’ popups. But like the popup, it
is just visible with the interaction, and this can complicate the comparison a bit.

Similarity Seven participants (P2, P7, P11-P13, P16-P17) expressed that the similarity
panel was hard to understand when the population size was bigger. Initially, we designed
the similarity panel to provide an overview of how similar the generated tests are. However,
a detailed exploration is not possible without many complex interactions with the visual-
ization. Therefore, we conclude that dedicated tools to detailed similarity comparison are
needed.

Hyperparameter tuning In order to modify the hyperparameter values and define the final
value, P2, P15, and P19 suggested a summary table that shows the values of the hyperpa-
rameters, and the coverage achieved using those values. P22 said that it would be helpful
to have two windows, one showing the graphic, produced by the visualization tool, of a
previous execution, and the other the graphic of the current execution.

7 Threats to Validity

As with any empirical evaluation, our user study has a number of threats to validity. The
following paragraphs report a number of them.

Scalability TestEvoViz uses a grid layout, which makes the overall visualization size
depend on the population size and the number of generations. Therefore, a larger visualiza-
tion typically requires scrollbars, which may involve more interaction from a practitioner
to enjoy the visualization. To mitigate the negative effect of this situation, our tool offers
zoom-in and zoom-out facilities using the mouse wheel. We argue that even though the size
of the nodes may be small when zoomed out, patterns remain identifiable.

Method colors We assign a particular color to each method of the target class. This color
helps identify whether methods are discovered multiple times by the algorithm or whether
the test covers new branches in a method. In the presence of a large number of methods,
such an approach could lead to reduced visualization readability. In this case, hovering the
mouse gives a contextual popup window information to precisely identify a method.

Empir Software Eng (2022) 27:184 Page 35 of 47 184

Pharo implementation of EvoSuite Our visualization is implemented over a test generator
for Pharo called SmallSuiteGenerator 6. SmallSuiteGenerator implements the original algo-
rithm of EvoSuite presented at (Fraser and Arcuri 2013). The main difference between our
implementation and EvoSuite is about resolving type information to drive the test genera-
tion. EvoSuite operates in Java, which is statically typed (i.e., each variable has a static type).
Since Pharo is a dynamically typed language (like Python and JavaScript), SmallSuiteGen-
erator has to use various strategies and heuristics to extract type information from executing
a Pharo application. Currently, TestEvoViz is not representing collected or inferred type
information that SmallSuiteGenerator uses to generate tests.

Whole test suite generation approach Our visualization targets the whole suite test gen-
eration approach implemented by EvoSuite, which considers one target at the time and a
single fitness function. However, there is another evolutionary algorithm that uses a many-
objective optimization algorithm. TestEvoViz may need to adapt a number of their compo-
nents to assess the evolution process of different test generation techniques (Panichella et al.
2018).

Participants & session load It is difficult to find people with an expertise in genetic algo-
rithm and/or test generation. Mainly because test generation tools are not yet widely used in
the industry. Participants without a background in the area have more difficulties using our
visualization, and this is one of the reasons that the sessions were longer. Although we send
a open invitation to participate in our study, we also personally invite people with knowl-
edge of test generation to reduce this threat. Therefore, we believe that our study capture
the feedback of a great variety of potential end users.

Project under study The projects used in tasks T1 and T2 were not developed by the par-
ticipants, and they were unfamiliar with the tested code. However, this is not an issue since
in practice testers often test code developed by others. We choose projects whose domain is
simple enough to be understood and tested in a reasonable time. For task T3, similar to pre-
vious studies (Fraser et al. 2013), we select classes that are well know for all participants,
this is important since they actually needed to analyze the resulting generated test to tune
the hyper-parameters. We also take into account the time needed for the tool to generate
tests, since for task T3 participants need to generated test multiple times. Nevertheless, the
selected projects and classes for the study limit the external validity of our study.

Conclusion We manually analyze and categorize participants’ answers, and actions while
they were using the visualization. Therefore, the conclusions and discussions presented in
the paper are limited by our perspective.

