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Abstract

The move from boxed products to services and the widespread adoption of cloud computing
has had a huge impact on the software development life cycle and DevOps processes. Par-
ticularly, incident management has become critical for developing and operating large-scale
services. Prior work on incident management has heavily focused on the challenges with
incident triaging and de-duplication. In this work, we address the fundamental problem of
structured knowledge extraction from service incidents. We have built SoftNER, a frame-
work for mining Knowledge Graphs from incident reports. First, we build a novel multi-task
learning based BiILSTM-CRF model which leverages not just the semantic context but also
the data-types for extracting factual information in the form of named entities. Next, we
present an approach to mine relations between the named entities for automatically con-
structing knowledge graphs. We have deployed SoftNER at Microsoft, a major cloud service
provider and have evaluated it on more than 2 months of cloud incidents. We show that
SoftNER’s unsupervised pipeline learns the software entity types from unstructured inci-
dent data with high precision of 0.96 (at rank 50) and 0.77 (at rank 100). We also evaluate
and show that SoftNER’s unsupervised pipeline accurately labels data with a precision of
0.94. Further, our multi-task learning based deep learning model also outperforms the state-
of-the-art NER models with an average F1 of 0.96. Lastly, using the knowledge extracted
by SoftNER, we are able to build accurate models for tasks such as incident triaging and
recommending entities based on their relevance to incident titles.
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1 Introduction

In the last decade, two major paradigm shifts have revolutionized the software industry. First
is the move from boxed software products to services. Large software organizations like
Adobe and Microsoft! which pre-date the internet revolution have been aggressively trying
to move from selling boxed products to subscription based services. This has primarily been
driven by the benefits of subscription based services such as scalability, faster releases,
insights from telemetry, and, better revenue stability. The second major shift has been the
widespread adoption of public clouds. More and more software companies are moving from
on-premises data centers to public clouds like Amazon AWS, Google Cloud, Microsoft
Azure, etc. Gartner has forecasted? the public cloud market to grow to about $266 billion
in revenue in 2020, out of which about 43% revenue will be from the Software as a Service
(SaaS) segment. The cloud revolution has enabled companies like Netflix, Uber, etc. to build
internet scale products without having to provision their own infrastructure.

These paradigm shifts have also had a transformational effect on the way software is
developed, deployed, and maintained. For instance, software engineers no longer develop
monolithic software. They build services that have dependencies on several 1%! party and
374 party services and APIs. Typically, any web application will leverage cloud services for
basic building blocks like storage (relational and blob), compute, and authentication. These
complex dependencies introduce a bottleneck where a single failure can have a cascading
effect. In 2017, a small typo led to a major outage in the AWS S3 storage service®, which
ended up costing over $150 million to customers like Slack, Medium, etc. Microsoft had a
glitch in their Active Directory in October 2019*, which locked out customers from access-
ing their Office 365 and Azure accounts. These outages are inevitable and can be caused
by various factors such as software bugs, misconfigurations (Mehta et al. 2020), or even
environmental factors.

To keep up with these changes, DevOps processes and platforms have also evolved over
time (Dang et al. 2019; Kumar et al. 2019). Most software companies these days have
incident management and on-call duty as a part of the DevOps workflow, where the key
motivation is to reduce impact on customers by mitigating any issue as soon as possible. We
discuss the incident life-cycle and some of the associated challenges in detail in Section 2.
Prior work on incident management has largely focused on two challenges: incident triag-
ing (Chen et al. 2019a, b) and diagnosis (Bansal et al. 2020; Luo et al. 2014). Here, triaging
refers to the process of identifying and routing the incident to the appropriate team for res-
olution. Chen et al. (2019b) did an empirical study where they found that up to 60% of
incidents can be mis-triaged. They proposed DeepCT, a deep learning approach for auto-
mated incident triaging using incident data (title, summary, comments) and environmental
factors.

Based on our experience from operating web-scale cloud services at Microsoft and
discussions with various product teams, we observe that a key challenge in incident manage-
ment lies in the lack of structured representations of these incidents. These incidents could
be created by a wide variety of sources such as customers, engineers, and even automated

Uhttps://www.pcworld.com/article/2038 194/microsoft-says-its-boxed-software-probably-will-be-gone-within
-a-decade.html
Zhttps://www.gartner.com/en/newsroom/press-releases/2019-11-13-gartner-forecasts-worldwide-public-cloud
-revenue-to-grow-17-percent-in-2020

3https://www.wsj.com/articles/amazon-finds- the-cause- of - its-aws- outage-a-typo- 1488490506
“https://www.theregister.co.uk/2019/10/18/microsoft_azure_mfa/
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monitoring systems. They are mostly unstructured and contain several types of information
like incident metadata, description, stack traces, outputs of shell scripts, images, etc. As a
result, on-call engineers spend a considerable amount of effort manually parsing verbose
incident descriptions to understand the issue, locating key information for mitigation, and
finally engaging the appropriate team to acknowledge and fix the issue. The time and effort
spent here is termed as Time-To-Engage (TTE) and adds a significant delay to the ensuing
tasks in the incident life-cycle.

Thus, in this work, we address the key problem of extracting structured knowledge
from service incidents. This structured knowledge would reduce the effort spent by on-
call engineers by opening up avenues for automating processes like log extraction and
health checks on resources (VMs, Databases, etc.) identified within these descriptions. The
extracted knowledge would also help build better models for performing downstream tasks
like triaging and root-cause analysis.

Ideally, any knowledge extraction framework should have the following qualities:

1. It should be unsupervised because it is laborious and expensive to annotate a large
amount of training data. This is important since a service’s unique vocabulary is
unknown.

2. It should be domain agnostic so that it can scale to a high volume and a large number
of information entity types. Unlike in the web domain, where there is a small set of key
entities such as people, places, and organizations, for incidents, we don’t know these
entities apriori.

3. It should be extensible so that we can adapt the bootstrapping techniques to incidents
from other services, or even other data sets such as bug reports. This is critical because
each service (e.g. compute, networking, storage) could have its unique vocabulary and
terminology.

We have designed Software artifact KNowledge ExtRaction (SoftNER), a framework
for unsupervised knowledge extraction from service incidents, which has these three qual-
ities: unsupervised, domain agnostic, and extensible. As shown in Fig. 1, we break down
knowledge extraction into three steps. First, we use Named-entity recognition (NER) for
extraction of factual and structured information from the incidents. We leverage syntac-
tic pattern extractors for bootstrapping the training data. Further, we incorporate a novel
multi-task BiLSTM-CRF deep learning model with an attention mechanism. Next, we
enrich these entities by mining binary relations between the entities. Lastly, we auto-
matically construct knowledge graphs using the entities and relations extracted. We have
evaluated and deployed SoftNER at Microsoft, a major cloud service provider. We show
that our unsupervised knowledge graph mining has high precision. Our multi-task deep
learning model also outperforms existing state-of-the-art models on the NER task. Lastly,
using the extracted knowledge, we show that we can build more accurate models for key
downstream tasks like incident triaging and also improve tooling in incident management
platforms.
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Fig. 1 SoftNER Overview
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In this work, we make the following main contributions:

1. We propose SoftNER, the first approach for completely unsupervised Knowledge
Graph mining from service incidents.

2. We build a novel multi-task learning based deep learning model for named-entity
recognition which leverages not just the semantic features but also the data-types. Our
evaluation shows that it outperforms the existing state-of-the-art NER models.

3. We propose a novel approach to mine relations between the extracted entities for
construction of knowledge graphs.

4. We do an extensive evaluation of SoftNER on over 2 months of cloud service incidents
from Microsoft.>

5. Lastly, we have deployed SoftNER in production at Microsoft where it has been used
for knowledge extraction from incidents for over 6 months.

The rest of the paper is organized as follows: In Section 2, we discuss insights from
the incident management processes at Microsoft. Section 3 discusses the related work and
Section 4 provides an overview of the SoftNER framework. Sections 5 and 6 provide details
of our approach to knowledge extraction using named-entity recognition and knowledge
graph construction respectively. Section 7 describes the implementation and deployment
details. In Section 8, we discuss the experimental evaluation of our approach. Section 9
describes two applications of SoftNER in detail and we address potential threats to validity
in Section 10. Lastly, we the discuss the generalizability of SoftNER and future work in
Section 11. We conclude the paper in Section 12.

This paper extends our prior publication (Shetty et al. 2021) presented at the 43"¢
International Conference on Software Engineering: Software Engineering in Practice. New
materials with respect to the conference version include:

1. An extension to the SoftNER framework, where we propose and evaluate an unsuper-
vised approach to further extract entity relations and construct knowledge graphs using
co-occurrence information (Section 6).

2. An application of the constructed knowledge graph by recommending required enti-
ties for incidents based on incident titles (Section 9.2). Here, we use a combination
of clustering and a novel path based scoring technique to identify entity-incident
relevance.

3. An evaluation of the quality of labeled data created by the unsupervised data labeling
component of SoftNER (Section 8.3).

4. Additional details regarding the integration of SoftNER with the incident management
platform at Microsoft (Section 7).

