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Abstract
Multi-Objective Search Algorithms (MOSAs) have been applied to solve diverse Search-
Based Software Engineering (SBSE) problems. In most cases, SBSE users select one or
more commonly used MOSAs (for instance, Nondominated Sorting Genetic Algorithm II
(NSGA-II)) to solve their search problems, without any justification (i.e., not supported by
any evidence) on why those particular MOSAs are selected. However, when working with a
specific multi-objective SBSE problem, users typically know what kind(s) of qualities they
are looking for in solutions. Such qualities are represented by one or more Quality Indicators
(QIs), which are often employed to assess various MOSAs to select the best MOSA. How-
ever, users usually have limited time budgets, which prevents them from executing multiple
MOSAs and consequently selecting the best MOSA in the end. Therefore, for such users, it
is highly preferred to select only one MOSA since the beginning. To this end, in this paper,
we aim to assist SBSE users in finding appropriate MOSAs for their experiments, given their
choices of QIs or quality aspects (e.g., Convergence, Uniformity). To achieve this aim, we
conduct an extensive empirical evaluation with 18 search problems from a set of real-world,
industrial, and open-source case studies, to study preferences among commonly used QIs
and MOSAs in SBSE. We observe that each QI has its own specific most-preferred MOSA
and vice versa; NSGA-II and Strength Pareto Evolutionary Algorithm 2 (SPEA2) are the
most preferred MOSAs by QIs; no QI is the most preferred by all the MOSAs; the pref-
erences between QIs and MOSAs vary across the search problems; QIs covering the same
quality aspect(s) do not necessarily have the same preference for MOSAs. Based on our
results, we provide discussions and guidelines for SBSE users to select appropriate MOSAs
based on experimental evidence.
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1 Introduction

Search-Based Software Engineering (SBSE) (Harman et al. 2012) has been proposed
to solve optimization problems for finding a suitable balance among multiple compet-
ing and potentially conflicting objectives in the software engineering domain (e.g., test
generation (McMinn 2004), requirement prioritization (Achimugu et al. 2014), and test
optimization (McMinn 2011)). Thus, SBSE problems are often multi-objective and Multi-
Objective Search Algorithms (MOSAs) are widely used to solve them. Since the solutions
computed by different MOSAs are not directly comparable, Quality Indicators (QIs) are
often used to evaluate them with a numerical score and so make them comparable (Li and
Yao 2019). Since many MOSAs and QIs are available, SBSE users (i.e., practitioners and
researchers) often wonder which MOSA is appropriate for solving their specific search
problem (Durillo et al. 2009b; Ramı́rez et al. 2014; Wang et al. 2015; Zhang et al. 2020).

In order to select a MOSA to solve a search problem, SBSE practitioners have two
options. One option is to execute multiple MOSAs, compare their solutions with a QI, and
then select the best MOSA according to the used QI. The survey of Sayyad and Ammar
(2013) reports that, in some of the investigated publications, SBSE practitioners indeed
compared MOSAs against each other with certain QIs. In some cases, they choose QIs on
the basis of the quality aspects (e.g., Convergence and Uniformity) the QIs represent. A
classification of such QIs is reported by Li and Yao (2019). So, as the first observation, we
can claim that “SBSE practitioners are often aware of qualities they desire from solutions
produced by a MOSA”.

However, an SBSE practitioner usually has a limited time budget, which does not always
allow experimenting with multiple MOSAs. Therefore, SBSE practitioners often end up in
selecting only one MOSA for their experiments. Such a choice is usually not justified, and it
is only based on the popularity of the MOSA. This phenomenon is also reported in the same
survey of Sayyad and Ammar (2013), which shows that most of the publications included
in the survey do not provide justifications on why a given MOSA has been chosen for their
experiments. So, as second observation, we can claim that “SBSE practitioners often do not
have time to run multiple experiments with different MOSAs, and so end up in selecting a
MOSA without a proper justification”.

Based on these observations, we conclude that it would be desirable that SBSE practi-
tioners could directly select a single MOSA that produces solutions entailing the qualities
they desire. So, in this paper, we aim to guide SBSE practitioners to select a MOSA on the
basis of their preferences. More specifically, our application context can be summarized as
follows: Given a QI or a quality aspect, we suggest a MOSA that is highly likely to give
desired solutions according to the selected QI or quality aspect. This means that SBSE prac-
titioners do not need to run large-scale experiments to find the best MOSA for their specific
problem, but they can select a MOSA that is highly likely to give solutions with the desired
qualities.

In the literature, there are studies investigating relationships of QIs and their character-
istics. For instance, in our previous paper (Ali et al. 2020), we analyzed agreements among
QIs commonly used in SBSE, with the aim of providing users with a set of guidelines on
selecting QIs for their SBSE applications. In comparison, in this paper, we study preferences
of QIs for MOSAs with the aim of suggesting which MOSA to choose given a QI (Ali et al.
2020) (see more detailed comparison in Section 7). Similarly, Li and Yao (2019) surveyed
100 QIs that have been used in the evolutionary computation domain with the aim of study-
ing their strengths and weaknesses. In the current SBSE literature, however, relationships
between QIs and MOSAs are still insufficiently studied.
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In this paper, we present an extensive empirical evaluation to study relationships between
QIs and MOSAs, with 18 search problems from a set of industrial, real-world, and open-
source case studies. By studying such relationships, we provide evidence about which QIs
prefer which MOSAs and vice versa. More specifically, we observe that each QI has its
own specific most-preferred MOSA (e.g., Hypervolume (HV) prefers NSGA-II the most),
and vice versa. Moreover, SPEA2 and NSGA-II are the most preferred MOSAs by QIs,
whereas no QI is the most preferred by all the MOSAs. Besides, we find that the preferences
between QIs and MOSAs vary across the search problems, and QIs covering the same qual-
ity aspect(s) do not necessarily have the same preference for MOSAs. NSGA-II is the most
preferred for Spread, Uniformity, and Cardinality, whereas SPEA2 is the most preferred by
all the quality aspects. Based on such observations, we also present guidelines on choosing
a MOSA for a given QI or quality aspect.

This paper is an extension of our conference paper (Ali et al. 2020). With respect to
the conference version, our key contributions include: 1) Extending the experiments with
seven new real-world search problems from two new SBSE applications (Zhang et al. 2020;
Zhang et al. 2019); these two applications are related to uncertainty-wise requirements pri-
oritization, and test case generation/minimization; 2) Adding a new research question that
studies the preference relationships between QIs and MOSAs by also taking into account
MOSAs’ preferences on QIs. This analysis allows us to further refine our findings and
understand better whether a MOSA suggested for an SBSE user with our recommenda-
tion also covers other quality aspects (that may or may not be desirable for the SBSE
user); 3) Explaining the results in detail–wherever possible–, also giving evidence from
the literature to support the explanation; and 4) Providing new insights and guidelines
based on the extended experiments. For instance, each MOSA has its own specific most-
preferred QI (e.g., SPEA2 prefers Generational Distance (GD) the most); no QI is the most
preferred by all the MOSAs; the preferences between QIs and MOSAs vary across the
search problems.

The rest of the paper is organized as follows: Section 2 introduces the relevant back-
ground. Section 3 presents the design of our empirical evaluation, and Section 4 describes
our experiment results and analyses. Section 5 presents the discussion and our recommen-
dations, while the threats to validity are presented in Section 6. Section 7 relates our work
with the literature. Finally, Section 8 concludes the paper.

2 Background

In this section, we discuss multi-objective optimization in Section 2.1, and introduce the
selected QIs and MOSAs in Sections 2.2 and 2.3, respectively.

2.1 Multi-Objective Optimization

SBSE approaches (Harman et al. 2012) use search algorithms (e.g., a genetic algorithm
(GA)) to solve different software engineering problems (e.g., test case selection, require-
ment prioritization). Guided by a fitness function, a search algorithm selects the best
solutions from the entire search space of candidate solutions in a cost-effective manner,
instead of doing an exhaustive search. Thus, to solve an SBSE problem, the key is to for-
mulate the problem as an optimization (or search) problem, design an appropriate fitness
function, and solve it with a suitable search algorithm.

Page 3 of 46    144Empir Software Eng (2022) 27: 144



In practice, many software engineering problems have multiple goals, i.e., a multiple
objective problem must be solved. Suppose that there is a multi-objective optimization prob-
lem (e.g., ρ) consisting of m objectives to be maximized or minimized. ρ is defined over an
n-dimensional decision variable vector over a universe X as:

x = (x1, . . . , xn)

Moreover, we define an objective function as:

fi(x), i = 1, . . . , m

We then define the mapping of the decision variable vector x to the objective function
vector as:

F(x) = (f1(x), . . . , fm(x))

Let us assume, without loss of generality, that all objective functions are minimization
ones.1 Let us denote with S (S ⊆ X) the set of returned solutions for ρ. Given two solutions
A, B ∈ S, A dominates B (A � B) if and only if:

(∀i ∈ {1, . . . , m} : fi(A) ≤ fi(B)) ∧ (∃j ∈ {1, . . . , m} : fj (A) < fj (B))

i.e., for all the optimization objectives, A is never worse than B and A is better than B for
at least one objective. The set of solutions that are not dominated by others forms a Pareto
front. Given the set of computed solutions S, we formally define a Pareto front PF(S) as:

PF(S) = {si ∈ S | (�sj ∈ S : sj � si)}
For a given multi-objective optimization problem, we can use MOSAs to find solutions.

Each execution of a MOSA produces one Pareto front. Thus, for more than one repetition
(e.g., k repetitions) of a MOSA, we will obtain k Pareto fronts PFc

1, . . . , PF c
k . We will

call them computed Pareto fronts (Durillo and Nebro 2011).
To evaluate the quality of the computed Pareto fronts, it is usually required to have the

optimal Pareto front (also called the true Pareto front), which includes all non-dominated
solutions over the given search space (Knowles et al. 2006). However, the optimal Pareto
front is often unknown for complex search problems. Hence, in practice, a reference Pareto
front is used; see the report of Li and Yao (2019) for a discussion. One possible way is to
use all Pareto fronts computed by all the MOSAs applied to the problem:

PF ref = {si ∈ PFall | (�sj ∈ PFall : sj � si)}
where PFall = ⋃t

j=1
⋃kj

i=1 PFc
i,j is the union of the kj Pareto fronts computed by each

of the t applied MOSAs.

2.2 Quality Indicators

Usually, the quality of a computed Pareto front is evaluated from four aspects (Li and Yao
2019): Convergence, Spread, Uniformity, and Cardinality.

– Convergence indicates how close the computed Pareto front is to the optimal Pareto
front;

– Spread reflects the coverage of the computed Pareto front;
– Uniformity represents how uniformly the solutions are distributed in the computed

Pareto front;

1A maximization objective can be converted into a minimization one by negating it.
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– Cardinality indicates the number of solutions in the computed Pareto front.

To evaluate and compare Pareto fronts, many Quality Indicators (QIs) have been
proposed (Knowles and Corne 2002). QIs assess differences among Pareto fronts by quan-
tifying each Pareto front with a real number (Zitzler et al. 2003). Each QI can consider one
or more quality aspects (e.g., Convergence).

We selected 8 commonly used QIs in SBSE to conduct our experiments, i.e., Hyper-
volume (HV) (Shang et al. 2021; Zitzler and Thiele 1998), Inverted Generational Distance
(IGD) (CoelloCoello and ReyesSierra 2004), Epsilon (EP) (Zitzler et al. 2003), Genera-
tional Distance (GD) (Van Veldhuizen and Lamont 1998), Generalized Spread (GS) (Zhou
et al. 2006), Euclidean Distance (ED) (Zeleny 1973), Pareto Front Size (PFS) (VanVeld-
huizen 1999), and Coverage (C) (Fieldsend et al. 2003). The brief definitions of these QIs
are as follows.

HV measures the volume of the objective space covered by PFc w.r.t. a reference point
w; the reference point can be determined, for example, by using the worst objective function
values among all the solutions in PF ref . For each solution si ∈ PFc, hc(si) is a hypercube
with si and w as diagonal corners. HV is defined as:

HV (PFc) = volume

⎛

⎝
⋃

si∈PFc

hc(si)

⎞

⎠

IGD is the distance from the solutions in PF ref to the nearest solutions in PFc. Given
a solution s, assuming d(s, PF c) is the minimum Euclidean distance from the solution s to
the PFc, IGD can be defined as:

IGD(PFc) =
√∑

si∈PFref d(si , PF c)2

|PF ref |
EP indicates the shortest distance that every solution in PFc should be translated to

dominate PF ref . We define epsilon-dominance �ε as: given solutions A = (a1, . . . , am)

and B = (b1, . . . , bm), A �ε B iff ∀i ∈ {1, . . . , m} : ai < bi + ε. Hence, EP can be defined
as:

EP(PFc) = inf {ε ∈ R | (∀x ∈ PFref , ∃y ∈ PFc : y �ε x)}
GD represents the Euclidean distance between the solutions in PFc and the nearest solu-

tions in PF ref . Similarly as IGD, given a solution s and taking d(s, PF ref ) as the minimum
Euclidean distance from the solution s to the PF ref , GD is defined as:

GD(PFc) =
√∑

si∈PFc d(si , PF ref )2

|PFc|
GS reflects the extent of spread for the solutions in PFc. Let e = (e1, . . . , em) be the

extreme solution of the PF ref , where ei is the maximum value of objective function fi .
Also, we define d(ei, PF c) as the minimum Euclidean distance from ei to PFc. Given a
solution s, let id(s, PF c) = d(s, PF c \ {s}) be the minimum distance of the solution s

from all the other solutions in PFc, and id be the mean value of id(s, PF c) across all the
solutions of PFc. GS is defined as:

GS(PFc) =
∑m

i=1 d(ei, PF c) + ∑
sj ∈PFc |id(sj , PF c) − id|

∑m
i=1 d(ei, PF c) + |PFc| ∗ id
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ED introduces the Euclidean distance between the ideal solution and the nearest solution
in PFc. The ideal solution eideal consists of all the optimal values of each objective obtained
from the solutions in PFc. Let d(e, PF c) be the minimum Euclidean distance from e to
PFc. ED can be defined as:

ED(PFc) = d(eideal, PF c)

PFS counts the number of solutions in PFc. It can be defined as:

PFS(PF c) = |PFc|
C means the solution coverage of PFc to PF ref . It is defined as:

C(PFc) = |PFc ∩ PF ref |
|PF ref |

Table 1 reports the characteristics of the selected QIs, and the quality aspects they cover
as identified by Li and Yao (2019).