Generalization Our visualization helps developers introspect the generation process to
understand how the algorithm is performing. As we see in our case studies, a simple vari-
ation in the parameters may significantly impact the algorithm behavior. However, it is
important to clarify that the behavior also depends on many other variables, for instance, the
target class and the complexity of their methods. Therefore, it is not possible to generalize
the findings outside the configuration on which the algorithm was run.

6https://github.com/OBJECTSEMANTICS/SmallSuiteGenerator

Empir Software Eng (2022) 27:184184 Page 36 of 47

https://github.com/OBJECTSEMANTICS/SmallSuiteGenerator

8 RelatedWork

Though genetic algorithms were proposed in the 60s, numerous efforts have been made to
improve and evaluate genetic algorithms. Most of the existing works use standard visual-
izations (i.e. line charts and box plots) to show the evolution of a number of metrics along
evolution to describe each generation. The spread of fitness along each individual of a gen-
eration is usually represented using charts as we do in the third panel of TestEvoViz. A
number of detailed visualizations have been proposed to better understand the evolution
process.

Our visualization was inspired by a number of visual techniques even though they
have a different purpose. We combined and adapted these to build our proposed approach.
We employ spark circles (Sandoval Alcocer et al. 2019) to highlight coverage variations
between iterations. Previous studies used Cartesian layouts to visualize dynamic graphs, but
normally applied to software evolution and call graphs (Lanza 2001; Beck et al. 2012; Alco-
cer et al. 2013; Alcocer et al. 2019). We use a Cartesian layout to relate generated tests with
their corresponding iterations.

We associated a number of metrics to each node inspired in polymetric view (Lanza and
Ducasse 2003; Bergel et al. 2012; Bergel and hapao 2010). Polymetric views are commonly
used to visually map entity metrics in a glyph box glyph, this technique have been used
to enhance nodes within a graph. For instance, call graphs, and dependency graphs. At
difference of previous works, we use polymetric views to visualize different properties of a
given generated test along the evolution. Relationships between nodes with their ancestors
are represented as edges (Alcocer et al. 2013; Hart and Ross 2001). Edge lines were inspired
from hierarchical bundle edges (Holten 2006). Similar to previous work, bezier lines help
us to void dense edge collision and facilitates the analysis.

Hart et al. (Hart and Ross 2001) propose an ancestry view, to render all the ancestors
of the best individual after the generation process, using a tree layout and coloring nodes
based on a number of individual properties (i.e., gene values, fitness, and gene origins).
Our approach use similar structure to show the ancestors, however, our approach show all
ancestors of the final generation and provide highlights the ancestors of a particular node
when clicking it.

Romero et al. (Romero et al. 2002) use color maps to visualize the individuals and chro-
mosomes of the population. It use a matrix layout were each column is a generation, the
cell of the matrix contains the fitness value of each element. Ito et al. (Ito et al. 2008) pro-
posed the use of pseudo-color to visualize binary-code individuals of the population using
pseudo-color, assigning a red pixel to chromosomes that represent “1”, and a blue pixel to
“0”. In contrast, we use a graph to represent the relationship between elements.

Farooq et al. (Farooq et al. 2012; Farooq and Siddique 2014) propose a visualization for
interactive genetic algorithms (IGA), IGA combines the evolution mechanism with user’s
intelligent evaluation, where users help the algorithm in the evolution process. In particular,
this visualization helps users decide the generation for interaction. It uses a two-axis dot plot
visualization, where the horizontal axes are the generation number, and the vertical axes the
coverage of each individual for all generations.

Tomida et al. (Tomida et al. 2019) propose a technique to visualize the evolution process
of automated program repair. It is based on a tree layout showing the code genealogy. It
highlights the nodes according to the operations and variants performed in individuals of
the population. These operations are particular to tasks of automated program repair. At
difference of this work, we focus in test generation rather than program repair. The nodes
within our graph highlight test related metrics instead the algorithm operations.

Empir Software Eng (2022) 27:184 Page 37 of 47 184

At the difference of these works, our approach focuses on genetically-based test coverage
evolution. Therefore, our visualization renders information highly related to test evolu-
tion, their operations and properties. As far as we know, this is the first approach to help
developers understand the test generation process along the genetic algorithm.