2 Incident Life-Cycle

In Microsoft, an incident is defined as an unplanned interruption or degradation of a prod-
uct or service that is causing customer impact. For example, a slow connection, a timeout,
a crash, etc. could constitute an incident. Here, we detail the incident management pro-
cess which defines the various steps an incident goes through - from creation to closing.
Bugs and incidents are very different, as in our case incidents may or may not lead to
bugs. Furthermore, incidents often require the involvement of on-call developers who have

SWe cannot disclose the number of incidents due to Microsoft Policy.
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been designated to respond to incidents. Figure 2 presents a high level view of the incident
management process. Most online services have their own specific incident management
protocol. This figure is a generic process that could apply outside of Microsoft as well.

The incident management process is broadly classified into four phases. In the first phase
- alerting phase, typically an alert is fired when the service monitoring metrics fall below a
pre-defined acceptance level in terms of performance (e.g. slow response, slow transfer rate,
system hang or crash, etc.). This leads to phase two - the engagement phase. In this phase,
an incident is first created in the incident database. It is then escalated to a “related” team.
The identification of the first “related” team is automatic, based on heuristics or component
ownership. The team investigates the incidents and engages with relevant stakeholders or
re-routes it to a more appropriate team to repeat the steps. This process is called Incident
Triage, where the appropriate team is identified to take up the resolution of this incident.
Following triage, in the investigation phase, the appropriate team identifies the problem
cause and moves over to mitigation and root cause analysis. Then, identified bugs, if any, are
filed for engineering teams to fix. In the final phase of resolution, the incident is resolved
and bugs are fixed in the system. Our work applies directly to the engagement and inves-
tigation phases, dealing with unsupervised structured knowledge extraction from service
incident descriptions.

3 Related Work

SoftNER is inspired from prior work in two main domains: (1) software engineering and (2)
information retrieval. In software engineering, incident management has recently become
an active area of research. Significant work has been done on specific aspects of incident
management, such as automated triaging of incidents, incident diagnosis, and detection.
Our work is complementary to these efforts since we focus on the fundamental problem of
structured knowledge extraction from incidents. Also, in information retrieval, there have
been decades of research on knowledge extraction from web data. However, majority of the
research in the web space has focused on supervised or semi-supervised entity extraction,
limited to a known set of entities such as people, organizations and places. Additionally,
in software artifacts like incidents, the vocabulary is not limited to natural languages and
has other entities such as GUIDs, Exceptions, IP Addresses, etc. Hence, SoftNER leverages
an unsupervised framework along with a novel data-type aware deep learning model for
knowledge extraction. In this section, we further discuss related work in these areas:

Incident management. Recent work on incident management has been focused on the
problem of triaging incidents to correct teams. As per the empirical study by Chen et al.
(2019a), mistriaging of incidents happen quite frequently and can lead up to a delay of
over 10X in triaging time, apart from the lost revenue and customer impact. To solve
this problem, they have also proposed DeepCT (Chen et al. 2019b), a deep learning
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Fig.2 Incident life-cycle
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based method for routing of incidents to the correct teams. They evaluate the model on
several large-scale services and are able to achieve a high mean accuracy of up to 0.7.
There has also been a significant amount of work done on diagnosing and root causing
of service incidents. Nair et al. (2015) uses hierarchical detectors based on time-series
anomaly detection for diagnosing incidents in services. DeCaf (Bansal et al. 2020) uses
random forest models for automatically detecting and categorizing performance issues
in large-scale cloud services. It also categorizes the detected issues into the buckets of
new, known, regressed, resolved issues based on trend analysis. Systems such as AirAlert
(Chen et al. 2019) have been built using machine learning to predict critical service inci-
dents, called outages, in large scale services. It correlates signals and dependencies from
across the cloud system and uses machine learning for predicting outages. Different from
existing work, we focus on the fundamental problem of structured knowledge extrac-
tion from incidents. Then, we show that using the knowledge extracted by SoftNER,
we can build significantly more accurate models for these incident management tasks
(Section 9).

Bug reports.  Significant amount of research has been done on bug reports in the tradi-
tional software context. SoftNER is inspired by InfoZilla (Bettenburg et al. 2008) which
leverages heuristics and regular expressions for extracting four elements from Eclipse
bug reports: patches, stack traces, code, and lists. Unlike InfoZilla, we build a completely
unsupervised deep learning based framework that enables extracting hundreds of enti-
ties without requiring any prior knowledge about them. Our work also targets incidents,
which are more complex than bugs because of numerous layers of dependencies and
real-time mitigation requirements. Bug triage has been an active area of research (Anvik
et al. 2006; Tian et al. 2016; Bortis and Van Der Hoek 2013; Wang et al. 2014) in the
software engineering community. Other aspects of bug reports such as bug classification
(Zhou et al. 2016) and bug fix prediction time (Ardimento and Dinapoli 2017) have also
been explored. Similar to incidents, existing work on bug reports have largely used the
unstructured attributes like bug description as it is. Though we have focused on incidents,
SoftNER can be applied to bug reports for extracting structured information and building
models for tasks like bug triaging, classification, etc.

Information retrieval. Knowledge and entity extraction has been studied in depth by the
information retrieval community. Search engines like Google and Bing rely heavily on
entity knowledge bases for tasks like intent understanding (Pantel et al. 2012) and query
reformulation (Xu et al. 2008). Named-Entity Recognition (NER) (Nadeau and Sekine
2007), specifically, is a well explored task of parsing unstructured text to detect entities
and classify them into specific categories. Prior work on NER has explored new domains,
such as social media platforms (Finin et al. 2010; Ritter et al. 2011), (Limsopatham and
Collier 2016; Aguilar et al. 2019) and biomedical text (Kulkarni et al. 2018; Greenberg
et al. 2018). Several of these use supervised methods for NER that require a large amount
of training data, which can be cost prohibitive to collect. Hence, search engines com-
monly use semi-supervised methods which leverage a small seed set to bootstrap the
entity extraction process. For instance, the expert editors would seed the entity list for
a particular entity type, let’s say fruits with some initial values such as {apple, mango,
orange}. Then using pattern or distributional extractors, the list would be expanded to
cover the entire list of fruits. In this work, our goal was to build a fully unsupervised
system where we don’t need any pre-existing list of entity types or seed values. This is
primarily because every service and organization is unique and manually bootstrapping
SoftNER would be very laborious.

@ Springer
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While NER is well explored in the web space, in software engineering, however, there
has been relatively less work on NER. Ye et al. (2016) annotated 5K sentences from
StackOverflow with a limited set of five named entity types (Programming Language,
Platform, API, Tool-Library-Framework and Software Standard). The authors then used a
traditional feature-based CRF model to recognize these entities. In contrast, with SoftNER
we aim to perform NER and knowledge extraction at a much larger scale (tens of thou-
sands of incidents with 50-100 entity types that are unknown apriori) using an unsupervised
approach. Additionally, incident reports, unlike web data, contain not just natural language
tokens but also other entities such as GUIDs and IP Addresses. Hence, SoftNER leverages
a novel data-type aware multi-task model for knowledge extraction, specifically designed
for the software domain.

Lastly, in information retrieval and natural language processing, NER is commonly fol-
lowed by Relation Extraction (Pawar et al. 2017). A relation usually denotes a relationship
between two or more named entities, and the task of relation extraction (RE) consists of
extracting mentions of relations of interest in each sentence. Similar to NER, several sta-
tistical (McDonald et al. 2005; Zelenko et al. 2003), machine learning, as well as deep
neural models (Hashimoto et al. 2015; Hendrickx et al. 2019) have been proposed for rela-
tion extraction. In this work, we follow a similar approach to Zelenko et al. (2003) and
McDonald et al. (2005) to use co-occurrence as a signal for entity relations. In contrast to
these approaches, we further use a co-occurrence based metric (NPMI) to score extracted
relations and filter noisy candidates.

4 SoftNER Overview

Incident management is key to running large scale services in an efficient way. However,
there is a lot of scope for optimization which can inturn increase customer satisfaction,
reduce on-call fatigue, and provide revenue savings. Existing work on incident manage-
ment has primarily focused on incident triaging. The state-of-the-art incident triaging
methods (Chen et al. 2019b) use novel deep learning methods which take raw unstruc-
tured incident descriptions as input. In this work, we focus on the fundamental problem
of structured knowledge extraction from these unstructured incidents. With the structured
information, we can save time and effort for on-call engineers by automating manual pro-
cesses such as running automated health checks on identified resources as described in
an example at the end of this section. At the same time, with this structured represen-
tation, we can build simpler yet better machine learning models for tasks like incident
triaging.

To solve the challenges with incident management, we have designed the SoftNER
framework. It is the first automated approach for structured knowledge extraction from
service incidents. We frame the initial structured knowledge extraction problem as a Named-
Entity Recognition (NER) task, which has been well explored in the Information Retrieval
(IR) domain (Nadeau and Sekine 2007; Lample et al. 2016). Named-Entity Recognition is
defined as the task of parsing unstructured text to not only detect entities but also classify
them into specific categories. An entity can be any chunk of text which belongs to a given
type or category. As an example, here is the input and output of a NER task for a news
headline:

Input: Over 320 million people have visited the Disneyland in Paris since it opened in
1992.

