
https://doi.org/10.1007/s10664-022-10151-4

Generation of refactoring algorithms by grammatical
evolution

Thainá Mariani1 ·Marouane Kessentini2 · Silvia Regina Vergilio1

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Recent machine learning studies present accurate results generating prediction models to
identify refactoring operations for a program. However, such works are limited to pre-
diction, i.e., they learn refactoring operations strictly as applied by developers, but there
are possibilities that they might not consider. On the other hand, the Search-Based Soft-
ware Refactoring (SBR) field applies search algorithms to find refactoring operations in a
vast space of possibilities to improve diverse quality attributes. Nevertheless, existing SBR
approaches do not generate a model as machine learning studies, and then, they need to
be reapplied individually for each program needing refactoring. To mitigate this limitation,
this work introduces a novel SBR learning approach that generates refactoring algorithms
capable of providing refactoring operations to several programs. These algorithms are com-
posed of procedures that use rules to determine the refactoring operations. To create the
algorithms, a learning process first extracts refactoring patterns from programs by grouping
their elements that were refactored in similar ways. After that, a Grammatical Evolution
(GE) is applied to generate the algorithms based on a grammar encompassing details of the
extracted patterns. GE works to generate an algorithm that provides refactoring operations
similar to those applied in practice while improving quality attributes, such as modularity.
The approach is evaluated using refactoring data from 40 Java programs of GitHub reposi-
tories. The algorithms are tested against different programs, obtaining an overall average of
60% of modularity improvement and 50% of similarity with actual refactoring operations.

Communicated by: Aldeida Aleti, Annibale Panichella and Shin Yoo

This article belongs to the Topical Collection: Advances in Search-Based Software Engineering (SSBSE)

� Thainá Mariani
marianithaina@gmail.com

Marouane Kessentini
marouane@umich.edu

Silvia Regina Vergilio
silvia@inf.ufpr.br

1 Federal University of Parana, Curitiba, Brazil
2 University of Michigan, Dearborn, Michigan, USA

Empirical Software Engineering (2022) 27: 110

Accepted: 18 March 2022 / Published o nline: 3 0 M ay 2 022

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-022-10151-4&domain=pdf
http://orcid.org/0000-0003-2660-7436
mailto: marianithaina@gmail.com
mailto: marouane@umich.edu
mailto: silvia@inf.ufpr.br

Keywords Search-based software refactoring · Grammatical evolution · Machine learning

1 Introduction

Software refactoring is an expensive and error-prone activity. Mainly, software maintenance
consumes up to 70% of the total cost of a typical software project (Sjøberg et al. 2013).
Software refactoring is usually performed by experienced developers, which contributes to
increasing the total cost (AlOmar et al. 2020). Researchers also point out that developers
spend at least 10% of their monthly hours with refactoring tasks (Kim et al. 2014; Murphy-
Hill et al. 2012). Moreover, identifying the best refactoring type for each situation is very
time-consuming. Several refactoring types and hundreds of code elements that might need
refactoring can be used. In this context, the refactoring problem is highly studied in the
literature (Abid et al. 2020; Baqais and Alshayeb 2020). It consists of finding a good set of
refactoring operations for a software program.

Some tools can help in this task (AutoRefactor 2021; Spartan Refactoring 2021; Moore
1996; Tsantalis et al. 2008). They are usually integrated into most existing IDEs such as
Eclipse, NetBeans, IntelliJ, and Visual Studio. They are mainly focused on the identification
of refactoring operations capable of fixing code smells (Fowler and Beck 2018) or dupli-
cate code. However, they do not consider other important aspects, such as the improvement
of quality attributes. Despite the existence of tools, some works point out around 80% of
refactoring tasks are manually performed. A survey conducted with 328 software engineers
of Microsoft shows that design defects are not the main reason developers apply refactoring
operations (Murphy-Hill et al. 2012). They most see benefit by improving quality attributes,
such as readability, maintainability, and modularity.

In this context, some refactoring approaches have been proposed in the Search-Based
Software Refactoring (SBR) field (Mariani and Vergilio 2016). SBR works apply search-
based techniques to help the software refactoring activity. Approaches in this field have
gained visibility because they can identify refactoring operations for a program by optimiz-
ing several quality attributes. Such approaches have been pointed out as the most beneficial
for the software refactoring activity (Baqais and Alshayeb 2020). However, existing SBR
approaches usually require the execution and configuration of a search-based algorithm for
every new version or program, which can be costly and demand effort from the developer,
who may not be familiar with a search algorithm.

In this work, we observe that we can learn refactoring patterns from various software
programs and provide a more generic solution for the refactoring problem. We consider a
refactoring pattern as a similar refactoring operation found in different places, which can be,
i.e., different versions or programs. A study using deep learning shows only between 21%
and 36% of code changes can be automatically learned (Tufano et al. 2019). Refactoring was
classified as one of the learned code changes. Moreover, learning with multiple software
programs increases accuracy by around 10%. This shows evidence that refactoring patterns
can be learned from different programs.

Recently, some approaches have explored the use of Machine Learning (ML) techniques
to predict refactoring operations (Aniche et al. 2020; Dallal 2017; Kumar et al. 2019; Xu
et al. 2017). They obtain good results in terms of prediction, but due to the subjective nature
of the refactoring problem, it is not possible to guarantee if a refactoring operation is good,

110 Page 2 of 35 Empir Software Eng (2022) 27: 110

so the labeling of a refactoring operation itself could lead to different interpretations. Due
to this fact, our work addresses the learning of refactoring patterns to guide us during the
search for solutions, but not as a unique criterion. We want to explore the search space to
find other solutions which might also be good regarding quality aspects.

Concerning the presented context, the main goal of this work is to generate algorithms
capable of suggesting, for a program, refactoring operations able to improve quality and
increase similarity with real refactoring operations. In this sense, we propose GORGEOUS

(Generation of Refactoring Algorithms by Grammatical Evolution), which is an SBR
machine-learning-based approach to the refactoring problem. Our approach uses a Gram-
matical Evolution (GE) (Ryan et al. 1998) technique. GE is a type of Genetic Programming
(GP) (Koza 1992) since it is similarly used to evolve programs (Ryan et al. 1998). How-
ever, in addition, GE receives a grammar file, which is very flexible and supports mapping
several aspects of a program. This work uses the concept of refactoring algorithm, as well
as a grammar that formalizes a set of rules identifying where and how refactorings should
be applied. In this way, GE supports the generation of more complex algorithms compared
with solutions generated by traditional machine learning techniques.

GORGEOUS encompasses the learning of refactoring patterns applied in different pro-
grams. To this end, it executes a clustering algorithm to group classes and methods that
were refactored in similar ways. Each generated cluster represents a refactoring pattern.
Then, in a posterior step and using the obtained patterns, GORGEOUS generates a refactoring
algorithm that generalizes the characteristics of each cluster.

We evaluated the approach with 40 open-source Java programs, extracted from Gitb-
Hub and considering the following refactorings at class and method levels: Extract Class,
Move Method, Pull-up Method, Push-down Method, Extract Method, and Inline Method.
The results provide evidence to support the claim that our proposal can improve the modu-
larity of the programs and similarity with real refactoring operations. In summary, our work
has the following main contributions.

1. It introduces an SBR approach that incorporates a learning step and generates refac-
toring algorithms, which, when executed for a given program, identifies refactoring
solutions for it.

2. It introduces two grammars to be used to generate a refactoring algorithm at class and
method levels.

3. It presents the main advantages compared with related work:

– Regarding SBR approaches: the generated algorithms include a set of rules that
works as a prediction model of refactoring opportunities;

– Regarding ML approaches: to generate the algorithms, a search in a huge space
of alternatives is performed, optimizing quality attributes such as modularity while
considering similarity with refactoring patterns applied in different programs.

4. We make available a repository with the data used in this work, which allows replication
and can be used in future research (Mariani et al. 2021).

The paper is organized as follows. Section 2 reviews related work. Section 3 introduces
our approach. Section 4 describes how GORGEOUS was evaluated. The obtained results
are presented in Section 5. Section 5.6 analyses the threats to validity. Finally, Section 6
concludes the paper and shows future research directions.

Page 3 of 35 110Empir Software Eng (2022) 27: 110

2 RelatedWork

Related work are from three main groups: work applying Machine Learning (ML) tech-
niques, work from the Search-Based Software Refactoring (SBR) field, and work combining
both ML and SBR.

Search-based techniques have been successfully applied to software refactoring and
related activities. These techniques are the subject of different surveys and reviews in the
literature (Kaur and Dhiman 2019; Mariani and Vergilio 2016; Mohan and Greer 2018).
Among several SBR studies reported in these reviews, the most similar to ours are the ones
that use external information to guide the search. For instance, some SBR papers use the
concept of examples to guide the optimization process (Mariani and Vergilio 2016). Exam-
ples are usually refactoring operations applied in previous versions of a program. This kind
of approach commonly has as output a refactoring solution that was optimized aiming at
increasing the similarity with refactorings applied in the past (Ouni et al. 2013). This met-
ric is usually used in the fitness function in combination with other quality metrics, such as
number of modifications (Mkaouer et al. 2015; Ouni et al. 2014; Ouni et al. 2016), seman-
tic coherence (Mkaouer et al. 2015; Ouni et al. 2013; Ouni et al. 2013), and number of bad
smells (Kessentini et al. 2012; Ouni et al. 2015). We can find one work with a different out-
put, which is a set of rules used to detect code smells and correct them Mahouachi et al.
(2012). We also find interactive approaches (Alizadeh et al. 2020; Mkaouer et al. 2014a),
which are usually based on the user preference and can be costly, mainly if they consider
the user participating in the loop optimization process.

Although these SBR approaches present good results, they optimize a set of possible
refactoring solutions individually for a specific program, leading to a lack of generality.
Furthermore, a certain level of expertise is required to configure and execute a search algo-
rithm, which is not trivial for a software engineer, especially if this has to be done several
times for different programs. Our work encompasses a learning process to overcome these
limitations.

Most ML works use classification techniques to generate a model to predict refactorings.
The approach of Imazato et al. (2017) automatically obtains a model to generate a list of
methods for the application of the Extract Method refactoring. The approach of Kosker et al.
(2009) predicts refactoring actors by using the Weighted Naı̈ve Bayes classifier. The main
goal is to predict which classes require refactoring to decrease complexity, maintenance
cost, and bad smells. The experiments are conducted on three versions of a program. Based
on that, the approach reveals the classes in need of refactorings. Phongpaibul and Boehm
(2007) investigate different classification algorithms, such as decision trees and logistic
model trees, to create prediction models to detect refactoring operations. The approach
reveals the elements that should be refactored, but it does not reveal the refactorings that
should be applied.

The works of Al Dallal (2012) and Dallal (2017) use a logistic regression algorithm to
predict classes in need of the Extract Subclass and Move Method refactoring opportunities.
Quality metrics related to different aspects are used, such as size, cohesion, and coupling.
They developed an automatic tool to mutate a set of classes in different ways to obtain the
classes in need of refactoring. Results show a rate of 83.4% to 95.8% of prediction.

Xu et al. (2017) propose an ML approach for extract method refactoring recommenda-
tion. The approach generates a probabilistic model built based on structural features related
to complexity and function features related to cohesion and coupling. The model learns
from a set of positive and negative method extraction examples in the learning process.

110 Page 4 of 35 Empir Software Eng (2022) 27: 110

The experiments were performed using five different Java projects, and the obtained results
outperformed results from popular refactoring tools in terms of different metrics, such as
precision and recall.

Kumar et al. (2019) investigate the use of different classifiers to predict methods in need
of refactoring. The features used by the classifiers are 25 different metrics at the method-
level. Results of 10 techniques are evaluated over a data set of 5 programs using three
different sampling methods to deal with class imbalance. Results show accuracy around
98% for AdaBoost and ANN+GD, classifiers that presented the best results.

Aniche et al. (2020) applied six ML algorithms to a dataset comprising over two mil-
lion refactorings from 11,149 real-world projects from the Apache, F-Droid, and GitHub
ecosystems. The study includes a comprehensive set of 20 different refactorings at class,
method, and variable-levels. The best classifier found was Random Forest, with accuracy
often higher than 90%. The best predictors were process and ownership metrics. The work
of Alenezi et al. (2020) evaluates the performance of the deep Gated Recurrent Unit (GRU)
algorithm for refactoring prediction at class-level on seven open systems. The performance
of the algorithms improves when balanced datasets are used.