Regarding the evaluation, all previous approaches present a number of examples and
case studies to highlight the usefulness of their proposed visualization (Farooq et al. 2012;
Farooq and Siddique 2014; Tomida et al. 2019; Ito et al. 2008; Romero et al. 2002; Hart
and Ross 2001). For instance, applying the visualization to understand how the genetic
algorithm reaches a number of solutions for traditional problems like the rastrigin prob-
lem (Romero et al. 2002), a timetabling problem, a jobshop scheduling problem, and
Goldberg and Horn’s long-path problem (Hart and Ross 2001). In this paper, we present
a dedicated user study with 22 participants, and analyze the application of the genetic
algorithm in a different domain which is test generation.

9 Conclusion and FutureWork

TestEvoViz is an interactive visualization approach that help developers to introspect a
genetic algorithm-based test generation process. It depicts different concepts and decisions
made by the genetic algorithm through various related visual components. We illustrated
the applicability of our proposed visualization thought two real world case studies. Comple-
mentary, we also performed an user study involving 22 participants that use TestEvoViz to
analyze, compare and tune the test generation processes. Our finding shows that participants
mainly focus on the code coverage and test diversity as principal attributes of the gener-
ated test. As a consequence, the most used visual components by our participants are: (i)
the similarity panel, which brings an overview of the similarity between generated test; (ii)
the evolution panel, which depicts how the different test were evolving across generations,
and (iii) the coverage evolution panel which gives the minimum, maximum and average
coverage for each generation.

We believe TestEvoViz extends the State of the Art in comprehending evolution-based
test generation by means of an expressive, intuitive, and effective visualization. However,
TestEvoViz may be considered as a contribution on which numerous extensions can be built
upon. In particular:

– Assertions are currently not represented in our visualization. Our future work contem-
plates visualizing assertions as a combination of the program coverage by the assertions
and the syntactic components composing that assertion;

– From an initial configuration of hyperparameters, TestEvoViz visualizes the evolution
of generated unit tests. As we have shown, assessing the impact of some changes in the
initial configuration is a manual task that requires spotting differences between multiple
visualizations. As a future work, we will design a new visualization that shows the
difference of the evolution between two or more different initial configurations. Some
ingredient from our previous work will be considered (Alcocer et al. 2013);

– TestEvoViz has been designed to accommodate with the execution model of EvoSuite.
However, nothing prevents our visualization to operate with a different execution model
and metaheurstics. For example, our visualization may be used to support other opti-
mization techniques, such as Hill Climber, or reinforcement learning (Fontes et al.
2021).

Empir Software Eng (2022) 27:184184 Page 38 of 47

Appendix

Fig. 23 Session visual summary of participants during Task T3

Empir Software Eng (2022) 27:184 Page 39 of 47 184

Fig. 24 Session visual summary of participants during Task T3

Empir Software Eng (2022) 27:184184 Page 40 of 47

Fig. 25 Session visual summary of participants during Task T3

Empir Software Eng (2022) 27:184 Page 41 of 47 184

Fig. 26 Session visual summary of participants during Task T3

Empir Software Eng (2022) 27:184184 Page 42 of 47

Fig. 27 Session visual summary of participants during Task T3

Empir Software Eng (2022) 27:184 Page 43 of 47 184

Acknowledgements Juan Pablo Sandoval Alcocer thanks ANID FONDECYT Iniciación Folio 11220885
for supporting this article. Alexandre Bergel is grateful to the FONDECYT Regular project 1200067 for hav-
ing partially sponsored thework presented in this article. We are deeply grateful to Lam Research (4800054170
and 4800043946). We thank Renato Cerro for his help reviewing an early draft of the manuscript.

Funding Juan Pablo Sandoval Alcocer thanks ANID FONDECYT Iniciación Folio 11220885 for supporting
this article. Alexandre Bergel is grateful to the FONDECYT Regular project 1200067 for having partially
sponsored the work presented in this article.