@ Springer
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Output: Over [320 million count] people have visited the [Disneyland grg] in [Paris
rocl since it opened in [1992 ygar]

Framing the knowledge extraction problem as a NER task enables us to not only extract fac-
tual information from the incidents but also classify them as specific entities. For instance,
if we just extract a GUID from the text, it provides limited context. However, identifying
that GUID as a Resource Id is much more useful to on-call engineers, who can then identify
affected resources, or to other models that perform tasks like triaging. This makes it more
suitable for the incident management scenario when compared to other solutions like text
summarization.

One key limitation of any supervised machine learning pipeline is the requirement of
huge amounts of labeled data which can be cost prohibitive to manually generate. In service
incidents, the lack of existing training data prevents us from using any supervised or semi-
supervised techniques. SoftNER uses pattern extractors which leverage the key-value and
tabular structural patterns in the incident descriptions to bootstrap the training data. We
then use label propagation to generalize the training data beyond these patterns. We also
incorporate a novel multi-Task deep learning model that is able to extract named-entities
from the unstructured incident descriptions with very high accuracy. The model not only
leverages the semantic features but also the data type of the individual tokens (such as
GUID, URI, Boolean, Numerical, IP Address, etc.).

Example: Let’s consider a real incident reported by a customer of the Cloud Networking
service operated by Microsoft. The incident was caused due to an error in deleting a Vir-
tual Network resource. The key information required to triage and mitigate this incident
is actually the ‘Problem Type’ and the ‘Virtual Network Id’. This information is already
present in an unstructured form within the incident description and the challenge is to
extract it automatically in a structured format. Using SoftNER, we can not only provide
this key information to the on-call engineers but also automate some of the manual tasks
such as running health checks. For instance, in this example, we can automatically look
up the current status/logs of the resource using the identifier (Virtual Network Id) before
the on-call engineer engages.

Service incidents can be created by external customers or even automated monitoring
systems. They contain unstructured information in various forms, like statements, conversa-
tions, stack traces, etc. As stated before, this makes incident descriptions rich in information
that are identifiable as entities. Although extracting all entities is useful, certain entities are
more important for the investigation and mitigation of an incident. To capture complete
knowledge that can be used for other aspects, such as entity relevance, it is important to
mine interactions and relations between entities. For instance, it would be quite useful to
map a given Identifier and IP Address to the same Virtual Machine resource. Another exam-
ple, would be to identify Source and Destination entity relations in an incident dealing with
physical networking devices. With these insights, SoftNER uses an unsupervised approach
to extract entity relations using co-occurring entity pairs and pointwise mutual information.
Having identified related entities, SoftNER automatically constructs an undirected incident
knowledge graph. As shown in Fig. 3, the knowledge graph nodes represent cloud services,
incidents, and entities extracted from incidents, and edges represent relatedness. The knowl-
edge graph captures information that can be queried like traditional databases, analyzed like
graph data structures, and allows inference of new knowledge.

Lastly, the structured knowledge extracted by SoftNER opens a wide range of applica-
tions. For instance, the extracted entities can be used as features to build more accurate
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Fig.3 Incident knowledge graph

learning models for predictive tasks like triaging, root causing, etc. The knowledge graph
can also be utilized to improve tooling by intelligently recommending expected entities
based on their relevance to the issue described in the incident. Below we list some of the
terms which we will be using throughout the rest of the paper. These terms identify different
aspects of named-entities.

—  Entity Name: N-gram indicating the name of the entity. In the current implementation,
N can range from 1 to 3.

—  Entity Value: The value of the named-entity for a given instance.

— Data Type: The data type of the values for the named-entity.

— Entity Relation: A relationship between 2 or more entities.

5 Named Entity Recognition

Here, we describe our approach in implementing SoftNER’s named-entity recognition
pipeline in detail. As shown in Fig. 4, we start with the data cleaning process, followed
by unsupervised data labeling. Then we describe the label propagation process and the
architecture of the deep learning model.

5.1 Data Cleaning

Service incident descriptions and summaries are created by various sources such as exter-
nal customers, feature engineers and even automated monitoring systems. The information
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Fig.4 Named-entity recognition pipeline
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could be in various forms, like textual statements, conversations, stack traces, shell scripts,
images, etc., all of which make the information unstructured and hard to interpret. Subse-
quently, we first prune tables in the incident description that have more than two columns
and get rid of HTML tags using regexes and parsers. To do so, we use standard python
libraries such as Beaut ifulSoup and html to parse HTML data. In this process, we also
segment the information into sentences using newline characters. Next, we process individ-
ual sentences by cleaning up extra spaces and tokenize them into words. Our tokenization
technique is custom implemented to handle camel-case tokens and URLSs as well.

5.2 Unsupervised Data Labelling

A major challenge in our case, was the lack of a pre-existing labelled data set which can
be used for a supervised NER task. It would also be very expensive to manually label
data since entity types are unknown and also vary across different services. Thus, SoftNER
uses an unsupervised framework to create a labeled corpus. Here are the steps followed to
automatically generate a labeled corpus for named-entity extraction:

5.2.1 Entity Type Tagging

As mentioned above, we neither have a pre-existing labeled data set nor a predefined fixed
set of entity types. Thus, in this phase, we first identify a candidate entity set. We then clean
that set and eliminate noisy entities. This final set of entities is used to tag the incident data
set.

Step 1A (Candidate Identification). Since we don’t have a list of entity types apriori,
we first bootstrap the framework with a candidate set of entity name and value pairs that
are identified without manual effort. For this, we have built pattern extractors using some
structural patterns commonly found in the incident descriptions:

— Key-Value pairs - This pattern is commonly used in the incident descriptions to specify
various entities where the Entity Type (key) and Value are joined by a separator like
‘’. For instance, “Status code: 401” or “Problem type: VM not found”. We split the
sentence on the separator and extract the first half as the Entity Type and the second half
as the Entity Value.

— Tables - Tables also occur quite frequently in incident descriptions, especially the ones
which are created by bots or monitoring services. In a two-column html table, we extract
the first column values as Entity Types and the second as Entity Values.

The above commonly occurring patterns are used to extract a candidate set of entity-
value pairs after parsing the data set. Note that the above listed patterns do not constitute an
exhaustive set. More patterns can be used to generate labeled data using methods like weak
supervision (Ratner et al. 2017; Rao et al. 2020).

Step 1B (Candidate Elimination). Now, we have a candidate set of entity names and
values. However, the candidate set is noisy since we have extracted all text which sat-
isfies these patterns. Thus, we filter out candidate entity names that contain symbols or
numbers, as they are noisy labels. We further extract n-grams (n: 1 to 3) from the can-
didate entity names and take the top K most frequently occurring n-grams. Here, K is a
parameter that can be chosen by the user to retrieve a fixed number of entity types. In this
process, less frequent and thus noisy candidate entity types, such as “token acquisition
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started” and “database connected”, are pruned. We manually analyze the effect of K,
in Section 8.2, using a precision-vs-rank plot. Furthermore, with this n-gram approach,
entity-value variations such as [ “My Subscription Id”, “6572”] and [ “The Subscription
1d”, “6572”] would be transformed to [ “Subscription Id”, “6572"] since “Subscription
1d” is a commonly occurring bi-gram in the candidate set. After performing the above
steps, a final set of entity types, represented as n-grams, is determined. With this set,
every occurrence of these n-grams, in the context of the 2 chosen patterns - key-value
pairs and tables - are tagged in a single pass over the data set. Please refer to Table 1 for
examples of entities extracted using the unsupervised approach.

5.2.2 Data-Type Tagging

For the refined candidate set, we next infer the data type of the entity values using in-built
Python functions such as “isnumeric” along with custom regexes. This step, in addition
to the entity-type tagging, is leveraged in SoftNER’s multi-task learning model, where we
jointly train to predict both the entity type and the data type. These tasks are complemen-
tary and help improve the accuracy for each of the individual prediction tasks. Based on
discussions with the service engineers, we have defined the following data types:

1. Basic Types: Numeric, Boolean, Alphabetical, Alphanumeric,
Non-Alphanumeric

2. Complex Types: GUID, URI, IP Address

3. Other

To infer the data type for a given entity, we compute it for each occurrence of a named entity
in the data set independently. To identify each data type, we make use of either simple reg-
ular expressions (e.g., d{1, 3}.d{1, 3}.d{1, 3}.d{1, 3} for IP Address) or inbuilt library
functions in python (e.g., isAlpha, isAlnum). For each entity value, following a prior-
ity order, we run these expressions/functions against the value and pick the first match as
the data type. In case no expression matches, we fall back to Other. The priority order we
use is: IP Address > Numeric > Boolean > Alphabetical > URI > GUID >
AlphaNumeric > Non-AlphaNumeric > Other.

Table 1 Examples of entities extracted by SoftNER

Entity name Data type Example

Problem type Alphabetical VNet Failure

Exception message Alphabetical The vpn gateway deployment operation failed
due to an intermittent error

Failed operation name Alphabetical Create and Mount Volume

Resource Id URI /resource/2aa3abc0-7986-1abc-a98b-

443fd7245e6f/resourcegroups/cs-
net/providers/network/frontdoor/

Tenant Id GUID 4536dcd6-e2e1-3465-a22b-d25{62456233

Vnet Id GUID 45eal234-123b-7969-adaf-e0255045569¢

Link with details URI https://thephone-company.com/caseview ?cid=12
Source IP IP Address 198.168.0.1

Status Code Numeric 500
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This priority order has been implemented to ensure that we pick the most specific
data type, in case of values that might match multiple data types. For instance, the prior-
ity order GUID > Non-AlphaNumeric, ensures that all GUIDs (e.g., Subscription ID,
Deployment ID) are tagged as the GUID data type, although they might also match the
Non-AlphaNumeric type. This procedure enforces that across our dataset, a given value
is always tagged as the same data type. But, it is possible for other values for a given entity
type to have different data types.

