
https://doi.org/10.1007/s10664-021-10087-1

Mining Python fix patterns via analyzing fine-grained
source code changes

Yilin Yang1 · Tianxing He1 ·Yang Feng1 · Shaoying Liu2 ·Baowen Xu1

Accepted: 8 November 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Many code changes are inherently repetitive, and researchers employ repetitiveness of the
code changes to generate bug fix patterns. Automatic Program Repair (APR) can auto-
matically detect and fix bugs, thus helping developers to improve the quality of software
products. As a critical component of APR, software bug fix patterns have been revealed
by existing studies to be very effective in detecting and fixing bugs in different program-
ming languages (e.g., Java/C++); yet the fix patterns proposed by these studies can not be
directly applied to improve Python programs because of syntactic incompatibilities and lack
of analysis of dynamic features. In this paper, we proposed a mining approach to identify fix
patterns of Python programs by extracting fine-grained bug-fixing code changes. We first
collected bug reports from GitHub repository and employed the abstract syntax tree edit
distance to cluster similar bug-fixing code changes to generate fix patterns. We then eval-
uated the effectiveness of these fix patterns by applying them to single-hunk bugs in two
benchmarks (BugsInPy and QuixBugs). The results show that 13 out of 101 real bugs can
be fixed without human intervention; that is, the generated bug patch is identical or seman-
tically equivalent with developer’s patches. Also, we evaluated the fix patterns in the wild.
For each complex bug, 15% of the bug code could be fixed, and 37% of the bug code could
be matched by fix patterns.

Keywords Pattern mining · Fix pattern · Program repair · Bug fix changes

1 Introduction

Python design philosophy emphasizes code readability and flexibility, making it widely
applicable in various development fields and especially popular with novices (Xu et al.
2016; Chen et al. 2018; Hu and Zhang 2020). Python dynamic features support reflection,

Communicated by: Shaowei Wang, Tse-Hsun (Peter) Chen, Sebastian Baltes, Ivano Malavolta,
Christoph Treude, Alexander Serebrenik

This article belongs to the Topical Collection: Collective Knowledge in Software Engineering

� Yang Feng
fengyang@nju.edu.cn

Extended author information available on the last page of the article.

Published online: 28 January 2022

Empirical Software Engineering (2022) 27: 48

/

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-021-10087-1&domain=pdf
http://orcid.org/0000-0002-7477-3642
mailto: fengyang@nju.edu.cn

allowing its programs to access their types and structures at runtime, and to dynamically
modify their execution status (Van Rossum and Drake 1995; Sanner et al. 1999; Åkerblom
et al. 2014). However, these dynamic features also become a resistance in terms of tool
support development (Monat et al. 2020). Åkerblom et al. (2014) proved that real-world
Python programs leverage built-in dynamic features to exhibit behavior that is inherently
hard to type. Wang et al. (2015) and Chen et al. (2018) have shown that the code changes
of dynamic features are related to bug-fixing activities significantly. Hence, it is essential to
understand Python dynamic features and reveal potential programming defects, as they help
developers to understand bug characteristics and thus improve coding quality.

In this paper, we aim to discover fix patterns in Python programs and help developers to
understand common and specific bug fixing in Python programs. Mining fix pattern is cru-
cial and indispensable for implementing the fix pattern-based Automated Program Repair
(APR) tool. Many code changes are inherently repetitive (Jiang and Su 2009; Nguyen et al.
2013a; Negara et al. 2014; Hindle et al. 2016), and researchers employed the repetitive-
ness to identify intrinsic features of programs that implement automated techniques such
as fix pattern-based APR (Pan et al. 2009; Kim et al. 2013; Hanam et al. 2016; Liu et al.
2018; Cotroneo et al. 2019). Pan et al. (2009) proposed Java bug fix patterns to analyze
how developers fix bugs. Kim et al. (2013) manually summarized 10 fix patterns from
human-written patches. Hanam et al. (2016) conducted a comprehensive study of popular
vulnerability patterns in server-side JavaScript code. Liu et al. (2018) employed CNN tech-
niques to extract features from the bug patches to mine fix patterns. Cotroneo et al. (2019)
conducted an empirical study on the repetitive pattern of vulnerability remediation changes
in three OpenStack projects.

Unfortunately, the existing fix pattern-based APR tools can not be applied directly to
Python programs because Python syntax is incompatible with that of Java, and existing
researches have failed to systematically analyze Python dynamic features. Furthermore, as
existing fix pattern mining methods, data pre-processing (i.e., code differencing) heavily
relies on AST differencing tools such as GumTree (Hanam et al. 2016; Liu et al. 2018)
and ChangeDistiller (Fluri et al. 2008; Wang et al. 2018); this may lead to the limited
applicability of these research methods when certain programming languages do not have
corresponding advanced AST differencing tools. Therefore, we attempted to propose an
approach that can automatically mine fix patterns based on historical bug-fix informa-
tion. This fix pattern mining approach can be applied not only to Python but also to other
programming languages.

Recent studies (Saha et al. 2019; Noda et al. 2020) have shown that most state-of-the-art
APR tools are designed to focus on single statement bugs, and though some APR tools can
fix multi-hunk bugs (Mechtaev et al. 2016; Saha et al. 2019), the number (classes) of such
fixable multi-hunk bugs is limited. Therefore, in this study, we focused on summarizing fix
patterns for repairing single-hunk bugs. We restricted the bug patch to a single contiguous
chunk of code.

The goals of this paper are twofold, namely (1) to propose a systematic and auto-
mated mining approach for discovering pervasive fix patterns and (2) to identify frequently
occurring bug fix patterns in cross-project Python programs.

Research Question We present our study, which focuses on the following four research
questions (RQs):

– RQ1.What are the common fix patterns in Python?

48 Page 2 of 37 Empir Software Eng (2022) 27: 48

We collected bug-fixing code changes frequently occurring in open-source software
and identified common fix patterns. We described the common fix patterns in Section 4.

– RQ2.Which fix patterns are specific to Python?
Besides common fix patterns, we also analyzed the Python dynamic features and

summarized that the fix patterns are specific to Python. We described the Python fix
patterns in Section 5.

– RQ3.How many single-hunk bugs from BugsInPy and QuixBugs can be fixed by fix
patterns?

We selected single-hunk bugs from the two benchmarks and applied fix patterns to
repair these bugs. We evaluated the effectiveness of fix patterns in fixing single-hunk
bugs in Section 6.

– RQ4. Are the fix patterns we proposed effective in practice?
We collected bug reports from four open-source projects as a test set, and then we

defined and selected complex bugs from the test set. We evaluated the potential of fix
patterns to fix the complex bugs in Section 6.

Contribution This paper makes the following primary contributions:

– We propose a novel technique for automatically mining fix patterns based on fine-
grained bug-fixing code changes.

– We propose 29 fix patterns, which are 11 common fix patterns and 18 Python special
patterns. We evaluate the effectiveness of the identified fix patterns by applying them
to address real-world bugs.

– We conduct a comprehensive study of pervasive bug fix patterns in a large number of
repositories.1

Paper Organization The remainder of this paper is organized as follows.
We describe the background in Section 2, which introduces the Python dynamic fea-

tures and Fix Pattern-based Automated Program Repair. We present the methodology in
Section 3, defining the basic terminologies applied in this study and describing the method-
ology steps. In Sections 4 and 5, we present the common fix patterns and Python fix patterns,
whose descriptions and examples are both provided. Then, we describe the usage of fix pat-
terns and evaluate the effectiveness of these fix patterns in Section 6. After that, we discuss
threats to the validity of this study in Section 7 and related work in Section 8. Finally, we
conclude with future work in Section 9.

2 Background

2.1 Python Dynamic Features

Python is a typical dynamically typed language that does not enforce to check type safety
at compile time (static checking) but defers such checks to run time (dynamic checking),
reducing development costs and providing the flexibility required by specific areas such as
data processing (Tratt 2009). Holkner and Harland (2009) categorized the Python dynamic
features into four sets: reflection, dynamic typing, dynamic objects, and dynamic code.
Table 1 shows the built-in dynamic feature functions of Python

1https://github.com/SATE-Lab/PyFPattern

Empir Software Eng (2022) 27: 48 Page 3 of 37 48

https://github.com/SATE-Lab/PyFPattern

Table 1 Bulid-in function (Python 3.8.X) for python dynamic feature

Categories Function

Introspection any() all() callable() dir() getattr()

hasattr() isinstance() issubclass() globals() locals()

type() vars()

Self-modification delattr() setattr()

Dynamic Code compile() eval() exec()

Reflection The programming language that supports reflection allows its programs to
have run time access to their types and structure and to be able to modify their behavior
dynamically. Tratt (2009) divides reflection into three activities, namely

– Introspection. Every object in Python has attributes and methods. Through introspec-
tion, we can dynamically inspect Python objects. Code introspection examines classes,
methods, objects, modules, keywords and gets information about them. Introspection
reveals useful information about program objects.

– Self-modification. Python object can change its own structure. For example, we can
dynamically add an attribute through setattr().

– Intercession. Python object can change its own behavior. As shown in Fig. 1- Interces-
sion, it can return the new behavior by overriding the getattribute ().