References

Alcocer JPS, Beck F, Bergel A (2019) Performance evolution matrix: visualizing performance variations
along software versions. In: Proceedings of the 7th IEEE working conference on software visualization,
VISSOFT

Alcocer JPS, Bergel A, Ducasse S, Blueprint MD (2013) Performance evolution understanding the impact of
software evolution on performance. In: Proceedings of the 1st IEEE Working Conference on Software
Visualization, VISSOFT, IEEE, pp 1–9

Alcocer JPS, Jaimes HC, Costa D, Bergel A, Beck F (2019) Enhancing commit graphs with visual runtime
clues. In: 2019 Working conference on software visualization (VISSOFT), pp 28–32

Alshahwan N, Harman M (2012) Augmenting test suites effectiveness by increasing output diversity. In:
Proceedings of the 34th international conference on softwareengineering, ICSE ’12, IEEE Press, pp 1345–1348

Arcuri A, Fraser G (2011) On parameter tuning in search based software engineering. In: Proceedings of
the third international conference on search based software engineering, SSBSE’11, Springer-Verlag,
pp 33–47

Arcuri A, Fraser G (2014) On the effectiveness of whole test suite generation. In: Proceedings of the sixth
international conference on search based software engineering, SSBSE’14, pp 1–15. Springer-Verlag,
Heidelberg

Beck F, Burch M, Diehl S, Weiskopf D (2017) A taxonomy and survey of dynamic graph visualization.
Comput Graph Forum 36(1):133–159

Beck F, Burch M, Vehlow C, Diehl S, Weiskopf D (2012) Rapid serial visual presentation in dynamic graph
visualization. In: Proceedings of IEEE symposium on visual languages and human-centric computing,
VL/HCC, pp 185–192

Bergel A, Bañados F, Robbes R, Binder W (2012) Execution profiling blueprints. Softw Prac Exp 42:09
Bergel A, hapao VP (2010) Increasing test coverage with science of computer programming, 79:86 – 100,

2014 Experimental Software and Toolkits (EST 4): a special issue of the Workshop on Academic
Software Development Tools and Techniques, WASDeTT-3

Brooke J (1996) SUS: a quick and dirty usability scale. Usability Evaluation in Industry :189
Campos J, Ge Y, Albunian N, Fraser G, Eler M, Arcuri A (2018) An empirical evaluation of evolutionary

algorithms for unit test suite generation. Inf Softw Technol 104:207–235
Cota Vidaure A, Cusi Lopez E, Sandoval Alcocer JP, Bergel A (2020) TestEvoViz: visual introspection

for genetically-based test coverage evolution. In: 2020 Working conference on software visualization
(VISSOFT), pp 1–11

Danglot B, Vera-Perez O, Zhongxing Y, Zaidman A, Monperrus M, Baudry B (2019) A snowballing
literature study on test amplification. J Syst Softw 110398:157

Farooq H, Siddique MT (2014) A comparative study on user interfaces of interactive genetic algorithm.
Procedia Computer Science, 32:45–52, 2014. The 5th International Conference on Ambient Systems,
Networks and Technologies (ANT-2014), the 4th International Conference on Sustainable Energy
Information Technology, SEIT

Farooq H, Zakaria N, Siddique MT (2012) An interactive visualization of genetic algorithm on 2-d graph. Int
J Softw Sci Comput Intell 4(1):34–54

Fontes A, Gay G, Neto FGdO, Feldt R (2021) Automated support for unit test generation: a tutorial book
chapter. CoRR:2110.13575

Fraser G, Arcuri A (2011) Evolutionary generation of whole test suites. In: International conference on
quality software (QSIC). IEEE Computer Society, USA, pp 31–40

Fraser G, Arcuri A (2013) Whole test suite generation. IEEE Trans Softw Eng 39(2):276–291
Fraser G, Staats M, McMinn P, Arcuri A, Padberg F (2013) Does automated white-box test generation really

help software testers? In: Proceedings of the 2013 international symposium on software testing and
analysis, ISSTA 2013, pp 291–301. Association for Computing Machinery, New York

Empir Software Eng (2022) 27:184184 Page 44 of 47

http://arxiv.org/abs/2110.13575

Fraser G, Wotawa F (2009) Increasing diversity in coverage test suites using model checking. In: Proceedings
of the 2009 ninth international conference on quality software, QSIC’09, pp 211–218. IEEE Computer
Society, USA

Fraser G, Zeller A (2010) Mutation-driven generation of unit tests and oracles. In: Proceedings of the ACM
international symposium on software testing and analysis, ISSTA ’10, ACM, pp 147–158