The main limitation of the mentioned works (Imazato et al. 2017; Jindal and Khurana
2013; Kosker et al. 2009; Phongpaibul and Boehm 2007) is the lack of generality since they
are limited to the learning across versions of a program instead of learning from several
programs. In this sense, the models cannot generalize the results in other programs. Regard-
ing the other studies, most of them generate a model based on only one refactoring type.
This is mainly because most of them use binary classifiers, which can classify an element
into two different categories. Generally, the approach determines whether a code element
should receive a predefined refactoring, e.g. Move Method in Dallal (2017), or either that a
module or element is a candidate to be refactored, such as presented by Kumar et al. (2019).
Another limitation of some works (Al Dallal 2012; Dallal 2017) is to use artificial data
instead of actual software programs. Moreover, works as Tufano et al. (2019) and Xu et al.
(2017) use real software programs, but they do not generate models to predict specifically
refactorings. Finally, the work of Aniche et al. (2020) introduces complex models based on
existing programs, but it is limited to prediction and does not consider the improvement of
quality attributes.

The use of ML and SBR techniques combined is also explored in the literature. Some
works use ML models to improve the fitness evaluation function of an SBR approach (Amal
et al. 2014; Wang et al. 2015). The approach of Amal et al. (2014) uses a neural network to
approximate the fitness function for the evaluation of software refactoring solutions. This
approach has a different goal than ours. The idea is to reduce the effort of a preference-
based approach, including the user in the loop. Wang et al. (2015) applies the NSGA-II to
generate refactoring solutions that maximize the correction of essential quality attributes
and minimize the effort. For these two fitness functions, time series forecasting is used to
estimate the impact of the generated refactoring solutions on future subsequent releases of
the system in order to manage technical debt, with a focus on smells.

This approach differs from ours because it does not consider past refactorings as input
for the learning phase. However, the fitness functions used and the adaptations using time
series could be adopted by the GE algorithm used in our approach.

We can see that our approach has different goals from existing approaches that combine
SBR and ML. The algorithms generated by our approach take into account different kinds
of refactorings and a set of different programs, exploring the advantages of both SBR and

Page 5 of 35 110Empir Software Eng (2022) 27: 110

ML approaches. The algorithms work as a prediction model and are generated to optimize
quality attributes and similarity with past refactoring operations.

3 GORGEOUS

This section presents our approach, namely GORGEOUS (Generation of Refactoring Algo-
rithms by Grammatical Evolution). Given information of refactoring previously applied in
a set of programs, GORGEOUS addresses the refactoring problem by generating refactoring
algorithms, when executed produce a set of refactoring operations for a given program. A
refactoring operation specifies the type of refactoring and elements involved (actors). In this
way, it is possible to apply the refactoring type to the actors specified.

To this end, GORGEOUS encompasses three main steps as depicted in Figure 1. The first
step, Deriving Instances, transforms the input information, associated with programs that
received refactorings in the past, into programs instances by using a representation schema
(Section 3.2). The input information (Section 3.1) concerns, for each program, metric values
of its elements (classes or methods), dependencies between these elements, and a list of
refactoring operations applied. These programs instances are used in the next two steps.

After this, the step Learning Patterns uses a clustering algorithm to group the elements
of the program based on similar refactorings they received in the past. As a result of this
step, each cluster generated represents a refactoring pattern. In the next step, Generating
Algorithms, refactorings algorithms are generated for each learned pattern by using Gram-
matical Evolution (GE). The GE algorithm searches for the best algorithms to maximize
some quality attributes regarding the refactoring applied. Later, these algorithms can be
executed to find refactoring operations for a given software program. In the following sub-
sections, we describe these steps in detail, as well as the required input and output produced
by the approach.

3.1 Programs Information

The information provided as input includes for each program: a metrics matrix, a depen-
dencies matrix, and a refactoring list. The metrics matrix, MEne,nm , represents the values
of nm metrics for each element e in the program. In this work, the elements can be either

Gorgeous

Learning
Patterns

Generating
Algorithms

PatternsPrograms
Instances

Refactoring
Algorithms

Programs
Information

Deriving
Instances

- metrics matrix
- dependencies matrix
- refactoring list

Fig. 1 GORGEOUS overview

110 Page 6 of 35 Empir Software Eng (2022) 27: 110

classes or methods. The classes are associated with six metrics and the methods with two,
as described in Table 1. The characteristics of the elements are represented by basic struc-
tural object-oriented metrics related to cohesion, coupling, and size at class and method
levels. They were chosen because they are related to design principles and models for qual-
ity assessment of different attributes of OO oriented design such as QMOOD (Bansiya and
Davis 2002), largely adopted in search-based refactoring approaches (Koc et al. 2011; Koc
et al. 2012; Mansoor et al. 2015; Mariani and Vergilio 2016; Mkaouer et al. 2015; Mkaouer
et al. 2014b).

The dependencies matrix Dnp,3, where np is the number of pairs of classes of the pro-
gram, contains three columns representing for each pair of classes, respectively, the number
of dependencies between the pair, the number of dependencies from the first class in the pair
to the second one, and the number of dependencies from the second class to the first one;

The refactoring list L is composed of the refactoring operations applied in the program.
They are listed in a descriptive format for each refactoring type, including the refactoring
type and actors, elements that participate in the operation. The format defined for each type
and some examples are provided in Table 2. More details about the structure of the input files
are found in our replication package (Mariani et al. 2021). The metrics and dependencies
matrices are provided for each program in CSV files. The list L of refactoring operations
applied to a program is provided in a file whose each line corresponds to an operation.

3.2 Deriving Instances

In the first step, Deriving Instances, program instances are derived from the information
provided as input. To represent a program instance, we use the schema depicted in Figure 2.
In this schema, a program is represented by its name and version and is composed of differ-
ent elements that received a refactoring operation in the past. An element can be a class or
a method and plays an actor in one or more refactoring operations. Moreover, classes may
have dependencies with other classes. A set of metrics values characterizes each element.
The instances created by using this schema are used to derive the inputs for the clustering
algorithms and the GE in the following steps.

This step can be performed with the help of some automated tools. In this work, we use
RefactoringMiner1 to generate the list of applied refactorings, as well as the tool Understand
tool2 to extract metrics and information about the structure of the programs that received
the refactoring operators.

3.3 Learning Patterns

The second step, Learning Patterns, is in charge of learning patterns from the instances of
the program derived in the previous step. To this end, a clustering algorithm is used to group
elements (classes or methods) that were refactored similarly. The input of the clustering
algorithm is generated by extracting the refactoring operations from the instances of the

1https://github.com/tsantalis/RefactoringMiner
2https://scitools.com/features/

Page 7 of 35 110Empir Software Eng (2022) 27: 110

https://github.com/tsantalis/RefactoringMiner
https://scitools.com/features/

Table 1 Metrics calculated to an
element (Bansiya and Davis
2002)

Element Metric Description

class m1 Number of immediate base classes

m2 Number of classes coupled

m3 Number of classes derived

m4 Number of methods

m5 Number of all methods

m6 Max Inheritance Tree

class / method m7 Number of lines of code

m8 Number of commented lines of code

Table 2 Refactoring Types and Representation Format

ExtractClass(class)

ExtractClass(org.neo4j.kernel.api.constraints.UniquenessConstraint)

ExtractMethod(method)

ExtractMethod(org.neo4j.kernel.impl.store.TestNeoStore.deleteNode2())

InlineMethod(source class.method,target class.method)

InlineMethod(org.neo.ComLockClient.releaseAllExclusive(),org.neo.ComLockClient.releaseAll())

MoveMethod(source class.method,target class)

MoveMethod(org.neo4j.kernel.util.IoPrimitive.arrayAsCollection(),org.neo4j.graphdb.Neo4)

PushDownMethod(source class.method,target class)

PushDownMethod(org.grad.GradleRunner.setTasks(),org.grad.DefaultGradleRunner)

PullUpMethod(source class.method,target class)

PullUpMethod(org.volt.planner.TestPlansAx.findAllPlanNodes(),org.volt.planner.PlannerTestCase)

1

1 *

Refactoring Operation

+ rtype: String

Actor

+ element: Element

+ role: String

*

1

*

*

*

*

Element

+ name: String

Metrics

+ id: String
+ value: int

Program

+ name: String
+ version: String

1

MethodClass
+ package: String + class: Class

1 *

Fig. 2 Program Representation Schema

110 Page 8 of 35 Empir Software Eng (2022) 27: 110

program, as depicted in Table 3. Each row i represents an element ei , and the columns
represent the number of refactoring types applied in ei . Two matrices are generated, one
containing classes and the other containing methods.

The clustering is performed by considering the number of times each refactoring type
was applied in an element. In this way, this information represents the dimensions/features
of the clustering algorithm. The main idea behind using the number of times is to dif-
ferentiate the elements refactored many times from elements receiving usual refactoring
operations, rather than differentiate them only by the refactoring type applied. Hypotheti-
cally, a refactoring algorithm could find an actor similar to elements in which refactorings
were applied many times. This could indicate that such an element can benefit from a
refactoring operation, but it does not necessarily mean it needs to be precisely the same
refactoring type. We are willing to find this kind of pattern by using a clustering algorithm.

In this way, the clustering algorithm is executed twice, first to create the clusters of
classes, and after that, to create the clusters of methods. As the output of each execution, a
set of clusters C is generated. Each cluster c, composed of a set of elements E, is interpreted
as a refactoring pattern and is used in the next phase to create a refactoring algorithm. In the
database of programs instances, each element is associated with a set of metrics values, and
with refactoring operations, it was involved. When an element belongs to a cluster, all this
information is part of the cluster itself, helping to characterize a refactoring pattern.

3.4 Generating Algorithms

The refactoring problem consists of finding pieces of code that would benefit from apply-
ing certain types of refactorings, for instance, a method that should be moved. The last
step, Generating Algorithms, is responsible for producing the GORGEOUS output, which
is a set of refactoring algorithms to solve the refactoring problem. For this end, a GE algo-
rithm is executed for each pattern/cluster obtained in the Learning patterns step. In each GE
execution, a refactoring algorithm is produced. Each refactoring algorithm, when executed,
suggests a set of refactoring operations for a given program to be refactored.

A Grammatical Evolution (GE) algorithm is a type of GP since it is similarly used to
evolve programs (Ryan et al. 1998). However, while a conventional GP algorithm typi-
cally uses a tree as representation for an individual and applies search operators to those
trees (Koza 1992), a GE algorithm uses an array of integers or bits and evolves the solutions
similar to a conventional evolutionary algorithm (Ryan et al. 1998). Moreover, in addition
to the usual parameters of an evolutionary algorithm, GE receives a grammar file, usu-
ally in Backus Normal Form (BNF), to map each solution into a program. This mapping is
called Genotype-Phenotype Mapping (GPM). The evolution is applied to the array (geno-
type level), but to calculate the fitness function value, the program (phenotype level) needs
to be executed (Barros et al. 2013).

Our GE uses an array of integers, and we defined two grammars, one for mapping the
solutions to a refactoring algorithm at the class level and the other for the method level. In
the following subsections, we describe the format of the refactoring algorithms (phenotype)
and after, the grammars defined, and how the GE algorithm uses them.

3.4.1 Refactoring Algorithms

Our definition of a refactoring algorithm is based on the formalization given by Cormen
et al. (2009), which states an algorithm is “any well-defined computational procedure that

Page 9 of 35 110Empir Software Eng (2022) 27: 110

takes some value, or set of values, as input and produces some value, or set of values, as
output”.

Algorithm 1 shows the structure of the algorithms produced. An algorithm A is executed
for a program P and returns a set of refactoring solutions S for P . A requires as input
the metrics and dependencies matrices in the same format provided for Step 1 (Deriving
Instances), which will be used to derive a representation for P following the schema of
Figure 2). Information about past refactoring (operators and actors) is not required at this
stage. A refactoring solution si represents a suggestion of refactoring operation for P . It is
composed of three parts: type of refactoring, actors, and roles, as exemplified in Table 4.
In this table, the solution defines the refactoring type Move Method. This refactoring has
three actors: the getSalary() method (the method to be moved) from the Person class (source
class) to the PaymentOptions class (target class).