Dynamic Typing Variables in Python are neither statically declared nor typed. Any vari-
ables can hold any type, and the type of the value held may change during program execution
(Holkner and Harland 2009; Monat et al. 2020). As shown in Fig. 1-Dynamic Typing,
parameter x is a reference to object a. With an immutable object, change x does not affect
a, while with mutable objects, such as b, changing x may change the original object.

Dynamic Object Python classes can be constructed before calling at run time (Holkner and
Harland 2009). In Python standard library, classes can be dynamically created using the X
= type(’X’, (object,), dict(a=1)), as shown in Fig. 2-Dynamic Object.

Fig. 1 Intercession & dynamic typing example code

Empir Software Eng (2022) 27: 4848 Page 4 of 37

Fig. 2 Dynamic object & dynamic code example code

Dynamic Code Python can construct code at run time from source code (Holkner and Har-
land 2009). For example, we can use eval() to evaluate arbitrary string expressions as
Python code at run time, as shown in Fig. 2-Dynamic Code.

2.2 Fix Pattern-based Automated Program Repair

Fix pattern is also termed as fix template (Liu and Zhong 2018) or program transform
scheme (Hua et al. 2018), usually obtained from manual summarization, pre-definition,
statistics and mining (Liu et al. 2019b).

Summarizing fix patterns is challenging because these patterns are obtained from various
heterogeneous source codes, such as across application domains and software project ver-
sions. Kim et al. (2013) manually summarized 10 fix patterns from human-written patches,
which were collected from Eclipse JDT. Durieux et al. (2017) proposed NPEfix, an APR
tool based on 9 fix patterns specific to null pointer exceptions to detect null pointer defects.
Hua et al. (2018) proposed SketchFix, an APR tool with 6 pre-defined fix patterns. Liu
et al. (2018) employed CNN techniques to extract features from the bug patches to mine fix
patterns. Subsequently, Liu et al. (2019a) proposed AVATAR, an APR tool that applies the
generated fix patterns to fix semantic bugs.

Software systems inevitably appear with various defects, the limited human resources
are not sufficient to fix all known bugs (Habib and Pradel 2018). Researchers have proposed
various automation techniques to address this challenge. In existing studies, researchers
generally exploit the repetitiveness of code changes to identify the intrinsic program fea-
tures and thus accomplish some specific tasks, such as fix pattern-based automated program
repair (APR). The basic principle of fix pattern-based APR is to abstract code changes into
a pattern and apply the contextual information of the abstract syntax tree node of the buggy
code to match the contextual constraints (Liu et al. 2019a; 2019b), as shown in Fig. 3.

Existing studies have revealed several fix patterns for various programming languages,
e.g., Java; however, these studies can not be directly applied to Python programs because
of syntactic incompatibilities and lack of analysis of dynamic features. These situations
motivate us to expand the existing literature by enhancing our understanding of Python
language features and fix patterns.

3 ResearchMethodology

We defined the basic terminologies applied in this study with reference to the existing liter-
ature (Section 3.1). Our methodology includes the following steps, as summarized in Fig. 4.

Empir Software Eng (2022) 27: 48 Page 5 of 37 48

Fig. 3 Fix pattern-based automated program repair

First, we collected bug reports from the GitHub repository (Section 3.2); Second, we mined
and normalized the single-hunk bugs (Section 3.3); Third, we clustered these hunks accord-
ing to their Abstract Syntax Tree (AST) edit distance (Section 3.4); Finally, we manually
reviewed the cluster results (Section 3.5).

3.1 Terminology

The terminologies applied in this study are defined as follows.

– Bug Report. We collected data sets from GitHub. This paper refers to the officially
merged issues as bug reports, which contain bug symptom descriptions, bug patches,
and commit information.2

– Bug Patch. Bug patch is a pair of bug-fixing code snippets, bug code from a buggy
version, and fixing code from its updated version (Fluri et al. 2007; Negara et al. 2014;
Liu et al. 2018).

– Single-hunk. Hunk is a contiguous set of bug-fixing code changes (Wen et al. 2016).
Single-hunk bugs require program fixes at a single location or a set of contiguous
locations (Saha et al. 2019).

– Fix Pattern. Fix pattern is a pair of a code context extracted from a buggy code block
and a set of change operations (i.e. delete, add, move, change). Fix pattern can be
applied to a given buggy code block to generate fixing code (Liu et al. 2018; Liu et al.
2019b).

According to recent researches (Nguyen et al. 2013a; Hanam et al. 2016), the APR meth-
ods should concentrate on the change fragments with small sizes of 2–6 lines. In this paper,
we restricted the bug patch confined to a single contiguous chunk of code, i.e., less than
consecutive 6 lines of the bug-fixing code changes.

3.2 Collecting Bug Report

As shown in Table 2, there are 36 popular Python projects from GitHub studied in this paper.
These projects come from different areas, including machine learning, data processing, web,
media, development, and deployment. This data set was collected in January 2020. We
selected these projects based on two criteria (Chen et al. 2018): one is that the project should
maintain a relatively long traceable record on GitHub; the other is that the issue information

2https://guides.github.com/features/issues/

Empir Software Eng (2022) 27: 4848 Page 6 of 37

https://guides.github.com/features/issues/

Fig. 4 Overview of our fix patterns mining method

record of the project follows a certain template, and we can automatically extract bug reports
by identifying the textual information.

We first collected all issues for these repositories via GitHub API. To obtain bug reports,
we only focused on the issues that merged into the master branch. This process was to
identify issues that are officially recognized to avoid invalid discussions. Then, we applied
the approach of Vasilescu et al. (2015) to filter the bugs in the data set. We set up a list of
keywords (Zhang et al. 2018), including ’bug’, ’fix’, ’wrong’, ’error’, ’nan’, ’inf’, ’issue’,
’fault’, ’fail’, ’crash’. Then we searched these keywords in issues’ title, and labels. If any
of the titles or labels of the issues contain at least one keyword, we identified it as a bug
report. Finally, we obtained 64,011 bug reports. Here, we obtained many bug reports from
the ansible project. We believe that it is related to the popularity and maintenance of the
project community.

3.3 Mining and Normalizing Single-hunk Bugs

After collecting bug reports, we obtained the bug-fixing file changes for each bug report by
jGit tool. We mined the single-hunk bugs and normalized these bugs by the method of Higo
et al. (2020). The detailed process is as follows.

Mining Single-hunk After collecting bug reports, we can obtain each bug report’s commit
id, i.e., sha which is a unique identifier created as a new commit is recorded. As shown
in Fig. 5, we first employed the jGit tool3 to obtain all changed files for each bug report

3https://www.eclipse.org/jgit/

Empir Software Eng (2022) 27: 48 Page 7 of 37 48

https://www.eclipse.org/jgit/

Table 2 Descriptive information about target projects

Domain Repositories SLOC(py) Commits PRs T-Bugs F-Bugs M-Bugs

Data Science explosion/spaCy 27392 7698 1259 456 58 15

matplotlib/matplotlib 117500 32472 9470 2700 306 88

numpy/numpy 118470 22083 6872 3347 221 85

onnx/onnx 26641 1433 1416 370 17 6

RaRe-Technologies/gensim33868 3878 1304 394 106 18

scikit-image/scikit-image 46418 11903 2586 902 100 31

scikit-learn/scikit-learn 127649 25021 8305 2075 374 90

scipy/scipy 171435 22500 4916 2215 240 107

statsmodels/statsmodels 189071 12538 2467 959 69 17

sympy/sympy 382265 40891 7931 1643 67 23

Development ansible/ansible 979985 48802 38095 17061 4975 2318

apache/airflow 141460 7796 6252 870 205 74

getsentry/sentry 214136 27994 12137 4402 743 336

hyperledger/fabric 3236 1066 428 31 2 1

ipython/ipython 36312 24195 5708 1268 31 10

kivy/kivy 50747 12034 2830 803 123 51

nicolargo/glances 11137 3644 438 139 6 3

pygame/pygame 15233 8156 701 240 18 1

Machine apache/incubator-mxnet 277069 10526 8426 2356 340 120

Learning apple/coremltools 81316 672 269 89 7 4

chainer/chainer 135649 30455 6427 2306 561 90

dmlc/gluon-cv 36948 645 597 160 77 23

keras-team/keras 47158 5342 3740 839 366 159

PaddlePaddle/Paddle 141506 26154 11406 3308 356 134

pandas-dev/pandas 269573 21519 13257 3893 316 122

pytorch/pytorch 401139 23442 18252 1263 322 98

tensorflow/tensorflow 588367 75891 12268 2937 607 231

Theano/Theano 129492 28094 3972 1403 63 18

Others beetbox/beets 36460 9241 1217 250 18 3

django/django 243678 27785 12024 3314 264 86

HelloZeroNet/ZeroNet 27610 3780 453 99 15 6

mailpile/Mailpile 46722 6265 580 150 6 1

scrapy/scrapy 27392 7698 1875 391 20 9

wagtail/wagtail 66687 9527 2702 337 22 5

ytdl-org/youtube-dl 120298 17507 2955 498 193 101

zulip/zulip 122524 34050 8254 543 66 30

Total 5492543 652697 221789 64011 11280 4514

Projects URL: https://github.com/Repositories;

T-Bugs: Total number of bugs;

F-Bugs: Changed single file bugs;

M-Bugs: Changed single method() bugs;

Empir Software Eng (2022) 27: 4848 Page 8 of 37

Fig. 5 Mining single-hunk bugs

by its sha. We conducted this step on all bug reports and selected the commits which only
have one changed file. Secondly, we applied the Python Diff tool4 to compare bug.py and
fixing.py to select the files that changed only one method().