5.3 Label Propagation

With the unsupervised tagging, we have bootstrapped the training data using pattern extrac-
tors and heuristics. While this allows us to generate a seed data set, the recall would suffer
since the entities could occur outside the context of the chosen key-value or tabular patterns.
In the absence of ground truth or labeled data, it’s a nontrivial problem to solve. Thus, to
avoid overfitting the deep learning model on specific patterns that were used to bootstrap
labeled data, we want to generalize and diversify the labels.

We use the process of label propagation to solve this challenge. We use the entity values
extracted in the bootstrapping process and propagate their types to the entire corpus. In
this procedure, we first ensure to perform label propagation only for untagged values that
are of specific data types (such as GUID, URI, and IP addresses). For instance, we skip
entities that are of Boolean data type (e.g. Grant Permission) or descriptive Alphabetic text
(e.g. Problem Type, Exception). This significantly reduces the errors we make while using
a simple technique to augment our dataset. Next, for each untagged value, we identify the
distinct possible entity types from the bootstrapped dataset. Here, we avoid propagating
labels for any value with >= 3 distinct possible entity types, as a random decision may
incur mistakes. For example, we do not propagate the label for “127.0.0.1” as it could be a
“Source IP”, “Destination IP”, or even a “VNet Virtual IP”. This further reduces errors that
maybe incurred where the decision is harder to make using a simple approach.

Finally, we are left with values that have either one or two possible entity types. In these
remaining cases, from our analysis we observed that a large majority (98%) of the values
have a single possible entity type. For these we simply propagate the label. For the minority
(2%) cases, where there are two possible entities for a value, we resolve conflicts based on
popularity, i.e., the value is tagged with the entity type which occurs more frequently across
the corpus. Note, that we provide some descriptive statistics regarding the impact of this
simple approach and also potential threats to it’s validity in Section 10.

5.4 Multi-Task Named-Entity Recognition Model

The previous sections explain the phases of the SoftNER NER pipeline, as shown in Fig. 4,
that automate the significant task of creating labeled data. Here, we propose a novel Multi
Task deep learning model that further generalizes entity extraction. The model solves two
entity recognition tasks simultaneously - Entity Type recognition and Data Type recognition.
The model uses an architecture, as described in Fig. 5, that shares some common param-
eters and layers for both tasks, but also has task specific layers. Incident descriptions are
converted to word level vectors using a pre-trained GloVe Embedding layer. This sequence
of vectors is interpreted by a Bi-directional LSTM layer. We then have distinct layers for
the two tasks. The attention mechanism helps the model learn important sections of the sen-
tences. Finally, the CRF layer produces a valid sequence of output labels. We perform back
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Fig.5 Multi-task model architecture

propagation using a combination of loss functions during training and evaluate tag level pre-
cision, recall, and F1 metrics. In the following sub sections we describe the important layers
and approaches used in our model.

5.4.1 Word Embeddings

Language models in the semantic vector space, require real valued vectors as word repre-
sentations (Collobert et al. 2011). GloVe (Pennington et al. 2014) vectors, demonstrated on
tasks such as word analogy and named entity recognition in (Pennington et al. 2014), outper-
form various other word representations. Therefore, we use GloVe by creating an embedding
layer with pre-trained GloVe weights loaded in our model as well as our baselines.
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5.4.2 Bi-directional LSTM

Recurrent Neural Networks (RNN) have been the basis for numerous language modelling
tasks in the past (Mikolov et al. 2010). But, RNNs tend to be biased towards more recent
updates in long sequence scenarios. Long Short-term Memory (LSTM) networks (Hochre-
iter and Schmidhuber 1997) were designed to overcome the problems associated with
vanilla RNNs. Their architecture allows them to capture long range dependencies using sev-
eral gates. These gates control the portion of the input to give to the memory cell, and the
portion from the previous hidden state to forget. Given a sentence as a sequence of real val-
ued vectors (x1, X2, .., X,), the layer computes ﬁ; which represents the leftward context of
the word at the current time step 7. A representation of a word receiving context from words
occurring after it is achieved with a second LSTM that interprets the same sequence in
reverse, returning E at each time step. This combination of forward and backward LSTM
is referred to as Bi-Directional LSTM (BiLSTM) (Graves and Schmidhuber 2005). The
final rg))reiintation of the word is produced by concatenating the left and right context,
hy = [hes he ]

5.4.3 Neural Attention Mechanism

In recent years attention mechanism has become increasingly popular in various NLP
applications like neural machine translation (Bahdanau et al. 2014), sentiment classifica-
tion (Chen et al. 2017) and parsing (Li et al. 2016). Novel architectures like transformers
(Vaswani et al. 2017) and BERT (Devlin et al. 2018) have proven the effectiveness of such
a mechanism for various downstream tasks. We implement attention at the word level as
a neural layer, with a weight parameter W,. It takes as input the the hidden states from
the BiLSTM, transposed to output dimensions using a time distributed dense layer. Let
h = [hy, hy,..h7] be the input to the attention layer. The attention weights and final
representation 2™ of the sentence is formed as follows:

scores = Wln (1

o = softmax(scores) 2
r=ha’ 3)

h* = tanh(r) “

We visualize the attention vector « for a test sentence in Fig. 6, where we observe that it
learns to give more emphasis to tokens that have a higher likelihood of being entities. In
Fig. 6, the darkness in the shade of blue is proportional to the degree of attention. In case
of long sequences, this weighted attention to certain sections of the sequence, that are more
likely to contain entities, helps improve the model’s recall/sensitivity.

TSRl id [l 1234abc5-6789-1d23-456£-4567891234g4 E facing E
: appinsight m test probe is blocked afd waf rule.
(FSIEV IS s O Al 543ab98c-0abl-456¢-8d9e-abe1d0g43210 I resource E

/resource/1234abc5-6789-1d23-45ef-4567891234g4 /resourcegroups/idv-podr

Fig.6 Attention visualization on a sample input
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5.4.4 Conditional Random Fields

Simply using hidden state representations (4, ) as word features to make independent tagging
decisions at the word level leaves behind inherent dependencies across output labels in
tasks like Named Entity Recognition. Our NER task also has this characteristic since the
initial SoftNER heuristics enforce structural constraints, e.g. separators between key-value
and html table tags. In learning these dependencies and generalizing them to sentences
without these constraints, we model tagging decisions jointly using conditional random
fields (Lafferty et al. 2001).

For an input sequence X = (x1, x2, .., X;), let y = (y1, y2, .., yu) a potential output
sequence, where n is the no. of words in the sentence. Let P, the output of the BILSTM
network passed through the dense and attention layers, be the matrix of probability scores
of shape n x k, where k is the number of distinct tags. That is P; ; is a score that the i th
word corresponds to the j tag. We define CRF as a layer in the model, whose working is
as follows.

n n
s(X, y) = ZAyia)‘iJrl +Zpi,y‘i ®)
i=0 i=0
Sy

Zv,eYeS(X,y')

Here A represents the matrix of transition scores where A; ; is the score for the transition
from tag; to tag;. The score s(X, y) is converted to a probability for the sequence y to be
the right output using a softmax over Y (all possible output sequences). The model learns by
maximizing the log-probability of the correct y. While extracting the tags for the input, we
predict the output sequence with the highest score - y* = argmaxycy p(y'1X).

p(y|X) = (6)

5.4.5 Multi-Task Learning

Caruana (1997) defines Multi-Task Learning (MTL) as an approach to improve generaliza-
tion in models by using underlying common information shared among related tasks. Some
well known applications of MTL are multi-class and multi-label classification. In the con-
text of classification or sequence labelling, MTL improves performance of individual tasks
by learning them jointly.

In SoftNER, named-entity recognition is the primary task. In this task, models mainly
learn from context words that support occurrences of entities. But we also observe that incor-
porating a complementary task of predicting the data-type of a token reinforces intuitive
constraints indirectly on model training. For example in an input like “The SourcelPAd-
dress is 127.0.0.1”, the token 127.0.0.1 is identified more accurately by our model, as the
entity type Source Ip Address, because it is also identified as the data-type Ip Address, in
parallel. This supplements the intuition that all Source Ip Addresses are Ip Addresses, thus,
improving model performance.

As shown in Fig. 5, we use a multi-head architecture, where the lower level features
generated by the BILSTM layers are shared, whereas the other layers are task specific. We
define the entity type prediction as the main task and that of data type prediction as the
auxiliary task. For both tasks we use categorical cross entropy as the loss function. We
first calculate loss individually for both objectives, say /; and /. We then compute and
minimize a combined loss by averaging: loss, = (I} + [2)/2. During training, the objective
we minimize is the combined loss,. But, during back-propagation, we make sure to use the
individual task losses (/1 and /) to update weights of task-specific branches of the network
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(Fig. 5). With such an approach, the shared layer (BiLSTM) is trained by both tasks, because
both /1 and I, update it via back-propagation. Whereas the task specific layers (Attn and
CREF) are trained only on their respective individual loss functions.