A refactoring algorithm A is composed of n procedures. Each procedure is in charge of
instantiating a solution si . A procedure is associated with a type of refactoring and a set
of rules RU used to search actors from elements of P . The way these rules are generated
is described in Section 3.4.3. First, when executed, the refactoring algorithm search for
actors that satisfy the set of rules RU. After, a refactoring solution is instantiated based
on the type of refactoring and elements (actors) selected. We describe a procedure based
on its refactoring type. If we mention a “move method procedure”, it means a procedure
responsible for instantiating a move method refactoring solution.

The search for an actor is associated with a set (RU) of rules that, based on an interval of
values for the metrics m1 to m8 (Table 1), describes the characteristics of the actor we are

110 Page 10 of 35 Empir Software Eng (2022) 27: 110

Table 3 Input of the clustering algorithm

Class EC MM PU PD

Class-level

Class1 1 0 0 1

Class2 0 0 0 0

Class3 1 2 1 0

Class5 0 3 0 4

Method MM PU PD EM IM

Method-level

Method1 2 0 0 1 1

Method2 0 0 0 0 0

Method3 1 1 1 0 0

Method4 0 0 2 0 0

Method5 0 1 0 2 0

EC extract class, MM move method, PU pull-up method, PD push down method, EM extract method, IM
inline method

looking for. In this way, RU comprises six rules to search for classes and two rules to search
for methods. A rule (ruj) ∈ RU defines an interval of values [a, b] for a metric mj . An
element (e) from P is selected as an actor if all the rules in RU are satisfied. An individual
rule ruj is satisfied when the value of mj for (e) belongs to the specified interval.

For example, suppose the procedure searches for an actor (source method) with ru7 =
10 ≤ m7 ≤ 200 and ru8 = 10 ≤ m8 ≤ 20, an element e (a method) with values of m7 and
m8 fitting these ranges must be selected as actor. Once the actors are found, a solution is
instantiated using the predefined refactoring type and the found actors. A procedure has a
predefined random number of trials to select an actor. If no actor is found after that, an empty
solution is returned, and the algorithm executes the next procedure until all procedures are
executed. As a result, a set of refactoring solutions for P is returned.

3.4.2 Fitness Evaluation

A refactoring algorithm (A) generated based on a cluster (c) is evaluated using a fitness
function composed of two different objective functions, given by Equation 1.

F(A) = (SIM(A) + MQ(A)) ∗ 0.5 (1)

The first function SIM(A) measures the similarity between A and the set E of elements
grouped in c. The second fitness function MQ (Paixao et al. 2018) measures the quality of a

Table 4 Example of refactoring solution for Move Method

Types Actors Roles

Move Method Person source class

getSalary() method

PaymentOptions target class

Page 11 of 35 110Empir Software Eng (2022) 27: 110

program after simulating the application of the refactoring solutions given by A. Next, each
function is described.

The similarity function SIM(A) (Equation 2) takes the set of procedures Pr from A

and, to measure its similarity with a cluster, it uses refactoring types applied in E, as well as
the characteristics of E. Based on that, we compute an average of two functions, tsim(pr)

and rsim(pr), by summing up the result for each procedure pr , where n is the number of
procedures. Equation 3 presents tsim(pr), which measures the similarity of the refactoring
type prt with the refactoring types associated with c, i.e., the ones applied on E. Equation 4
presents rsim(pr), which calculates the similarity by checking if each an element e ∈ E

satisfies the set of rules RU of a procedure pr .

SIM(A, c) = 1

2n

n∑

i=1

tsim(pri) + rsim(pri) : pr ∈ Pr (2)

tsim(pr, c) = 1

n

n∑

i=1

{
1 if prt = cti

0 if prt �= cti

: ct ∈ cT (3)

rsim(pr, c) = 1

n

n∑

i=1

{
1 if satisf ies(ei, prRU)

0 otherwise
(4)

To calculate the quality function MQ, our approach searches for actors that satisfy at
least 75% of the rules of A. If the actors are found, the application of the corresponding
refactoring operation is simulated. This process is repeated for each procedure in A. MQ

(Equation 5) measures the trade-off between cohesion and coupling of packages, such that
Pack is the set of packages involved in the simulations, i.e., the actors packages.

MQ =
|Pack|∑

i=1

MF(packi) (5)

where MF(packi) (Equation 6) measures the cohesion and coupling of a package packi .

MF(packi) =
{

0, if coh(packi) = 0
coh(packi)

coh(packi)+ cop(packi)

2

, coh(packi) > 0 (6)

coh(packi) measures the cohesion by counting the dependencies between classes within
packi ; and cop(packi) measures the coupling by counting the dependencies of classes
within packi to classes in other packages.

3.4.3 Grammatical Evolution

The GE algorithm is executed at least once for each cluster generated in step Learning
Patterns, considering both levels: class and methods. As mentioned before, the solution
is represented by an array of integers (genotype). Then the population for the GE algo-
rithm is a set of arrays. To calculate the fitness of each solution, the array is mapped to a
refactoring algorithm (phenotype) with the help of a grammar. We defined two grammars,
respectively, for the class and method levels. The grammars encompass all the elements
necessary to derive the refactoring algorithm: the procedures, refactoring types, rules, and
intervals. Figure 3 presents the grammar for the class-level. The method-level grammar is
very similar, and the main differences are in the refactoring types applied.

The items between 〈 〉 are non-terminal nodes, | represents the logical operator OR, ::=
means the node can take any of the next options, and the other items are terminal nodes.

110 Page 12 of 35 Empir Software Eng (2022) 27: 110

Fig. 3 Grammar to create refactoring algorithms for the class-level.

For instance, the node 〈ru1〉 can take either the values IntervalA to IntervalN when
mapped to a program. On the other hand, 〈procedure〉 can take the value of a single 〈type〉
or composition of 〈type〉 〈procedure〉. If an alternative for a rule is not wanted by the
developer, it can be removed. Similarly, if other types of refactoring are required, they can
be added to the grammar.

As mentioned before, each refactoring algorithm is associated with procedures, and each
procedure is associated with rules, which are associated with several intervals of metrics.
The procedure representation is presented in Figure 4. The intervals are created at run-time

Fig. 4 Procedure Representation

Page 13 of 35 110Empir Software Eng (2022) 27: 110

and their size assumes one of the following: 1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 100, 200,
300, 400, or 500. As such, for a given ruj , an interval of size s is generated respecting the
minimum and maximum values of mj , based on the elements of the cluster. Furthermore,
we adopted some restrictions to avoid the generation of only one interval encompassing
from the minimum to the maximum value. Given a maximum metric value as max, the size
s of an interval must assume a maximum value of max/2. Then, we reduce by half the
maximum size of an interval.

GE searches for the best combination of rules and refactoring types, aiming at improv-
ing the fitness value. Each individual, represented by an array of integers, is mapped to a
program to calculate the fitness. The values in the array are used to decide which gram-
mar values are assigned to each node. For instance, consider the following individual {5, 9,
79, . . . }. The value of the first gene in the chromosome (5) and the first rule of the gram-
mar 〈procedure〉 is selected. Thus, the number of options in 〈procedure〉 is counted. In
that case, there are two options: 〈type〉 〈procedure〉 or 〈type〉. Then, the modulo opera-
tion 5%2 is performed, considering the gene value and the number of options. The result of
this operation represents the gene position. Since it is 1, the second rule 〈type〉 is selected.
In the next step, the rule 〈type〉 and the second gene of the chromosome (9) are selected.
There are four options for 〈type〉. Then, the modulo operation 9%4 returns 1, and the rule
〈extractClass〉 is selected. This process continues until reaching the terminal nodes.

The employed array has a variable size. Because of that, in addition to crossover and
mutation operators applied in the same way as an evolutionary algorithm, the GE algorithm
employs two distinguishable search operators: i) gene duplication operator; and ii) gene
pruning operator. They help the algorithm eliminate useless genes or reinsert new genes into
the chromosomes. Hence, the duplication operator selects a random sub-array of the chro-
mosome and copies it to the end of the chromosome. On the other hand, the prune operator
selects an index to truncate the array. These operators are usually applied with the same
probability as the mutation operator and as additional steps in the evolution process (Ryan
et al. 1998).

To summarize, the GE algorithm works very similarly to a traditional evolutionary algo-
rithm, replacing the evaluation of the population by GPM and adding duplication and prune
operators.

In the end, the refactoring algorithm with the best fitness value is stored in the repository
of refactoring algorithms—the greater the fitness function value, the better the algorithm.
The generation continues using the next cluster until no more clusters are left. The generated
refactoring algorithms could then be executed over the program to be refactored to find
refactoring operations. The use of grammar and GE ensures the generation of only valid
algorithms, making the resulting solutions always syntactically correct.

4 Empirical Evaluation

The evaluation goal is to analyze if our approach generates refactoring algorithms that pro-
vide good refactoring solutions in terms of quality and similarity with refactoring operations
from existing software programs. Moreover, we also validate GORGEOUS phases by assess-
ing the importance of the learning patterns phase and the use of GE. The following sections
present the elaborated Research questions (RQs) and the experiment setting.

110 Page 14 of 35 Empir Software Eng (2022) 27: 110

4.1 Research Questions

RQ1: To what extent the grammatical evolution impacts the generation of refactoring
algorithms? To answer this RQ, we compare, in terms of fitness values, the results obtained
by GORGEOUS using GE with a configuration of GORGEOUS in which a Random Search
replaced GE. In addition, we applied the Mann and Whitney (1947) non-parametric test to
give more confidence to the comparison.

RQ2: To what extent the refactoring algorithms are able to find refactoring solu-
tions capable of improving the quality of programs? To measure the quality of the
programs, we defined a metric called Quality Improvement (QI). To compute QI , we
assess the quality value of a program by simulating the application of the refactoring oper-
ations given as solutions by the refactoring algorithms. The quality is evaluated in terms of
modularity and represented by the MQ value, as defined in Equation 5. Then, we assessed
how much was the quality improvement compared with the original program. Equation 7
presents how QI is calculated, where Po is the original program and P is the program after
the refactoring simulation.

QI(P) = MQ(P) − MQ(Po)

MQ(Po)
∗ 100 (7)

We also analyzed the quality improvement of refactoring operations applied in practice
by developers. In this case, we computed QI based on two program versions, consider-
ing before and after the refactoring operations, and compared with the ones obtained by
GORGEOUS.

RQ3: To what extent the generated refactoring algorithms are able to find solutions
similar to refactoring operations applied in practice? To measure similarity in compari-
son with these operations, we defined as O, the operations applied in the program version
under consideration. Then, we defined a measure called ARate, which measures the rate
based on the number of operations from O that a refactoring algorithm A is able to find. It
might seem similar to the popular accuracy and recall measures (Powers 2011). However,
instead of checking the solutions provided by a refactoring algorithm, it measures the capa-
bility of our algorithm to find refactoring operations applied in practice. Equation 8 presents
ARate definition, such that, Pr is the set of procedures from A, no is the size of O, prRU

is the set of rules of pr , and pr ∈ Pr .

ARate(P r,O) = 1

no

no∑

i=1

{
1 if ∃pr ∈ Pr : satisf ies(oi, prRU) = 1
0 otherwise

(8)

RQ4: To what extent does the extraction of patterns impact the generation of
refactoring algorithms? The refactoring patterns are represented by the clusters, used to
generate algorithms. To answer this RQ, we compared, in terms of QI and ARate, GOR-
GEOUS results with results obtained by a configuration where the step Learning Patterns is
not performed.

Page 15 of 35 110Empir Software Eng (2022) 27: 110

4.2 Experimental Setting

To evaluate our approach, we use 40 popular Java programs of several sizes and domains
extracted from software repositories of GitHub. These programs belong to the dataset pro-
duced by Silva et al. (2016)3. This work provides lists of refactoring operations extracted
from programs using the RefactoringMiner. For each program, we collected the required
information to execute GORGEOUS following our program representation schema. First, we
collected existing data about the refactoring operations associated with each program. Then,
we have downloaded from GitHub 80 versions of the programs, 40 before the refactoring
operations, and 40 after the refactoring operations. The versions after the refactoring oper-
ations were used for evaluation purposes only, while the others were used in the learning
process since the idea is to learn the patterns that can lead to refactoring.