Thirdly, following the study of Nugroho et al. (2020), we used the histogram algorithm5

to identify the code differences in bug-fixing code changes. The total number of bug codes
and fixing codes should be less than 6, and the changed code should be consecutive.

Normalizing Single-hunk We normalized hunks at AST level. According to Higo et al.
(2020), we normalized the variables to var#, where # means the number of variables in a
single hunk. In each statement, the same number is assigned to the same name, and dif-
ferent numbers are assigned to different names. For example, a=a+1 is normalized to
var0=var0+1, but a=b+1 should be normalized to var0=var1+1. We also normalized
the arguments (arg#), numerical value (num#), and string (s). We did not normalize method
names because the semantics of calling different Application Program Interface (APIs) are
very different. For example, cmd=self. build command(self. play context)
is normalized to var0=var1. build command(var1. play context). Note that
we believe that the build-in function names are special method names rather than API names
in the ordinary sense.

In our technique, we only extracted modified bug code snippets for AST analysis. How-
ever, these snippets may be incomplete and cannot be transformed into AST. In this case, we
need to complete the snippets so that they can be transformed into AST. For if statements,
we only added ’pass’ for if statements with incomplete semantics. For example, if(x<1):
is formalize to if(x<1):pass

4https://github.com/petr-muller/pyff
5Histogram algorithm is the enhanced version of Patience. https://alfedenzo.livejournal.com

Empir Software Eng (2022) 27: 48 Page 9 of 37 48

https://github.com/petr-muller/pyff
https://alfedenzo.livejournal.com

3.4 Clustering Single-hunk Bugs

To extract fix patterns from these normalized hunks, we first categorized the bug codes
in single-hunks by AST types and number of lines, then we clustered each sub-category
according to the bug-fixing code ASTs edit distance. The detailed process is as follows.

Coarse-grained classification We transformed the bug codes in hunks into AST and classi-
fied them according to their AST types. Then, we classified the above subclasses according
to the number of bug code lines.

Clustering bug-fixing code We clustered each sub-category in above coarse-grained clas-
sification. We applied the APTED algorithm6 (Pawlik and Augsten 2015; 2016) to calculate
the AST edit distance to evaluate code similarity, whose working principle is to traverse the
structure of the syntax tree and compare whether the structure and the node content are the
same. Users can assign weights to node deletion, node insertion, and node renaming opera-
tions. Here, we set the weights of the delete, insert and rename node operations to one. To
compare all the bug codes, we transformed the bug codes into ASTs, and calculated the edit
distance of their ASTs. According to Chakraborty et al. (2018), we classified the bug code
ASTs according to the edit distance from 0-5. As in the above step, we calculated the fixing
code AST edit distance of all single-hunks and classified them according to the fixing code
edit distance 0-5.

If the edit distance of the bug code and the edit distance of their corresponding fixing
code is both 0, then the hunks are the same. We listed these hunks as candidate hunks. If
both the edit distance of the bug code and the edit distance of their corresponding fixing
code is 1-5, it means that these hunks are not same but similar. We listed these hunks as
suspicious hunks and classified them by edit distance.

Evaluation We set two restrictions: (1) the number of cluster members is greater than 3; (2)
bug-fixing code cannot come from duplicate code. For the first restriction, we believe that
only recurring bug-fixing code changes can represent a type of bug fixes. For the second
restriction, If we use duplicate bugs (i.e., bugs were found in duplicate code), the same bug
may be counted repeatedly, which would lead to a faulty clustering result. For the clusters
that met the criteria, we performed a manual review to ensure that they represented a type
of bug fix.

3.5 Manual Review

Following existing researches (Cotroneo et al. 2019; Xia et al. 2019), the first three authors
of this paper manually reviewed each cluster to assess whether the cluster actually represents
a bug fix.

We first defined three hunk types reference to existing literature (Cotroneo et al. 2019),
and then we adopted the open coding method (Seaman 1999) to qualitative analysis of each
class. According to Cotroneo et al. (2019), we divided the clusters into three types:

* bug-fix, the changed code actually fixes the behavior of software, which can represent
fixes for a bug type.

6https://github.com/JoaoFelipe/apted

Empir Software Eng (2022) 27: 4848 Page 10 of 37

https://github.com/JoaoFelipe/apted

* fix-induced, the changed code is a group of bug-fixing code changes but not represents
an actual bug fix, e.g., adding new input parameters to a method, the method signature and
method call must be changed corresponding.

* refactoring, the changed code does not modify the software behavior, e.g., better
readability or encapsulation.

Then, we labeled all candidate hunks and suspected hunks with the above three types.
After all the clusters were labeled, the authors argued for their disagreements and reached a
consensus with reasonable results. Meanwhile, we invited one other author to participate in
the discussion for the remaining few disagreements to reach a final consensus. We calculated
Fleiss Kappa value (Fleiss 1971) to measure the agreement between the authors. Fleiss
Kappa value can be divided into 5 intervals, which are slight [0.01, 0.20], fair (0.20, 0.40],
moderate (0.40, 0.60], substantial (0.60, 0.80), and perfect (0.80, 1] (Shrout and Fleiss 1979;
Hallgren 2012). Our Fleiss Kappa value is 0.72, which means that the agreement of the
identified clusters is considered to be substantial.

Next, we eliminated the clusters labeled as refactoring because they do not represent a
bug fix.

When the suspected hunks had the same semantics as the candidate hunks, we merged
them and employed the candidate hunks as the pattern for these hunks. When the suspected
hunks could not merge to any candidate hunks, we manually summarized them to a formal
pattern. In addition, to further analyze the bug fix related to dynamic features in Python. We
analyzed all bug-fixing code changes involving built-in dynamic feature functions (Table 1).

We termed the pattern for fixing common bug types (e.g., modifying if constraints,
adding or removing arguments to method calls) (Pan et al. 2009) as Common Fix Pat-
tern; the fixing scheme involving Python operators, dynamic features, and migration rules
is termed Python Fix Pattern. As a result, 770 bugs matched the common fix pattern, and
244 bugs matched the Python fix pattern. Table 3 shows the distribution of bugs matched
each fix pattern. Finally, we discussed the common fix pattern in section 4 and the Python
fix pattern in section 5. Also, we summarized the Python migration pattern in Appendix.

4 Common Fix Pattern

4.1 Answer to RQ1: Common Fix Pattern

We summarized 11 common fix patterns by automatic mining and manual review, as shown
in Table 4. We presented a catalog of fix patterns in Section 4.2-4.12 and provided the
description and example for each pattern. Example code with a prefix ”-” is the bug code,
while code with prefix ”+” is the fixing code.

Discussion Four patterns (C1, C3, C4, C7) are high frequency bug fixing schemes. It is
because converting data types (C1), mutating method invocation expression (C2 - C4), and
changing if statement constraints (C6 - C7) occur frequently and inevitably in any type
of system. Also, we found some fix patterns (C5, C10, C11) specific to Python syntax.
For example, Python for loop form as ’for <var> in <iterable>:’, where iterable is a
collection of objects, e.g., list. C5 pattern is employed to fix the data type of the iterable
object. Because iterable is usually the return value of other expressions, the iterable data
type often changes at runtime. For other instance, Raise and With are all the keywords not
in Java. For usage of common fix pattern, the bug fixing methods can be divided into two
types, one is to transform bug code only at the string level, e.g., C1 pattern; and the other is

Empir Software Eng (2022) 27: 48 Page 11 of 37 48

Table 3 The distribution of bugs matched each fix pattern

Common Fix Pattern Python Fix Pattern

No. Quantity No. Quantity No. Quantity No. Quantity No. Quantity No. Quantity

C1 300 C7 92 P1 34 P6 4 P11 37 P16 23

C2 36 C8 24 P2 50 P7 6 P12 3 P17 3

C3 149 C9 7 P3 30 P8 3 P13 17 P18 4

C4 61 C10 34 P4 3 P9 4 P14 12

C5 11 C11 14 P5 3 P10 6 P15 11

C6 42

No. of patterns are from Tables 4 and 5 respectively

to traverse the entire bug file to collect information about variables, instances, arguments,
etc. in the file as candidates for replacing the buggy objects. We described the usage of the
fix pattern in Section 6.1.

4.2 (C1) Change of Assignment Expression

Fix Pattern:

Description Replacing the right-side expression content in the assignment statement. We
divided this fix pattern into two sub-fix patterns, namely: (1) Converting the data type of the

Table 4 Common fix patterns
No. Pattern

(C1) Change of Assignment Expression

(C2) Change of Method Call to a New Instance

(C3) Method Call with Different Number of Arguments

(C4) Method Call with Different Value of Arguments

(C5) Change Loop Variable to Iterable Object

(C6) Change of Precondition Check

(C7) ADD/DEL Precondition Check

(C8) Change of Exception Type.

(C9) Change of Third-party Library Dependency

(C10) Change of Error Messages Content

(C11) Change of With Context Expression

Empir Software Eng (2022) 27: 4848 Page 12 of 37

buggy object to another data type; (2) Replacing the buggy data with other objects (includ-
ing variables, literals, instances) in the bug file. For instance, in example 1.1, candidate is
converted to string type; in example 1.2, self.cacert is replaced by another variable in the
program.