Table 1 Characteristics and relevant quality aspects of the selected QIs

QI Characteristics Quality Aspect

Convergence Spread Uniformity Cardinality

HV (1) focus on knee points of a solution set (2)
the settings of the reference point will affect
its evaluation results

+ + - +

IGD (1) need a dense and evenly distributed solu-
tion set

+ + - -

EP (1) only involve the largest difference of a
solution in any set (2) the distribution of the
solutions depends on the shape of the Pareto
front (3) focus on complementary aspects
relative to other indicators

+ + - -

GD (1) be more accurate in terms of measuring
the closeness of solution sets to the optimal
Pareto front (2) be sensitive to outliers (3) be
easily affected by the size of the solution set

+

GS (1) emphasize distribution (2) consider
extreme solutions

- +

ED (1) focus on the shortest Euclidean distance
between the computed Pareto front and the
ideal solution

-

PFS (1) simply count the number of non-dominated
solutions (2) unable to compare solution sets
(3) easily evaluate repeated solution sets

+

C (1) unable to account for the front differ-
ence and the uniformity distribution of front
points (2) emphasize the domination of the
solution sets

- -

A cell with a ”+” signifies that a particular quality aspect is fully represented by the QI, where ”-” signifies
a partial representation
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2.3 Multi-Objective Search Algorithms

MOSAs are often used to solve search problems with more than one objective, not limited
to a specific domain or problem (Harman et al. 2012). For our experiments, we choose six
commonly used MOSAs in SBSE. Table 2 provides a summary of their features, and their
brief description is as follows.

Nondominated Sorting Genetic Algorithm II (NSGA-II) (Deb et al. 2002) is a multi-
objective genetic algorithm that classifies and sorts the population into several non-
dominated fronts by calculating the crowding distance and applying selection, crossover,
and mutation operators to generate a new population. It employs a fast non-dominated sort-
ing procedure to reduce the computational complexity, uses an elitist-preserving approach
to improve performance, and applies a parameterless niching operator for guaranteeing
diversity.

Speed-constrainedMulti-objective Particle SwarmOptimization (SMPSO) (Nebro et al.
2009) is a multi-objective particle swarm optimization algorithm. It calculates the crowding
distance to select the non-dominated solutions, utilizes an external archive to store them,
and uses polynomial mutation operators to accelerate the convergence and the velocity
constriction mechanism to limit the velocity of the particles.

Strength Pareto Evolutionary Algorithm2 (SPEA2) (Zitzler et al. 2002) is an evolutionary
algorithm that measures the distance between a solution and its nearest neighbours to gen-
erate the non-dominated solutions and employs selection, crossover, and mutation operators
to store the best solutions into an archive, which are combined to create the new popula-
tion. SPEA2 applies an elitist approach for the convergence of the solutions, uses both a
fine-grained fitness assignment strategy and a density estimation technique to strengthen the
domination of solutions, and also adopts an enhanced archive truncation method to improve
the spread of solutions.

Pareto Archived Evolution Strategy (PAES) (Knowles and Corne 2000) is a simple evo-
lutionary algorithm for multi-objective optimization problems. It utilizes the dynamic
mutation operator to explore the search space to find optimal solutions and applies an

Table 2 Selected MOSAs and their special mechanisms

MOSA Special mechanism

NSGA-II (1) a fast nondominated sorting procedure (2) an elitist-preserving approach (3) a
parameterless niching operator (density estimation and crowded-comparison operator)

SMPSO (1) an external archive (2) polynomial mutation operators (3) a velocity constriction
mechanism

SPEA2 (1) an external archive (2) an elitist approach (3) a fine-grained fitness assignment
strategy (4) a density estimation technique (5) an enhanced archive truncation method

PAES (1) an archive (2) an elitist approach (3) a crowding procedure based on the adaptive grid
mechanism

MOCell (1) an external archive (2) an elitist algorithm (3) a feedback mechanism (4) the NSGA-II
density estimator

CellDE (1) an external archive (2) the MOCell search engine (3) a differential evolution
reproductive mechanism (4) the SPEA2 density estimator
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archive to maintain the found non-dominated solutions. PAES also employs an elitist
approach to enhance the convergence and adopts a crowding procedure based on the
adaptive grid mechanism to improve the diversity of the solutions.

Multi-Objective Cellular (MOCell) (Nebro et al. 2009) is a cellular genetic algorithm for
multi-objective optimization. It uses an external archive to store non-dominated solutions,
applies a density estimator based on the crowding distance of NSGA-II and utilizes a feed-
back mechanism to randomly replace population existing individuals with archive solutions.
MOCell also employs an elitist algorithm to improve the solution convergence.

CellDE (Durillo et al. 2008) is a multi-objective cellular genetic algorithm. It replaces the
typical genetic crossover and mutation operators with differential evolution reproductive
operators. It combines the advantages of MOCell (good diversity in bi-objective optimiza-
tion) by utilizing its search engine and Generalized Differential Evolution 3 (GDE3, good
convergence in three-objective optimization). CellDE also adopts an external archive to
store the non-dominated solutions found during the search and applies the SPEA2 density
estimator when the archive becomes full.

3 Design of Empirical Evaluation

The procedure of conducting our empirical study is shown in Fig. 1. All the data, scripts,
and results are available online (Wu et al. 2021). It consists of six steps. For some search
problems, Steps 1-2 (marked in gray) were performed in the works (Pradhan et al. 2016a,
b, 2018, 2021; Safdar et al. 2017; Wang et al. 2015; Yue and Ali 2014) and the data of
these works were already publicly available. Regarding the other search problems (Zhang
et al. 2019, 2020), we re-ran them for this work. Steps 3-6 marked in blue are new activities
performed for this work.

All the data obtained from Steps 1-2 is used in our empirical evaluation, i.e., to perform
Steps 3, 4(a)-4(c), 5, and 6(a)-6(c). All these steps will be described in the following subsec-
tions. We answer two research questions (RQs), described in Section 3.3. In both RQs, we
use 18 search problems from 11 SBSE applications (see details in Section 3.1). The number
of objectives in the search problems range from 2 to 4. All selected MOSAs and QIs are
used to answer both RQs. We provide their details and settings in Section 3.2. Finally, to
answer the RQs, we perform various statistical tests which are described in Section 3.4.

Fig. 1 Procedure of conducting the empirical study
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3.1 Description of the Selected Case Studies

For our empirical study, we collected 18 search problems from both industrial projects and
the literature, across topics of test case minimization (Wang et al. 2015), test case prioriti-
zation (Pradhan et al. 2016b, 2018), rule mining and configuration generation (Safdar et al.
2017), requirements allocation for inspection (Yue and Ali 2014), test case selection (Prad-
han et al. 2016a), test case minimization (Zhang et al. 2019), uncertainty-wise requirements
prioritization (Zhang et al. 2020), testing resource allocation (Pradhan et al. 2021; Wang
et al. 2008), integration and test order (Guizzo et al. 2017; Pradhan et al. 2021), and soft-
ware release planning (Dantas et al. 2015; Greer and Ruhe 2004). We obtained data for this
empirical study by following the procedure described in Fig. 1. In the end, there were data
available for 11 SBSE applications from different industrial, real-world, and open source
SBSE application domains, 18 search problems with the number of optimization objectives
being 2, 3, and 4.

The used search problems are summarized in Table 3 and described in the following
subsections.

3.1.1 Industrial SBSE Applications

When SBSE problems and the corresponding case studies were provided by our industrial
partners, these problems are classified as industrial problems.

In the past, we worked with Cisco Systems Norway to improve the cost and effective-
ness of testing Video Conferencing Systems (VCSs) (Wang et al. 2015). VCSs establish
video conferences between participants in different physical locations, and realize the
transmission of presentations in parallel with the video conferences. However, for large-
scale and complex VCSs, it is difficult to exhaustively test them due to limited time and
resources; thus, their testing needs to be optimized, e.g., with test minimization and test

Table 3 Characteristics of the selected case studies

Category SBSE Applications # search problems # Objectives

Industrial Test Suite Minimization (Wang et al. 2015) 1 4

Test Case Prioritization-1 (Pradhan et al. 2016b) 1 4

Test Case Prioritization-2 (Pradhan et al. 2018) 3 2

Rule Mining and Configuration Genera-
tion (Safdar et al. 2017)

1 3

Real-World Requirements Allocation for Inspection (Yue
and Ali 2014)

1 3

Test Case Selection (Pradhan et al. 2016a) 1 4

Test Case Minimization (Zhang et al. 2019) 4 4

Uncertainty-Wise Requirements Prioritiza-
tion (Zhang et al. 2020)

3 4

Open-Source Testing Resource Allocation (Pradhan et al.
2021; Wang et al. 2008)

1 2

Integration and Test Order (Guizzo et al.
2017; Pradhan et al. 2021)

1 4

Software Release Planning (Dantas et al.
2015; Greer and Ruhe 2004)

1 3
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prioritization. To this end, in our previous works, we have implemented a test suite mini-
mization approach (Wang et al. 2015), and two test case prioritization approaches (Pradhan
et al. 2016b, 2018) to improve the testing efficiency. In addition, we have implemented
a search-based approach to discover faulty configurations caused by interactions among
VCSs belonging to different families of VCSs (Safdar et al. 2017). We discuss these four
applications below.

Test Suite Minimization (Wang et al. 2015): This problem focuses on test minimization
for product lines. It aims to identify and eliminate redundant test cases from test suites to
reduce the total number of test cases to be executed, thereby improving the efficiency of
testing. The problem is expressed as a search problem and four cost/effectiveness objectives
are defined, i.e., test minimization percentage, feature pairwise coverage, fault detection
capability, and overall execution time. The corresponding evaluation was carried out on an
industrial case study and 500 artificial problems of varying size and complexity.

Test Case Prioritization-1 (Pradhan et al. 2016b): This problem focuses on prioritizing
test cases for testing product lines of VCSs and concentrates on achieving high coverage of
configurations, test APIs, statuses, and high fault detection capability as soon as possible.
For the search problem, we defined four objectives (configuration coverage, test API cov-
erage, status coverage, and fault detection capability) and the relevant test suite consists of
211 test cases.

Test Case Prioritization-2 (Pradhan et al. 2018): For this problem, we proposed an
approach for black-box dynamic test case prioritization using rule mining and multi-
objective search, defined two objectives (fault detection capability and test case reliance
score), and used three case studies to empirically evaluate MOSAs. Two of the three case
studies include 60 and 624 test cases and the other one (consisting of 89 test cases) was from
ABB Robotics for testing paint control systems of painting robots (Spieker et al. 2017).

Rule Mining and Configuration Generation (Safdar et al. 2017): To generate faulty
configurations that prevent successful interactions between VCSs of different families, we
identified this problem and solved it by combining multi-objective search with machine
learning to mine configuration rules. We defined three objectives for search, i.e., avoid-
ing high confidence rules with normal states, generating low confidence rules with normal
states, and generating rules with abnormal states, and mined the initial set of rules based
on randomly generated labeled configurations. For the case study to evaluate, we used two
VCSs, 17 configuration parameters, 30 rules, and 200 initial configurations.

3.1.2 Real-World SBSE Applications

In case of the real-world SBSE problems, we identified them from the industry by working
closely with our industry partners; however, the corresponding case studies were created
based on real data from publicly available documents such as standards and regulations.

Requirements Allocation for Inspection (Yue and Ali 2014): Working with our indus-
trial partner in the domain of subsea production systems, we identified this problem. The
problem is about assigning requirements to different stakeholders by maximizing their
familiarities to the assigned requirements while balancing the overall workload of each
stakeholder. For this problem, we defined three objectives, i.e., extent of assigned require-
ments, familiarity of stakeholders, and overall differences of workloads, and the case study
consists of 287 requirements and 10 stakeholders.

Test Case Selection (Pradhan et al. 2016a): Based on our industrial collaboration within
the maritime domain, we identified a real-world and multi-objective test case selection
problem for robustness testing. Within a limited time budget, it is actually not feasible to
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execute all test cases in the context of real-time embedded systems deployed in various mar-
itime applications, so an effective method is needed to select cost-effective test cases. Our
case study consists of 165 high-level test cases and a fitness function including one cost
objective, i.e., time difference, and three effectiveness objectives, i.e., mean priority, mean
probability, and mean consequence.