6 Knowledge Graph Construction

Next, we describe our approach for mining entity relations and automatically constructing
knowledge graphs.

6.1 Entity Relation Extraction

Once named-entities in incidents are tagged by SoftNER’s trained NER model, we recog-
nize pairs of related entities, that is, binary relations. Here, instead of directly classifying all
possible relation instances (n-ary), we first identify whether a given pair of entities is related
or not. With the aim of building an unsupervised framework, similar to prior work (McDon-
ald et al. 2005; Zelenko et al. 2003), we use co-occurrence of entity pairs in a sentence to
extract binary relations. By extracting all possible entity pairs that follow this assumption,
we get a noisy candidate set of binary entity relations based solely on co-occurrence.

Consequently, we then score each candidate tuple using a co-occurrence based measure
and filter noisy candidates. In information theory, mutual information (MI) (Fano 1961) of
2 random variables is a measure of the “amount of information” obtained about one variable
through observing the other. While mutual information averages the measure over all possi-
ble outcomes, pointwise mutual information (PMI) (Church and Hanks 1990) is defined for
a single event (i.e. pair of outcomes). Mathematically, PMI is defined as described in (7).

POLY) o PO PGl
p(x)p(y) p(x) p(y)
pmi(x; y) = pmi(y; x) ®)
PMI has been applied for finding collocations and associations between tokens (Church and
Hanks 1990; Thanopoulos et al. 2002) by leveraging frequency of occurrences to approx-
imate probabilities. We observe that our aim to score co-occurring entity pairs on their
relatedness is analogous to these applications. Thus, we use a variant of PMI - normalized

pointwise mutual information (NPMI) (Bouma 2009), to score each entity pair - (e, €2),
as described in (9)—(11).

pmi(x; y) = log (7N

npmi(ey; eg) = —Pmetie2) ©)
—log p(ey, e2)
pmi(er; e2) = log 12 ¢2)_ (10)
pler)p(e2)
fl f2 fjaint
= ; = ; ,e2) = ——; 11
p(el) ftotal p(32) ftotal P(el 62) ftatal ( )

In the above equations and in Table 2, f; & f> are frequencies of the entities e; & e;
respectively, fjoin: is the frequency of co-occurrence of the entity pair, and f;4:4; is the total
frequency of all entities. Note that, from (8), PMI, and consequently NPMI is symmetric.
Therefore, all binary entity relations extracted are undirected in nature. NPMI scores €
[—1, 1], resulting in -1 for never occurring together, O for independence, and +1 for complete
co-occurrence. Using this, we eliminate all entity pairs with NPMI < 0 as noise, leaving us
with a final set of binary entity relations. Table 2 shows some examples of entity pairs and
their NPMI scores.
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Table 2 Examples of extracted binary entity relations

Entity pair (f15 f25 fjoint) NPMI
(Remote Port Range, Remote Address) (564, 558, 557) 0.99
(Tunnel Name, Encap Type) (761, 654, 486) 0.88
(VNet Name, VNet Id) (860, 985, 432) 0.78
(Gateway Id, VNet Id) (1071, 985, 124) 0.47
(Tunnel Name, Destination IP) (761, 72908, 1) -0.38
(Destination IP, Subscription Name) (72908, 19125, 11) -0.55

6.2 Entity Knowledge Graph

A knowledge graph formally represents semantics by describing entities and relationships.
It captures information that can be queried like traditional databases, analyzed like graph
data structures, and allows inference of new knowledge. In the incident management space,
this unlocks various applications, such as mining complex interactions of cloud resources
(Table 3), or inferring the relevance of an entity to the issue described in an incident
(Section 9.2).

Having identified binary relations, we construct an undirected knowledge graph
G = (V, E), where nodes V are entities and edges E are binary relations between pairs
of entities. We also assign weights W, . ;= npmi(e;; ), to the edges between all entity
pairs (e;, ej). Figure 7 shows a sub-graph of related entity types in the entity knowledge
graph constructed from our incident data set. These relations are utilized to construct the
complete knowledge graph, as shown in Fig. 3.

We briefly explore mining more complex n-ary relations from our knowledge graph.
One simple approach is to view n-ary relations as graph cliques - a subset of vertices of
an undirected graph such that every pair of vertices are adjacent (pairwise related enti-
ties) (McDonald et al. 2005). To overcome overlaps in cliques, we query maximal-cliques,
that is, those cliques that are not subsets of other cliques. Table 3 shows some examples
of complex relations extracted with this method and what they describe. While we do not
perform statistical analysis, examples from Table 3 suggest that the constructed knowl-
edge graph is able to fairly represent complex relationships by factoring them as binary
relations.

Table 3 Examples of extracted Complex (n-ary) Entity Relations

Related entities

Relation description

(Destination IP, AS path, Output
packets)

(Correlation Id, Allocation Id, VNet
Id, MAC Address, Container Id)
(VNet Name, VNet 1d, Gateway Id,
Tunnel Name, Encap Type)

(Error Code, Error message, is
retriable exception, is user error)

(VNet Name, VNet id, VNet region,
v net name, v net id, Resource URI)

Describing a BGP routing incident
causing connection issues.
Describing various tasks in network
manager setup for a VM.
Describing a VNet gateway
instance that is down.

Entities that describe errors and
exceptions.

Entities co-referring a single
resource related to the incident.
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Subscription Id

VNet Id

Gateway Id Encap type

VNet Name

Tunnel Name
VNet Region

Fig. 7 Sub-graph of related entities

7 Implementation

The SoftNER implementation and deployment comprises of various modules. First, we train
the ML models using historical incident data from Microsoft’s services. Next, we deploy
the models to a scalable REST API using the Flask web framework. Lastly, we integrate the
SoftNER API into the incident management system at Microsoft. Here, we describe each of
these in detail:

7.1 Model Training

We have implemented SoftNER and all the machine learning models using Python 3.7.5,
with Keras-2.2.4 and the tensorflow-1.15.0 backend. The hyper-parameters for the deep
learning models are set as follows: word embedding dimension used is 100, hidden LSTM
layer size is set to 200 cells, and, maximum length of a sequence is limited to 300. These
optimal hyper-parameters were chosen to train a robust yet light weight model and were
re-used among all models. The embedding layer uses pre-trained weights from stanford-
nlp’s glove.6B.100d. We train the model for a maximum of 100 epochs, but use an early
stopping strategy to stop training when model performance on a validation dataset starts to
degrade. This helps prevent the model from overfitting on train data. For training the model
efficiently, instead of setting a constant learning rate, we use the Adam optimizer (Kingma
and Ba 2015) which computes individual adaptive learning rates for different parameters
from the gradients. Our models are trained on an Ubuntu 16.04 LTS machine, with 24-core
Intel Xeon E5-2690 v3 CPU (2.60GHz), 112 GB memory and 64-bit operating system. The
machine also has a Nvidia Tesla P100 GPU with 16 GB RAM.

7.2 Model Deployment

We have also deployed SoftNER as a REST API developed using the Python Flask web app
framework. The REST API offers a POST endpoint which takes the incident description as
input and returns the extracted entities in JSON format. We have deployed it on Microsoft’s
Azure cloud platform which allows us to automatically scale the service based on the vari-
ation in request volume. This enables the service to be cost efficient since majority of the
incidents are created during the day. We have also enabled application monitoring which
alerts us in case the availability or the latency regresses.

7.3 Integration

At Microsoft, we have thousands of production services built and operated by tens of thou-
sands of developers. In order to effectively and efficiently handle the issues and regressions
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in these services, we have a dedicated incident management platform called IcM. This plat-
form allows internal and external partners to create an incident against various services and
teams. The IcM platform provides an extensibility mechanism using which custom modules
can be enabled which can subscribe to various events such as incident creation, update, mit-
igate and resolution. We have integrated SoftNER API with the IcM platform to surface the
insights directly into the IcM portal. We have enabled multiple integration points based on
the user scenario:

—  Manual Trigger - Any developer can enter an incident Id and see the SoftNER results
in real time. This is useful when a team or a developer wants to try out SoftNER.

— Auto Trigger - Service owners can also enable SoftNER for the incidents belonging to
their respective teams. This way, the insights are added to the incident automatically
even before an on-call engineer is engaged.

— Integration with other modules - The entities extracted using SoftNER can be used
to trigger other diagnostic modules. For example, a network diagnostic module may
require the VNet Id and the Source IP Address to localize a given incident. SoftNER
is able to extract these entities automatically and can feed them to such diagnostic
modules.

8 Evaluation

SoftNER solves the problem of knowledge extraction from unstructured text descriptions
of incidents. To evaluate the SoftNER framework in its entirety, we propose a four phase
evaluation:

— Entity Types: How does SoftNER’s unsupervised approach perform in recognizing
distinct entity types?

— Unsupervised Labeling: How does SoftNER’s unsupervised labeling pipeline perform
in creating an accurately labeled data set?

— Named-Entity Recognition: How does SoftNER’s Multi-Task model compare to state-
of-the-art deep learning approaches for the NER task?

— Entity Relations: How does SoftNER’s unsupervised approach perform in extracting
and scoring entity relations using NPMI?