4.3 (C2) Change of Method Call to a New Instance

Fix Pattern:

Description Changing the buggy method invocation by modifying the method name or API
name, which caused mainly by two reasons, one is a typo, and the other is that the original
method signature is changed. When employing this pattern to fix bugs, we can apply other
method names in the bug file to replace the buggy method call. If the correct instance is not
in the bug file, the fixing fails.

4.4 (C3) Method Call with Different Number of Arguments

Fix Pattern:

Description Adding or deleting argument(s) when the method signature has been changed
or has the suitable overridden methods. When employing this add arguments pattern to fix

Empir Software Eng (2022) 27: 48 Page 13 of 37 48

bugs, we traversed the bug file, listed all variables and instances as candidate arguments, and
put the candidate arguments into a list. Generally, we added no more than three arguments
by default. We selected elements from the candidate list in order and added them to the
buggy code. If this generated patch is the same as the correct patch, it succeeds; otherwise,
it fails. If all the potential arguments could not fix the bug successfully, the fix fails. For the
delete arguments pattern, we deleted the current arguments in turn.

4.5 (C4) Method Call with Different Value of Arguments

Fix Pattern:

Description Replacing arguments in the method invocation with changing the value of
arguments. The replacement object can be literals, variables, or other expressions. When
employing this pattern, we can list all variables and instances in the bug file as candidate
replacement objects. If the correct patch does not appear in the bug file, the fix fails.

4.6 (C5) Change Loop Variable to Iterable Object

Fix Pattern:

Description Changing the for statement loop variable to an iterable object. In Python syn-
tax, for statement can directly traverse list, dict, and tuple objects without relying on index.
For example, developer cast the return value of result.keys() to the list type.

4.7 (C6) Change of Precondition Check

Fix Pattern:

Empir Software Eng (2022) 27: 4848 Page 14 of 37

Description Changing the precondition of the if statement. This fix pattern can be divided
into two sub-fix patterns: (1) Changing the retrieval variable in an expression, obj is usu-
ally a list, and var is a value to be retrieved; (2) Changing the whole constraint condition,
condition can be a single variable used to determine whether it is null value. Most of the
time, it is difficult for us to apply the change constraint condition pattern directly. Since the
condition can also be a complex expression.

4.8 (C7) ADD/DEL Precondition Check

Fix Pattern:

Description Adding or deleting the precondition(s) of the if statement. This fix pattern
can be divided into three sub-fix patterns: (1) Adding at least one precondition; (2) Delet-
ing precondition(s); (3) Adding the attribute check for an object. When employing the add
preconditions pattern, we can traverse the bug file and list all variables and instances as can-
didates, adding new constraints via and keyword. For deleting precondition pattern, we can
delete the preconditions in turn.

Empir Software Eng (2022) 27: 48 Page 15 of 37 48

4.9 (C8) Change of Exception Type

Fix Pattern:

Description Replacing the inappropriate except types in the try/except block. In this
pattern, type is the Python’s built-in Exception Type, while ’...’ means the subsequent
statements dependent on the try/except. When employing this pattern, we applied com-
mon exception types (e.g., ValueError, IndexError, KeyError, TypeError, etc.) to replace the
exception types in the bug code. However, due to many abnormal exception types and even
user-defined types, it is difficult for us to repair accurately. Here, we used Exception, a
general exception type, to fix it.

4.10 (C9) Change of Third-party Library Dependency

Fix Pattern:

Description Replacing the library name with another one that has the same API name. The
bug fixing may be due to adding, deleting, or changing the import file. This pattern is suit-
able for batch repairs. We can replace the faulty library name by traversing the imported
library name in the bug file. If the library name is a simple typo, then it can be easily fixed;
if it is a code change due to other reasons such as system upgrade, then it is difficult to fix it.

4.11 (C10) Change of Error Messages Content

Fix Pattern:

Empir Software Eng (2022) 27: 4848 Page 16 of 37

Description Since this bug fixing mainly repairs typos of error messages, we can not infer
the correct patch. Nevertheless, this pattern is suitable for batch repairs, where the correct
text or correct formatting is known to replace the log text throughout the system.

4.12 (C11) Change of With Method Call

Fix Pattern:

Description Changing the with statement context expression. There is a special case in this
pattern, that is, to fix the read/write parameters in open().

5 Python Fix Pattern

5.1 Answer to RQ2: Python Specific Fix Pattern

We summarized 18 Python fix patterns by automatic clustering and manual summarization,
which were classified into three categories: Python Operation (P1-P3), Dynamic Feature
(P4-P10), and Python Migration (P11-P18) types, as shown in Table 5. We presented a
catalog of fix patterns in Sections 5.2 and 5.3 and provided a description and example for
each pattern. Example code with a prefix ”-” is the bug code, while code with prefix ”+” is
the fixing code.

Discussion Python Operation pattern accounts for 46.7% (114/244), Dynamic Feature pat-
tern accounts for 9.4% (23/224), and Python Migration pattern accounts for 43.% (107/244).
Python operator patterns fix the misuse of equality operators or inequality operators; and
dynamic feature patterns focus on repairing the misuse of the Python dynamic feature func-
tion. Also, we summarized migration patterns. Although the official manual has detailed
Python migration rules, there are still bugs related to Python migration in practice. There-
fore, we have summarized some of the Python migration fixes that are frequent occurrences
in Appendix. The migration patterns are not used as often as other patterns, but they are an
integral part of implementing automated repair tools. Unlike common fix patterns, Python

Empir Software Eng (2022) 27: 48 Page 17 of 37 48

Table 5 Python fix patterns

No. Pattern

(P1) Compare Objects by (is) Operator

(P2) Compare Strings by Equality Operator

(P3) Change (in) to any() to Check Value in Generators

(P4) Change (not all()) to any() to Check Value Present in Sequences

(P5) Check Function Callable by callable()

(P6) Delete None Check with hasattr()

(P7) Add None Check with isinstance()

(P8) Add Object Type Check with issubclass()

(P9) Change type() to isinstance() to Check Object Type

(P10) Change locals() Key Value Traversal

(P11) Python 2.x Data Type Compatible with Python 3.x Data Type

(P12) Python 2.x xrange() Compatible with Python 3.x range()

(P13) Change Python 3.x map() Returned Value to List Type

(P14) Python 3.x Check Dictionary has key()

(P15) Change Python 3.x Dictionary API Name

(P16) Change Python 3.x Float Division to Integer Division

(P17) Change Python 3.x super() Backward Compatibility

(P18) Check Property Function by getattr()

fix patterns only focus on Python’s special operators and functions, which causes the use of
Python fix patterns are far less than that of common fix patterns, but less use does not mean
that they are not essential.

5.2 Python Operators (PO)

5.2.1 (P1) Compare Objects by (is) Operator

Fix Pattern:

Description Replacing equality operator with is keyword. In Python, the equality operator
compares two strings and checks whether the values are equal. Another representation of
this fix pattern is to replace inequality operator with ’is not’. For example, None is an object
in Python, and we must use the is keyword to check whether the object is a null value.

Empir Software Eng (2022) 27: 4848 Page 18 of 37

5.2.2 (P2) Compare Strings by Equality Operator

Fix Pattern:

Description Replacing is keyword with equality operator. In Python, is keyword is used to
compare the memory addresses of two variables. Another representation of this fix pattern
is to replace ’is not’ with inequality operator. For example, ’left’ is a string, we must use the
equality operator to check whether the literal value of direction is ’left’.

5.2.3 (P3) Change (in) to any() to Check Value in Generators

Fix Pattern:

Description Replacing ’X in Y’ with ’any(e is X for e in Y)’. In Python, in operator is used
to determine whether an element is in an iterable object (excluding generator). For example,
we assume that ranks static = (x for x in [1,2,None]). ’None not in ranks static’ return False.

5.3 Dynamic Features (DF)

5.3.1 (P4) Change (not all()) to any() to Check Value Present in Sequences

Fix Pattern:

Description Replacing any() with ’not all()’. any() returns True if any element of an iter-
able object is True, while all() returns True when all elements in the given iterable object
are True. For example, the iterable object is [True], ’not all(iterable)’ returns False and
any(iterable) returns True. But, if the iterable object is [True,False], the two expressions all
return True. Another representation of this fix pattern is to replace all() with ’not any()’.

Empir Software Eng (2022) 27: 48 Page 19 of 37 48

5.3.2 (P5) Check Function Callable by callable()

Fix Pattern:

Description Replacing callable(obj) with hasattr(obj,’ call ’). In practise, hasattr()
return more false positives than callable(). For example, we assume that pd index is an
instance of the Test class.

When use dir() to detect the attributes of pd index. We could find that pd index does not
have call ().

5.3.3 (P6) Delete None Check with hasattr()

Fix Pattern:

Description Deleting None check when calling hasattr(). This is an unnecessary check.
For example, when the loader object is None, hasattr(loader, ”get source”) returns False.
Developer remove None checks before hasattr().

Empir Software Eng (2022) 27: 4848 Page 20 of 37

5.3.4 (P7) Add None Check with isinstance()

Fix Pattern:

Description Adding None check when calling isinstance(object, type) In Python, None
keyword is an object. Also, it is a data type of the class NoneType. For example, if kvstore
is None, ’not isinstance(kvstore,type)’ returns True. This bug is a high-frequency error in
Python programs.