Test Case Minimization (Zhang et al. 2019): Considering testing of highly uncertain
cyber-physical systems, we proposed four test case minimization strategies based on uncer-
tainty theory and multi-objective search, to achieve four objectives, i.e., maximizing the
average number of uncertainties, maximizing the average percentage of uncertainty space,
maximizing the average uncertainty measurement, and maximizing the average percentage
of unique uncertainties. With five use cases from two industrial cyber-physical system case
studies, we empirically evaluated the four test case minimization strategies.

Uncertainty-wise Requirements Prioritization (Zhang et al. 2020): The stakeholders
in safety-critical domains usually lack expertise related to requirements review, leading
to uncertainty in cost overruns. To solve this problem, one needs to prioritize uncertain
requirements by reviewing requirements with higher importance, depending more on other
requirements, and higher implementation costs as early as possible. Hence, we defined
four objectives: maximizing the importance of requirements, requirements dependencies,
the implementation cost of requirements, and the cost overrun probability. We used three
real-world datasets, i.e., the RALIC (Lim 2011), Word (Karim and Ruhe 2014; Pitangueira
et al. 2016), and ReleasePlanner datasets (Karim and Ruhe 2014; Pitangueira et al. 2016)
for evaluation.

3.1.3 Open Source SBSE Applications

When SBSE problems and corresponding case studies are publicly available, including the
description and implementation of the problems and case studies, we consider them as open
source.

Testing Resource Allocation (Pradhan et al. 2021; Wang et al. 2008): For this problem,
we aimed to realize the optimal allocation of test resources to different software modules
to minimize test costs (e.g., test time) and maximize the reliability of the modules. The
problem has two optimization objectives, i.e., the reliability of the system and the testing
cost, and adopts a system with eight modules and maximum testing resource of 10,000
hours for empirical evaluation.

Integration and Test Order (Guizzo et al. 2017; Pradhan et al. 2021): This problem gen-
erates orders for the units to be integrated and tested, and prioritizes the unit that is most
needed for integration and testing by rearranging the order of the units, to minimize the stub
cost. The stub refers to the simulation of a unit that has not been implemented, tested, or
integrated in the software. This problem includes four objectives: number of attributes, num-
ber of operations, number of distinct return types, and number of distinct parameters. The
problem uses the open source program Commons Byte Code Engineering Library (BCEL)
to create, manipulate, and analyze binary Java class files, which includes 45 classes with
289 dependencies.

Software Release Planning (Dantas et al. 2015; Greer and Ruhe 2004): This prob-
lem is about deciding which features to be implemented next in the subsequent release of
software. Such problem is common in incremental and iterative software development. In
particular, it considers user preference to guide the search. It has three objectives, i.e., tech-
nical precedence inherent in the requirements, conflicting priorities as determined by the
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representative stakeholders, and balance between required and available effort. A software
with 50 requirements, 5 releases, and 4 clients is used by the problem.

3.2 Settings of MOSAs and QIs

As indicated by Step 1 in Fig. 1, we first obtained data from 100 runs of the selected
MOSAs. Note that some MOSAs are not applicable to some search problems that have par-
ticular requirements on, e.g., the data type. For example, the uncertainty-wise requirements
prioritization problem (Zhang et al. 2020) requires to achieve an integer permutation strat-
egy, and this can not be encoded in CellDE. The chosen MOSAs were run using parameter
settings of the MOSAs based on the previous experiments (Pradhan et al. 2016a, b, 2018,
2021, Safdar et al. 2017; Wang et al. 2015; Yue and Ali 2014; Zhang et al. 2020, 2019).
These parameter settings can be found in Table 4. Moreover, the dataset used in this work
also includes computed values of the eight QIs for assessing the selected MOSAs (Step 2 in
Fig. 1). These QIs are HV, IGD, EP, GD, GS, ED, PFS, and C (see Section 2.2).

As indicated in Step 3 in Fig. 1, based on QI results, we performed relevant statistical
tests to compare each pair of MOSAs using each QI. Results of these tests reveal which
MOSA performed significantly better than another one with respect to a particular QI. Note
that all the MOSAs performed significantly better than Random Search (RS); therefore, we
did not include the results of RS. These results were then used in our empirical evaluation
reported in this paper; namely, we used them to perform Steps 3, 4(a)-(c), 5, and 6(a)-(c) in
Fig. 1, in order to answer the RQs defined in the next subsection.

3.3 Research Questions

– RQ1: What is a QI’s preference for a specific MOSA? This RQ aims to help SBSE
users select a MOSA for solving an SBSE problem. This RQ can be addressed via the
following two sub-RQs:

– RQ1.1: How frequently does a QI prefer a particular MOSA? This RQ studies the
percentage of times that a QI prefers a particular MOSA by ignoring differences of
the search problems when studying pairs of MOSAs, with the aim of understanding
the overall preferences of a QI.

Table 4 Parameter settings for the selected MOSAs

Parameter Settings

Population Size 100 for All but PAES

Neighborhood MOCell and CellDE: 1-hop neighbors (8 surrounding solutions)

Parents Selection All but PAES and SMPSO: Binary tournament + binary tournament

Recombination PAES and SMPSO: None; CellDE: Differential evolution; Rest: Simulated binary

Crossover Rate All but PAES and SMPSO: 0.9

Mutation All but CellDE: polynomial, mutation rate=1.0/n

Archive Size MOCell and PAES: 100

Max Generation All: 25000

Times of Run All: 100
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– RQ1.2: How frequently does a QI prefer a particular MOSA across the different
search problems? This RQ studies the preferences of QIs across the problems when
studying pairs of MOSAs, whereas in RQ1.1 we aim to study preferences while
ignoring the differences of the problems.

– RQ2: What is a MOSA’s preference for a specific QI? This RQ provides further insights
on the relations between QIs and MOSAs, results of which could be consulted by practi-
tioners in their selections of MOSAs. Indeed, results from RQ1 allow to select a MOSA
M that better produces solutions with the desired qualities of a given QI Q. However, it
does not guarantee that M only targets the qualities of Q. It could be that M also covers
other qualities, which might or might not be desirable by the practitioner. A mutual pref-
erence between a MOSA and a QI, instead, demonstrates a stronger binding between
solutions produced by the MOSA and the type of solutions preferred by the QI.

This RQ can be answered via the following two sub-RQs:

– RQ2.1: How frequently does a MOSA prefer a particular QI? This RQ studies the
percentage of times that a MOSA prefers a particular QI by ignoring the differences
of the search problems when studying pairs of QIs. This RQ helps understanding
the overall preferences of a MOSA.

– RQ2.2: How frequently does a MOSA prefer a particular QI across the different
search problems? This RQ studies the preferences of MOSAs across the problems
when studying pairs of QIs, whereas in RQ2.1 we aim to study preferences while
ignoring the differences of the problems.

3.4 EvaluationMetrics

We define a set of evaluation metrics to answer the two RQs in Section 3.3.

3.4.1 Statistical Analysis

The Wilcoxon signed-rank test and the Vargha and Delaney Â12 statistics are used in our
analyses (Step 4(c) and Step 6(c) in Fig. 1). We choose these two statistical tests by following
a well-established guide in the SBSE literature (Arcuri and Briand 2011). More specifically,
since our data is in interval-scale, the guide suggests using the Wilcoxon signed-rank and
Â12 as the effect size measure–both are non-parametric tests for interval-scale data. The
Wilcoxon signed-rank test determines whether a statistically significant difference exists
between two distributions of matched samples (Wilcoxon 1992). In the experiments, we
set its significance level to 0.05. When comparing two MOSAs (or QIs) A and B in our
experiments, if the p-value computed by the Wilcoxon signed-rank test is < 0.05, then it
means that there are significant differences between A and B. The Vargha and Delaney
Â12 statistics is used as the effect size measure (Vargha and Delaney 2000). It reports the
magnitude of differences between two groups A and B. An Â12 value of 0.5 indicates that
A and B are not different. Moreover, on the one hand, the higher the Â12 value than 0.5, the
higher the magnitude of differences between A and B, in terms of A being better than B.
On the other hand, the lower the Â12 value than 0.5, the higher the magnitude of differences
between A and B, in terms of B being better than A.

We present evaluation metrics and the statistical tests that we employ specifically for
each RQ in Sections 3.4.2 and 3.4.3, respectively.
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3.4.2 RQ1 – Studying QI’s preference for MOSAs

To answer RQ1, first, we perform pair-wise comparisons between MOSAs for each problem
using each QI (Step 3 in Fig. 1). Let Q be a quality indicator, M1 and M2 two MOSAs, and
P a search problem. We compare the values of QI Q for 100 runs of MOSAs M1 and M2
over problem P using the Mann-Whitney U test and Vargha and Delaney Â12 statistics as
the effect size measure.The tests were selected by following the guide of Arcuri and Briand
(2011) on conducting experiments with randomized algorithms. The result of the statisti-
cal test is recorded with the predicate prefQI . Specifically, if the p-value computed by the
Wilcoxon signed-rank test is less than 0.05 and Â12 is greater than 0.5, then it means that M1
is significantly better than M2 with respect to Q. In this case, prefQI (Q,M1, M2, P ) =
true. Similarly, when a p-value is less than 0.05 and Â12 is less than 0.5, it means that
M2 is significantly better than M1, and so prefQI (Q,M2,M1, P ) = true. Finally, a p-
value greater than or equal to 0.05 implies no significant differences between M1 and
M2 with respect to Q, i.e., prefQI (Q,M1,M2, P ) = prefQI (Q, M2, M1, P ) = f alse.
Note that prefQI (Q, M1, M2, P ) = true implies prefQI (Q,M2,M1, P ) = f alse. If
prefQI (Q,M1,M2, P ) = f alse and prefQI (Q,M2,M1, P ) = f alse, it means that Q

does not have any significant preference among the two MOSAs.

RQ1.1 In order to answer RQ1.1 (Step 4(a) in Fig. 1), we introduce the following measure.
Let MOSAs be the set of MOSAs, Problems the set of search problems, and Q a quality
indicator. We define the preference count PCQI (Q,M) as the percentage of times Q prefers
MOSA M when compared to another MOSA in any problem, formally2:

PCQI (Q,M) =

∣
∣
∣
∣
∣

⋃

P∈Problems

{M ′ ∈ (MOSAs \ {M}) | prefQI (Q,M,M ′, P )}
∣
∣
∣
∣
∣

(|MOSAs| − 1) × |Problems| (1)

The rationale is that if a QI Q consistently prefers a MOSA M (when compared with
another MOSAs and for different problems), it means that M tends to produce solutions
that have the quality aspects assessed by Q. The higher PCQI (Q,M) is, the higher the
probability is that, also on new problems, M will produce solutions preferred by Q.

RQ1.2 In order to answer RQ1.2, first, we compute the preference count per problem
PCQI (Q,M, P ) defined as follows (Step 4(b) in Fig. 1):

PCQI (Q,M, P ) = |{M ′ ∈ (MOSAs \ {M}) | prefQI (Q,M,M ′, P )}|
|MOSAs| − 1

(2)

Second, we also perform, for each QI Q, pair-wise comparisons of PCQI (Q,M, P ) of
the selected MOSAs across the search problems (Step 4(c) in Fig. 1). To do this, we apply the
Wilcoxon signed-rank test and the Vargha and Delaney Â12 effect size measure as described
in Section 3.4.1.

The results of these tests give a more trustworthy definition of preference between
MOSAs. In order to distinguish it from the one used in RQ1.1, we will call it significant
preference, i.e., we will say that MOSA M is significantly preferred over MOSA M ′.

2Note that some MOSAs are not applicable to some of the search problems, and so the formulations of (1),
(2), and (3) should be slightly more complicated. We report the simplified versions here, but we use the
correct versions in the experiments.
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3.4.3 RQ2 - Studying MOSA’s preference for QIs

For RQ2, we can define evaluation methods similar to RQ1, to achieve a MOSA’s preference
for a particular QI. Intuitively, a MOSA prefers the QI which also favors the MOSA. We
formally capture this intuition as follows (Step 5 in Fig. 1). Let M be a MOSA, Q1 and Q2
two QIs, and P a search problem. We say that a MOSA M1 prefers a QI Q1 w.r.t. QI Q2,
if Q1 prefers M1 more times than Q2 does when comparing M1 with other MOSAs for a
given problem P . Formally:

prefMOSA(M1,Q1,Q2, P ) = |{M2 ∈ MOSAs \ {M1} | prefQI (Q1,M1,M2, P )}| >

|{M2 ∈ MOSAs \ {M1} | prefQI (Q2,M1,M2, P )}|
(3)

Note that prefMOSA(M1, Q1, Q2, P ) = true implies prefMOSA(M1, Q2, Q1, P )

= f alse. Moreover, if prefMOSA(M1, Q1, Q2, P ) = f alse and prefMOSA(M1, Q1,

Q2, P ) = f alse, it means that M1 does not have any preference between Q1 and Q2.

RQ2.1 In order to answer RQ2.1, we compute the related preference count PCMOSA

(M,Q) (Step 6(a) in Fig. 1) as follows:

PCMOSA(M,Q) =

∣
∣
∣
∣
∣

⋃

P∈Problems

{Q′ ∈ QIs \ {Q} | prefMOSA(M,Q, Q′, P )}
∣
∣
∣
∣
∣

(|QIs| − 1) × |Problems| (4)

where QIs is the set of QIs and Problems is the set of search problems. It shows the
percentage of the preference of M for QI Q when compared to another QI in any problem. If
a MOSA M prefers a QI Q for most of the different search problems when compared with
the other QIs, it means that using the QI Q to evaluate the MOSA M can achieve assessment
more favorable to it than using other QIs. If PCMOSA(M,Q) is higher, then it means that
the MOSA M prefers the QI Q more.