8.1 Study Data

In the following evaluation experiments, we apply SoftNER to service incidents at
Microsoft, a major cloud service provider. These are incidents retrieved from large scale
online service systems, which have been used by a wide distribution of users. In particular,
we collected incidents spanning over a time period of 2 months. Each incident is described
by its unique Id, title, description, last-modified date, owning team name and, also, whether
the incident was resolved or not. Incident description is the unstructured text with an aver-
age of 472 words, showing us how verbose the incident descriptions are. Owning Team
Name here, refers to the team to which the incident has been assigned.

8.2 Entity Type Evaluation

Here, we evaluate the effectiveness of SoftNER’s unsupervised approach to identify the
distinct types of entities in the study data. To do so, we first allow SoftNER to identify
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Fig. 8 Precision vs rank curve for entity types

the top-100 (limited to 100 since evaluation is manual) most frequent distinct entity types.
We then manually evaluate the correctness of each entity type by verifying if it is a valid
software entity type of interest or a noisy/stray n-gram. Lastly, we compute precision as the
fraction of entity types that are valid software entity types.

Since the precision of SoftNER’s entity type extraction depends on the frequency of
occurrence of entities, we further plot precision against a cut off rank ». Figure 8 summa-
rizes the precision of SoftNER’s entity type extraction against the top n entities extracted,
where n € [1, 100]. From this analysis, we see that SoftNER is able to identify entity types
at a high precision of 0.96 at rank 50. These top-50 distinct entities account for 69.6% of
total entities found in the dataset. Further, we see that SoftNER is able to extract 77 valid
entities per 100 entities. The top-100 entities account for 83.6% of total entities found in the
dataset. In this experiment, n corresponds to the rank of the entity extracted with respect to
frequency of occurrence. That is, a higher n refers to an entity with low frequency of occur-
rence, which in turn can be extrapolated as an entity that is less important. We thus see an
expected decrease in precision, as n increases, due to noisy tokens (false positives) like “fo
troubleshoot issue” and “for cleanup delay”. SoftNER’s unsupervised entity type extrac-
tion has a minimal precision variation, also known as fall out rate, of 0.23 for an n value as
high as 100. This strengthens the hypothesis that SoftNER’s pattern extractors can pick up
entities from unstructured text effectively, in a completely unsupervised manner.
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Fig.9 Distribution of precision of unsupervised labeling
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Table4 NER model evaluation

Metric BiLSTM-CRF BiLSTM-CRF SoftNER
Attention Model

Avg F1 (£ std) 0.8803 (£ 0.223) 0.8822 (£ 0.211) 0.9572 (£ 0.075)

Weighted Avg F1 (£ std) 0.9401 (£ 0.223) 0.9440 (£ 0.211) 0.9682 (£ 0.075)

Avg Precision (£ std) 0.9160 (£ 0.211) 0.9088 (£ 0.194) 0.9693 (£ 0.073)

Avg Recall (£ std) 0.8669 (£ 0.244) 0.8764 (£ 0.234) 0.9525 (£ 0.098)

Entries in boldface represent the best result in the experiment
8.3 Unsupervised Labeling Evaluation

A key component of SoftNER is its unsupervised labeling and bootstrapping pipeline. Here,
we manually evaluate the effectiveness of this pipeline to generate an accurately labeled
data set on which machine learning models can be trained. To do so, we first select the top-
50 (limited to 50 since evaluation is manual) most frequent distinct entity types. Then, we
create an evaluation set of 250 data points by randomly selecting 5 labeled occurrences for
each of the top-50 entities from the unsupervised labeled data set. We then manually evalu-
ate each occurrence by verifying if it is correctly or incorrectly labeled. We then compute the
precision of unsupervised labeling for each entity type (i.e., # correctly labeled entities/5).

From this analysis, we find that the unsupervised labeling pipeline has a high average
precision of 0.94. Figure 9 further shows the distribution of this precision for the top-50
entities. As shown, 82% (41/50) of the entities had a precision > 0.9 and 90% (45/50)
of the entities had a precision > 0.8. This shows that SoftNER’s unsupervised framework
can effectively produce good quality labeled data, although it uses syntactic patterns and
simple heuristics in a completely unsupervised manner. Note, that while we observed a high
precision for the vast of majority of cases, we also observe some false positives due to the
limitations of methods used. We address the impact of these limitations and potential threats
to validity in Section 10.

8.4 Named-Entity Recognition Evaluation

Here, we evaluate the SoftNER deep learning model on the Named-Entity Recognition Task.
We compare SoftNER’s multi task model, described in Section 5.4 and Fig. 5, against two
baseline models, BILSTM-CRF and BiLSTM-CRF with attention mechanism. Here, note
that the BILSTM-CRF Attention model is similar to SoftNER’s model architecture but with-
out multi-task learning. These baseline models are state-of-the-art for NER (Huang et al.
2015; Lample et al. 2016; Chiu and Nichols 2016) and other NLP tasks as well. The models
are compared on a fixed test set of tens of thousands of incidents®, that accounts for 20%
of the ground-truth data set labeled using the unsupervised approach (Section. 5.2). Note,
that we also ensure the incidents in the test set occur after those in the training set tempo-
rally. The number of distinct entity types (labels) in our test dataset is 60. The total number
of entities in our test data set is 69371. We use average precision, recall, and F1 metrics to
evaluate and compare the models on the NER task. In Table 4, we report the mean and the
standard deviation of these metrics over the 60 distinct entities types tagged by the model.

6We cannot disclose the exact number of incidents due to Microsoft Policy.

@ Springer



93 Page220f34 Empir Software Eng (2022) 27: 93

As shown in Table 4, we observe that the baseline BILSTM-CREF, with and without atten-
tion mechanism, achieves an average F1 score of around 0.88. Whereas, SoftNER’s Multi
Task Model, as described in Section 5.4, achieves a higher average F1 score of around 0.96,
i.e., a AF1% of 8.7%. This significant increase in performance showcases the value of
multi-task learning in SoftNER that leverages both context and complementary informa-
tion to perform named-entity recognition. We also observe a high average recall of 0.95,
reflective of a robust ability to extract a lot of relevant information from descriptions which
directly correlates with the ease of understanding the problem and identifying resources
affected by the incident.

We further analyze the generalization of the model by analyzing test examples that were
falsely labeled. Table 5 shows a few examples of sentences and the entities extracted from
them. Note that we refer to false positives as FP, and, false negatives as FN in the table. We
observe that some of the FPs are actually correct and were mislabeled in the test set because
of the limitations of the pattern extractors. Let’s take Example 1 from Table 5 for instance.
Here, the unsupervised labelling component was only able to label “2aa3abc0-7986-1abc-
a98b-443fd7245e6” as Subscription Id, but not “vaopn-uk-vnet-sc” as Vnet Name, due
to restrictions with pattern extractors and label propagation. But the SoftNER model was
able to extract both the entities from the sentence, proving it’s ability to generalize beyond
obvious structural pattern rules visible in the training data. Row 2 shows a similar false
positive example with the extraction of 192.168.0.5 as IP Address. We also show a few
contrasting false negatives, in rows 4 and 5, where the model was unable to extract entities
Ask and Ip Address respectively.

8.5 Entity Relation Evaluation

Next, we evaluate our unsupervised approach to extract binary entity relations and score
them using NPMI. These binary entity relations and their scores represent the crux of the
knowledge graph constructed in Section 6. In turn, any inference performed on the graph,
like entity recommendation (Section 9.2), depends on the quality of these relations. Conse-
quently, we manually evaluate the precision of NPMI scores given to each entity pair. First,
the top 150 (limited to 150 since evaluation is manual) most frequent entity pairs are sam-
pled. We then manually evaluate the correctness of each NPMI score computed for an entity
pair by verifying if the NPMI score reflects the expected relationship between entities. For
example, the pair (VNet Name, VNet Id) are expected to be related and we verify that the
computed NPMI of 0.66 is a valid score. Similarly, the pair (Input Packets, Destination IP)

Table 5 FP and FN examples

Sentence Result Entities tagged
Subscriptionld:2aa3abc0-7986- FP 2aa3abc0-7986-1abc-a98b-
labc-a98b-443fd7245e6 unable to 443£d7245e6, vaopn-uk-vnet-sc
delete vnet name vaopn-uk-vnet-sc

Device Name: njb02-23gmk, pa: FP njb02-23gmk, 192.168.0.5
192.168.0.5 could not be config-

ured!

The customer’s main ask: Need FN -

help to access cloud storage

The loopback (ipv4) address (pri- FN ipv4

mary) is 192.131.75.235
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are expected to be related, so the computed NPMI of -0.27 is marked as an invalid score.
Lastly, we compute precision as the fraction of entity pairs that have a valid NPMI score
that reflects their relationship.

We further plot precision against rank n € [0, 150] in Fig. 10. Here, n corresponds to the
rank of the entity pair extracted with respect to frequency of co-occurrence (foin). From
this analysis, we see that NPMI scores are valid for 90 per 100 entity pairs. A precision of
0.9 for a n value as high as 100, strengthens the hypothesis that binary entity relations can
be effectively extracted and scored with our approach.