5.3.5 (P8) Add Object Type Check with issubclass()

Fix Pattern:

Description Adding object type check when calling ’issubclass()’. ’issubclass(class, class-
info)’ checks whether the class argument is a subclass (direct, indirect or virtual) of
classinfo. In Python 3.7, the method requires the class argument to be a class type.

5.3.6 (P9) Change type() to isinstance() to Check Object Type

Fix Pattern:

Description Replacing type() with instance() when checking the object data type.
type(object) returns the type of an object, and isinstance(object, classinfo) checks whether
the object is an instance or subclass of classinfo. For example, developer uses instance() to
detect whether v is a list, instead of calling type().

Empir Software Eng (2022) 27: 48 Page 21 of 37 48

5.3.7 (P10) Change locals() Key Value Traversal

Fix Pattern:

Description Replacing locals().keys() with locals().copy() to traverse the local symbol table
key value. The local symbol table is a data structure (dictionary) maintained by a compiler
that contains all necessary information about the program. It is not an ordinary dictionary
type data. If we want to traverse this dictionary, we can call locals().copy() to create a copy.

6 Evaluating Fix Patterns

6.1 Usage of Fix Patterns

In this section, we described the usage of fix pattern. In our data set, each bug report con-
tains both the bug file and the correct file. By comparing the two versions of the files, we
can obtain the bug-fixing code changes. We consider the bug code as the fix target, the
fixing code as the correct patch, and the code generated by fix pattern as the generated
patch. We attempted to apply the fix patterns in RQ1 and RQ2 to repair bugs and com-
pared the generated patches with correct patches to evaluate the fix pattern effectiveness.
We described pattern matching, patch generation, and patch verification as follows in detail.

Pattern Matching We transformed the bug code into AST and matched the appropriate
pattern according to its AST type. For the following example (#ansible-15), the bug code
AST type is ast.Assign, and the pattern that matches its type in our fix patterns happens to
be (C1).

Patch Generation As shown in Fig. 6, patch generation is divided into two types. The first
fixing method does transform the bug code according to the semantics of the fixing code in
fix pattern without changing the objects (variables, parameters, or functions), as shown in
Fig. 6(a). This fixing process can be implemented at the string level, with high execution
efficiency. The second fix method involves changing the buggy objects (variable, parameter,
function). We traversed the bug file and list candidate objects: all variables (global variables,
member variables), parameters, and methods (global methods, member methods). Then, we
applied the candidate objects to replace the buggy objects in turn and transformed the bug

Empir Software Eng (2022) 27: 4848 Page 22 of 37

Fig. 6 Patch generation of fix patterns

code according to the semantics of the fixing code in the pattern, as shown in Fig. 6(b). This
fixing process performs at the AST level. After fixing, we parsed the fixing AST into the
fixing code.

PatchValidation If the generated patch is identical to the correct patch, the fix is successful.
Otherwise, according to Chakraborty et al. (2018), we selected the generated patch whose
edit distance is less than 3 for manual review, to identify the generated patch which is
not identical but semantically equivalent with the correct patch. Chakraborty et al. (2018)
divided the tree edit distances into three sections: (small: edit size = 1, medium: 2 ≤ edit
size ≤ 5, and large: 6 ≤ edit size ≤ 10) and smaller patches (1-3 edit sizes) is better than
the larger ones. Chakraborty et al.’s study found that generated patches with a large edit
distance larger than 3 tend to contain completely different semantic information. Thus, we
chose to set the threshold into 3. We identify the generated patch as failed repair if it is not
identical or semantically equivalent with the correct patch.

6.2 Answer to RQ3: Effectiveness of Fix Pattern for Fixing Single-hunk Bugs

We attempted to apply the fix pattern to fix single-hunk bugs in BugsInPy (contain 493
bugs from 17 real-world Python programs) (Widyasari et al. 2020) and QuixBugs (contain
40 buggy algorithmic programs) (Lin et al. 2017). These two benchmarks are used for the
study of defect prediction (Akimova et al. 2021) and automatic program repair (Ye et al.
2021). We obtained 101 single-hunk bug reports from the two benchmarks, 61 bug reports
in BugsInPy and 40 bug reports in QuixBugs.

Discussion Table 6 shows the evaluation results; the fix pattern can match 34 bugs; among
them, 10 patches are identical, 3 patches are semantically equivalent, and 21 patches are
plausible but incorrect.

In the 10 correctly fixed patches, 5 of them changed the arguments in API. The 3
semantically identical patches all fix exception types in try/except blocks, and the patch
we generated is for the general type Exception. Among the 21 plausible patches, most
of them are adding if precondition or modifying the right-side expression in the assign-
ment statement. Although all these 21 bugs only have one line of bug code, they involve in
complicated control flow; thus, it is difficult to repair them only by replacing objects.

A total of 8 fix patterns were applied in the repairing. Pattern with the largest number of
fixed bugs is C4, which has completely fixed 5 bugs. The pattern with the second number
of fixed bugs is C1 (2 bugs have been fixed in total). This pattern matched 9 bugs and is

Empir Software Eng (2022) 27: 48 Page 23 of 37 48

Table 6 BugsInPy and QuixBugs single-hunk bugs fixed by fix patterns

•: patch is identical; ⊕: patch is semantically equivalent; ◦: patch is plausible but not correct.

the pattern with the highest number of matches. In the remaining patterns, C2, C3 and C7
patterns fixed one bug respectively. However, pattern C7 matched a total of 6 bugs, which
is only less than C1. C8 pattern generated three patches with the same semantics, which
is because the fixing code in pattern is a common exception type. C6 and C11 patterns
matched 5 bugs but failed to fix them.

Empir Software Eng (2022) 27: 4848 Page 24 of 37

Table 7 The number of bugs and matched bugs for each repository in test set

Repository Bugs Single-hunk bugs Complex bugs Matched bugs

pallets/flask 22 5 17 9

mopidy/mopidy 8 0 8 4

powerline/powerline 6 3 3 1

tensorlayer/tensorlayer 11 0 11 7

It is considered that this is a reasonable result since most of the bugs in the benchmarks
are functional bugs that fail in specific test cases. The experimental results show that these
fix patterns can fix about 12.8% (13/101) of the single-hunk bugs in real-world development.
Although the bug fixed rate of 12.8% is not relatively large, it demonstrates that bugs can
be fixed independently without human intervention, which means that the fix patterns we
proposed can directly help developers to perform white-box testing and screen out some of
the bugs in the early stages of a project, thus reducing maintenance costs later in the project.

6.3 Answer to RQ4: Effectiveness of Fix Pattern in the wild

To evaluate the potential of these fix patterns in the wild, we investigated the following sub-
questions. RQ4-1:How many single-hunk bugs can be matched, and how many single-hunk
bugs can be fixed? RQ4-2: How effective are these fix patterns for fixing complex bugs?

We followed the criteria in Section 3.2 to select four open-source projects from GitHub
as our test set, as shown in Table 7. From the four projects, we obtained a total of 109 bug
reports. We specified the fixing granularity, i.e., no more than 10 changed files in each com-
mit, and typo bugs were eliminated. Finally, we obtained 47 bug reports for experimental
evaluation. Among the 47 bugs, 8 are single-hunk bugs, and the rest are complex bugs. We
obtained the bug-fixing code changes for each bug, where the number of lines of bug code
is shown in the second column of Table 8. And then, for each bug, we transformed the bug
code into an AST line by line and matched the fix pattern according to its AST type. After
matching, we tried to fix the bug code with the fixing method described in Section 6.1.

Discussion As shown in Table 8, we presented the effectiveness of fix pattern in the wild,
which including each bug was fixed by which fix pattern, fixed rate, and matched rate. In
our test set, 25% of (2/8) bugs can be matched by our fix pattern, the generated patches
were plausible but not correct. For complex bugs, our fix pattern could match nearly half of
(19/39) bugs. Among the 21 bugs, 8 were matched our fix patterns but could not be fixed,
and 6 were partially fixed by our fix patterns. The average fixed rate is nearly 15%, while
the average matched rate is 37%, as much as twice of average fixed rate, which means half
matched patches could not be fixed.

This experimental result reflects how the fix pattern-based APR techniques apply in the
real world. Although none of these 47 bugs have been completely fixed, the fix pattern still
has a competitive fixed rate and matched rate for complex bugs. Moreover, there are 3 bug
fixing that are done by two patterns, which shows that assemble patterns could be used for
repair complex bug. On the other hand, we also attempted to disassemble the complex bug
to match with our fix patterns. With these two ideas, the existing fixing method could be
improved in the future.

Empir Software Eng (2022) 27: 48 Page 25 of 37 48

Table 8 Bugs in the wild fixed by fix patterns

del: means to delete x lines of buggy code;

fixed: means that the buggy code of x line is fixed correctly;

matched: means that the fix pattern matches the x line of buggy code, but the generated patch is not correct;

•: patch is identical; ⊕: patch is semantically equivalent; ◦: patch is plausible but not correct.