We use the tool Understand to extract information about the programs, such as signatures
and packages they belong to, as well as metrics and dependencies among elements, which
are available in our replication package (Mariani et al. 2021). The information from all
programs is given as input to GORGEOUS, which manipulates the programs based on the
representation schema presented in Figure 2.

We performed a 10-fold cross-validation by dividing the programs into 10 different sam-
ples, each composed of 4 programs with different numbers of refactoring operations. Thus,
each of the 10 folds comprises 36 programs (9 samples) used for training and 4 programs
(1 sample) used for validation and testing. We built the folds balancing the number of
refactoring operations in each one.

The program versions and other details are presented in Table 5. They correspond to
the version right before the refactoring applications. For each program, it is presented
the number of classes (NC), the number of lines of code (LOC), the original values of
Modularization Quality (MQ), and the number of refactoring operations (NO).

Concerning the clustering algorithm, we adopted the Expectation Maximization
(EM) (Dempster et al. 1977) algorithm. This algorithm uses a probabilistic model to give a
probability of each object to belong to each cluster (Tan et al. 2005). EM generates a mixture
distribution for the whole population of objects, composed of several different individual
distributions. The parameters, such as mean and variance, are estimated using Maximum
Likelihood Estimate (MLE). In this way, each cluster is represented by an individual distri-
bution, and its parameter values represent the patterns for a cluster (Dempster et al. 1977).
Initially, the parameters are unknown, then EM estimates the parameters and tries to guess
objects that are more likely to fit the distribution. After, the algorithm recalculates the indi-
vidual distributions’ parameters to maximize the expected probabilities. Both steps continue
until convergence (parameters are not changing) or until a prefixed number of interactions
is achieved (Dempster et al. 1977).

We use the framework Weka (Witten and Frank 1999) that provides an EM implemen-
tation in which no data distribution needs to be assumed. Also, a 10-fold cross-validation
is automatically performed by Weka to select a configuration with the best number of clus-
ters. The cross-validation performed by Weka to determine the number of clusters is done
in the following steps. First, the number of clusters is set to 1, and the training set is split
randomly into 10 folds. Then EM is performed 10 times using the 10 folds, and the log-
likelihood is averaged over all 10 results. If the loglikelihood has increased, the number of
clusters is increased by 1, and the program continues by splitting the training set again.

3http://aserg-ufmg.github.io/why-we-refactor/#/projects.

110 Page 16 of 35 Empir Software Eng (2022) 27: 110

http://aserg-ufmg.github.io/why-we-refactor/#/projects

Table 5 Program details

Fold Program NC LOC MQ NO

Activity 5.17.0 3,333 183,502 0.1038 5

CyanogenMod A. F. 11.0 10,064 883,564 0.2215 14

Drools 6.3.0 5,924 531,292 0.2250 7

1 Fabric8 2.1.11 974 47,563 0.1865 6

Facebook A. SDK 4.2.0 581 38,314 0.1241 5

Geoserver 2 .7.2 7,521 464,440 0.1875 6

Gradle 2.6 8,360 222,120 0.1679 14

2 Graylog 1.2.0 1,947 83,566 0.1380 7

Languagetool 3.3 1,201 70,295 0.1643 5

Mortar 0.18 175 3,921 0.1426 6

Spring Boot 1.2.4 2,855 99,002 0.0016 8

3 Voltdb 5.2.3 5,466 461,750 0.1457 16

Closure C. 20150609 2,083 238,360 0.2690 17

Drill 0.9.0 3,048 181,479 0.1327 9

MPS 3.2.2 36,240 1,187,832 0.1067 6

4 Quasar 0.7.0 1,346 55,641 0.0227 5

Hive 1.2.1 9,414 753,208 0.1749 20

jOOQ 3.6.2 1,413 110,677 0.0768 9

Netty 3.10.3 1,222 78,225 0.2480 6

5 TextSecure 2.19 850 44,182 0.1826 5

Bitcoinj 0.12.3 1,167 93,038 0.2521 10

Neo4j 2.3.0 10,451 495,818 0.1626 21

Presto 0.107 3,051 235,964 0.2852 6

6 Tomahawk A. 0.83 494 26,715 0.1918 5

Cassandra 2.2.0 4,108 271,439 0.1988 23

Java Driver 2.1.6 876 41,358 0.3161 10

Spring Framework 4.2.0 12,596 526,146 0.1984 5

7 Tachyon 0.6.4 1,092 72,404 0.1445 7

Hazelcast 3.5.1 7,401 345,652 0.1319 25

Rest Li 2.6.2 2,737 202,248 0.1389 10

Vert X 3.0.0 599 49,791 0.1411 7

8 WordPress A. 4.0 1,410 67,364 0.0332 6

Android IMSI C. D. 0.1.29 244 13,439 0.1492 7

Checkstyle 6.7 1,737 60,775 0.2527 6

Graphhopper 0.7.0 554 46,985 0.3103 35

9 Jersey 2.19 6,822 216,828 0.2092 11

Crate 0.49.2 2,625 122,281 0.1714 7

Deeplearning4j 0.4 808 45,103 0.1505 6

Infinispan 5.2.13 4,320 219,253 0.1537 13

10 Openhab 1.7.0 4,041 264,756 0.0040 5

Page 17 of 35 110Empir Software Eng (2022) 27: 110

We integrated Weka in our approach using its Java API. EM was executed for each fold
using 9 samples. In this way, the clusters were generated based on the 36 training programs
of the current fold. As mentioned before, the clustering is executed separately for classes and
methods. Weka (Witten and Frank 1999) automatically found the best number of clusters.
In the end, at the class-level, between 2 and 3 clusters were generated by fold and, at the
method-level, between 2 and 4 clusters.

We performed 30 runs of GE for each cluster to generate the refactoring algorithms.
GORGEOUS implementation is based on Java, and the framework jMetal (Durillo and Nebro
2011) is employed to support the implementation and execution of GE. EM and GE param-
eters were selected from the literature, as well as the number of runs (Mariani et al. 2016).
We also set a maximum of 20 genes by chromosome, which means 20 procedures for a
refactoring algorithm. It was based on the numbers of refactoring operations analyzed in the
programs. Table 6 shows the configuration of the GE algorithm.

The quality function was computed by simulating the application of the refactoring algo-
rithms on the four validation/testing programs. We defined a maximum of 5,000 iterations
to search for an actor to limit long executions when an actor is not found quickly. In the
end, a set of refactoring algorithms was generated for each fold, each algorithm based in a
cluster. We applied these refactoring algorithms in the validation/testing programs to return
refactoring solutions for them.

To answer the research questions of this study, we defined two more configurations
named RANDOM (RQ1) and NOCLUSTER (RQ4). RANDOM performs a Random Search
instead of GE, but we kept the other approach details in the same way, such as the gram-
mars and fitness function. Also, we set for these configurations the same possibility in terms
of iterations. In this sense, RANDOM iterates 10,000 times and executes 30 times for each
cluster as well. NOCLUSTER also has the same parameters configuration, but it does not
perform the Learning Patterns step. In this case, no cluster is provided, and GE receives the
whole set of elements as input. Results obtained by GORGEOUS and these configurations
are presented next.

5 Results

This section presents and discusses the results obtained, answering the posed RQs.

Table 6 GE Algorithm Configuration

Parameter Value

Initialization RANDOM

Population Size 100

Number of GE Fitness Evaluations 10,000

Crossover Operator Single Point

Crossover Probability 90%

Mutation Operator Integer Mutation

Mutation, Pruning and Duplication Probabilities 1%

Selection Operator Binary Tournament

Maximum Gene Size 20

110 Page 18 of 35 Empir Software Eng (2022) 27: 110

5.1 RQ1: GE x RANDOM

To answer RQ1, we compared results obtained by GORGEOUS and RANDOM configuration
analyzing their fitness function values. By considering all folds, GORGEOUS generated 60
clusters, being 26 for the class-level and 34 for the method-level. Based on each cluster,
GE and RANDOM were executed 30 times each. Then, we computed, for each combination
of fold and cluster, the average of the 30 obtained fitness values, along with their standard
deviation. In this respect, we compared the 60 averages obtained by GORGEOUS against
the ones obtained by RANDOM. As another source of comparison, we executed the Cohen’s
effect size (Cohen 2013). The difference is classified as large, medium or small, where large
means bigger than 0.5, medium means between 0.1 and 0.3, and small means smaller than
0.1.

These values are presented by fold and algorithm, respectively, at the class and method
level, in Tables 7 and 8. Each value represents the average of 30 fitness values based on the
30 runs and the standard deviation between parenthesis. Each algorithm (Alg.), represented