RQ2.2 In order to answer RQ2.2, we proceed similarly to what done for RQ1.2. Firstly, we
define the similar preference count per problem PCMOSA(M,Q, P ) (Step 6(b) in Fig. 1) as
follows:

PCMOSA(M,Q, P ) = |{Q′ ∈ QIs \ {Q} | prefMOSA(M,Q,Q′, P )}|
|QIs| − 1

(5)

Then, in order to assess the significant preference (Step 6(c) in Fig. 1), we use the
Wilcoxon signed-rank test and the Vargha and Delaney Â12 statistics as described in
Section 3.4.1, when we compare PCMOSA(M , Q, P ) for the selected QIs in pairs across
search problems for each MOSAM .

4 Results and Analyses

In this section, we present the results and analyses for our RQs. Section 4.1 presents the
results of RQ1, whereas Section 4.2 presents the results of RQ2.

4.1 RQ1: Studying QI’s preference for MOSAs

Recall from Section 3.4.2 that RQ1 studies the preference of a QI for a specific MOSA.
Below, we present the results of RQ1.
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4.1.1 RQ1.1: Studying QI’s preferences for MOSAs with preference counts

RQ1.1 aims to study how many times a QI Q prefers a particular MOSA M across all the
problems when comparing pairs of MOSAs (see (1) in Section 3.4.2). Given a QI Q, the
preference count PCQI for all the MOSAs is depicted in Fig. 2. We observe that some
QIs prefer particular MOSAs. For instance, GD prefers SPEA2 with a preference count of
69.9%. This may be due to the reason that the elitist approach used by SPEA2 helps it in
finding solutions that favor the Convergence quality aspect. As a result, SPEA2 is the most
preferred by GD that completely covers this quality aspect. Note that the work reported by
Goh and Tan (2009) also observed a similar link between the elitist-preserving approach

Fig. 2 RQ1.1 – Preference count PCQI (Q,M) of each QI Q for each MOSA M
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and convergence. Moreover, we can also observe that some QIs have low preferences for
some MOSAs, e.g., EP with PAES (6.0%). This means that these MOSAs do not usually
produce solutions that have the qualities preferred by these QIs.

In all the figures of Fig. 2, the preferences of each QI are sorted based on the values
of the preference counts. We notice that SPEA2 is the most preferred MOSA, followed by
NSGA-II. This is mainly because the elitist algorithm used by SPEA2 performs well in
Convergence (Goh and Tan 2009) and the fine-grained fitness assignment strategy and the
density estimation technique employed in SPEA2 together contribute to Cardinality (Zit-
zler et al. 2002). In addition, the enhanced archive truncation method of SPEA2 is used to
strengthen the Spread and Uniformity of solution sets, as discussed in the work of Zitzler
et al. (2002).

As reported by Zitzler et al. (2002), for many different problems, the performances of
NSGA-II and SPEA2 are similar. From Table 1, we can see that HV, IGD, and EP cover
the four quality aspects, GD and ED only fully or partially represent the Convergence
aspect. For NSGA-II, its elitist-preserving approach has a good influence on Convergence
as observed by Goh and Tan (2009), its special parameter-less niching operator helps ensure
the diversity of the Pareto fronts, which improves its performance in the Spread and Unifor-
mity quality aspects, as reported in the work of Deb et al. (2002). These specific mechanisms
working together may cause NSGA-II to be the most or highly preferred by HV, IGD, EP,
GD, and ED.

In addition, we observe that PAES is the least preferred by six QIs: HV, IGD, EP, GS,
ED, and C. The plausible explanation is that the higher implicit elitism intensity employed
by PAES enables it to converge faster at the beginning of the search, but, as a result, it can
easily get stuck when a good solution is not found. Such observation is also reported by
Goh and Tan (2009) and Zitzler et al. (2002).

For GS, which partially covers Spread and fully Uniformity, SPEA2 performed the best,
followed by SMPSO. SPEA2, thanks to its enhanced archive truncation method which may
positively influences Spread and Uniformity, as discussed by Zitzler et al. (2002). Moreover,
SMPSO (containing the special velocity constriction mechanism) also shows the strongest
influence on the Spread and Uniformity aspects, as observed by Nebro et al. (2009) and
Durillo et al. (2009a).

To better answer RQ1.1, Table 5 summarizes the results in terms of which MOSAs are the
most preferred across all the QIs. In the table, the rank corresponds to the percentage order
of a MOSA preferred by a QI in Fig. 2. The higher the rank, the higher the percentage order.
After the MOSA name, we report in parentheses the QIs for which the MOSA occupies that
rank.

Table 5 RQ1.1 – Overall ranking of MOSAs preferred by QIs (for each rank position, it lists the MOSAs
that have that ranking for some QIs (reported in parentheses))

Rank Instances for each MOSA

1 SPEA2 (GD, GS, ED, C), NSGA-II (HV, EP, PFS), NSGA-II/SPEA2 (IGD)

2 SPEA2 (HV, EP, PFS), NSGA-II (GD, ED, C), SMPSO (GS)

3 SMPSO (HV, IGD, EP), PAES (GD, PFS), CellDE (ED, C), NSGA-II (GS)

4 CellDE (HV, EP, GS), SMPSO (ED, PFS, C), MOCell (IGD, GD)

5 MOCell (HV, EP, GS, ED, C), CellDE (IGD, GD, PFS)

6 PAES (HV, IGD, EP, GS, ED, C), SMPSO (GD), MOCell (PFS)
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Overall, each QI has its own specific most-preferred MOSA. For instance, HV, EP, and
PFS all prefer NSGA-II the most; IGD prefers NSGA-II and SPEA2 the most; and GD, GS,
ED and C prefer SPEA2 the most. For all the QIs and all the search problems, the overall
preference descending order of all the MOSAs is as follows: SPEA2, NSGA-II, SMPSO,
CellDE, MOCell, and PAES.

4.1.2 RQ1.2: Studying the statistical significance of QI’s preferences for MOSAs

RQ1.2 aims to study the MOSA preferences of all the selected QIs for each selected search
problem. Table 13 in Appendix A.1 reports all detailed data. We here summarize the key
findings. Overall, we observe that a given QI has different MOSA preferences for the differ-
ent problems. For the same problem, different QIs prefer different MOSAs. Although there
are problems (such as Integration and Test Order) for which all QIs most prefer the same
MOSA (such as NSGA-II), the preference order for the other MOSAs is still different.

Based on the raw results in Tables 13, and 6 reports, for each QI Q and each MOSA M,
how many times (i.e., for how many problems), Q prefers M the most. Since the results of
each QI are not concentrated on a single MOSA, it is clear that the most preferred MOSA
also depends on the search problem.

Figure 3 further reinforces the above conclusion. It reports, for each quality indica-
tor Q and each MOSA M, the distribution of the metric preference count per problem
PCQI (Q,M,P ) (see (2)) across the search problems P ; MOSAs are sorted as in Fig. 2.
Again, we observe that Q may prefer a MOSA M on some problems, but not on others.
The influence of the problem characteristics on the results of QIs has been also discovered
in our previous work (Ali et al. 2020), in which we discovered that the agreement between
pairs of QIs, i.e., whether they prefer the same MOSA, sometimes depends on problems
solved by the MOSA. Note that we can not perform an analysis on the basis of different
problem characteristics (e.g., the number of objectives), as this would require many more
problems for each given characteristic. For the number of objectives, for example, we have
four problems with two objectives, three problems with three objectives, and 11 problems
with four objectives. This is insufficient to draw any solid conclusion about the influence of
the number of objectives on QIs’ preferences on MOSAs.

We further compared the results using statistical tests (Step 4(c) in Fig. 1), using the
Wilcoxon signed-rank test and the Â12 statistics as described in Section 3.4. Following the

Table 6 RQ1.2 – Number of search problems in which a QI Q prefers a MOSA M the most

QI MOSA

CellDE MOCell NSGA-II SMPSO SPEA2 PAES

HV 6 6 9 7 10 4

IGD 5 5 10 5 11 4

EP 6 4 11 7 9 4

GD 3 4 6 2 12 4

GS 6 2 4 6 10 2

ED 6 10 6 4 12 3

PFS 1 3 16 5 15 8

C 6 9 10 5 12 7
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Fig. 3 RQ1.2 – Distribution of the preference count per problem PCQI (Q,M, P ) of each QI Q for each
MOSA M over all the search problems P

guidelines proposed in the report of Kitchenham et al. (2017), we divide the effect size mag-
nitude of Â12 into four levels: negligible (> 0.5 and < 0.556), small (≥ 0.556 and < 0.638),
medium (≥ 0.638 and < 0.714), and large (≥ 0.714 and ≤ 1.0). Table 7 reports the overall
results of the statistical tests. Namely, each cell in the table reports the number of times that
a MOSA (such as NSGA-II) is significantly preferred over the other MOSAs by a given
QI, and the Â12 is at least medium, i.e., greater than or equal to 0.638. The MOSA(s) that
is(are) most often preferred (over other MOSAs) by a given QI is(are) highlighted in gray
in the table. We notice that HV, IGD, EP, PFS and C prefer NSGA-II and SPEA2 the most.
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Table 7 RQ1.2 – Overall preferences of each QI on each MOSA (number of times that a QI significantly
prefers a MOSA over the other MOSAs (with Â12 at least in the medium category). Gray cells indicate the
most often preferred MOSAs)

QI MOSA

CellDE MOCell NSGA-II SMPSO SPEA2 PAES

HV 0 1 2 1 2 0

IGD 0 1 4 1 4 0

EP 1 1 2 1 2 0

GD 0 0 2 0 4 0

GS 1 0 2 2 2 0

ED 0 1 0 0 1 0

PFS 0 0 4 0 4 1

C 0 0 1 0 1 0

GD prefers SPEA2 the most, and ED prefers MOCell and SPEA2 the most. GS, instead,
prefers NSGA-II, SMPSO, and SPEA2 the most. Overall, we can observe that SPEA2 is
preferred by most of the QIs, followed by NSGA-II, SMPSO, and MOCell. CellDE and
PAES, instead, are never the most often preferred.

Figure 4 better visualizes the significant preference relations we described above. For
each QI, the figure shows which MOSAs are significantly preferred over others. An arrow
from MOSA M1 to MOSA M2 means that M1 is significantly preferred over M2. We
observe that some MOSAs are constantly significantly preferred over some others. For
instance, NSGA-II and SPEA2 are preferred over PAES in most of the cases. The most pre-
ferred MOSAs (i.e., those with the highest numbers in Table 7) are usually preferred over
the same other MOSAs. Moreover, there are some MOSAs that, although are worse than
some MOSAs, are better than some others, for example, MOCell in HV, IGD, and EP, and
PAES in PFS.

The preferences of QIs for MOSAs vary across the search problems suggesting that
problem characteristics influence the preferences of QIs for MOSAs. Nonetheless, SPEA2
is the most preferred, either by itself or in tie with NSGA-II.

4.2 RQ2: StudyingMOSA’s preference for QIs

Recall from Section 3.4.3 that RQ2 studies the preference of a MOSA for a specific QI,
via two sub-questions: RQ2.1 and RQ2.2. We report the results of these two sub-RQs and
analyze the results according to the characteristics and quality aspects of the selected QIs
(see Table 1) in the following sub-sections.

4.2.1 RQ2.1: Studying MOSA’s preference for QIs with preference counts

Figure 5 presents the results of preference count PCMOSA(M,Q) (see (4) in Section 3.4.3)
sorted in decreasing order. The PCMOSA(M,Q) indicates the preference of a MOSA M for
a QI Q across all the search problems. From the results, we can observe that MOSAs have
their own specific preferences for QIs. Considering the quality indicator C, we observe that
almost all the MOSAs have the lowest preference percentages for it, except for MOCell in
which C is the second last. This means that no MOSA is consistently preferred by C over
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Fig. 4 RQ1.2 – Significant QI’s preference relations between MOSA pairs (an arrow from MOSA M1 to
MOSA M2 means that M1 is significantly preferred over M2)

the other MOSAs. Hence, in this subsection, we temporarily exclude the influence of C and
analyze the other QIs.

From Fig. 5, we observe that CellDE prefers GS the most (46.9%), followed by EP
(40.8%). It has lower preference for the other QIs, e.g., PFS (13.3%) and IGD (14.3%).
From Table 1, we observe that GS fully covers the Uniformity aspect and partially cov-
ers the Spread aspect. EP also fully cover Spread aspect and partially cover Uniformity.
Whereas, PFS does not cover these quality aspects at all. This tells us that CellDE pro-
duces solutions that have high Spread and Uniformity, because it employs the search engine
of MOCell, which produces diverse solutions as mentioned in the work of Durillo et al.
(2008) and Nebro et al. (2009). Regarding CellDE’s low preference towards IGD, consider-
ing that IGD partially or fully covers all of the four quality aspects, our results suggest that
the performance of the solutions generated by CellDE in Convergence and Cardinality may
have a greater impact on the evaluation results of IGD, resulting in IGD not being preferred
by CellDE.

For MOCell, we can see that it prefers ED (42.1%) the most, followed by GD (34.9%),
IGD (30.2%), HV (27.8%), and EP (26.2%). Instead, MOCell prefers PFS (10.3%) much
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Fig. 5 RQ2.1 – Preference count PCMOSA(M,Q) of each MOSA M for each QI Q

less. This might be because ED, GD, IGD, HV and EP all cover the Convergence aspect,
and MOCell produces solutions favoring Convergence due to the elitist algorithm it
employs (Goh and Tan 2009).