7 Threats to Validity

Threats to internal validity are: (1) fix patterns we proposed may not be sufficient. In our
experiments, we filtered out as many false positives and duplicate bug reports as possible.
In addition, we restricted the granularity of bug-fixing code to ensure that fix patterns can
be extracted accurately since our algorithm is mainly focused on single-hunk bugs; (2)
the clustering approach may cause over-fitting. Other popular clustering methods (e.g., k-
means, hierarchical clustering, etc.) may find more bug fix patterns. However, our approach
finds highly similar bug-fixing codes by calculating the edit distance of the AST, and this
approach preserves the code structure and can extract many of the most pervasive bug fix
patterns; (3) we only focused on bug fixing for committed bugs. Bugs that are fixed before
a commit is merged into the master branch are not found by our method.

Threats to external validity are: (1) false positives in bug data set. We identified bugs
by looking for keywords that are synonymous with bugs, such as wrong, defect, fault, etc.,
however, the description of bug report may not be directly related with the bug, sometimes

Empir Software Eng (2022) 27: 4848 Page 26 of 37

we could not guarantee the link between commits and the bug reports. False positives may
be introduced without a strict and formal definition of the bug constitution; (2) When we
applied the proposed fix pattern to other Python projects which are not included in our
research, some patterns may not be capable. This is because some Python patterns may be
specific to our subject systems.

8 RelatedWork

8.1 Automated Program Repair

Automated Program Repair (APR) is an emerging technology that could effectively reduce
software maintenance costs, a popular academic research topic in recent years.

Search-based APR collects the existing modifications of the program as a potential
patch space. The heuristic methods or evolutionary algorithms are employed to find the
suitable patch from the potential patch space. Generating program patches is regarded as
finding the optimal solution from the search space.

GenProg (Weimer et al. 2009) is an iconic search-based APR method, which searches
for the correct patch by a genetic algorithm. GenProg extracts programs as abstract syntax
trees and code segments as sub-trees. Genetic operation is to select two programs with high
fitness and exchange the mutation operations among them. In 2012, Le Goues et al. (2012)
conducted a large-scale experiment, and they selected 105 defects to repair and successfully
repaired 55 of the 105 defects. Weimer et al. (2013) improved the GenProg method and
proposed the AE. To reduce the number of generated candidate patches, AE proposes the
concept of equivalence classes. By setting a series of rules, we can quickly check specific
types of equivalent transformations and avoid them during the modification process. The
validation results show that the repair time cost was one-third of the original one. Qi et al.
(2015) conducted manual inspections on the repairs of 105 defects in GenProg and AE.
There were only two in Genprog, and only three in AE repair results were semantically cor-
rect. The research results show that the existing repair technique had a low repair rate and
cannot guarantee the correctness of the repair results. Hua et al. (2018) proposed SketchFix,
which is a solution to the low search efficiency problem of search-based APR, by generat-
ing candidate fixes on demand (as needed) during test execution. SketchFix effectively fix
bugs in expression manipulation at the AST node-level granularity compared to other APR
techniques on the Defects4J benchmark. Within the default settings, SketchFix fixed 19/357
bugs in 23 minutes on average. Wen et al. (2018) proposed CapGen, an automatic genera-
tion technique for context-aware patches. CapGen uses the more fine-grained AST context
information to generate patches, proposes three models to get more fine-grained patch repair
materials, and uses context-aware information to sort the mutation operations, limiting the
search space. The experimental results show that CapGen can reach 84% accuracy while
filtering out 98.78% of suspected correct patches.

Search-based APR is simple and intuitive; however, we may not find the correct patch
within a limited time threshold. One reason is that the candidate patch search space may not
contain the correct patch itself; another reason is that the search space is too large, and the
search space explosion problem greatly compromises the APR tools’ execution efficiency
(Long and Rinard 2016).

Semantic-based APR uses semantic information to synthesize repair patches through
symbolic execution and constraint solving.

Empir Software Eng (2022) 27: 48 Page 27 of 37 48

Nguyen et al. (2013b) proposed the C language constraint-based repair algorithm, which
uses a combination-based program synthesis method to generate patches. Mechtaev et al.
(2015) proposed DirectFix, an automatic repair method to generate simplified patches for
the core problem of how to generate high-precision patches. DirectFix no longer considers
enumerating candidate patches for each suspected bug location but merges bug location and
patch generation more efficiently, solves it as part of the maximum satisfiable problem, and
directly selects the most simplified patch that meets the constraints as the output. Direct-
Fix experiments on the software-artifact infrastructure repository data set (Do et al. 2005)
and the Coreutils data set (Cadar et al. 2008). DirectFix can generate 59% of bug patches,
of which 56% are correct patches; the correct patches output by DirectFix are extensive
and are simpler than SemFix. Mechtaev et al. (2016) proposed Angelix, a lightweight sym-
bolic execution technique to deal with bugs in more extensive programs. Compared with
the previous similar repair techniques SemFix and DirectFix, the symbolic execution of
this method is more lightweight. Angelix can perform on multiple buggy locations, and it
can automatically repair the famous heart bleed vulnerability. The experiment on GenProg
Benchmark shows that the repair accuracy rate was 35.7%. Xuan et al. (2016) proposed a
semantic-based repair method Nopol for the repair of incomplete specifications, focusing
on conditional errors. Nopol is a particular method to repair the defects of if conditions and
repairs the two common defects of conditional errors or missing conditional statements.
Unlike the SemFix, Nopol only targets if conditional expressions with a small search space
and can apply to large-scale programs.

Semantic-based APR is more efficient than search-based APR because the search space
is more manageable by using program synthesis with restricted components. However, the
effectiveness may be limited by the constraint solving and program synthesis capabilities.
Moreover, both two ARP techniques suffer from overfitting problems (Xin and Reiss 2017).

8.2 Fix Pattern Mining

Many APR techniques exploit human patches (Kim et al. 2013; Long et al. 2017) or mined
fix patterns (Liu et al. 2018; Liu et al. 2019a).

Pan et al. (2009) defined 27 Java bug fix patterns. These patterns were extracted based
on the syntactic components and context of the source code involved in fixing the bug.
After that, they manually analyzed the bug fixes in the open-source Java project and devel-
oped an extraction tool that can automatically identify bug fix patterns. This groundbreaking
research laid the foundation for follow-up research. Kim et al. (2013) performed APR tool
with common predefined fix patterns that contain only six patterns and can fix a few bugs.
Later, Long et al. (2017) proposed Genesis, which can handle human patches and auto-
matically infer code transformations in order to generate patches automatically. Genesis
demonstrates the effectiveness of the inference algorithm, as well as the complete Genesis
patch generation system. Liu et al. (2018) contributed the latest research results, where they
proposed a method that uses convolutional neural networks to learn features and regroup
similar instances by clustering. They evaluated the usefulness of the identified fix patterns
by applying them to unfixed violations. Also, Liu et al. (2019a) built AVATAR, an APR sys-
tem that exploits static analysis of the fix patterns of violations as an ingredient to generate
patches. Their study highlights the relevance of static APR tools as indirect contributors to
fixing ingredients that address code defects identified with functional test cases.

Besides the fix pattern research based on Java language, there are various researches on
Linux system (Hong and Kim 2013), Cloud Computing Platform (Cotroneo et al. 2019), and

Empir Software Eng (2022) 27: 4848 Page 28 of 37

JavaScript language (Hanam et al. 2016). Hong and Kim (2013) derived findings on Linux
concurrency errors from a review of changelog files for Linux version 2.6.x. They devel-
oped a pattern-based concurrency bug detection framework that defines and matches various
bug patterns. Based on previous bug reports, they defined four concurrency bug patterns
with different synchronization mechanisms that effectively detect new bugs in lock-based
analysis techniques in Linux. Cotroneo et al. (2019) proposed a method to characterize the
changes in bug-fixing code changes, which involved not only the content of the changes in
bug fixes but also the location of the changes. Their work is a detailed empirical study of
the repetitive patterns of vulnerability remediation changes for three OpenStack projects.
Hanam et al. (2016) practiced the comprehensive study of the prevalent vulnerability pat-
terns in server-side JavaScript code. It is a novel technique for automatically learning the
types of bug-fixing changes based on language structure changes.

As mentioned above, in the existing research, researchers have proposed fix patterns
based on various application scenarios and multiple programming languages; however, there
are still many barriers to the existing fix patterns in practice. First of all, most APR tools
based on fix patterns target the single-hunk bug. This issue is caused by the existing fix
pattern extraction method. Researchers use code similarity or code snippet clustering to
discover common fixing patterns from historical fixes. This research approach is prone to
interference from noisy data, i.e., in a real development environment, there may be many
bug-unrelated codes in the context of bug statements. Second, the total number of fix pat-
terns proposed in existing studies is small. This status limits the fixing ability of APR tools
directly. The most widely studied patterns are java fix patterns, but Liu et al. (2019b) showed
that there are only 15 types of java fix patterns (37 patterns in total), and the number of
fix patterns of other languages is even smaller. As each programming language has its own
syntax rules, it cannot interoperate directly at the string level. Third, the existing research is
focused on a few open-source benchmarks and does not take full advantage of the resources
of the open-source community. In the future, with the construction and improvement of the
open-source community, big code could promote the development of APR tools based on
fix patterns.