Table 7 Fitness values of GORGEOUS and RANDOM Search for the class level

Fold Alg. NE NS GORGEOUS RANDOM p-value ES

0 7 10 0.6937 (0.0311) 0.5859 (0.0240) 3.88E-11 Large

1 21 65 0.4794 (0.0205) 0.4380 (0.0196) 1.93E-08 Large

1 2 12 23 0.5053 (0.0338) 0.4740 (0.0185) 2.84E-04 Large

0 5 10 0.6813 (0.0209) 0.5977 (0.0175) 1.19E-07 Large

1 10 49 0.7563 (0.0265) 0.7206 (0.0209) 2.85E-11. Large

2 2 19 28 0.4760 (0.0293) 0.4292 (0.0250) 2.87E-11 Large

0 15 61 0.7786 (0.0250) 0.7270 (0.0407) 3.45E-06 Large

1 5 10 0.6813 (0.0347) 0.5692 (0.0213) 4.28E-11 Large

3 2 20 27 0.5411 (0.0379) 0.4842 (0.0358) 3.45E-06 Large

0 28 46 0.5826 (0.0228) 0.5202 (0.0407) 4.88E-08 Large

4 1 15 14 0.8395 (0.0181) 0.7333 (0.0573) 3.31E-10 Large

0 19 74 0.5397 (0.0474) 0.4920 (0.0433) 2.39E-04 Large

1 17 21 0.5181 (0.0339) 0.4602 (0.0295) 9.44E-08 Large

5 2 4 7 0.6934 (0.0165) 0.6127 (0.0193) 3.88E-11 Large

0 20 68 0.4826 (0.0357) 0.4390 (0.0292) 2.08E-06 Large

6 1 10 19 0.4645 (0.0291) 0.3972 (0.0285) 3.06E-09 Large

0 13 18 0.7115 (0.0228) 0.6696 (0.0247) 1.30E-07 Large

1 4 7 0.6832 (0.0184) 0.6014 (0.0128) 3.51E-11 Large

7 2 24 79 0.4734 (0.0220) 0.4260 (0.0187) 1.94E-09 Large

0 26 74 0.6021 (0.0249) 0.5502 (0.0237) 5.81E-10 Large

8 1 12 27 0.5797 (0.0293) 0.5350 (0.0275) 2.39E-06 Large

0 23 36 0.5106 (0.0278) 0.4746 (0.0272) 2.77E-05 Large

9 1 14 13 0.7650 (0.0302) 0.7070 (0.0328) 1.93E-08 Large

0 4 12 0.6730 (0.0202) 0.5968 (0.0131) 2.87E-11 Large

1 25 87 0.5256 (0.0265) 0.4773 (0.0196) 2.79E-09 Large

10 2 15 14 0.7930 (0.0309) 0.7542 (0.0281) 2.51E-05 Large

Page 19 of 35 110Empir Software Eng (2022) 27: 110

Table 8 Fitness values of GE and Random Search for the method level

Fold Alg NE NS GORGEOUS RANDOM p-value ES

0 185 189 0.6860 (0.0128) 0.5257 (0.0260) 2.66E-11 Large

1 64 66 0.6673 (0.0121) 0.5739 (0.0250) 2.87E-11 Large

2 51 54 0.6682 (0.0117) 0.4852 (0.0293) 2.86E-11 Large

1 3 7 7 0.5782 (0.0000) 0.6226 (0.0250) 7.11E-10 Small

0 184 188 0.6272 (0.0179) 0.4440 (0.0216) 2.87E-11 Large

2 1 123 128 0.6663 (0.0145) 0.4675 (0.0200) 2.85E-11 Large

0 13 13 0.6138 (0.0206) 0.5597 (0.0202) 1.47E-09 Large

1 167 170 0.6375 (0.0158) 0.4729 (0.0330) 2.86E-11 Large

2 65 69 0.6422 (0.0215) 0.4861 (0.0352) 2.87E-11 Large

3 3 58 60 0.6171 (0.0124) 0.5606 (0.0180) 1.27E-10 Large

0 65 66 0.7335 (0.0079) 0.7239 (0.0173) 1.17E-03 Medium

4 1 54 57 0.7107 (0.0021) 0.7029 (0.0155) 1.37E-03 Medium

0 56 59 0.6435 (0.0160) 0.6146 (0.0132) 1.87E-08 Large

1 61 63 0.6885 (0.0229) 0.6316 (0.0352) 1.66E-07 Large

2 169 172 0.6801 (0.0246) 0.6239 (0.0258) 6.21E-09 Large

5 3 14 14 0.6275 (0.0087) 0.5997 (0.0149) 7.43E-09 Large

0 62 67 0.7222 (0.0078) 0.6698 (0.0232) 1.02E-09 Large

1 180 182 0.7202 (0.0095) 0.6738 (0.0247) 6.23E-09 Large

6 2 57 58 0.7021 (0.007) 0.6611 (0.0196) 7.09E-09 Large

0 64 67 0.6711 (0.0163) 0.6339 (0.0283) 1.02E-06 Large

1 65 66 0.6484 (0.0144) 0.6100 (0.0249) 2.26E-07 Large

7 2 164 168 0.6757 (0.0166) 0.6160 (0.0256) 1.54E-09 Large

0 60 63 0.5523 (0.0215) 0.4658 (0.0294) 5.23E-11 Large

1 164 168 0.5654 (0.0193) 0.5057 (0.0385) 5.62E-09 Large

2 61 62 0.7049 (0.0345) 0.5938 (0.0209) 3.88E-11 Large

8 3 14 14 0.7002 (0.0295) 0.6339 (0.0303) 2.29E-08 Large

0 190 194 0.6747 (0.0138) 0.6124 (0.0193) 4.68E-11 Large

1 47 52 0.6669 (0.0196) 0.6204 (0.0212) 8.10E-09 Large

2 14 14 0.6587 (0.0112) 0.6202 (0.0153) 1.04E-09 Large

9 3 30 30 0.6522 (0.0213) 0.5982 (0.0183) 1.01E-09 Large

0 167 170 0.7333 (0.0031) 0.7206 (0.0191) 3.28E-04 Large

1 64 65 0.7292 (0.0027) 0.7089 (0.0191) 9.40E-09 Large

2 64 66 0.7054 (0.0041) 0.6972 (0.0165) 0.08707 Medium

10 3 11 12 0.7146 (0.0030) 0.7080 (0.0139) 0.0003873 Medium

by 0, 1, or 2, was generated based on a specific cluster. NE represents the number of ele-
ments and NS the number of solutions (refactoring operations) found by this algorithm. Bold
values represent that, comparing the averages of GORGEOUS and RANDOM, the higher aver-
age is statistically significant considering 99% of confidence based on the Mann–Whitney
non-parametric test (Mann and Whitney 1947). The effect size is represented in these tables
as ES; their corresponding values can be found in our repository (Mariani et al. 2021).

110 Page 20 of 35 Empir Software Eng (2022) 27: 110

We observe that at the class-level (Table 7) GORGEOUS is better than RANDOM with sta-
tistical difference and large effect size for all cases. We observe small standard deviation
values for both approaches. At the method-level (Table 8) GORGEOUS is better than RAN-
DOM with statistical difference in 29 cases (out of 30). In 25 of these cases, the effect size
is large, in 4 cases is medium, and in only one small. The standard deviations values for
RANDOM tend to be larger.

Based on that, GORGEOUS is better in 59 out of 60 cases. For the unique case where
RANDOM outperforms GORGEOUS, the algorithms are generated based on the cluster with
the lower number of elements (7) and refactoring operations (7). We assume GE probably
converged to a local optimum in this case, where the random aspect allowed a better explo-
ration of the search space. This difference is not found at the class-level where refactoring
algorithms are generated based on a few elements. We analyzed this algorithm details and
observed that the similarity value impacts its fitness function result. We assume the few ele-
ments and the few metrics considered in the learning of methods limited the results. Despite
that, the effect size presented a slight difference for this case.

We calculated the execution time for both approaches, which is the time consumed
for training and generating the refactoring algorithms. Detailed tables are in our reposi-
tory (Mariani et al. 2021). Considering the average time for training a fold (both class and
method-level), GORGEOUS took 16 minutes while RANDOM took 13 minutes. This time
is acceptable since the steps are executed only once, and the generated algorithms can be
adopted to other programs.

As expected, GORGEOUS has a more significant execution time than RANDOM, which
can be related to the evolutionary steps of the GE algorithm. However, the difference is
slight since it is of approximately 3 minutes. We identified particular cases where RANDOM

presented a more significant execution time than GORGEOUS, which may be associated with
the solution size since it can be different in both algorithms.

5.2 RQ2: Quality Improvement

To answer RQ2, we automatically simulated the application of the solutions generated by
the refactoring algorithms in order to analyze quality aspects. For each fold, we have simu-
lated the application of the refactoring operations in each validation program and computed
against MQ. Table 9 presents for GORGEOUS, for each validation program, and considering
the original value MQp0, the average of MQ (MQ) and the average of QI (QI) based on
the algorithms obtained in the 30 runs. Light gray rows indicate programs with less than 1%
of improvement, gray rows indicate programs between 1% and 5% of improvement, and
dark gray rows indicate programs with more than 5% of improvement.

Page 21 of 35 110Empir Software Eng (2022) 27: 110

Table 9 Quality and Similarity Results (Original vs Gorgeous)

Fold Program Original GORGEOUS

MQP0 QIS MQ QI ARate

Activity 5.17.0 0.1038 0.26% 0.1070 0.40% 20.00%

CyanogenMod 11.0 0.2215 0.00% 0.2644 11.62% 10.00%

Drools 6.3.0 0.2250 0.00% 0.2283 0.61% 83.75%

1 Fabric8 2.1.11 0.1865 0.02% 0.1884 0.04% 55.95%

Facebook SDK 4.2.0 0.1241 0.00% 0.1263 0.21% 40.83%

Geoserver 2 .7.2 0.1875 0.02% 0.1880 0.07% 84.58%

Gradle 2.6 0.1679 0.00% 0.1686 0.16% 81.11%

2 Graylog 1.2.0 0.1380 0.00% 0.1439 3.25% 70.37%

Languagetool 0.1643 0.02% 0.1728 1.94% 0.00%

Mortar 0.18 0.1426 2.60% 0.2361 53.20% 96.82%

Spring Boot 1.2.4 0.0016 0.00% 0.0411 1701.39% 3.33%

3 Voltdb 5.2.3 0.1457 0.10% 0.1489 0.73% 95.76%

Closure 20150609 0.2690 0.00% 0.2697 0.09% 0.00%

Drill 0.9.0 0.1327 0.00% 0.1517 8.91% 0.00%

MPS 3.2.2 0.1067 0.00% 0.1076 0.47% 61.67%

4 Quasar 0.7.0 0.0227 6.47% 0.1394 276.12% 25%

Hive 1.2.1 0.1749 0.06% 0.1778 1.15% 91.67%

jOOQ 3.6.2 0.0768 0.00% 0.0990 19.29% 33.33%

Netty 3.10.3 0.2480 0.06% 0.2489 0.03% 34.76%

5 TextSecure 2.19 0.1826 0.92% 0.1898 1.53% 91.21%

Bitcoinj 0.12.3 0.2521 0.07% 0.2657 0.64% 62.67%

Neo4j 2.3.0 0.1626 0.04% 0.1652 0.45% 76.67%

Presto 0.107 0.2852 0.03% 0.2863 0.25% 63.00%

6 Tomahawk A. 0.83 0.1918 0.00% 0.1974 2.00% 42.86%

Cassandra 2.2.0 0.1988 0.23% 0.2057 0.46% 50.00%

Java Driver 2.1.6 0.3161 0.00% 0.3402 1.75% 68.10%

Spring F. 4.2.0 0.1984 0.00% 0.1991 0.06% 97.78%

7 Tachyon 0.6.4 0.1445 36.67% 0.2772 50.32% 0.00%

Hazelcast 3.5.1 0.1319 0.14% 0.1378 2.95% 100%

Rest Li 2.6.2 0.1389 0.04% 0.1452 3.96% 78.89%

Vert X 3.0.0 0.1411 0.06% 0.1487 1.00% 61.67%

8 WordPress A. 4.0 0.0332 61.39% 0.1557 227.81% 92.50%

Android IMSI 0.1.29 0.1492 0.00% 0.1971 16.05% 99.72%

Checkstyle 6.7 0.2527 0.86% 0.2819 9.89% 33.33%

Graphhopper 0.7.0 0.3103 0.19% 0.3124 0.19% 32.67%

9 Jersey 2.19 0.2092 0.39% 0.2105 0.20% 48.41%

Crate 0.49.2 0.1714 0.08% 0.1753 0.37% 17.38%

Deeplearning4j 0.4 0.1505 0.00% 0.1607 4.27% 0.00%

Infinispan 5.2.13 0.1537 0.00% 0.1546 0.23% 75.33%

10 Openhab 1.7.0 0.0040 116.76% 0.0149 148.39% 73.94%

110 Page 22 of 35 Empir Software Eng (2022) 27: 110

We observed many variations in the quality improvement results based on the presented
results since the programs have distinct characteristics and domains. For instance, QI varies
from 0.03% up to 1701.39%. We noted that the amount of improvement is highly dependent
on the original MQ value since the algorithms were able to obtain greater values of QI for
programs with the original MQp0 lower than the average (0.1654).

In fact, 82% of the programs with high QI , 60% of the programs with medium QI , and
31% of the programs with low QI have the original MQ value lower than the average. In
this sense, the lower the MQ value, the more significant the improvement and the greater
the benefit of the refactoring operations for the program. In particular, the programs with
the lowest values of MQ are the ones with the greatest QI , which are: SpringBoot1.2.4 with
1701.38% of improvement, Openhab 1.7.0 with 148.39% of improvement, Quasar 0.7.0
with 276.12% of improvement, and WordPress Android 4.0 with 227.81%. Furthermore,
such programs belong to distinct folds, which shows consistency in the results obtained by
different folds.

We also observed that more extensive programs, in terms of number of classes, usually
present less than 1% of improvement. Most of the time, such programs have the original MQ
value greater than the average. This can lead us to the idea that more extensive programs
are usually better modularized than small projects. For a big project, more effort is probably
devoted to the design and refactoring activities.

The following analysis considers the quality improvement of refactoring operations indi-
vidually. The goal is to investigate if the quality improvement occurs due to the whole set
of refactoring operations, which is not related to only one operation. Table 10 presents, for
each program, the number of refactoring solutions (NS) found by the algorithms and; the
number and % of good, bad, and neutral solutions. We considered a good solution the one
with an improvement (QI > 0). On the other hand, neutral solutions are the ones with
no improvement (QI = 0), and bad solutions are the ones with a negative improvement
(QI < 0). The greatest percentage from these three groups is highlighted in bold.

These results clearly show that most of the found refactoring solutions improve the pro-
gram quality. Moreover, there is no case where bad solutions are greater than good or neutral
ones. The number of good solutions was higher than others in 80% of times. Also, the num-
ber of neutral solutions was higher than others in 15% of programs. However, in these cases,
good solutions still present at least 1

3 of solutions. In two other cases, the number of neutral
and good solutions was the same, corresponding to 5% of times. Besides, half of the folds
present at least one program where 100% of solutions are good.

We also compared results of GORGEOUS with results obtained by refactoring opera-
tions performed by developers. In this sense, column QIS of Table 9 shows the QI value
obtained by the developers’ applications. These values show that the refactoring operations
applied by developers do not obtain good values of QI. While all programs presented some
improvement using the refactoring solutions suggested by GORGEOUS, refactoring opera-
tions applied by developers presented no improvement at all for 40% of the programs. Also,
10% of the other programs show great improvement, 2% medium improvement, 48% low
improvement. By comparing the overall average, GORGEOUS performs on average 63% of
improvement, while the developer solution obtained on average 5% of improvement. Also,
GORGEOUS was capable of generating refactoring algorithms that provide solutions able
to improve in some level 100% of programs, while the developer applications resulted in
improvement of only 60% of programs, being 40% with no improvement.