NSGA-II most prefers EP, GD, IGD, PFS, and HV, with similar percentage values rang-
ing from 33.3% to 41.3%. This is because NSGA-II performs well in generating solutions
covering all the four quality aspects due to its employed elitist-preserving (Goh and Tan
2009) and parameterless diversity-preservation mechanisms (Deb et al. 2002). Note that EP,
IGD, and HV cover all the four quality aspects; GD and PFS fully cover Convergence and
Cardinality, respectively (Table 1).

SMPSO prefers GS the most (52.4%), and (without considering C) prefers GD the least
(11.4%), meaning that SMPSO could create well-distributed solutions but also create solu-
tions far from the reference Pareto front, because GS favors well-distributed solutions, while
GD promotes the closeness to the reference Pareto front. Therefore, for SMPSO, it may be
easy to create well-distributed solutions, i.e., well-performing solutions in Spread and Uni-
formity aspects, which is consistent with the observations reported in the works of Nebro
et al. (2009) and Durillo et al. (2009a).

SPEA2 prefers GD (49.2%) the most, followed by GS (38.1%), PFS (37.3%), ED
(33.3%), and IGD (32.5%). The main is that SPEA2 applies an enhanced archive truncation
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method to improve the Spread and Uniformity of solution sets (Zitzler et al. 2002), uses a
fine-grained fitness assignment strategy and a density estimation technique to enhance the
solution dominance (Zitzler et al. 2002), and adopts an elitist algorithm to strengthen the
solution set Convergence (Goh and Tan 2009). Therefore, SPEA2 performs well in the four
quality aspects.

PFS counts the number of non-dominated solutions in the computed Pareto front. PAES
prefers PFS (63.5%) the best, meaning that, in its obtained solution sets, the number of
non-dominated solutions is large. PAES, as a result of its premature convergence, may pro-
duce duplicated non-dominated solutions (Goh and Tan 2009; Zitzler et al. 2002). Note that
repeated solutions do not dominate each other (Li et al. 2020), and so they contribute to the
increase of the PFS value. This might be the reason why PAES prefers PFS. In short, PAES
tends to generate solutions particularly relevant for the Cardinality aspect, which is fully
represented by PFS.

These results can be further confirmed in Table 8. According to the results reported in
Fig. 5, we set ranks from 1 to 8 to represent the QI percentage order, with 1 corresponding
to the highest percentage and 8 corresponding to the lowest percentage. We fill in the QIs
in the corresponding order, and report in parentheses which MOSA(s) the QI is preferred
by in this rank. From the table, we can observe that for any QI, its ranking distribution
is relatively uniform. For instance, GD ranks the first, second, fifth, and even seventh,
across the MOSAs, which indicates that GD is unlikely to always fall in the same or simila
r ranks.

No QI is consistently preferred by all the MOSAs, i.e., both CellDE and SMPSO prefer
GS the most; MOCell prefers ED the most; NSGA-II prefers EP the most; SPEA2 prefers
GD the most; and PAES prefers PFS the most.

4.2.2 RQ2.2: Studying statistical significance of MOSA’s preference for QIs

In this RQ, we investigate the preference of MOSAs for QIs, by considering the differ-
ent search problems. The detailed results are reported in Table 14 (see Appendix A.2). In
summary, we observed that each MOSA prefers different QIs the most in different search
problems. For example, MOCell prefers HV, IGD, and EP equally the most in the Require-
ments Allocation for Inspection problem, while GD is the most preferred by MOCell in the
Testing Resource Allocation problem. Also, we noticed that for the same search problem,
different MOSAs can most prefer different QIs, e.g., for the Test Case Selection problem,

Table 8 RQ2.1 – Overall ranking of QIs preferred by MOSAs (for each rank position, it reports the QIs that
have that ranking for some MOSAs (reported in parentheses))

Rank Instances for each QI

1 GS (CellDE, SMPSO), ED (MOCell), EP (NSGA-II), GD (SPEA2), PFS (PAES)

2 GD (MOCell, NSGA-II, PAES), EP (CellDE, SMPSO), GS (SPEA2)

3 ED (CellDE, SMPSO, PAES), IGD (MOCell, NSGA-II), PFS (SPEA2)

4 HV (CellDE, MOCell, SMPSO), PFS (NSGA-II), ED (SPEA2), IGD (PAES)

5 GD (CellDE), EP (MOCell), HV (NSGA-II), PFS (SMPSO), IGD (SPEA2), GS (PAES)

6 IGD (CellDE, SMPSO), GS (MOCell, NSGA-II), HV (SPEA2), EP (PAES)

7 PFS (CellDE), C (MOCell), ED (NSGA-II), GD (SMPSO), EP (SPEA2), HV (PAES)

8 C (CellDE, NSGA-II, SMPSO, SPEA2, PAES), PFS (MOCell)
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CellDE most prefers GS, but SMPSO most prefers EP. We summarize the key results of
Tables 14 in 9. For each MOSA M and each QI Q, it reports for how many problems M
prefers Q the most. We observe that a MOSA does not always prefer the same QI the most,
but tends to prefer different QIs the most for different problems.

We further analyze the distribution of the previous results. Figure 6 presents the distri-
bution of preference count per problem PCMOSA(M,Q, P ) over the search problems P

(see (5)). Results are sorted as in Fig. 5. From the figure, we can observe that, for a spe-
cific MOSA (e.g., CellDE), the variances of QIs having high preference counts as reported
in Fig. 5 (e.g., GS and EP for CellDE) are mostly high. It implies that the different search
problems may affect MOSAs’ preferences over QIs. More specifically, for one problem, a
MOSA may prefer a QI, while on another problem this MOSA may not prefer the same QI.
Note that, for QIs having a general low preference count (e.g., C), the variance of metric
PCMOSA(M , Q, P ) across all the problems is low.

Table 10 presents results of the statistical tests. The table reports, for each MOSA M
and each QI Q, how many times M prefers Q rather than another QI; the preference is
computed by comparing the distribution of the preference count PCMOSA(M,Q, P ) across
the search problems, using the Wilcoxon signed-rank test and Â12 statistics, as described
in Section 3.4.1. Note that, as done for RQ1.2, we only consider cases that the Â12 value
is at least in the medium category. For each MOSA, we highlight in gray the QI(s) that
has(have) the highest overall preferences. We observe that CellDE prefers GS the most;
MOCell prefers GD and ED the most; NSGA-II prefers all the QIs except C; SMPSO prefers
GS the most; SPEA2 prefers GD the most; and PAES prefers PFS the most. We can further
observe that no QI is consistently preferred by all the MOSAs.

Figure 7 better visualizes the significant preference relations between QI pairs. A link
with a pointing arrow shows a preference relation between two QIs. For instance, for CellDE
(see Fig. 7a), EP points to C implying that EP is significantly preferred by CellDE over C.
Similarly, HV, ED and GS are all preferred over C, without significant differences observed
among themselves; GS is preferred over IGD, GD, and PFS. For MOCell, IGD, ED, and GD
are all preferred over PFS, ED and GD are both preferred over C; there are instead no sig-
nificant preferences for HV, IGD, ED, GD, EP and GS when comparing among themselves
and with the other QIs. For NSGA-II, HV, IGD, EP, GD, GS, ED and PFS are all pre-
ferred over C, but there is no significant preference among them. For SMPSO, we observe
a three-hierarchical-level significant preference relation. For instance, GS is preferred over
IGD, which is preferred over C. For SPEA2, we observe that GD is preferred over HV, EP

Table 9 RQ2.2 – Number of search problems that a MOSA M prefers a QI Q the most

MOSA QI

HV IGD EP GD GS ED PFS C

CellDE 6 4 7 4 9 7 3 3

MOCell 9 11 9 12 7 11 3 4

NSGA-II 5 8 7 9 3 3 6 0

SMPSO 5 4 8 2 9 4 5 2

SPEA2 4 8 5 13 9 6 4 4

PAES 1 2 0 7 3 4 9 2
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Fig. 6 RQ2.2 – Distribution of the preference count per problem PCMOSA(M,Q, P ) of each MOSA M for
each QI Q over all the search problems P

and C; IGD, GS, ED, and PFS are also preferred over C; and no significant preferences are
observed for them. Regarding PAES, we also observe a three-hierarchical-level significant
preference relation; for example, PFS is preferred over ED, which is preferred over C.

Different search problems may have influence on MOSAs’ preferences for QIs. Each
selected MOSA has its mostly preferred QI, i.e., GS for CellDE; GD and ED for MOCell;
all the selected QIs except C for NSGA-II; GS for SMPSO; GD for SPEA2; and PFS for
PAES. No QI is preferred the most by all the selected MOSAs.

4.3 Analyses based on Quality Aspects of QIs

In this section, we present additional analyses of the preferences of the quality aspects of
the QIs on the MOSAs. The analysis in Sections 4.1 and 4.2 only consider whether the
preference of a QI for a particular MOSA (or of a MOSA for a QI) may be due to a particular
quality aspect, but do not check the influence of a quality aspect across the different QIs.
In this section, we analyze whether QIs covering the same quality aspect(s) have the same
or similar preferences for MOSAs. More specifically, we want to check whether they have
similar rankings in Fig. 2.

Combining Tables 1, 7, and 11 summarizes our results. For each MOSA M
and each aspect, it reports how many times M is preferred (as reported in
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Table 10 RQ2.2 – Overall preferences of each MOSA on each QI (number of times that a MOSA signifi-
cantly prefers a QI over the other QIs (with Â12 at least in the medium category). Gray cells indicate the most
often preferred QIs)

MOSA QI

HV IGD EP GD GS ED PFS C

CellDE 1 0 1 0 4 1 0 0

MOCell 0 1 0 2 0 2 0 0

NSGA-II 1 1 1 1 1 1 1 0

SMPSO 1 1 3 0 4 1 0 0

SPEA2 0 1 0 3 1 1 1 0

PAES 0 0 0 5 0 1 6 0

Table 7) by a QI belonging to the considered aspect. For example, for Convergence,
SPEA2 and NSGA-II achieves the highest values, i.e., 14 and 11, respectively. In
general, we can see that NSGA-II and SPEA2 are the most preferred ones for all the quality
aspects.

HV completely covers Convergence, Spread, and Cardinality aspects and partially cov-
ers Uniformity (Table 1). IGD and EP fully represent Convergence and Spread aspects,

Fig. 7 RQ2.2 – Significant MOSA’s preference relations between QI pairs (an arrow from QI Q1 to QI Q2
means that Q1 is significantly preferred over Q2)
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and partially represent Uniformity and Cardinality. When looking at our experiment results
reported in Fig. 2, for HV, IGD and EP, we observe almost the same order of the MOSAs
(except for IGD in which MOCell and CellDE are swapped).

ED partially and exclusively covers the Convergence quality aspect and GD fully and
exclusively covers this aspect (Table 1), implying that these two QIs are quite similar. How-
ever, after analyzing the results of ED and GD (Fig. 2), we can observe that some MOSAs
are ranked at different positions. For example, for ED, PAES is ranked at the last position,
which is however at the third position for GD.

GS fully covers Uniformity, partially covers Spread, and does not cover Convergence
and Cardinality, as shown in Table 1. GS has SMPSO ranked at the second place with a
higher preference count among the most MOSAs: 54.1%, as shown in Fig. 2e. Similarly,
we can also observe, from Fig. 5d, SMPSO prefers GS the most (i.e., 52.4%). We underline
that GS is the only QI that fully covers Uniformity, and that SMPSO turns out to be the best
MOSA only for GS (for the other QIs, it is at most the third preferred one). This shows that
solutions provided by SMPSO have a good uniformity, but this is appreciated only by GS.

From Table 1, we can also see that PFS only covers Cardinality. When looking at the
results reported in Fig. 2g, PAES is ranked at the third place, which is however not the case
for almost all the other QIs in which it this the least preferred (except for GD where it is
also third). This result can be also easily observed in Fig. 5f, which clearly tells that PAES
prefers PFS the most.

Finally, from Table 1, we can observe that C partially represents the Convergence and
Cardinality aspects. In Fig. 2h, we can see that although the percentage values of C are all
low, C still most prefers SPEA2 (30.1%) and NSGA-II (25.3%). Moreover, from Fig. 5,
we can observe that all the MOSAs have low preferences for C (always the least preferred,
except for MOCell in which it is the second last). These results seem to show that all the
MOSAs achieve similar solutions in terms of Convergence and Cardinality.

Based on the above observations, we can conclude that:

– QIs covering a comprehensive list of quality aspects (e.g., HV, IGD, and EP) tend to
exhibit the same order of preferences on MOSAs;

– For QIs covering only one or two quality aspects (e.g., GD, GS, ED, PFS, and C),
though some of them cover the exact same quality aspect, they do not necessarily have
the same preferences for MOSAs. This observation is consistent with what has been
reported by Ravber et al. (2017), who concluded that QIs with the same quality aspect(s)
do not necessarily yield the same rankings of MOSAs.

Table 11 Overall preferences of quality aspects for MOSAs (how many times a MOSA M is preferred (see
Table 7) by a QI belonging to a given aspect)

Quality Aspect MOSA

CellDE MOCell NSGA-II SMPSO SPEA2 PAES

Convergence 1 4 11 3 14 0

Spread 2 3 10 5 10 0

Uniformity 2 3 10 5 10 0

Cardinality 1 3 13 3 13 1
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5 Overall Discussion and Application Contexts

In this section, we first present an overall discussion both for the results based on individual
QIs and the quality aspects they cover. Moreover, we provide suggestions to users for select-
ing a MOSA that will likely produce solutions preferred by a given QI or a given quality
aspect. To this end, we have integrated the key conclusions of Section 4 (see Table 12). At
the last, we discuss the relevance of the proposed study, by presenting application contexts
in which users are really aware of the desired quality aspects, and so our guideline can be
used.