9 Conclusion

In this study, we investigated bug reports collected from the open-source platform GitHub.
We researched the recurring bugs and their fixing codes to extract the fix patterns for the
corresponding bug types. The fix patterns contributed in this paper can help developers
improve coding quality, provide insights about bug fixing, and support researchers in devel-
oping automation tools. Meantime, we proposed a novel technique for automatically mining
fix patterns based on fine-grained bug-fixing code changes. We identified 29 fix patterns, of
which there are 11 common fix patterns and 18 Python-special patterns in total. We applied
the patterns to detect single-hunk bugs in two benchmarks and fixed 13 (13/101) bugs. Also,
we evaluated the effectiveness of fix patterns in the wild. Our results provide meaningful
contributions to improve the state-of-the-art automatic bug detection technical. As further
work, we plan to combine fix pattern mining with automated program repair techniques to
generate bug fixes automatically. In actual research, we also found some exciting findings
like some fix patterns-special to the project, bug type change with the version evolution.
These findings could prompt us further to explore the application and value of automated
program repair.

Empir Software Eng (2022) 27: 48 Page 29 of 37 48

Appendix A

A.1 (P11) Python 2.x Data Type Compatible with Python 3.x Data Type

Fix Pattern:

Description This fix pattern is applied to fix the issue of data type incompatibility. Replac-
ing type with six.type. Six library is the Python 2.x to 3.x compatibility library, which
provides utility functions for smoothing over the differences between the Python versions.

A.2 (P12) Python 2.x xrange() Compatible with Python 3.x range()

Fix Pattern:

Description This fix pattern is applied to fix the issue of range() incompatibility. Replacing
xrange() with range(). Python 3.x no longer supports xrange().

A.3 (P13) Change Python 3.x map() Returned Value to List Type

Fix Pattern:

Description This fix pattern converts the return value of map() into a list type. For example,
codelens is a list type in Python 2.x, but it is a map object in Python 3.x. numpy which can
not calculate the map object.

Empir Software Eng (2022) 27: 4848 Page 30 of 37

A.4 (P14) Python 3.x Check Dictionary has key()

Fix Pattern:

Description Replacing has key() with ’key in dict’. Python 3.x deletes has key() and
replaces it with ’in’, which is Key in dict .

A.5 (P15) Change Python 3.x Dictionary API Name

Fix Pattern:

Description Replacing iterkeys() with keys() when calling dictionary. In Python 3.x, both
iter∗ and view∗ methods correspond to keys(), values().

A.6 (P16) Change Python 3.x Float Division to Integer Division

Fix Pattern:

Description This fix pattern changes division operation. Replacing ’/’ with ’//’. For
example, when n is an integer, n/4 is int type in Python 2.x while float type in Python 3.x.

A.7 (P17) Change Python 3.x super() Backward Compatibility

Fix Pattern:

Empir Software Eng (2022) 27: 48 Page 31 of 37 48

Description This fix pattern changes the super() syntax. In Python 3.x, super() allows users
to explicitly refer to the parent class. However, if we want to call super() in Python 2.x, we
must use super(SubClass,self).

A.8 (P18) Check Property Function by getattr()

Fix Pattern:

Description This fix pattern changes ’hasattr(object, name)’ to ’getattr(object, name
[,default])’. In early versions of Python 2.x, hasattr() had a bug about property function, as
follows:

Although this bug has been fixed in later versions. When writing mixed code compatible
with Python 2.x and 3.x, users should pay more attention to this bug.

Acknowledgements We thank the anonymous reviewers for their constructive comments. This work is par-
tially supported by the the National Natural Science Foundation of China (No.62172209), the Key Program of
the National Natural Science Foundation of China (No.61832009) and Cooperation Fund of Huawei-Nanjing
University Next Generation Programming Innovation Lab (No. YBN2019105178SW23).

Empir Software Eng (2022) 27: 4848 Page 32 of 37

References

Åkerblom B, Stendahl J, Tumlin M, Wrigstad T (2014) Tracing dynamic features in python programs. In:
Proceedings of the 11th working conference on mining software repositories. pp 292–295

Akimova EN, Bersenev AY, Deikov AA, Kobylkin KS, Konygin AV, Mezentsev IP, Misilov VE (2021) A
survey on software defect prediction using deep learning. Mathematics 9(11):1180

Cadar C, Dunbar D, Engler DR et al (2008) Klee: unassisted and automatic generation of high-coverage tests
for complex systems programs. In: OSDI, vol 8, pp 209–224

Chakraborty S, Allamanis M, Ray B (2018) Tree2tree neural translation model for learning source code
changes. arXiv:181000314

Chen Z, Ma W, Lin W, Chen L, Li Y, Xu B (2018) A study on the changes of dynamic feature code
when fixing bugs: towards the benefits and costs of python dynamic features. Science Chin Inf Sci
61(1):012107

Cotroneo D, De Simone L, Iannillo AK, Natella R, Rosiello S, Bidokhti N (2019) Analyzing the context of
bug-fixing changes in the openstack cloud computing platform, IEEE

Do H, Elbaum S, Rothermel G (2005) Supporting controlled experimentation with testing techniques: An
infrastructure and its potential impact. Empir. Softw. Eng. 10(4):405–435

Durieux T, Cornu B, Seinturier L, Monperrus M (2017) Dynamic patch generation for null pointer exceptions
using metaprogramming. In: 2017 IEEE 24th international conference on software analysis, evolution
and reengineering (SANER). IEEE, pp 349–358

Fleiss JL (1971) Measuring nominal scale agreement among many raters. Psychol Bull 76(5):378
Fluri B, Wursch M, PInzger M, Gall H (2007) Change distilling: Tree differencing for fine-grained source

code change extraction. IEEE Trans Softw Eng 33(11):725–743
Fluri B, Giger E, Gall HC (2008) Discovering patterns of change types. In: 2008 23rd IEEE/ACM

international conference on automated software engineering. IEEE, pp 463–466
Habib A, Pradel M (2018) How many of all bugs do we find? a study of static bug detectors, IEEE
Hallgren KA (2012) Computing inter-rater reliability for observational data: an overview and tutorial. Tutor

Quant Methods Psychol 8(1):23
Hanam Q, Brito FSdM, Mesbah A (2016) Discovering bug patterns in javascript. In: Proceedings of the 2016

24th ACM SIGSOFT international symposium on foundations of software engineering. pp 144–156
Higo Y, Hayashi S, Hata H, Nagappan M (2020) Ammonia: an approach for deriving project-specific bug

patterns. Empir Softw Eng :1–29
Hindle A, Barr ET, Gabel M, Su Z, Devanbu P (2016) On the naturalness of software. Commun. ACM

59(5):122–131
Holkner A, Harland J (2009) Evaluating the dynamic behaviour of python applications. In: Proceedings of

the thirty-second australasian conference on computer science-volume 91, pp 19–28
Hong S, Kim M (2013) Effective pattern-driven concurrency bug detection for operating systems. J. Syst.

Softw. 86(2):377–388
Hu M, Zhang Y (2020) The python/c api: Evolution, usage statistics, and bug patterns, IEEE
Hua J, Zhang M, Wang K, Khurshid S (2018) Towards practical program repair with on-demand candidate

generation. In: Proceedings of the 40th international conference on software engineering. pp 12–23
Jiang L, Su Z (2009) Automatic mining of functionally equivalent code fragments via random testing. In:

Proceedings of the eighteenth international symposium on Software testing and analysis. pp 81–92
Kim D, Nam J, Song J, Kim S (2013) Automatic patch generation learned from human-written patches, IEEE
Le Goues C, Dewey-Vogt M, Forrest S, Weimer W (2012) A systematic study of automated program repair:

Fixing 55 out of 105 bugs for 8 each, IEEE
Lin D, Koppel J, Chen A, Solar-Lezama A (2017) Quixbugs: A multi-lingual program repair benchmark set

based on the quixey challenge. In: Proceedings Companion of the 2017 ACM SIGPLAN international
conference on systems, programming, languages, and applications: software for humanity, pp 55–56

Liu K, Kim D, Bissyandé TF, Yoo S, Le Traon Y (2018) Mining fix patterns for findbugs violations. IEEE
Trans Softw Eng

Liu K, Koyuncu A, Kim D, Bissyandé TF (2019a) Avatar: Fixing semantic bugs with fix patterns of static
analysis violations, IEEE

Liu K, Koyuncu A, Kim D, Bissyandé TF (2019b) Tbar: revisiting template-based automated program repair.
In: Proceedings of the 28th ACM SIGSOFT international symposium on software testing and analysis.
pp 31–42

Liu X, Zhong H (2018) Mining stackoverflow for program repair, IEEE
Long F, Rinard M (2016) An analysis of the search spaces for generate and validate patch generation systems,

IEEE

Empir Software Eng (2022) 27: 48 Page 33 of 37 48

http://arxiv.org/abs/181000314

Long F, Amidon P, Rinard M (2017) Automatic inference of code transforms for patch generation. In:
Proceedings of the 2017 11th joint meeting on foundations of software engineering. pp 727–739

Mechtaev S, Yi J, Roychoudhury A (2015) Directfix: Looking for simple program repairs. In: 2015
IEEE/ACM 37th IEEE international conference on software engineering, vol 1. IEEE, pp 448–458

Mechtaev S, Yi J, Roychoudhury A (2016) Angelix: Scalable multiline program patch synthesis via symbolic
analysis. In: Proceedings of the 38th international conference on software engineering. pp 691–701

Monat R, Ouadjaout A, Miné A (2020), Static type analysis by abstract interpretation of python programs.
ECOOP (LIPIcs). To appear