Page 23 of 35 110Empir Software Eng (2022) 27: 110

Table 10 Individual Solutions Results

Fold Program NS % Good % Bad % Neutral

Activity 5.17.0 10 40% 20% 40%

CyanogenMod 11.0 9 22% 11% 67%

Drools 6.3.0 11 64% 36% 0%

1 Fabric8 2.1.11 9 67% 33% 0.04%

Facebook SDK 4.2.0 3 100% 0% 0%

Geoserver 2 .7.2 4 50% 25% 25%

Gradle 2.6 4 100% 0% 0%

2 Graylog 1.2.0 3 100% 0% 0%

Languagetool 12 100% 0% 0%

Mortar 0.18 10 60% 0% 40%

Spring Boot 1.2.4 11 45% 0% 55%

3 Voltdb 5.2.3 15 40% 7% 53%

Closure 20150609 3 67% 0% 33%

Drill 0.9.0 3 67% 0% 33%

MPS 3.2.2 3 67% 0% 33%

4 Quasar 0.7.0 3 67% 0% 33%

Hive 1.2.1 13 54% 38% 8%

jOOQ 3.6.2 11 73% 18% 9%

Netty 3.10.3 12 33% 17% 50%

5 TextSecure 2.19 10 90% 10% 0%

Bitcoinj 0.12.3 8 88% 0% 13%

Neo4j 2.3.0 10 50% 10% 40%

Presto 0.107 7 57% 0% 43%

6 Tomahawk A. 0.83 7 100% 0% 0%

Cassandra 2.2.0 9 78% 11% 11%

Java Driver 2.1.6 8 38% 13% 50%

Spring F. 4.2.0 13 54% 38% 8%

7 Tachyon 0.6.4 7 86% 0% 14%

Hazelcast 3.5.1 14 64% 21% 14%

Rest Li 2.6.2 11 82% 0% 18%

Vert X 3.0.0 9 100% 0% 0%

8 WordPress A. 4.0 8 50% 0% 50%

Android IMSI 0.1.29 9 56% 11% 33%

Checkstyle 6.7 9 78% 11% 11%

Graphhopper 0.7.0 10 40% 10% 50%

9 Jersey 2.19 11 45% 27% 27%

Crate 0.49.2 5 100% 0% 0%

Deeplearning4j 0.4 5 100% 0% 0%

Infinispan 5.2.13 5 100% 0% 0%

10 Openhab 1.7.0 5 100% 0% 0%

110 Page 24 of 35 Empir Software Eng (2022) 27: 110

5.3 RQ3: Similarity with Refactorings Applied by Developers

To answer RQ3, we analyzed if the refactoring algorithms generated by GORGEOUS can
find the refactoring operations applied by developers. As mentioned before, this analy-
sis was performed using the previously defined measure ARate. In this respect, Table 9
presents ARate formatted as percentages. The values greater than 50% are highlighted in
bold. We considered the set of refactoring algorithms generated based on a fold to obtain
this value. The average is calculated based on 30 runs in this process.

The results of ARate presented in Table 9 show several variations. The variations of the
results are explained by the different characteristics of the considered programs. It would
be challenging to achieve similar metrics results when dealing with the software changes.
Briefly, the overall average is 55.58%, which is a good value if we consider balancing both
quality and similarity. However, it is important to analyze the results in deep.

Table 9 shows 60% of the programs have ARate value greater than 50%, which means
the refactored algorithms are capable of finding a set of refactoring solutions performed by
developers. In particular, for one of the programs, the algorithms obtained a value of 100%.
On the other hand, the value is 0% for 5 programs. By analyzing these programs, we found
some similarities in their refactoring operations. First, most of them have several refactoring
solutions involving the same element as the actor. Then, the set of elements used to measure
ARate is small. Moreover, 93% of the refactoring operations not found by the refactoring
algorithms are composed of method-level refactorings.

In fact, low values of ARate do not mean bad results since some good refactoring solu-
tions might not be identified by developers. In this sense, GORGEOUS may be useful to
identify other refactoring solutions rather than only similar ones. We present a more specific
analysis using a solution found by a generated refactoring algorithm for the Fabric8 pro-
gram. It suggests to extract a class called BrokerFacadeSupport. The class under analysis
was not part of a true solution and was not identified as a bad design. In the context of the
program, a broker routes messages, handles transactions and maintains subscriptions and
connections. BrokerFacadeSupport4 was designed taking into account the design pattern
called Façade (Gamma et al. 1995). In this sense, such a class is responsible for provid-
ing a simplified interface to a complex system of classes. BrokerFacadeSupport provides
several operations to deal with two aspects of a broker, which are connectors and topics.
As presented by the Façade design pattern, an additional Façade can be created to divide
responsibilities and prevent the original Façade from growing and becoming complex. In

4http://activemq.apache.org/maven/5.9.0/apidocs

Page 25 of 35 110Empir Software Eng (2022) 27: 110

http://activemq.apache.org/maven/5.9.0/apidocs

this sense, the suggested solution makes sense since we could extract BrokerFacadeSupport
into two different Façade for dealing with connectors.

5.4 RQ4: Use of Patterns Extracted with Clusters Algorithms

To answer RQ4, we analyze values of QI and ARate obtained by GORGEOUS and
NOCLUSTER experiments. Table 11 summarizes these results. In general, GORGEOUS

performs better than NOCLUSTER considering both quality and similarity results. Regard-
ing QI , NOCLUSTER has an average of 26.26% of improvement, while GORGEOUS has
63.81%.

Especially, considering QI , GORGEOUS presents the best values for all programs. More-
over, concerning NOCLUSTER, most programs have presented a very low improvement.
On the other hand, there are five cases where NOCLUSTER performs better when analyz-
ing ARate values. The values in which NOCLUSTER is better are highlighted in bold in
Table 11. A unique group of elements can lead to a more generic refactoring algorithm,
which results in more embracing rules. In this sense, depending on the characteristics of the
program, it can be more easily to find solutions, and this will eventually increase ARate.
However, these solutions will not always improve quality, as shown by QI values.

Results show, on average, and based on the 40 programs, GORGEOUS obtains 55%
against 9% of ARate for NOCLUSTER. Furthermore, GORGEOUS obtained a maximum of
100% of ARate, while NOCLUSTER could get a maximum of only 27%. The approach
without the learning of patterns can negatively impact the similarity measure with real refac-
toring operations and quality aspects. This is evidence that the clusters can be useful to
guide the generation of algorithms able to generalize the learned refactoring patterns.

5.5 Discussion

In this section, we discuss the implications of the results for research and practice and some
limitations of the approach.

110 Page 26 of 35 Empir Software Eng (2022) 27: 110

Table 11 Quality and Similarity Results (GORGEOUS vs NOCLUSTER)

Fold Program GORGEOUS NOCLUSTER

MQ QI ARate MQ QI ARate

Activity 5.17.0 0.1070 0.40% 20.00% 0.1040 0.15% 4.00%

CyanogenMod 11.0 0.2644 11.62% 10.00% 0.2348 6.00% 18.61%

Drools 6.3.0 0.2283 0.61% 83.75% 0.2270 0.08% 16.00%

1 Fabric8 2.1.11 0.1884 0.04% 55.95% 0.1865 0.00% 0.10%

Facebook SDK 4.2.0 0.1263 0.21% 40.83% 0.1250 0.00% 16.67%

Geoserver 2 .7.2 0.1880 0.07% 84.58% 0.1876 0.05% 0.00%

Gradle 2.6 0.1686 0.16% 81.11% 0.1681 0.10% 3.57%

2 Graylog 1.2.0 0.1439 3.25% 70.37% 0.1385 0.35% 2.38%

Languagetool 0.1728 1.94% 0.00% 0.1645 0.12% 10%

Mortar 0.18 0.2361 53.20% 96.82% 0.1500 5.19% 0%

Spring Boot 1.2.4 0.0411 1701.39% 3.33% 0.0141 794.44% 32.50%

3 Voltdb 5.2.3 0.1489 0.73% 95.76% 0.1464 0.44% 7.86%

Closure 20150609 0.2697 0.09% 0.00% 0.2690 0.01% 5.83%

Drill 0.9.0 0.1517 8.91% 0.00% 0.1344 1.22% 7.50%

MPS 3.2.2 0.1076 0.47% 61.67% 0.1067 0.09% 6.67%

4 Quasar 0.7.0 0.1394 276.12% 25% 0.0469 106.55% 3.33%

Hive 1.2.1 0.1778 1.15% 91.67% 0.1754 0.28% 11.85%

jOOQ 3.6.2 0.0990 19.29% 33.33% 0.0800 4.24% 20.00%

Netty 3.10.3 0.2489 0.03% 34.76% 0.2482 0.00% 10.00%

5 TextSecure 2.19 0.1898 1.53% 91.21% 0.1837 0.59% 8.67%

Bitcoinj 0.12.3 0.2657 0.64% 62.67% 0.2528 0.25% 15.71%

Neo4j 2.3.0 0.1652 0.45% 76.67% 0.1627 0.09% 13.33%

Presto 0.107 0.2863 0.25% 63.00% 0.2853 0.03% 10.67%

6 Tomahawk A. 0.83 0.1974 2.00% 42.86% 0.1934 0.81% 0%

Cassandra 2.2.0 0.2057 0.46% 50.00% 0.1990 0.07% 13.64%

Java Driver 2.1.6 0.3402 1.75% 68.10% 0.3168 0.23% 50.00%

Spring F. 4.2.0 0.1991 0.06% 97.78% 0.1885 0.04% 15.00%

7 Tachyon 0.6.4 0.2772 50.32% 0.00% 0.1773 22.70% 8.00%

Hazelcast 3.5.1 0.1378 2.95% 100% 0.1339 1.52% 21.82%

Rest Li 2.6.2 0.1452 3.96% 78.89% 0.1409 1.43% 15.67%

Vert X 3.0.0 0.1487 1.00% 61.67% 0.1436 1.75% 23.33%

8 WordPress A. 4.0 0.1557 227.81% 92.50% 0.0650 95.50% 57.66%

Android IMSI 0.1.29 0.1971 16.05% 99.72% 0.1545 3.60% 0.00%

Checkstyle 6.7 0.2819 9.89% 33.33% 0.2532 0.20% 8.33%

Graphhopper 0.7.0 0.3124 0.19% 32.67% 0.3107 0.13% 0.00%

9 Jersey 2.19 0.2105 0.20% 48.41% 0.2092 0.02% 27.33%

Crate 0.49.2 0.1753 0.37% 17.38% 0.1716 0.10% 1.43%

Deeplearning4j 0.4 0.1607 4.27% 0.00% 0.1523 1.19% 2.78%

Infinispan 5.2.13 0.1546 0.23% 75.33% 0.1537 0.03% 3.03%

10 Openhab 1.7.0 0.0149 148.39% 73.94% 0.1523 1.19% 3.03%

Page 27 of 35 110Empir Software Eng (2022) 27: 110

The results show GORGEOUS is capable of generating refactoring algorithms that
can find solutions similar to actual refactoring operations, as well as improving quality
attributes. The generated refactoring algorithms suggest solutions that reach on average
55% of improvement in the quality of the programs. Furthermore, the refactoring algo-
rithms could find on average 50% of actual refactoring operations. These are considered
good results, especially by considering the balance between similarity and quality. Maybe
the weights of both factors can be adjusted depending on the developers’ interests and pref-
erences. We also intend to conduct experiments to evaluate the dependence relation between
both factors. Other metrics and evaluation functions should be explored in future research,
as well as a multi-objective approach.

Despite these results presented by averages, the values obtained for both similarity and
quality vary. While some programs obtained 100% of quality improvement, others presented
0%. However, 80% of the refactoring solutions showed improvement to the program. It is
expected those variations when working with software programs. As presented in the pro-
gram details, they differ significantly in size and domain. Moreover, much information that
is used may present variation, such as the number of refactorings, number of elements in
a cluster, number of refactoring operations, etc. Despite that, we could not find that these
characteristics directly influenced quality improvement. On the other hand, the results seem
to be influenced by modularity values, where we can assume that programs with lower mod-
ularity values can take more advantage of the approach. In this sense, we believe a future
study considering other program characteristics might be feasible to find more answers.