Based on the results of RQ1.2 and RQ2.2, we plot Fig. 8 to facilitate the discussion.
An arrow from a QI Q to a MOSA M means that Q has the highest number of statistical
preferences for M in Table 7. Similarly, an arrow from a MOSA M to a QI Q means that M

has the highest number of statistical preferences for Q in Table 10. A bidirectional arrow
between a QI Q and a MOSA M means that there is a mutual preference between Q and
M . In summary, from this figure, we can observe that NSGA-II has mutual preferences with
five out of the eight QIs; SMPSO and GS mutually prefer each other; and SPEA2 mutually
prefers GD. In certain cases, there might be more than one MOSAs with mutual preferences
with a given QI. For example, GS has mutual preferences with two MOSAs, i.e., NSGA-II
and SMPSO.

Considering the identified mutual preferences and the results reported in Tables 7, 11,
and 12, we propose a guideline for SBSE users to follow when selecting a MOSA based on
a given QI Q:

– When there are no ties, select the MOSA that has the largest number for the row of Q
in Table 7, i.e., the third key conclusion of RQ1.2 in Table 12. Note that some results
provide better assurances than others. For example, as shown in Table 7, for GD, SPEA2
has a value of 4 out of 5 (i.e., 80% of the times SPEA2 was significantly preferred
over the other MOSAs), whereas, for EP, SPEA2 has a value of 2 out of 5 (i.e., 40%).
Thus, in cases that a user wants solutions that are represented by GD or EP, our results

Fig. 8 Statistically significant mutual preferences between QIs and MOSAs (derived for the results of RQ1.2
and RQ2.2)
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Table 12 Summary of the key observations

RQ Analysis metrics Key Results

RQ1.1 PCQI (Q,M) (1) IGD, GD, GS, ED, and C → SPEA2; HV, IGD,
EP, and PFS → NSGA-II. (2) For all QIs and all
search problems, the overall preference order of all
MOSAs is: SPEA2 > NSGA-II > SMPSO > CellDE
> MOCell > PAES.

RQ1.2 PCQI (Q,M, P ) and Wilcoxon
signed-rank test and Vargha and
Delaney Â12 effect size

(1) Different search problems would affect the pref-
erence of QIs to MOSAs. (2) For overall selected
search problems, SPEA2 is the most preferred, fol-
lowed by NSGA-II, SMPSO, and MOCell, CellDE
and PAES have no significant difference. (3) QI has
its own most preference MOSA(s): HV → NSGA-
II and SPEA2; IGD → NSGA-II and SPEA2; EP →
NSGA-II and SPEA2; GD → SPEA2; GS → NSGA-
II, SMPSO, and SPEA2; ED → MOCell and SPEA2;
PFS → NSGA-II and SPEA2; and C → NSGA-II and
SPEA2.

RQ2.1 PCMOSA(M,Q) (1) CellDE → GS; MOCell → ED; NSGA-II → EP;
SMPSO → GS; SPEA2 → GD; and PAES → PFS.
(2) For all MOSAs of all search problems, no QI is
the best preferred by most MOSAs.

RQ2.2 PCMOSA(M,Q1, P ) and Wilcoxon
signed-rank test and Vargha and
Delaney Â12 effect size

(1) Different search problems may have influence on
MOSA’s preference for QI. (2) Each selected MOSA
has its most preference QI: CellDE → GS; MOCell
→ GD and ED; NSGA-II → all selected QIs except
C; SMPSO → GS; SPEA2 → GD; and PAES →
PFS. (3) No QI is the most preferred by all the
selected MOSAs.

QA (1) NSGA-II and SPEA2 are the most preferred ones
for Spread, Uniformity, and Cardinality; SPEA2 is
the most preferred for Convergence. (2) QIs covering
the same quality aspect(s) do not necessarily have the
same preference for MOSAs.

”>”: more prefer than; ”A → B”: A prefers B the most; ”QA”: the analyses based on quality aspects of QIs
(see in Section 4.3)

suggest to use SPEA2. However, in the former case, the user will be more certain when
following the suggestion, because this is based on a stronger result; or

– When there is a tie (e.g., for HV, there is a tie between NSGA-II and SPEA2 as shown
in Table 7), we have the following options:

– selecting any MOSA;
– selecting a MOSA that has a mutual preference (if exists) with the chosen QI.

For example, for the tie between NSGA-II and SPEA2 for HV, considering that
we know HV has a mutual preference with NSGA-II (see Fig. 8), we recommend
NSGA-II. However, in certain cases, there can even be ties in mutual preferences.
For example, for GS there is a tie between NSGA-II and SMPSO (Fig. 8). In this
case, we recommend selecting any of these MOSAs;

– selecting a MOSA based on the quality aspect table (i.e., Table 11) by checking
which quality aspect(s) is(are) represented by the selected QI (i.e., Table 1). For
example, as for ED, from Fig. 8, we see that there is a tie between MOCell and
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SPEA2, and ED partly represents solutions with the Convergence quality aspect.
Then, based on Table 11, for Convergence, SPEA2 is more preferred than MOCell.

The user may also specify a desired quality aspect instead of a specific QI. In this case,
we check Table 11 or simply refer to the quality aspect results summarized in Table 12, from
which, one can easily see that NSGA-II is the most preferred for the Spread, Uniformity,
and Cardinality aspects, and SPEA2 is the most preferred for all the four quality aspects.
However, once the results are updated based on additional experimental results of other
search problems, the preferences may change and we may have ties between two or more
MOSAs. If such a case arises, we suggest selecting any of the preferred MOSAs of the tie or
taking into account other aspects of MOSAs (e.g., their time performance). Moreover, more
complicated guidelines could be provided with the availability of more data, by selecting
the MOSA scoring the highest in the majority of the quality aspects, for instance.

In summary, given a QI, our recommendations, in terms of decision trees, for selecting
a MOSA are shown in Fig. 9; note that the figure does not report GD, for which the rec-
ommendation is simply to use SPEA2, respectively. For example, if users prefer IGD then
they can consult at Fig. 9b. According to the figure, they can choose either NSGA-II or
SPEA2. However, if they care about mutual preference, then NSGA-II should be used. How-
ever, if the users prefer to resolve the tie by looking at the quality aspect table (Table 11)
then NSGA-II or SPEA2 is the option with respect to Spread, Uniformity, and Cardinality,
whereas SPEA2 is the option with respect to Convergence.

Note that, as also observed in Section 4.1.2, in our experiments we did not study rela-
tionships between QI preferences and characteristics of the search problems (e.g., search
objective types, data distributions). Such characteristics could help us provide a better guid-
ance for SBSE users based on different characteristics of search problems. Please note that
conducting such an experiment requires a complete and well-planned experiment of its own,
involving controlling various characteristics of search problems in a systematic way. Find-
ing publicly available search problems that systematically cover various characteristics is
challenging and one may resort to creating synthetic problems. We plan to conduct such
an experiment in the future, where we could also study characteristics of QIs and search
problems together to suggest appropriate MOSAs.

Based on our experience gained after conducting the 11 case studies, comprising 18
search problems (Table 3), we would like to argue that, in practice, a specific search prob-
lem often helps determine which quality aspect(s) a user should care. For instance, for a
test case minimization problem, an SBSE practitioner often cares to have solutions contain-
ing diverse test cases, i.e., solutions with good Spread. When looking at the Rule Mining
and Configuration Generation problem (Section 3.1.1), SBSE practitioners might care more
about Cardinality because this quality aspect has influence on the level of the confidence of
configuration rules. Regarding the Software Release Planning and the Requirements Allo-
cation for Inspection problems, one might care more about the Convergence, Spread and
Uniformity aspects, as close-to-optimal Pareto fronts usually imply more optimized require-
ments assignments or release plannings, and providing various options for decision makers
(e.g., project managers who assign requirements to relevant stakeholders to review) to man-
ually select from the returned solutions might be also important. Similarly, for all the test
prioritization and ordering problems, we argue that one might want to get solutions featured
with Convergence because optimal ordering of test cases is often considered as an impor-
tant aspect. When keeping these application contexts in mind, the practical implication of
our work is to provide a guideline on how to select a preferred MOSA for a given QI with
specific expected quality aspects.
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Fig. 9 Recommendations for choosing a MOSA given a QI in a tie
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6 Threats to Validity

We here discuss threats that may affect the validity of our experiments, namely internal
validity, conclusion validity, construct validity, and external validity (Wohlin et al. 2012).

6.1 Internal validity

Many MOSAs have been proposed in the literature, and a threat to the internal validity is
that we did not include all available MOSAs in our experiments. Considering it is practi-
cally impossible to include all MOSAs, to address this threat, we selected the MOSAs that
are commonly used in SBSE (Ali et al. 2020; Wang et al. 2015). Note that part of our exper-
imental data comes from the industry. For this type of data, it is it is difficult to re-execute
the relevant industrial system when the contract is expired. Therefore, it is impossible to
obtain the result data related to NSGA-III, MOEA/D or other MOSAs, which are popular
in the SBSE now but not considered in our experiment.

Another threat is related to the settings of the parameters of the selected MOSAs. A
MOSA M1 may perform better (i.e., preferred by a given QI) than another MOSA M2,
because it has been configured better. In order to address this threat, we have configured the
selected MOSAs by following the commonly applied guides (Arcuri and Briand 2011; She-
skin 2011). Note that these same settings were used in the papers from which we obtained
the case studies, and in those papers these settings have been proven to give good results.

In terms of the selection of QIs, one may argue that we did not cover enough QIs, given
that there exist more than 100 of QIs (Li and Yao 2019). However, note that we selected
the most commonly used QIs in the SBSE literature (Sayyad and Ammar 2013), since our
empirical evaluation was focused on SBSE problems. When presenting our results based on
quality aspects, one may wonder why we did not choose other quality aspects, such as the
ones proposed by Wang et al. (2015). We chose the quality aspects instead from a recent
survey (Li and Yao 2019), which is based on the study of 100 QIs.

6.2 Conclusion validity

One possible threat to the conclusion validity is that the input data that we used in our
experiment may not be sufficient to draw conclusions between the application of a MOSA
M1 on a given problem P, and its evaluation with a given QI. To mitigate such a threat,
we have selected benchmarks in which each MOSA has been run 100 times, in order to
reduce the effect of random variations. The conclusion whether a QI prefers a MOSA M1
to a MOSA M2 for a given problem P , is decided using the Mann–Whitney U test and Â12
statistics over the distribution of 100 QI values for MOSA M1 and MOSA M2. Note that,
in order to mitigate another threat related to wrong assumption for the tests, we selected
such tests by following guidelines for conducting experiments in SBSE (Arcuri and Briand
2011).

6.3 Construct validity

One construct validity threat is that the measures we used for drawing our conclusions may
not be adequate. As the first measure, we computed the percentage of times that a MOSA
M1 is preferred over another MOSA M2 by a given QI Q, since our aim is to suggest a
MOSA that will likely produce solutions preferred by Q. Hence, we believe that this metric
is adequate. Moreover, to draw more stable conclusions, we also assessed the statistical
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significance of the results with the Wilcoxon signed-rank test and the Â12 statistics. More
specifically, we compared the preference counts per problem (see (2) and (5)) of the two
MOSAs/QIs across the problems with the statistical tests for each QI/MOSA. Note that, we
set the significance level of Wilcoxon signed-rank to 0.05, and divide Â12 into four levels
of negligible, small, medium, and large according to the report of Kitchenham et al. (2017)
(see in Section 3.4.1) for testing the statistical significance of the results.

6.4 External validity

A major threat is that the results may not be generalizable to other case studies. In order to
address such a threat, we selected as many search problems as possible and ended up with 18
problems in total, trying to cover different types of search problems, including rule mining
in product line engineering, test optimization, requirements engineering. However, we are
aware that such a selection is inherently partial, and we need more case studies and more
search problems to generalize the results. The lack of real-world case studies to be used in
empirical studies is recognized to be a common threat to external validity (Ali et al. 2010;
Barros and Neto 2011). Note that the work presented in this paper does not aim at giving
ultimate results, but at providing a methodology that should be followed to build a body
of knowledge about the relationship between MOSAs and QIs. To this aim, we make data,
scripts, and results publicly available online (Wu et al. 2021) and invite SBSE researchers
to share with us their empirical studies, so to derive more reliable conclusions.

7 RelatedWork

Sayyad and Ammar (2013) presented a survey on SBSE papers that use MOSAs for solving
software engineering optimization problems, from the perspectives of the chosen algo-
rithms, QIs, and used tools. The paper concludes that more than half of the 51 surveyed
papers do not provide justifications on the selection of a specific MOSA for a specific
problem or simply state that a MOSA is selected because it is often applied by others.
This observation, to a certain extent, implies that in the SBSE research community, there
is no evidence showing which MOSA(s) to apply, in particular in the context in which
researchers do know which QI(s) they prefer. Our current study provides evidence for
guiding researchers in selecting a MOSA when they opt for a specific QI.