9 Applications

Automated knowledge extraction from service incidents can unlock several applications and
scenarios. Here, we explore and evaluate the value of extracted knowledge for two applica-
tions. First, we show that entities extracted by SoftNER can be utilized to improve simple
machine learning models for incident triaging. Next, we show that the knowledge graph
can be used to build entity recommenders that can improve tooling in incident management
platforms and in turn reduce customer impact.

9.1 Auto-Triaging of Incidents

Incident triaging is the process of assigning a new incident to the responsible team. This
is currently manually performed by on-call engineers. It is not uncommon for an incident
to be rerouted to different teams until the appropriate team is engaged, thereby reducing
the accuracy and efficiency of incident management. Based on an empirical study, Chen
et al. (2019a) showed that the reassignment rate for incidents can be as high as 91.58%
for online services at Microsoft. Several efforts (Chen et al. 2019a, b) have been made to
automate the triaging process by leveraging the title, description and other meta-data of the
incidents. Here, we evaluate the effectiveness of the knowledge extracted by SoftNER for the
downstream task of automated triaging of incidents. Incident triaging is essentially a multi-
class classification problem since the incident could be assigned to one of many teams.

We sample 20% of resolved incidents for the 10 most common teams from the initial
incident set (refer Section 8.1) and run the SoftNER model on the description to extract

e
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Fig. 10 Precision vs rank for entity relations
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Table 6 Comparison of accuracy for auto-triaging

Feature set Random Linear Gaussian K-Nearest Naive

Forest SVM SVM Neighbors Bayes
Title + Description 74.64 85.93 87.06 81.32 69.69
SoftNER Entities 93.38 93.34 93.39 92.40 87.67
A % 22.31 8.26 7.02 12.76 22.85
SoftNER Entities + Title 98.60 99.20 98.95 99.14 88.07
A % 27.66 14.34 12.78 19.75 23.30

Entries in boldface represent the best result in the experiment

entities. These extracted entity values can now act as additional features to triaging models.
The SoftNER entities can be broadly classified as either categorical or descriptive. While the
descriptive entities are transformed to word embeddings using the same process described
in Section 5.4.1, the categorical entities are encoded into one-hot vectors. We then look
at different combinations of features and compare the 5-fold cross-validation accuracy on
various classification models. It is evident from Table 6 that the models using the SoftNER
entities as features, either on their own or along with the title, outperform the baselines that
use only raw title and description information. We observe significant margins, with up to
7% - 27% increase in the cross-validation accuracies. These results reinforce that the entities
extracted by SoftNER are indeed useful and can significantly help in downstream tasks.
Using the entities extracted by SoftNER also reduces the input feature space since we no
longer have to use the whole incident description. We also achieve high performance using
simple machine learning models thereby eliminating the need for complex deep learning
models which have proven to be superior in past studies (Chen et al. 2019a).

In addition to comparing accuracy, we analysed feature significance by using the fea-
ture_importances_ attribute of a random forest model trained on the various input features.
As shown in Table 7, we observe that the entities extracted by SoftNER were given more
importance compared to the “Title’, with top features being - ‘exception message’, ‘problem
type’, ‘ask’ and ‘issue’. This re-emphasises that the entities extracted from SoftNER boost
the performance of classification models for the downstream task of automatic triaging of
incidents.

9.2 Entity-Incident Relevance and Recommendation

Although extracting all entities from an incident is useful, certain entities are more important
for the investigation and mitigation of an incident. Let’s consider a real incident reported
by a customer of the Cloud Networking service operated by Microsoft. The incident was
caused due to an error in deleting a Virtual Network resource. The key information required
to mitigate this incident is actually the Virtual Network (VNet) Id. But the customer had
not mentioned the VNet Id in their description. In this case, it would be useful to either

Table 7 Importance scores for top features

Feature Exception Problem Ask Issue Title
Message Type
Importance 0.0133 0.0111 0.0097 0.0051 0.0009
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intelligently recommend or incorporate such entities as mandatory in incident reporting
forms to alleviate downstream mitigation tasks. Thus, here we evaluate the effectiveness of
the knowledge extracted by SoftNER to infer the relevance of entities to the issue described
in the incident for recommendation.

Previously, statistical entity-topic models (Newman et al. 2006; Kim et al. 2012) have
been studied to map named-entities to topics for document topic analysis. Bhargava et al.
(2019) proposed multiple methods to learn to map wikidata entities to pre-defined topics.
The challenge, in our case, was the lack of a labeled set of incidents based on pre-defined
topics. Also, manually identifying topics apriori would be difficult to scale to a multitude
of services. As a result, in our approach, we use clustered incident titles as representatives
of topics and map a subset of ranked related entities leveraging the previously constructed
knowledge-graph.

9.2.1 Clustering Incident Titles

Inferring a subset of entities for each incident individually poses challenges. It is difficult
to apply rule-based approaches since they are computationally expensive and also cannot
be generalized to unseen incident examples. Hence, we first aim to group incidents by
clustering their titles, which are generally a representative summary of the incident. Here,
we convert incident titles to 100 dimension embeddings by averaging GloVe (Pennington
et al. 2014) vectors for all tokens in the title. For clustering, we make use of DBSCAN -
Density-Based Spatial Clustering of Applications with Noise (Ester et al. 1996), a clustering
algorithm that does not require us to define the number of clusters apriori. The DBSCAN
hyper-parameter €, i.e. maximum distance between two samples for them to be in the same
neighborhood, was tuned using the elbow method and plotting k-distance graphs, as sug-
gested in the original paper (Ester et al. 1996). This provided us with over 50 clusters on
our incident data set. From Table 8, we observe that clustering reduces complexity and also
uncovers underlying topics in incidents.

9.2.2 Inferring Related Entities

Having clustered incident titles, and as a result the corresponding incidents, we now infer a
related entity set for each cluster. First, for each cluster, we extract the top-5 most frequently

Table 8 Titles and top-5 related entities

Clustered titles

Top-5 related entities

Unable to delete Vnet Vnet stuck in updating
state Vnet: Unable to delete Public IP

VM Network Profile fails to load High 10
latency networking suspicious Ping Mesh
Drops networking suspicious

MAC Request - Port Provisioning
Port provisioning 1 device Ports
mop sent for review

Cluster unhealthy - Interface Down
Unhealthy cluster - BGP Session Down
Cluster is unhealthy : Device Reloaded

(VNet Id, 1.0) (Allocator Service URI, 0.70)
(Availability Zone, 0.68) (VNet Name, 0.66)
(Tunnel Name, 0.63)

(Subscription Id, 1.0) (VNet Name, 0.41)
(Deployment Id, 0.39) (Resource Id, 0.35)
(VNet Id, 0.33)

(Closed in SLA, 1.0) (SLA w/o Dependency,
0.44) (Device Count, 0.40) (Dependency
Time, 0.37) (Allocator Service URI, 0.31)

(SNMP Interface Index, 1.0) (Allocator Ser-
vice URI, 0.32) (Availability Zone , 0.31)
(Resource 1d, 0.28) (Interface Address, 0.27)
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occurring entities in the cluster’s incidents (ranked by frequency). Next, we loop over this
top-5 list and search for the first entity that exists in the knowledge graph G = (V, E)
constructed previously. Let this entity be called the “primary entity” (ep) of a cluster C.
We then use the primary entity as the source node to find the shortest paths to every other
reachable entity. We hypothesize that every entity (ey) reachable from the primary entity
(ep) of a cluster is related to the incidents of that cluster. Then, the relatedness between any
reachable entity (e,) and a cluster (C) is scored as the average of the edge weights in the
path taken from the primary entity to the entity of interest (e, ). Mathematically, it is defined
as stated in (12). We then rank these entities based on the score computed and choose the
top-K entities as entities related to the cluster. Note, that the primary entity itself is given
a score of 1.0. Also, we use averaging instead of product here, since the edge weights
Weie; = npmi(e;; e;), and NPMI is a function of log probabilities (Section 6).

. Y ve; epath We; e
relation-score(e,; C) = —Yispathlep,ex) "¢ ‘it

Z\M’epath(ep,ex) 1

(12)
where path(ep, ex) = shortest path from e, to ey

With the above approach, top-K related entities for each cluster are pre-determined
and stored. For a newly created incident with a complete incident title, first, the nearest
cluster for that title is found. Then, the pre-determined top-K entities for that cluster are
recommended for that incident.

Table 8 shows a few examples of clustered titles and top-5 related entities extracted using
the approach described above. While we leave more formal statistical evaluation of cluster-
ing for future work, we make some informal observations here, inferring from examples in
Table 8. Let’s take example 1 for instance. Here, the clustered titles suggest incidents where
the customer is unable to deleted a virtual network. From the top-5 related entities, we see
that our approach correctly identifies key entities, such as Vnet Id and Vnet Name, that
point to the resource of interest, i.e. the virtual network. We also observe that it identifies the
Allocator Service responsible for allocation/de-allocation of the virtual network. Example 2
shows a cluster of incidents that describe aggregated issues in the control path of a virtual
resource. In this case, an entire hierarchy of entities, from Subscription to Deployment to an
individual Resource, is identified. These recommendations are effective to quickly identify
resources affected, layers of dependencies, and mitigation steps to reduce customer impact.

10 Threats to Validity
10.1 Internal Validity

Here we address some threats to the internal validity of this work, that are mainly around
the unsupervised approach used to create a labeled dataset and the model architecture used.