We conducted some tests to evaluate the impact on the results regarding the cluster-
ing phase. We evaluated two other algorithms: K-means (Hartigan and Wong 1979) and
Agglomerative Hierarchical Clustering (Lance and Williams 1967) by using the indicators
Silhouete, Calinski-Harabasz, Distortion, and Davies-Bouldin. As a result, no algorithm
could be considered the best according to all indicators, and we did not observe significant
changes in the GORGEOUS performance. However, we have observed different findings
regarding the number of clusters at the class and method levels in any case. At the method-
level, having fewer methods causes Gorgeous to generate refactoring algorithms with a low
similarity score with actual refactoring operations. On the other hand, at the class-level,
having fewer classes causes Gorgeous to generate refactoring algorithms with a better sim-
ilarity score. A possible reason for this is the number of rules to be satisfied. Only two
rules must be satisfied at the method-level, and four rules at the class-level. Using a reduced
number of clusters means that each cluster will have a significant number of classes. Since
the GE is executed per cluster, this implies many elements that need to satisfy the rules
and, consequently, a more restricted space, which makes the search for good solutions more
difficult.

We observed that the higher the number of classes, the lower the similarity result. How-
ever, the opposite does not occur since the experiment without clustering presented worse
results at the method-level. Methods are way more in numbers than classes, so we could not
make a fair comparison. In this respect, the clustering of elements brings many advantages
in generating refactoring algorithms.

This paper evaluated a few refactorings, only the most common and used. However, our
approach is flexible, and other refactorings can also be added in the grammars and consid-
ered by the clustering algorithms. Besides the quality and similarity results, it is important
to highlight that the refactoring algorithms could also be manipulated to improve the results.
For example, we can suggest a refactoring operation only if it improves quality or improves
quality more than a specific percentage. Also, the algorithm could suggest solutions only

110 Page 28 of 35 Empir Software Eng (2022) 27: 110

by considering some part of the program, e.g., a package the developer is working on at the
moment. In this sense, the refactoring algorithms could be manipulated regarding how the
solutions are suggested. We intend to evaluate such strategies in future works.

A limitation of GORGEOUS in comparison with SBR approaches is to require information
from previous projects for training. This is a usual problem of using ML approaches. Then
an initial step to create the database of program instances is necessary. This database can
be generated by mining existing software repository tools and can be updated if desired.
However, the approach assumes that the training set is representative of all projects to be
refactored. Also, there is an effort to extract metrics values from the programs. We used the
tools RefactoringMiner and Understand to this goal and automated the generation of the
inputs and all steps of the approach. Nevertheless, other tools could also be used.

Another assumption is that the metrics and the intervals that such metrics vary used
in the grammar are sufficient to characterize all classes/methods that underwent similar
refactoring operations. This may not hold in practice and constrain the search space. This
limitation of the approach may impact its applicability. To deal with this, there are other
metrics, as well as some particularities of the systems, which could be used in the training
phase. Future work should evaluate a broader set of metrics and corresponding intervals in
different domains. The results should be used to make the approach configurable according
to some specific domain.

5.6 Threats to Results Validity

In this section, we discuss the main threats to the validity of our results and how we mitigate
them. We use the taxonomy of Wohlin et al. (2012).

Threats to Construct Validity concern the relationship between theory and observation.
A possible threat is the coupling with the program representation in computing the fitness
function. Indeed, the quality function is computed by simulating the refactoring operations
based on such a representation. In this sense, we can not guarantee that the same results
will be obtained by using the original program or other representation. In this respect, we
built the program representation to encompass all information needed to compute the metric
value.

Internal Validity evaluates the relationship between the treatment and the output and
concerns factors that might have influenced our results. One of the main threats of our study
is the program folds used for validation and testing. We use the same set of programs in
these phases. It might influence the results of our approach since we do not perform a test
with a set of programs not used during GORGEOUS execution. However, our approach uses
individual characteristics of elements in the learning, so we believe general aspects of a
program would not have a significant impact. Also, the similarity function was measured in
a separate set of programs.

To run GORGEOUS, a preprocessing to collect the data needs to be performed. It involves
the collection of elements information and refactoring operations. In this sense, the correct-
ness of such information is related to the tool used in this step. To mitigate this threat, we
make sure to use a highly recommended tool to extract the elements information and refac-
toring applications extracted by studies following a methodology with recommended tools.
Moreover, this can also impact the reproducibility of the results since one might use other
tools to extract the data.

The application of the generated refactoring algorithms is also a possible threat. In this
evaluation, we defined one execution for each procedure, for example, an algorithm with 6
procedures generates a maximum of 6 solutions. This could be changed by increasing the

Page 29 of 35 110Empir Software Eng (2022) 27: 110

running times of a procedure to find more solutions or even all solutions consequently. It
would impact the results of the values of the measures. We did not perform experiments
changing this configuration, but we expect to reach better results by exploring this aspect.
Our results encourage more rigorous analyses over the capability of refactoring algorithms.

A possible threat is the choice of the metrics used to characterize the elements (classes
and methods). For this initial evaluation, we chose standard metrics related to cohesion,
coupling, and size, usually adopted by search-based refactoring approaches. Other metrics
could be considered related to process, developers, or class evolution (Catolino et al. 2020).
There are many automated tools to collect distinct metrics. As mentioned in the last section,
a deeper study should be conducted in future work. But the set of metrics used in this paper
does not invalidate the obtained results. We think that using a complete set of metrics can
make the results even better.

The intervals for these metrics are also a threat. To minimize this problem, as we mention
in Section 3.4.1, the intervals used in the algorithm are generated respecting the minimum
and maximum values of the metrics m1 to m8, found in the elements of the correspond-
ing cluster. In this way, we consider the real values of these metrics found in the training
systems.

Finally, we used parameters from the literature to execute the EM and GE algorithms, but
a tuning phase may improve the results. Also, the GE technique is non-deterministic, but to
mitigate this threat, we performed 30 runs of each technique as recommended and adopted
in the SBSE literature (Colanzi et al. 2019).

Conclusion Validity is related to the ability to draw the correct conclusion from the study.
Threats in this category are the indicators used to evaluate our results (QI and ARate) and
statistical tests used. Other indicators could lead to different results. We used tests com-
monly adopted in software engineering problems for this kind of algorithm to minimize this
threat (Colanzi et al. 2019).

External Validity corresponds to the ability to generalize the results beyond the exper-
imental setting. Although we have a significant number of programs, some of them have
few refactorings, and only Java programs were used. Also, we use a few metrics to generate
method-level operations. Moreover, although the refactoring solutions improved most pro-
grams, quality improvement is highly dependent on the program characteristics. Then, it is
not possible to guarantee the same amount of improvement for two different programs.

6 Concluding Remarks

In this work, we present GORGEOUS, an SBR learning approach to generate refactoring
algorithms. Refactoring algorithms are generated by GE, considering quality improvement
of a program and similarity with actual refactoring operations. We introduce the idea and
structure of a refactoring algorithm and two grammars to guide the search. In addition to
this, each algorithm is generated based on a refactoring pattern discovered in a previous
step. In such a step, a clustering algorithm is executed to group code elements from different
programs refactored in similar ways in the past. The clusters are generated considering
refactoring type and frequency of application. Each group of code elements represents a
refactoring pattern.

In this way, GORGEOUS combines the advantages of works from both SBR and ML
approaches. When executed for a given program, the generated algorithms work as a pre-

110 Page 30 of 35 Empir Software Eng (2022) 27: 110

diction model of refactoring opportunities and are generated by searching in a vast space of
alternatives to optimize quality attributes and similarity with refactoring patterns applied in
different programs.

We reported results of an empirical evaluation conducted using a 10-fold cross-validation
with 40 Java programs from GitHub. We collected several data from programs, such as
elements metrics and refactoring operations. Results show GORGEOUS can generate refac-
toring algorithms capable of identifying refactoring operations for different programs.
Encouraging results were obtained in terms of quality improvement of the original program
and similarity in comparison with actual refactoring operations. Although good results were
obtained, they have many variations in terms of values, mainly because of the particulari-
ties of each program. Our evaluation also showed the importance of the clustering step. It
contributes to generating algorithms capable of suggesting good solutions regarding simi-
larity with real applications. The average of quality improvement obtained by GORGEOUS

is greater than the ones obtained by refactorings applied by developers. This shows that
besides the similarity with past refactoring patterns, the generated algorithms found other
possibilities that they might not have thought of.

As future work, we intend to improve some aspects of GORGEOUS, as well as to perform
other experiments. We are currently working on automating the preprocessing step to make
GORGEOUS less dependent on external tools. Other future work is to create an IDE plugin
to provide refactoring algorithms during development and allow the automatic application
of refactorings. In addition, we intend to study other aspects of a refactoring algorithm, such
as qualitatively analyzing patterns of each cluster and how they have influenced the rules of
the algorithm. Finally, we are working to include other quality metrics and refactorings in
the generation of the algorithms.

Acknowledgements The authors would like to thank to CAPES by supporting Thainá Mariani by the pro-
gram PDSE associated with the process 88881.135198/2016-01. Silvia R. Vergilio is supported by CNPq
(Grant:305968/2018).

Declarations

Conflict of Interests We declare that we have no conflict of interests.

References

AutoRefactor (2021) Available at: http://autorefactor.org/. Accessed on March 28
Spartan Refactoring (2021) Available at: https://marketplace.eclipse.org/content/spartan-refactoring.

Accessed on March 28
Abid C, Alizadeh V, Kessentini M, Ferreira TN, Dig D (2020) 30 years of software refactoring research: A

systematic literature review. CoRR abs/2007.02194
Al Dallal J (2012) Constructing models for predicting extract subclass refactoring opportunities using object-

oriented quality metrics. Inf Softw Technol 54(10):1125–1141
Alenezi M, Akour M, Alqasem O (2020) Harnessing deep learning algorithms to predict software

refactoring. TELKOMNIKA (Telecommunication Computing Electronics and Control) 18:2977–2982.
https://doi.org/10.12928/TELKOMNIKA.v18i6.16743

Alizadeh V, Kessentini M, Mkaouer MW, Ocinneide M, Ouni A, Cai Y (2020) An interactive and dynamic
search-based approach to software refactoring recommendations. IEEE Trans Softw Eng 46(9):932–961.
https://doi.org/10.1109/TSE.2018.2872711

AlOmar EA, Peruma A, Newman CD, Mkaouer MW, Ouni A (2020) On the relationship between
developer experience and refactoring: An exploratory study and preliminary results. In: Proceedings

Page 31 of 35 110Empir Software Eng (2022) 27: 110

http://autorefactor.org/
https://marketplace.eclipse.org/content/spartan-refactoring
https://doi.org/10.12928/TELKOMNIKA.v18i6.16743
https://doi.org/10.1109/TSE.2018.2872711

of the IEEE/ACM 42nd International Conference on Software Engineering Workshops. ICSEW’20.
Association for Computing Machinery, New York, NY, USA, pp 342–349

Amal B, Kessentini M, Bechikh S, Dea J, Said LB (2014) On the use of machine learning and search-based
software engineering for ill-defined fitness function: A case study on software refactoring. In: Le Goues
C, Yoo S (eds) Search-Based Software Engineering. Springer International Publishing, Cham, pp 31–45

Aniche M, Maziero E, Durelli R, Durelli V (2020) The effectiveness of supervised machine
learning algorithms in predicting software refactoring. IEEE Trans Softw Eng, pp 1–1.
https://doi.org/10.1109/TSE.2020.3021736

Bansiya J, Davis CG (2002) A hierarchical model for object-oriented design quality assessment. IEEE Trans
Softw Eng 28(1):4–17

Baqais A, Alshayeb M (2020) Automatic software refactoring: a systematic literature review. Softw Qual J
28:459–502

Barros RC, Basgalupp MP, Cerri R, da Silva TS, de Carvalho ACPLF (2013) A Grammatical Evolu-
tion Approach for Software Effort Estimation. In: Proceedings of the 5th Genetic and Evolutionary
Computation Conference. GECCO

Catolino G, Palomba F, Fontana FA, De Lucia A, Andy Z, Ferrucci F (2020) Improving change
prediction models with code smell-related information. Empirical Software Engineer 25:49–95.
https://doi.org/10.1007/s10664-019-09739-0

Cohen J (2013) Statistical power analysis for the behavioral sciences. Academic press
Colanzi TE, Assunção WKG, Farah PR, Vergilio SR, Guizzo G (2019) A review of ten years of the sym-

posium on search-based software engineering. In: Nejati S, Gay G (eds) Symposium on Search-Based
Software Engineering. Springer, Cham, pp 42–57

Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Introduction to algorithms, edn. 3. The MIT Press
Dallal JA (2017) Predicting move method refactoring opportunities in object-oriented code. Inf Softw

Technol 92:105–120
Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the em algorithm.