Hart E, Ross P (2001) Gavel - a new tool for genetic algorithm visualization. IEEE Trans Evol Comput
5(4):335–348

Holten D (2006) Hierarchical edge bundles: visualization of adjacency relations in hierarchical data. IEEE
Trans Vis Comput Graph 12(5):741–748

Ito S-I, Mitsukura Y, Miyamura HN, Saito T, Fukumi M (2008) A visualization of genetic algorithm using
the pseudo-color. Springer-verlag, Heidelberg, pp 444–452

LanzaM (2001) The evolution matrix: recovering software evolution using software visualization techniques.
International Workshop on Principles of Software Evolution (IWPSE) :09

Lanza M, Ducasse S (2003) Polymetric views - a lightweight visual approach to reverse engineering. IEEE
Trans Softw Eng 29(9):782–795

Lopez Luro F, Sundstedt V (2019) A comparative study of eye tracking and hand controller for aiming tasks
in virtual reality. In: Proceedings of the 11th ACM symposium on eye tracking research & applications,
ETRA’19. Association for Computing Machinery, New York

Murugesan S, Bouchard K, Brown J, Kiran M, Lurie D, Hamann B, Weber GH (2020) State-based network
similarity visualization. Inf Vis 19(2):96–113

Pacheco C, Ernst MD (2007) Randoop: feedback-directed random testing for java. In: Companion to the
22nd ACMSIGPLAN conference on object-oriented programming systems and applications companion,
OOPSLA ’07, pp 815–816. Association for Computing Machinery, New York

Panichella A, Kifetew FM, Tonella P (2018) Automated test case generation as a many-objective optimisation
problem with dynamic selection of the targets. IEEE Trans Softw Eng 44(2):122–158

Panichella A, Panichella S, Fraser G, Sawant AA, Hellendoorn VJ (2020) Revisiting test smells in automat-
ically generated tests: limitations, pitfalls, and opportunities. In: 2020 IEEE international conference on
software maintenance and evolution (ICSME), pp 523–533

Romero G, Guervós JJ, Valdivieso PA, Castellano JG, Merelo C, Arenas MG (2002) Genetic algorithm
visualization using self-organizing maps. In: Proceedings of the 7th international conference on parallel
problem solving from nature, PPSN VII. Springer-Verlag, Heidelberg, pp 442–451

Sandoval Alcocer JP, Camacho Jaimes H, Costa D, Bergel A, Beck F (2019) Enhancing commit graphs with
visual runtime clues. In: 2019 Working conference on software visualization (VISSOFT), pp 28–32

Shamshiri JMS, Rojas L, Gazzola G, Fraser P, Mcminn LM, Arcuri A (2018) Random or evolutionary search
for object-oriented test suite generation?

Tomida Y, Higo Y, Matsumoto S, Kusumoto S (2019) Visualizing code genealogy: How code is evolu-
tionarily fixed in program repair? In: 2019 working conference on software visualization (VISSOFT),
pp 23–27

Zeller A, Gopinath R, Böhme M, Fraser G, Holler C (2019) The fuzzing book. In: The Fuzzing Book,
Saarland University, Retrieved 2019-09-09 16:42:54+02:00

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Andreina Cota Vidaurre is a machine learning engineer at Cen-
tro Nacional de Inteligencia Artificial (CENIA), Chile. Her research
interests include software maintenance and evolution, software test-
ing, software visualization, artificial intelligence, machine learning,
and data analysis.

Empir Software Eng (2022) 27:184 Page 45 of 47 184

Evelyn Cusi López is a Data Scientist (Research and Development)
at Project44, Germany. She received her BSc (Hons) in System
Engineering from Mayor de San Simón University, Bolivia. Evelyn
worked as software engineer for three years and she was part of the
GSoC program (Google Summer of Code) as a contributor in 2019
and as a mentor in 2021 for the Pharo consortium. She is interested
in studying and improving software quality and contributing to open
source. Her research interests include software maintenance and evo-
lution, artificial intelligence, machine learning, data analysis and data
visualization.