Negara S, Codoban M, Dig D, Johnson RE (2014) Mining fine-grained code changes to detect unknown
change patterns. In: Proceedings of the 36th international conference on software engineering. pp 803–
813

Nguyen HA, Nguyen AT, Nguyen TT, Nguyen TN, Rajan H (2013a) A study of repetitiveness of code
changes in software evolution, IEEE

Nguyen HDT, Qi D, Roychoudhury A, Chandra S (2013b) Semfix: Program repair via semantic analysis,
IEEE

Noda K, Nemoto Y, Hotta K, Tanida H, Kikuchi S (2020) Experience report: How effective is automated
program repair for industrial software?, IEEE

Nugroho YS, Hata H, Matsumoto K (2020) How different are different diff algorithms in git? Empir. Softw.
Eng. 25(1):790–823

Pan K, Kim S, Whitehead EJ (2009) Toward an understanding of bug fix patterns. Empir. Softw. Eng.
14(3):286–315

Pawlik M, Augsten N (2015) Efficient computation of the tree edit distance. ACM Trans Database Syst
(TODS) 40(1):1–40

Pawlik M, Augsten N (2016) Tree edit distance: Robust and memory-efficient. Inf. Syst. 56:157–173
Qi Z, Long F, Achour S, Rinard M (2015) An analysis of patch plausibility and correctness for generate-

and-validate patch generation systems. In: Proceedings of the 2015 international symposium on software
testing and analysis. pp 24–36

Saha S et al (2019) Harnessing evolution for multi-hunk program repair. In: 2019 IEEE/ACM 41st
international conference on software engineering (ICSE). IEEE, pp 13–24

Sanner MF et al (1999) Python: a programming language for software integration and development. J Mol
Graph Model 17(1):57–61

Seaman CB (1999) Qualitative methods in empirical studies of software engineering. IEEE Trans Softw Eng
25(4):557–572

Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86(2):420
Tratt L (2009) Dynamically typed languages. Adv. Comput. 77:149–184
Van Rossum G, Drake FL Jr (1995) Python tutorial, vol 620. Centrum voor Wiskunde en Informatica

Amsterdam
Vasilescu B, Yu Y, Wang H, Devanbu P, Filkov V (2015) Quality and productivity outcomes relating to con-

tinuous integration in github. In: Proceedings of the 2015 10th joint meeting on foundations of software
engineering. pp 805–816

Wang B, Chen L, Ma W, Chen Z, Xu B (2015) An empirical study on the impact of python dynamic features
on change-proneness. In: SEKE. pp 134–139

Wang Y, Meng N, Zhong H (2018) An empirical study of multi-entity changes in real bug fixes, IEEE
Weimer W, Nguyen T, Le GouesC, Forrest S (2009) Automatically finding patches using genetic program-

ming. In: 2009 IEEE 31st international conference on software engineering. IEEE, pp 364–374
Weimer W, Fry ZP, Forrest S (2013) Leveraging program equivalence for adaptive program repair: Models

and first results, IEEE
Wen M, Wu R, Cheung SC (2016) Locus: Locating bugs from software changes, IEEE
Wen M, Chen J, Wu R, Hao D, Cheung SC (2018) Context-aware patch generation for better automated

program repair, IEEE
Widyasari R, Sim SQ, Lok C, Qi H, Phan J, Tay Q, Tan C, Wee F, Tan JE, Yieh Y, et al. (2020) Bugsinpy: a

database of existing bugs in python programs to enable controlled testing and debugging studies. In: Pro-
ceedings of the 28th ACM joint meeting on european software engineering conference and symposium
on the foundations of software engineering. pp 1556–1560

Xia X, Wan Z, Kochhar PS, Lo D (2019) How practitioners perceive coding proficiency, IEEE
Xin Q, Reiss SP (2017) Identifying test-suite-overfitted patches through test case generation. In: Proceedings

of the 26th ACM SIGSOFT international symposium on software testing and analysis. pp 226–236
Xu Z, Liu P, Zhang X, Xu B (2016) Python predictive analysis for bug detection. In: Proceedings of the 2016

24th ACM SIGSOFT international symposium on foundations of software engineering. pp 121–132

Empir Software Eng (2022) 27: 4848 Page 34 of 37

Xuan J, Martinez M, Demarco F, Clement M, Marcote SL, Durieux T, Le Berre D, Monperrus M (2016)
Nopol: Automatic repair of conditional statement bugs in java programs. IEEE Trans. Softw. Eng.
43(1):34–55

Ye H, Martinez M, Durieux T, Monperrus M (2021) A comprehensive study of automatic program repair on
the quixbugs benchmark. J. Syst. Softw. 171:110825

Zhang Y, Chen Y, Cheung SC, Xiong Y, Zhang L (2018) An empirical study on tensorflow program bugs.
In: Proceedings of the 27th ACM SIGSOFT international symposium on software testing and analysis.
pp 129–140

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Yilin Yang

Tianxing He

Empir Software Eng (2022) 27: 48 Page 35 of 37 48

Yang Feng

Shaoying Liu

Baowen Xu

Empir Software Eng (2022) 27: 4848 Page 36 of 37

Affiliations

Yilin Yang1 · Tianxing He1 ·Yang Feng1 · Shaoying Liu2 ·Baowen Xu1

Yilin Yang
yilin.yang@smail.nju.edu.cn

Tianxing He
mf20320060@smail.nju.edu.cn

Shaoying Liu
sliu@hiroshima-u.ac.jp

Baowen Xu
bwxu@nju.edu.cn

1 State Key Laboratory for Novel Software Technology, Nanjing University, No. 22 Hankou Rd., Gulou
District, Nanjing, Jiangsu 210093, People’s Republic of China

2 Graduate School of Advanced Science and Engineering, Hiroshima University,
Higashihiroshima, Japan

Empir Software Eng (2022) 27: 48 Page 37 of 37 48

http://orcid.org/0000-0002-7477-3642
mailto: yilin.yang@smail.nju.edu.cn
mailto: mf20320060@smail.nju.edu.cn
mailto: sliu@hiroshima-u.ac.jp
mailto: bwxu@nju.edu.cn

	Mining Python fix patterns via analyzing fine-grained source code changes
	Abstract
	Introduction
	Research Question
	Contribution
	Paper Organization

	Background
	Python Dynamic Features
	Reflection
	Dynamic Typing
	Dynamic Object
	Dynamic Code

	Fix Pattern-based Automated Program Repair*-.2pt

	Research Methodology*-.2pt
	Terminology
	Collecting Bug Report
	Mining and Normalizing Single-hunk Bugs
	Mining Single-hunk
	Normalizing Single-hunk

	Clustering Single-hunk Bugs
	Coarse-grained classification
	Clustering bug-fixing code
	Evaluation

	Manual Review

	Common Fix Pattern
	Answer to RQ1: Common Fix Pattern
	Discussion

	(C1) Change of Assignment Expression
	Description

	(C2) Change of Method Call to a New Instance
	Description

	(C3) Method Call with Different Number of Arguments
	Description

	(C4) Method Call with Different Value of Arguments
	Description

	(C5) Change Loop Variable to Iterable Object
	Description

	(C6) Change of Precondition Check
	Description

	(C7) ADD/DEL Precondition Check
	Description

	(C8) Change of Exception Type
	Description

	(C9) Change of Third-party Library Dependency
	Description

	(C10) Change of Error Messages Content
	Description

	(C11) Change of With Method Call
	Description

	Python Fix Pattern
	Answer to RQ2: Python Specific Fix Pattern
	Discussion

	Python Operators (PO)
	(P1) Compare Objects by (is) Operator
	Description

	(P2) Compare Strings by Equality Operator
	Description

	(P3) Change (in) to any() to Check Value in Generators
	Description

	Dynamic Features (DF)
	(P4) Change (not all()) to any() to Check Value Present in Sequences
	Description

	(P5) Check Function Callable by callable()
	Description

	(P6) Delete None Check with hasattr()
	Description

	(P7) Add None Check with isinstance()
	Description

	(P8) Add Object Type Check with issubclass()
	Description

	(P9) Change type() to isinstance() to Check Object Type
	Description

	(P10) Change locals() Key Value Traversal
	Description

	Evaluating Fix Patterns
	Usage of Fix Patterns
	Pattern Matching
	Patch Generation
	Patch Validation

	Answer to RQ3: Effectiveness of Fix Pattern for Fixing Single-hunk Bugs
	Discussion

	Answer to RQ4: Effectiveness of Fix Pattern in the wild
	Discussion

	Threats to Validity
	Related Work
	Automated Program Repair
	Fix Pattern Mining

	Conclusion
	Appendix: A
	A.1 (P11) Python 2.x Data Type Compatible with Python 3.x Data Type
	Description

	A.2 (P12) Python 2.x xrange() Compatible with Python 3.x range()
	Description

	A.3 (P13) Change Python 3.x map() Returned Value to List Type
	Description

	A.4 (P14) Python 3.x Check Dictionary has_key()
	Description

	A.5 (P15) Change Python 3.x Dictionary API Name
	Description

	A.6 (P16) Change Python 3.x Float Division to Integer Division
	Description

	A.7 (P17) Change Python 3.x super() Backward Compatibility
	Description

	A.8 (P18) Check Property Function by getattr()
	Description

	References
	Affiliations