J R Stat Soc Ser B 39(1):1–38
Durillo JJ, Nebro AJ (2011) jMetal: A Java framework for multi-objective optimization. Adv Eng Softw

42:760–771
Fowler M, Beck K (2018) Refactoring: Improving the Design of Existing Code, edn. 2. Addison-Wesley
Gamma E, Helm R, Johnson R, Vlissides J (1995) Design patterns: Elements of reusable object-oriented

software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA
Hartigan JA, Wong MA (1979) Algorithm as 136: A k-means clustering algorithm. J R Stat Soc 28(1):100–

108
Imazato A, Higo Y, Hotta K, Kusumoto S (2017) Finding extract method refactoring opportunities by ana-

lyzing development history. In: Proceedings of the 41st Annual Computer Software and Applications
Conference. COMPSAC

Jindal S, Khurana G (2013) The statistical analysis of source-code to determine the refactoring opportunities
factor (ROF) using a machine learning algorithm. In: Proceedings of the International Conference on
Advances in Recent Technologies in Communication and Computing. ARTCom

Kaur A, Dhiman G (2019) A review on search-based tools and techniques to identify bad code smells in
object-oriented systems. In: Yadav N, Yadav A, Bansal JC, Deep K, Kim JH (eds) Harmony Search and
Nature Inspired Optimization Algorithms. Springer Singapore, Singapore, pp 909–921

Kessentini M, Mahouachi R, Ghedira K (2012) What you like in design use to correct bad-smells. Softw
Qual J 21(4):551–571

Kim M, Zimmermann T, Nagappan N (2014) An empirical study of refactoring challenges and benefits at
Microsoft. IEEE Trans Softw Eng 40(7):633–649

Koc E, Ersoy N, Andac A, Camlidere ZS, Cereci I, Kilic H (2011) An empirical study about search-based
refactoring using alternative multiple and population-based search techniques. In: Proceedings of the
International Symposium on Computer and Information Sciences. ISCIS, pp 59–66

Koc E, Ersoy N, Camlidere ZS, Kilic H (2012) A Web-Service for Automated Software Refactoring Using
Artificial Bee Colony Optimization. In: Proceedings of the International Conference on Advances in
Swarm Intelligence. ICSI, pp 318–325

Kosker Y, Turhan B, Bener A (2009) An expert system for determining candidate software classes for
refactoring. Expert Syst Appl 36(6):10000–10003

Koza JR (1992) Genetic Programming: On the Programming of Computers by Means of Natural Selection.
MIT Press

Kumar L, Satapathy SM, Murthy LB (2019) Method level refactoring prediction on five open source
java projects using machine learning techniques. In: Proceedings of the 12th Innovations on Software
Engineering Conference. ISEC

110 Page 32 of 35 Empir Software Eng (2022) 27: 110

https://doi.org/10.1109/TSE.2020.3021736
https://doi.org/10.1007/s10664-019-09739-0

Lance GN, Williams WT (1967) A General Theory of Classificatory Sorting Strategies: 1. Hierarchical
Systems. The Computer Journal 9(4):373–380

Mahouachi R, Kessentini M, Ghedira K (2012) A new design defects classification: Marrying detection and
correction. In: Proceedings of the Fundamental Approaches to Software Engineering. FASE

Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than
the other. The Annals of Mathematical Statistics 18(1):50–60

Mansoor U, Kessentini M, Wimmer M, Deb K (2015) Multi-view refactoring of class and activity diagrams
using a multi-objective evolutionary algorithm. Softw Qual J, pp 1–29

Mariani T, Guizzo G, Vergilio SR, Pozo ATR (2016) Grammatical evolution for the multi-objective integra-
tion and test order problem. In: Genetic and Evolutionary Computation Conference. GECCO, pp 1069–
1076

Mariani T, Kessentini M, Vergilio SR (2021) Dataset and Suplementary Material. https://doi.org/10.6084/
m9.figshare.12275981

Mariani T, Vergilio SR (2016) A systematic review on search-based refactoring. Inf Softw Technol 83:14–34
Mkaouer MW, Kessentini M, Bechikh S, Cinnéide MO, Deb K (2015) On the use of many quality attributes

for software refactoring: a many-objective search-based software engineering approach. Empir Softw
Eng, pp 1–43

Mkaouer MW, Kessentini M, Bechikh S, Deb K, Ó Cinnéide M (2014) Recommendation system for soft-
ware refactoring using innovization and interactive dynamic optimization. In: Proceedings of the 29th
ACM/IEEE international conference on Automated software engineering. ACM, pp 331–336

Mkaouer MW, Kessentini M, Bechikh S, Deb K, Ó Cinnéide M (2014) Recommendation system for software
refactoring using innovization and interactive dynamic optimization. In: Proceedings of the International
Conference on Automated Software Engineering. ASE, pp 331–336

Mkaouer W, Kessentini M, Kontchou P, Deb K, Bechikh S, Ouni A (2015) Many-Objective Software Remod-
ularization Using NSGA-III. Transactions on Software Engineering and Methodology 24(3):17:1–
17:45

Mohan M, Greer D (2018) A survey of search-based refactoring for software maintenance. Journal of
Software Engineering Research and Development 6:3:1 – 3:52

Moore I (1996) Automatic inheritance hierarchy restructuring and method refactoring. In: Proceedings of the
11th Conference on Object-oriented Programming, Systems, Languages, and Applications. OOPSLA

Murphy-Hill E, Parnin C, Black AP (2012) How we refactor, and how we know it. IEEE Trans Softw Eng
38(1):5–18

Ouni A, Kessentini M, Sahraoui H (2013) Search-based refactoring using recorded code changes. In:
Proceedings of the European Conference on Software Maintenance and Reengineering. CSMR

Ouni A, Kessentini M, Sahraoui H (2014) Multiobjective optimization for software refactoring and evolution.
Adv Comput 94:103–167

Ouni A, Kessentini M, Sahraoui H, Hamdi MS (2013) The use of development history in software refac-
toring using a multi-objective evolutionary algorithm. In: Proceedings of the Genetic and Evolutionary
Computation Conference. GECCO

Ouni A, Kessentini M, Sahraoui H, Inoue K, Deb K (2016) Multi-criteria code refactoring using search-based
software engineering: An industrial case study. ACM Trans Softw Eng Methodol 25(3):23:1–23:53

Ouni A, Kessentini M, Sahraoui H, Inoue K, Hamdi MS (2015) Improving multi-objective code-smells
correction using development history. J Syst Softw 105:18–39

Paixao M, Harman M, Zhang Y, Yu Y (2018) An empirical study of cohesion and coupling: Balancing
optimization and disruption. IEEE Trans Evol Comput 22(3):394–414

Phongpaibul M, Boehm B (2007) Mining software evolution to predict refactoring. In: Proceedings of the
International Symposium on Empirical Software Engineering and Measurement. ESEM

Powers DMW (2011) Evaluation: From precision, recall and F-measure to ROC, informedness, markedness
and correlation. J Mach Learn Technol 2:37–63

Ryan C, Collins JJ, Neill MO (1998) Grammatical evolution: Evolving programs for an arbitrary language.
In: Genetic Programming. Lecture Notes in Computer Science, vol 1391. Springer, Berlin Heidelberg,
pp 83–96

Silva D, Tsantalis N, Valente MT (2016) Why we refactor? confessions of github contributors. In: Pro-
ceedings of the 24th International Symposium on Foundations of Software Engineering. FSE, pp 858–
870

Sjøberg DIK, Yamashita A, Anda BCD, Mockus A, Dybå T (2013) Quantifying the effect of code smells on
maintenance effort. IEEE Trans Softw Eng 39(8):1144–1156

Tan P-N, Steinbach M, Kumar V (2005) Introduction to data mining. Addison-Wesley

Page 33 of 35 110Empir Software Eng (2022) 27: 110

https://doi.org/10.6084/m9.figshare.12275981
https://doi.org/10.6084/m9.figshare.12275981

Tsantalis N, Chaikalis T, Chatzigeorgiou A (2008) JDeodorant: Identification and removal of type-
checking bad smells. In: Proceedings of the 12th European Conference on Software Maintenance and
Reengineering. CSMR

Tufano M, Pantiuchina J, Watson C, Bavota G, Poshyvanyk D (2019) On learning meaningful code changes
via neural machine translation. In: Proceedings of the 41st International Conference on Software
Engineering. ICSE ’19, pp 25–36

Wang H, Kessentini M, Grosky W, Meddeb H (2015) On the use of time series and search based
software engineering for refactoring recommendation. In: Proceedings of the 7th International
Conference on Management of Computational and Collective IntElligence in Digital EcoSys-
tems. MEDES ’15. Association for Computing Machinery, New York, NY, USA, pp 35–42.
https://doi.org/10.1145/2857218.2857224

Witten IH, Frank E (1999) Data Mining: Practical Machine Learning Tools and Techniques with Java
Implementations. Morgan Kaufmann

Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2012) Experimentation in software
engineering. Springer Science & Business Media

Xu S, Sivaraman A, Khoo S-C, Xu J (2017) GEMS: An extract method refactoring recommender. In:
Proceedings of the 28th International Symposium on Software Reliability Engineering. ISSRE

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Thainá Mariani received a Doctoral degree at the Postgraduate
Program in Informatics (PPGInf) of Federal University of Paraná
(UFPR), Brazil. She also holds the MSc degree from PPGInf of
UFPR. Her main research interests are: search-based software engi-
neering, software refactoring, machine learning and evolutionary
algorithms.

Marouane Kessentini received the Ph.D. degree from the University
of Montreal, Canada, in 2012. He is currently a Tenured Associate
Professor and leading a research group on software engineering intel-
ligence. He received several grants from both industry and federal
agencies and published over 110 papers in top journals and con-
ferences. He has several collaborations with industry on the use of
computational search, machine learning, and evolutionary algorithms
to address software engineering and services computing problems.
He was a recipient of the prestigious 2018 President of Tunisia
distinguished Research Award, the University Distinguished Teach-
ing Award, the University Distinguished Digital Education Award,
the College of Engineering and Computer Science Distinguished
Research Award, four best paper awards. His AI-based software
refactoring invention, licensed, and deployed by industrial partners,
is selected as one of the top eight inventions at the University of
Michigan, in 2018 (including the three campuses), among over 500
inventions, by the UM Technology Transfer Office.

110 Page 34 of 35 Empir Software Eng (2022) 27: 110

https://doi.org/10.1145/2857218.2857224

Silvia Regina Vergilio received Master and Doctoral degress from
University of Campinas (UNICAMP), Brazil. She is currently a pro-
fessor of Software Engineering in the Computer Science Department
of Federal University of Paraná (UFPR), Brasil, where she leads the
Research Group on Software Engineering. She has involved in several
projects and her research is mainly supported by CNPq (PQ Level 2).
Her research interests include software testing, software reliability,
Software Product Lines (SPLs) and Search-based Software Engineer-
ing (SBSE). She serves as assistant editor of the Journal of Software
Engineering: Research and Development, and acts as peer reviewer
for diverse international journals. She serves on the Program Com-
mitte of the main Brazilian Software Engineering conferences and
other international ones, mainly related to Search-Based Software
Engineering and software testing. Her publications list includes many
papers devoted to the SBSE field, where she is very knonw. She has
contributed to consolidate such a field in Brazil.

Page 35 of 35 110Empir Software Eng (2022) 27: 110

	Generation of refactoring algorithms by GE
	Abstract
	Introduction
	Related Work
	Gorgeous
	Programs Information
	Deriving Instances
	Learning Patterns
	Generating Algorithms
	Refactoring Algorithms
	Fitness Evaluation
	Grammatical Evolution

	Empirical Evaluation
	Research Questions
	Experimental Setting

	Results
	RQ1: GE x Random
	RQ2: Quality Improvement
	RQ3: Similarity with Refactorings Applied by Developers
	RQ4: Use of Patterns Extracted with Clusters Algorithms
	Discussion
	Threats to Results Validity

	Concluding Remarks
	References