The most relevant work, though not in the SBSE context, was presented by Ravber et al.
(2017). The work studied the impact of 11 QIs on the rating of 5 MOSAs: IBEA, MOEA/D,
NSGA-II, PESA-II, and SPEA2, and concluded that QIs even with the same optimization
goals (convergence, uniformity, and/or spread) might generate different and contradictory
results in terms of ranking MOSAs. The authors analyzed the 11 QIs using a Chess Rat-
ing System for Evolutionary Algorithms (Veček et al. 2014), with 10 synthetic benchmark
problems from the literature and 3 systems for a real-world problem. Based on the results
of the analysis, the studied QIs were categorized into groups that had non-significant differ-
ences in ranking MOSAs. A set of guidelines were briefly discussed, considering preferred
optimization aspects (e.g., convergence) when selecting QIs for a given search problem and
selecting a robust (achieving the same rankings of MOSAs for different problems) and big
enough set of QIs. To compare with our work reported in this paper, our study differen-
tiates itself from the work of Ravber et al. (2017) in the following two aspects. First, our
study focuses exclusively on SBSE problems, whereas their study was conducted in a more
general context, which is not specific to SBSE problems, and therefore the sets of MOSAs
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and QIs used in the two studies are different. The MOSAs and QIs we selected in our study
are commonly applied ones in the context of SBSE. Second, our study aims to provide evi-
dence on selecting a MOSA for solving an SBSE problem, in the context in which the user
is aware of the desired quality aspects in the final solutions, and has limited time budget (in
terms of running experiments). Instead, their study aims to suggest which QI(s) to select for
assessing MOSAs.

Li and Yao reported a survey (Li and Yao 2019) on 100 QIs from the literature, discussed
their strengths and weaknesses, and presented application scenarios for a set of QIs. In this
survey, only two studies (Li et al. 2018; Wang et al. 2016) related to SBSE were included,
which are about understanding QIs from various aspects. Wang et al. (2016) proposed a
guide for selecting QIs in SBSE based on the results of an experiment with 8 QIs, 6 MOSAs,
and 3 industrial and real-world problems. Their guide helps determine a quality aspect of
the QIs (Convergence, Diversity, Combination of convergence and diversity, or Coverage).

In our previous work (Ali et al. 2020), we conducted an extensive empirical evalua-
tion with 11 SBSE search problems from industry, real-world ones, and open source ones,
and automatically produced 22 observations based on the results of the statistical tests for
studying QI agreements, by considering different ways in which SBSE researchers typi-
cally compare MOSAs. We also provided a set of guidelines in the form of a process that
can be used by SBSE researchers. To compare with our previous work (Ali et al. 2020),
in this paper, we aim to suggest which MOSA to select given a QI that is preferred, while
previously, we aimed at suggesting which QI(s) to use for evaluating a given MOSA.

Li et al. (2020) surveyed 95 works to study whether these works employed appropri-
ate quality evaluation methods. They aimed to investigate the possible issues with these
methods to provide guidance for choosing suitable QIs. In contrast, our work guides
users to select MOSAs given that they know the specific qualities they are looking for
in the solutions represented by a QI. We achieve this by studying the preference relation-
ships between QIs and MOSAs. Thus, our work provides guidance to the users from a
complementary angle.

8 Conclusion and FutureWork

In the Search-based Software Engineering (SBSE) domain, researchers and practitioners
(i.e., SBSE users) solving multi-objective search problems often use one or more com-
monly used Multi-objective Search Algorithms (MOSAs) without any proper justification,
followed by experimenting with the selected MOSAs to find the best MOSA. Furthermore,
users always have limited time to experiment with a large number MOSAs. To this end,
in this paper, we aim to provide evidence to users such that they can select a MOSA for
their SBSE problem given their choice of a Quality Indicator (QI) or a quality aspect (e.g.,
Convergence or uniformity). The selected MOSA will be highly likely to provide desired
solutions represented by the QI or quality aspect specified by the user. We built our evi-
dence by running large-scale experiments consisting of 18 search problems of 11 SBSE
application domains. Based on our findings, we observe that each QI has its own spe-
cific most-preferred MOSA (e.g., HV most prefers NSGA-II), and vice versa; SPEA2 and
NSGA-II are the most preferred MOSAs by QIs, followed by SMPSO, and PAES is the
least preferred. No QI is the most preferred by all the MOSAs; NSGA-II and SPEA2 win
over the other MOSAs for Spread, Uniformity, and Cardinality, whereas SPEA2 is the
most preferred for Convergence. Moreover, we notice that the preferences between QIs and
MOSAs vary across the search problems, and QIs covering the same quality aspect(s) do
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not necessarily have the same preference for MOSAs. These observations contributed to the
guidelines we devised for SBSE users to select a MOSA for a given QI or a quality aspect.

In the future, we would like to further extend our experiments with additional search
problems, possibly from different SBSE application domains. Such an extension will bring
more credible evidence for the relationships between QIs and MOSAs. Moreover, we intend
to study the impact of various characteristics of search problems (e.g., complexity) on such
relationships. Finally, we would also like to study the time performance of MOSAs while
studying such relationships.
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A Appendix

A.1 Detailed Data for RQ 1.2

For answering RQ1.2, Table 13 presents all detailed results. For each QI and each search
problem, it reports the ranking of all MOSA preferences.

Table 13 The preference relationship orders of selected MOSAs for each search problem of each QI

QI Problem The MOSA preference relationship order

HV TM NSGA-II = SPEA2 > MOCell = SMPSO > CellDE > PAES

TP1 SMPSO > NSGA-II > SPEA2 > MOCell > CellDE > PAES

TP2 1 NSGA-II = SPEA2 > SMPSO > MOCell = PAES > CellDE

TP2 2 SMPSO > NSGA-II > SPEA2 > CellDE > MOCell > PAES

TP2 3 CellDE > NSGA-II = SPEA2 > SMPSO > MOCell > PAES

RM SPEA2 > MOCell > NSGA-II > PAES > SMPSO

RA NSGA-II > SPEA2 > MOCell > PAES > SMPSO > CellDE

TS NSGA-II > SPEA2 > MOCell = SMPSO > CellDE > PAES

UT1 CellDE = MOCell = NSGA-II = PAES = SMPSO = SPEA2

UT2 CellDE = MOCell = NSGA-II = PAES = SMPSO = SPEA2

UT3 CellDE = MOCell = NSGA-II = PAES = SMPSO = SPEA2

UT4 CellDE = MOCell = NSGA-II = PAES = SMPSO = SPEA2

RALIC MOCell > PAES > SPEA2 > NSGA-II

WORD MOCell = SPEA2 > NSGA-II > PAES

NRL SPEA2 > NSGA-II > MOCell > PAES
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Table 13 (continued)

QI Problem The MOSA preference relationship order

TRA SMPSO > CellDE > SPEA2 > NSGA-II > MOCell = PAES

ITO NSGA-II = SPEA2 > CellDE = SMPSO > MOCell > PAES

RP CellDE > NSGA-II > SMPSO > SPEA2 > MOCell = PAES

IGD TM SPEA2 > NSGA-II > MOCell = SMPSO > CellDE > PAES

TP1 NSGA-II > SMPSO = SPEA2 > MOCell > PAES > CellDE

TP2 1 SPEA2 > NSGA-II > PAES > MOCell > SMPSO > CellDE

TP2 2 NSGA-II > SMPSO = SPEA2 > MOCell > PAES > CellDE

TP2 3 CellDE > SPEA2 > NSGA-II > SMPSO > MOCell > PAES

RM SPEA2 > MOCell > NSGA-II > PAES > SMPSO

RA NSGA-II > SPEA2 > MOCell > PAES > SMPSO > CellDE

TS SPEA2 > NSGA-II > MOCell > SMPSO > CellDE > PAES

UT1 CellDE = MOCell = NSGA-II = PAES = SMPSO = SPEA2

UT2 CellDE = MOCell = NSGA-II = PAES = SMPSO = SPEA2

UT3 CellDE = MOCell = NSGA-II = PAES = SMPSO = SPEA2

UT4 CellDE = MOCell = NSGA-II = PAES = SMPSO = SPEA2

RALIC MOCell > NSGA-II > SPEA2 > PAES

WORD SPEA2 > NSGA-II > MOCell > PAES

NRL NSGA-II = SPEA2 > MOCell > PAES

TRA SMPSO > CellDE > SPEA2 > NSGA-II = PAES > MOCell

ITO NSGA-II = SPEA2 > SMPSO > CellDE > MOCell > PAES

RP NSGA-II > CellDE > SMPSO > SPEA2 > MOCell = PAES

EP TM NSGA-II = SPEA2 > MOCell = SMPSO > CellDE > PAES

TP1 SMPSO > NSGA-II > SPEA2 > CellDE > MOCell > PAES

TP2 1 NSGA-II = SPEA2 > MOCell = SMPSO > PAES > CellDE

TP2 2 SMPSO > NSGA-II > SPEA2 > CellDE > MOCell > PAES

TP2 3 CellDE > SPEA2 > NSGA-II > SMPSO > MOCell > PAES

RM SPEA2 > MOCell > NSGA-II > SMPSO > PAES

RA NSGA-II > SPEA2 > MOCell > PAES > SMPSO > CellDE

TS NSGA-II > SMPSO > SPEA2 > CellDE > MOCell > PAES

UT1 CellDE = MOCell = NSGA-II = PAES = SMPSO > SPEA2

UT2 CellDE = MOCell = NSGA-II = PAES = SMPSO = SPEA2

UT3 CellDE = MOCell = NSGA-II = PAES = SMPSO = SPEA2

UT4 CellDE = MOCell = NSGA-II = PAES = SMPSO = SPEA2

RALIC NSGA-II > MOCell > PAES > SPEA2

WORD NSGA-II = SPEA2 > MOCell > PAES

NRL SPEA2 > NSGA-II > MOCell > PAES

TRA SMPSO > CellDE > SPEA2 > NSGA-II > MOCell = PAES

ITO NSGA-II = SPEA2 > SMPSO > CellDE > MOCell > PAES

RP CellDE > SMPSO > NSGA-II > SPEA2 > MOCell = PAES

GD TM SPEA2 > NSGA-II > MOCell > SMPSO > CellDE > PAES

TP1 MOCell = SPEA2 > NSGA-II > PAES > SMPSO > CellDE

TP2 1 SPEA2 > NSGA-II > PAES > MOCell > SMPSO > CellDE

TP2 2 MOCell > SPEA2 > NSGA-II = PAES > SMPSO > CellDE
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Table 13 (continued)

QI Problem The MOSA preference relationship order

TP2 3 NSGA-II = SPEA2 > CellDE > SMPSO > MOCell > PAES

RM SPEA2 > NSGA-II > MOCell > PAES > SMPSO

RA NSGA-II > SPEA2 > PAES > CellDE > SMPSO > MOCell

TS SPEA2 > NSGA-II > MOCell > SMPSO > CellDE > PAES

UT1 CellDE = MOCell = NSGA-II = PAES = SMPSO = SPEA2

UT2 SPEA2 > NSGA-II = PAES > CellDE = MOCell = SMPSO

UT3 CellDE = MOCell = NSGA-II = PAES = SMPSO = SPEA2

UT4 SPEA2 > NSGA-II = PAES > CellDE = MOCell = SMPSO

RALIC PAES > MOCell > SPEA2 > NSGA-II

WORD PAES > SPEA2 > MOCell > NSGA-II

NRL SPEA2 > PAES > NSGA-II > MOCell

TRA CellDE > SMPSO > NSGA-II > MOCell > PAES > SPEA2

ITO NSGA-II = SPEA2 > CellDE = SMPSO > MOCell > PAES

RP NSGA-II > CellDE > SPEA2 > SMPSO > PAES > MOCell

GS TM CellDE > SMPSO > SPEA2 > NSGA-II > MOCell > PAES

TP1 SMPSO > SPEA2 > NSGA-II > MOCell > CellDE > PAES

TP2 1 SMPSO > NSGA-II > CellDE = SPEA2 > MOCell > PAES

TP2 2 SMPSO > NSGA-II > SPEA2 > CellDE > MOCell > PAES

TP2 3 CellDE > SMPSO > NSGA-II > SPEA2 > MOCell > PAES

RM SPEA2 > MOCell > NSGA-II > SMPSO > PAES

RA CellDE = NSGA-II > PAES = SMPSO = SPEA2 > MOCell

TS SPEA2 > CellDE > SMPSO > NSGA-II > MOCell > PAES

UT1 CellDE = MOCell = NSGA-II = PAES = SMPSO = SPEA2

UT2 SPEA2 > NSGA-II = PAES > CellDE = MOCell = SMPSO

UT3 CellDE = MOCell = NSGA-II = PAES = SMPSO = SPEA2

UT4 SPEA2 > PAES > NSGA-II > CellDE = MOCell = SMPSO

RALIC SPEA2 > MOCell > NSGA-II > PAES

WORD SPEA2 > MOCell > NSGA-II > PAES

NRL SPEA2 > MOCell > NSGA-II > PAES

TRA CellDE > SMPSO > SPEA2 > PAES > MOCell > NSGA-II

ITO NSGA-II = SPEA2 > SMPSO > CellDE = MOCell > PAES

RP SMPSO > CellDE = NSGA-II > SPEA2 > MOCell = PAES

ED TM SPEA2 > NSGA-II > SMPSO > MOCell > CellDE > PAES

TP1 MOCell = NSGA-II = SPEA2 > PAES > SMPSO > CellDE

TP2 1 SPEA2 > NSGA-II = PAES > MOCell > SMPSO > CellDE

TP2 2 MOCell > PAES > NSGA-II = SPEA2 > SMPSO > CellDE

TP2 3 CellDE = SPEA2 > NSGA-II > SMPSO > MOCell > PAES

RM MOCell = NSGA-II = PAES = SPEA2 > SMPSO

RA SMPSO > CellDE > NSGA-II > SPEA2 > PAES > MOCell

TS SPEA2 > NSGA-II > MOCell > SMPSO > CellDE > PAES

UT1 CellDE = MOCell = SMPSO = SPEA2 > NSGA-II = PAES

UT2 CellDE = MOCell = NSGA-II = PAES = SMPSO = SPEA2

UT3 CellDE = MOCell = SPEA2 > NSGA-II = PAES > SMPSO
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Table 13 (continued)