Juan Pablo Sandoval Alcocer is an Assistant Professor at the
Department of Computer Science, School of Engineering, Pontifi-
cia Universidad Católica de Chile. He received the Ph.D. degree in
computer science from University of Chile, Chile, in 2016. He is
part of the Software Engineering and Intelligent Systems Labora-
tory (SEIS Lab). His research interests lie in software engineering,
more specifically in the fields of software maintenance, mining soft-
ware repositories, software performance, software visualization, and
search-based software testing. He participated as a reviewer expert in
various prestigious conferences and journals in the field including:
EMSE, IEEE VIS, VISSOFT, JSS, and IST. He is also member of the
Pharo community.

Alexandre Bergel is computer scientist at RelationalAI, Switzerland.
Until 2022, he was Associate Professor and researcher at the Uni-
versity of Chile. Alexandre Bergel and his collaborators carry out
research in software engineering. His focus is on designing tools
and methodologies to improve the overall performance and internal
quality of software systems and databases by employing profiling,
visualization, and artificial intelligence techniques. Alexandre Bergel
is member of the editorial board of Empirical Software Engineer-
ing and authored four books in the fields of data visualization,
intelligence artificial, and the Pharo programming language.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is
solely governed by the terms of such publishing agreement and applicable law.

Empir Software Eng (2022) 27:184184 Page 46 of 47

Affiliations

Andreina Cota Vidaurre1,2 · Evelyn Cusi López1 · Juan Pablo Sandoval Alcocer2 ·
Alexandre Bergel3,4

Andreina Cota Vidaurre
andycotvy@gmail.com

Evelyn Cusi López
cusi.evelyn@gmail.com

Alexandre Bergel
alexandre.bergel@me.com

1 SEMANTICS S.R.L., Cochabamba, Bolivia
2 Department of Computer Science, School of Engineering, Pontificia Universidad Católica de Chile,

Santiago, Chile
3 University of Chile, Santiago, Chile
4 RelationalAI, Bern, Switzerland

Empir Software Eng (2022) 27:184 Page 47 of 47 184

http://orcid.org/0000-0002-8699-4522
http://orcid.org/0000-0002-8335-4351
http://orcid.org/0000-0001-8087-1903
mailto: andycotvy@gmail.com
mailto: cusi.evelyn@gmail.com
mailto: alexandre.bergel@me.com

	TestEvoViz: visualizing genetically-based test coverage evolution
	Abstract
	Introduction
	TestEvoViz
	Previous work
	Artifact
	Outline

	Background: Genetically-Based Unit-Test Generation
	Unit-Test Generation
	Initial Population
	Evolution

	Challenges

	TestEvoViz
	Data Model and Introspection
	Test Case Evolution
	Nodes
	Edges
	Killed unit tests
	Interaction

	Test Case Similarity
	Static Similarity
	Dynamic similarity

	Generation Contribution
	Coverage Evolution

	Examples
	Initial Population
	Crossover and mutation
	Improving generation coverage
	Discovering dependencies
	Discarding weak tests
	Population diversity

	Case Studies
	Regex
	Baseline
	Number of statements
	Population size
	Mutation rate

	NeoJSON
	Baseline
	Number of statements
	Population size
	Mutation rate

	User Study
	Research Questions
	Experimental Setup
	Methodology Overview
	Video Tutorial & Training Session
	Tasks
	Pilot
	Projects Under Study
	Participants
	Work Session & Data Collection

	Results
	RQ.1 What are Developers Usability Perceptions of TestEvoViz?
	Conclusions

	RQ.2 What are Developers Cognitive Load Perceptions of TestEvoViz?
	Conclusions

	RQ.3 How do Developers use TestEvoViz to Analyze and Compare Test Generation Processes?
	Task 1: Analyze
	Task 2: Comparison
	Conclusions

	RQ.4 How do Developers use TestEvoViz to Tune Hyperparameters?
	Task 3: Tuning
	Conclusions

	Discussion & User Feedback
	Customization
	Discarded tests
	Branch granularity analysis
	Similarity
	Hyperparameter tuning

	Threats to Validity
	Scalability
	Method colors
	Pharo implementation of EvoSuite
	Whole test suite generation approach
	Participants & session load
	Project under study
	Conclusion
	Generalization

	Related Work
	Conclusion and Future Work
	Appendix 1
	References
	Affiliations