Unsupervised Labeling. A key component of SoftNER is the unsupervised labeling
pipeline that bootstraps labeled data for training the models. This pipeline is composed
of techniques that use syntactic pattern extractors and heuristics: (1) Entity Type Tag-
ging (Section 5.2.1) and (2) Label Propagation (Section 5.3). These can potentially lead
to poor quality labeled data, and hence, could be a threat to validity. To mitigate this,
in Section 8.3 and Fig. 9, we manually validated 250 random samples of top-50 distinct
entities (5 for each). Our evaluation shows that SoftNER’s unsupervised labeling pipeline
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has a high average precision of 0.94. We also find that 90% (45/50) entities had a preci-
sion > 0.8. However, the remaining 10%, although represent a small number of entities,
had some false positives. For instance, we find cases with incorrect labels due to key-
value pair having an empty value (e.g., The VNet: [is vnet] down!). We also find cases
where performing label propagation without considering the context leads to false pos-
itives. We specifically investigate the impact of label propagation on the validity of this
work in the next section. These false positives can affect the quality of our labeled data
set and change the model performances reported. Thus, in future research we will revisit
this by using more accurate approaches for unsupervised labeling.

Lastly, while we look at the precision of unsupervised labeling here, analyzing recall
would require manually identifying unlabeled values (false negatives) for each of the top-50
entities from a large (tens of thousands) incident dataset. Due to this we are currently unable
to compute the recall metric and will revisit this with a manually labeled dataset in future.

Label Propagation. In this work, to expand our labeled dataset, we perform a label prop-
agation strategy (Section 5.3). A potential threat during label propagation is when the
same value can be multiple entities (e.g., 127.0.0.1 could be Source IP, Destination IP, or
VNet IP). To mitigate this, we first filter any value with >= 3 possible entity types. In
the remaining cases, we observed that majority (98%) of the values have only a single
entity type. For the minority (2%) cases, where there are two possible entities for a value,
we choose the more frequent one.

We further investigated potential mistakes caused by using a most frequent strategy to
resolve conflicts. In 75.7% (of the 2% cases) of conflicts, the two conflicting entities could
be used interchangeably to describe the value. For instance, (Resource URI, Resource ID)
to identify a virtual resource and (Subscription ID, Product Subscription Id) to represent
a cloud subscription. Here, picking the most frequent entity type has no effect. However,
the remaining 24.3%, although constituting a small number of entities, might have incor-
rect labels. For example, we find that 171.55.66.34 can either be Destination IP or VNet
IP. Propagating the most frequent entity (VNet IP) here to all occurrences might incur mis-
takes. This can affect the quality of our data set and vary the model performances reported.
Thus, in future research we will revisit this by using context-aware approaches for label
propagation.

BiLSTM-CRF Model. In this work, we use a BILSTM-CRF based architecture for our
named-entity recognition model. More recently, large pretrained language models such
as BERT (Devlin et al. 2018) have been proposed to solve various NLP tasks. BERT
based models are typically highly compute intensive for both training and inference.
These costs can be even more when adapting such models to custom domains (e.g.,
software, healthcare) that are quite different from the web corpuses that they have been
trained on. Due to these practical constraints, we have limited this work to BILSTM-CRF
based models. The performance of BERT based models might be different from the mod-
els used in this work, and hence, future research can extend our work by using BERT or
other recent state-of-the-art models.

10.2 External Validity

In this work, we design the SoftNER framework using domain expertise from 3 differ-
ent services (networking, database, mailbox) at Microsoft. The design and evaluation of
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techniques used in SoftNER, especially the unsupervised bootstrapping of labeled data
using syntactic patterns, are guided by analyzing incident reports from these services.
We ensured that patterns and heuristics used in these techniques are generic, commonly
seen across incident reports, and hence can be effectively used across services. Here,
we acknowledge that the mentioned syntactic patterns, although generic, might not be
applicable to some other cloud service providers depending on the format and struc-
ture of their reports. Thus, the results of this work could be different when directly
applied to incident reports from other cloud service providers. However, in such cases,
SoftNER can be extended to use other specific patterns for data labeling to improve
performance.

11 Discussion

In this section, we first discuss the generalizability of SoftNER and then discuss some ideas
for future work.

11.1 Generalizing SoftNER

Today, incident management in large-scale cloud services is largely a manual process. On-
call engineers have to read through the incident reports, extract the relevant information
and then do root cause analysis and mitigation. This manual intervention also causes down-
stream impact on service reliability and customer satisfaction. Manual understanding and
parsing of incident reports is a key bottleneck for incident automation. In this work, we have
designed and deployed SoftNER at Microsoft for knowledge mining from incident reports.
However, the problem and applications are generic and applicable to any cloud service
provider.

To that regard, SoftNER’s design is inspired by incorporating insights from product
teams and observations made by analyzing incident reports from 3 different services at
Microsoft. For instance, we carefully selected generic syntactic patterns for unsupervised
data labeling based on various report formats used across Microsoft. We then identified sim-
ple and controllable parameters like frequency of occurrence to remove noisy extractions.
Lastly, we encapsulated these observations and further generalized them with the multi-task
model. These decisions are domain/service agnostic, and make SoftNER easily applica-
ble/adaptable to incident reports from numerous services (e.g., networking, database, or
mailbox service) following different report formats.

Further, since we have built SoftNER in an extensible manner using unsupervised tech-
niques, it can be trained and applied to other service providers. Other services and service
providers can follow the SoftNER framework to quickly build knowledge extraction models.
Furthermore, while key-value pairs and tables are commonly seen in incident reports, Soft-
NER can also be extended to other syntactic patterns for unsupervised labeling, if required.
For instance, in case key-value pairs or tables are uncommon, one can use methods like
gazetteers (dictionaries of known values), databases, part-of-speech tags, and custom regu-
lar expressions. Using such methods, SoftNER’s unsupervised labeling component can be
extended, while the rest of the framework (label propagation, NER model, knowledge graph
construction) can be reused to build solutions for new domains, services, or even cloud
providers.
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11.2 Future Work

SoftNER currently mines knowledge graphs from incidents by extracting named-entities
and inferring relations between the entities. As next steps, we plan to expand the knowledge
mining and leverage it for more scenarios:

1. Incident summarization - Lot of critical information about the incidents is embed-
ded in natural language. For instance, incident details like symptoms, reproduction and
mitigation steps is described using natural language. So, we will extend the knowledge
mining beyond named-entities to even parsing and understanding natural language.
The extracted information can then be used for several applications such as incident
summarization.

2. Automated health-checks - Often times, on-call engineers have to pull up telemetry
and logs for the resources affected by an incident. Or, they might look up the resource
allocation for a given subscription. We will integrate SoftNER with the log mining
and debugging tools at Microsoft, so that, these checks can be triggered automatically
before the on-call engineers are engaged.

3. Better tooling - The knowledge extracted by SoftNER can also be used to improve the
existing incident reporting and management tools. SoftNER identified entities can be
incorporated into the incident report forms, where some of these entities can even be
made mandatory fields. We have already started working on this scenario with feature
teams that own incident reporting tools at Microsoft.

4. Type-aware models - The multi-task deep learning architecture used in SoftNER uses
both the semantic and the data-type context for entity extraction. As per our knowl-
edge, this is the first usage of a multi-task and type-aware architecture in the software
engineering domain. Typically, models for source code and code related activities, such
as code summarization, look at code as sequential tokens. More recently, to capture
complex dependencies in code, architectures like graph neural networks (GNNs) have
become popular. Although GNNs capture syntax tree information, there is an opportu-
nity to more explicitly learn from the data types of tokens in code. Here, SoftNER’s
model architecture (and more generally multi-task learning) can potentially be used to
learn from data types as parallel source of information, and hence improve performance
for source code related tasks.

5. Predictive tasks - In this work, we have shown that the knowledge extracted by Soft-
NER can be used to build more accurate machine learning models for incident triaging.
Similarly, we can build models to automate other tasks such as severity prediction, root
causing, etc.

6. Bug reports - Even though this work is motivated by the various problems associated
with incident management, the challenges with lack of structure applies to bug reports
as well. We plan to evaluate SoftNER on bug reports at Microsoft and, also, on the
publicly available bug report data sets.

12 Conclusion
Incident management is a key part of building and operating large-scale cloud services. In
this paper, we propose SoftNER, an unsupervised framework for mining knowledge graphs

from incident reports that incorporates a novel multi-task BILSTM-CRF model for software
named-entity recognition. We have evaluated SoftNER on the incident data from Microsoft,
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a major cloud service provider. Our evaluation shows that even though SoftNER is fully
unsupervised, it has a high precision of 0.96 (at rank 50) and 0.77 (at rank 100) for learning
software entity types from unstructured incident data. We also evaluate and show that Soft-
NER’s unsupervised pipeline accurately labels data with a precision of 0.94. Further, our
multi-task model architecture outperforms existing state-of-the-art models in entity extrac-
tion. Additionally, our novel approach for mining entity relations has a high accuracy of 0.9.
We have deployed SoftNER at Microsoft, where it has been used for knowledge extraction
from incidents for over 6 months. Lastly, we show that the extracted knowledge can be used
for building significantly more accurate models for critical incident management tasks like
triaging.
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