QI Problem The MOSA preference relationship order

UT4 CellDE = MOCell = NSGA-II = PAES = SMPSO = SPEA2

RALIC MOCell > PAES > SPEA2 > NSGA-II

WORD MOCell = SPEA2 > NSGA-II = PAES

NRL MOCell = SPEA2 > NSGA-II = PAES

TRA CellDE > SMPSO > SPEA2 > NSGA-II = PAES > MOCell

ITO NSGA-II > SPEA2 > CellDE = SMPSO > MOCell > PAES

RP NSGA-II > CellDE > SMPSO > SPEA2 > MOCell = PAES

PFS TM NSGA-II = SPEA2 > MOCell = PAES > CellDE = SMPSO

TP1 MOCell = NSGA-II = SMPSO = SPEA2 > PAES > CellDE

TP2 1 SMPSO > NSGA-II > SPEA2 > CellDE > PAES > MOCell

TP2 2 NSGA-II = SMPSO = SPEA2 > MOCell > PAES > CellDE

TP2 3 SMPSO > CellDE > NSGA-II > SPEA2 > PAES > MOCell

RM MOCell = NSGA-II = SPEA2 > PAES = SMPSO

RA NSGA-II = PAES > SPEA2 > CellDE > SMPSO > MOCell

TS NSGA-II = SPEA2 > CellDE = MOCell = PAES > SMPSO

UT1 NSGA-II = PAES = SPEA2 > CellDE = MOCell = SMPSO

UT2 NSGA-II = PAES = SPEA2 > CellDE = MOCell = SMPSO

UT3 NSGA-II = PAES = SPEA2 > SMPSO > CellDE = MOCell

UT4 NSGA-II = PAES = SPEA2 > CellDE = MOCell = SMPSO

RALIC NSGA-II = SPEA2 > MOCell > PAES

WORD MOCell = NSGA-II = PAES = SPEA2

NRL NSGA-II = PAES = SPEA2 > MOCell

TRA CellDE = NSGA-II = SMPSO = SPEA2 > MOCell > PAES

ITO NSGA-II = SPEA2 > PAES > CellDE > MOCell = SMPSO

RP NSGA-II = PAES = SPEA2 > CellDE > SMPSO > MOCell

C TM SPEA2 > NSGA-II > CellDE = MOCell = PAES = SMPSO

TP1 MOCell > NSGA-II = PAES = SPEA2 > CellDE = SMPSO

TP2 1 SPEA2 > CellDE = MOCell = NSGA-II = PAES = SMPSO

TP2 2 MOCell > NSGA-II = PAES = SMPSO = SPEA2 > CellDE

TP2 3 CellDE > MOCell = NSGA-II = PAES = SMPSO = SPEA2

RM SPEA2 > MOCell = NSGA-II > PAES > SMPSO

RA NSGA-II > CellDE = MOCell = PAES = SMPSO = SPEA2

TS NSGA-II = SPEA2 > CellDE = MOCell = PAES = SMPSO

UT1 CellDE = MOCell = NSGA-II = PAES = SMPSO = SPEA2

UT2 CellDE = MOCell = NSGA-II = PAES = SMPSO = SPEA2

UT3 CellDE = MOCell = NSGA-II = PAES = SMPSO = SPEA2

UT4 CellDE = MOCell = NSGA-II = PAES = SMPSO = SPEA2

RALIC MOCell = NSGA-II = PAES = SPEA2

WORD MOCell = NSGA-II = PAES = SPEA2

NRL MOCell = NSGA-II = PAES = SPEA2

TRA SMPSO > SPEA2 > CellDE > MOCell = NSGA-II > PAES
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Table 13 (continued)

QI Problem The MOSA preference relationship order

ITO NSGA-II = SPEA2 > CellDE = MOCell = PAES = SMPSO

RP CellDE = NSGA-II = SMPSO > MOCell = PAES = SPEA2

- “>”: preferred more than; “=”: no significant difference

- “TM”: Test Suite Minimization; “TP1”: Test Case Prioritization-1; “TP2 *”: the *th problem of Test
Case Prioritization-2; “RM”: Rule Mining and Configuration Generation; “RA”: Requirements Allocation
for Inspection; “TS”: Test Case Selection; “UT*”: the *th problem of Test Case Minimization; “RALIC”:
a problem of Uncertainty-wise Requirements Prioritization; “WORD”: a problem of Uncertainty-wise
Requirements Prioritization; “NRL”: a problem of Uncertainty-wise Requirements Prioritization; “TRA”:
Testing Resource Allocation; “ITO”: Integration and Test Order; “RP”: Software Release Planning.

A.2 Detailed Data for RQ 2.2

For answering RQ2.2, Table 14 presents all detailed results. For each MOSA and each
search problem, it reports the ranking of all QI preferences.

Table 14 The preference relationship orders of selected QIs for each search problem of each MOSA

MOSA Problem The QI preference relationship order

CellDE TM GS > HV = IGD = EP = GD = ED > PFS = C

TP1 EP > HV = GS > IGD = GD = ED = PFS = C

TP2 1 GS = PFS > HV = IGD = EP = GD = ED = C

TP2 2 HV = EP = GS > IGD = GD = ED = PFS = C

TP2 3 HV = IGD = EP = GS = C > ED = PFS > GD

RA GS = ED > GD = PFS > HV = IGD = EP = C

TS GS > EP > HV = IGD = GD = ED = PFS > C

UT1 ED > EP > HV = IGD = GD = GS = PFS = C

UT2 HV = IGD = EP = GD = GS = ED = PFS = C

UT3 ED > HV = IGD = EP = GD = GS = PFS = C

UT4 HV = IGD = EP = GD = GS = ED = PFS = C

TRA GD = GS = ED > HV = IGD = EP > C > PFS

ITO HV = IGD = EP = GD = ED > GS = PFS > C

RP HV = EP > IGD = GD = ED > GS = C > PFS

MOCell TM GD > HV = IGD = EP = ED = PFS > GS > C

TP1 GD = C > ED > HV = IGD = GS = PFS > EP

TP2 1 IGD = EP = GD = ED > HV = GS > PFS = C

TP2 2 GD = ED > C > IGD = PFS > HV = EP = GS

TP2 3 HV = IGD = EP = GD = GS = ED > PFS = C

RM HV = IGD = EP = GS > GD = PFS = C > ED

RA HV = IGD = EP > GD = GS = ED = PFS = C

TS IGD = GD = ED > HV > EP = GS = PFS > C

UT1 ED > EP > HV = IGD = GD = GS = PFS = C

UT2 HV = IGD = EP = GD = GS = ED = PFS = C

UT3 ED > HV = IGD = EP = GD = GS = PFS = C
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Table 14 (continued)

MOSA Problem The QI preference relationship order

UT4 HV = IGD = EP = GD = GS = ED = PFS = C

RALIC HV = IGD = ED > EP = GD = GS > PFS > C

WORD HV = IGD = EP = GD > GS > ED = PFS = C

NRL GS > HV = IGD = EP = ED > GD = PFS = C

TRA GD > GS = PFS = C > HV = IGD = EP = ED

ITO HV = IGD = EP = GD = GS = ED > PFS = C

RP HV = IGD = EP = GD = GS = ED = PFS = C

NSGA-II TM HV = IGD = EP = GD = ED = PFS > C > GS

TP1 IGD > HV = EP > GD = GS = ED > PFS = C

TP2 1 HV = IGD = EP = GD = GS = PFS > ED > C

TP2 2 IGD > HV = EP = GS > PFS > GD = ED > C

TP2 3 GD > HV = IGD = EP = GS = ED = PFS > C

RM GD > HV = IGD = EP = GS = PFS = C > ED

RA HV = IGD = EP = GD > GS = PFS > ED = C

TS HV = EP > IGD = GD = ED > PFS > GS = C

UT1 PFS > EP > HV = IGD = GD = GS = ED = C

UT2 GD = GS = PFS > HV = IGD = EP = ED = C

UT3 PFS > ED > HV = IGD = EP = GD = GS = C

UT4 GD = GS = PFS > HV = IGD = EP = ED = C

RALIC EP > IGD = PFS > GS > HV = GD = ED = C

WORD IGD = EP > HV = GS > GD = ED = PFS = C

NRL HV = IGD = EP > GD = GS = PFS > ED = C

TRA GD > HV = EP = PFS > IGD = ED = C > GS

ITO ED > HV = IGD = EP = GD = GS = PFS = C

RP IGD = GD = ED > HV > EP = GS = PFS = C

SMPSO TM GS > ED > HV = IGD = EP = GD > PFS = C

TP1 HV = EP = GS > IGD > PFS > GD = ED > C

TP2 1 GS = PFS > HV > EP > IGD = GD = ED > C

TP2 2 HV = EP = GS > IGD = PFS > GD = ED = C

TP2 3 PFS > GS > HV = IGD = EP = GD = ED > C

RM EP = GS > HV = IGD = GD = ED = PFS = C

RA ED > HV = IGD = EP = GD = GS = PFS > C

TS EP > GS > HV = IGD = GD = ED > PFS = C

UT1 ED > EP > HV = IGD = GD = GS = PFS = C

UT2 HV = IGD = EP = GD = GS = ED = PFS = C

UT3 PFS > HV = IGD = EP = GD = GS = ED = C

UT4 HV = IGD = EP = GD = GS = ED = PFS = C

TRA HV = IGD = EP = C > GD = GS = ED > PFS

ITO IGD = EP = GS > HV = GD = ED > PFS = C

RP GS > EP > HV = IGD = ED = C > GD > PFS

SPEA2 TM IGD = GD = ED = C > HV = EP = PFS > GS

TP1 GD = GS > HV = IGD = EP = ED > PFS = C

TP2 1 IGD = GD = ED > HV = EP > PFS = C > GS
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Table 14 (continued)

MOSA Problem The QI preference relationship order

TP2 2 GD > HV = IGD = EP = GS = PFS > ED > C

TP2 3 IGD = EP = GD = ED > HV > GS = PFS > C

RM HV = IGD = EP = GD = GS = C > PFS > ED

RA HV = IGD = EP = GD > PFS > ED > GS > C

TS IGD = GD = GS = ED > HV = EP = PFS > C

UT1 PFS > ED > HV = IGD = EP = GD = GS = C

UT2 GD = GS > PFS > HV = IGD = EP = ED = C

UT3 ED = PFS > HV = IGD = EP = GD = GS = C

UT4 GD = GS > PFS > HV = IGD = EP = ED = C

RALIC GS > PFS > HV = IGD = GD = ED > EP = C

WORD IGD = GS > HV = EP = GD = ED > PFS = C

NRL HV = EP = GD = GS > IGD > ED = PFS > C

TRA C > HV = IGD = EP = GS = ED > PFS > GD

ITO HV = IGD = EP = GD = GS = ED = PFS = C

RP GD = PFS > HV = IGD = EP = GS = ED > C

PAES TM PFS > HV = IGD = EP = GD = GS = ED = C

TP1 GD = ED = C > IGD = PFS > HV = EP = GS

TP2 1 IGD = GD = ED > HV = EP = PFS > GS = C

TP2 2 ED > GD > IGD = PFS = C > HV = EP = GS

TP2 3 PFS > HV = IGD = EP = GD = GS = ED = C

RM HV = IGD = GD = ED = C > EP = GS = PFS

RA PFS > GD > HV = IGD = EP > GS = ED > C

TS PFS > HV = IGD = EP = GD = GS = ED = C

UT1 PFS > EP > HV = IGD = GD = GS = ED = C

UT2 GD = GS = PFS > HV = IGD = EP = ED = C

UT3 PFS > ED > HV = IGD = EP = GD = GS = C

UT4 GS > GD = PFS > HV = IGD = EP = ED = C

RALIC GD > HV = ED > EP > IGD = GS = PFS = C

WORD GD > HV = IGD = EP = GS = ED = PFS = C

NRL GD > PFS > HV = IGD = EP = GS = ED = C

TRA GS > IGD = GD = ED > HV = EP = PFS = C

ITO PFS > HV = IGD = EP = GD = GS = ED = C

RP PFS > GD > HV = IGD = EP = GS = ED = C

- “>”: preferred more than; “=”: no significant difference

- “TM”: Test Suite Minimization; “TP1”: Test Case Prioritization-1; “TP2 *”: the *th problem of Test
Case Prioritization-2; “RM”: Rule Mining and Configuration Generation; “RA”: Requirements Allocation
for Inspection; “TS”: Test Case Selection; “UT*”: the *th problem of Test Case Minimization; “RALIC”:
a problem of Uncertainty-wise Requirements Prioritization; “WORD”: a problem of Uncertainty-wise
Requirements Prioritization; “NRL”: a problem of Uncertainty-wise Requirements Prioritization; “TRA”:
Testing Resource Allocation; “ITO”: Integration and Test Order; “RP”: Software Release Planning
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