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Abstract
Developers often face difficulties in using different API methods during the software devel-
opment process. Answering API related questions on API Q&A forums often costs API
development teams a lot of time. To help save time for API development teams, we propose
a deep learning-based approach, namely RAP4DQ, to identify relevant web API docu-
mentation for developer’s API related questions on API Q&A forums. RAP4DQ learns
representation vectors for questions and API documentation separately using Gated Recur-
rent Unit (GRU) and adds different weights to reflect the various importance of varied API
documents during training. RAP4DQ is designed to train on positive and negative sam-
ples with a loss function that minimizes the distances between questions and their relevant
documentation, but maximizes the distances between questions and their irrelevant docu-
mentation. In the end, we construct a learning-to-rank layer to rank the API documentation
based on learned representation vectors from GRUs. We have conducted several experi-
ments to evaluate RAP4DQ on three popular and large API Q&A forums, Twitter, eBay,
and AdWords. The results show that RAP4DQ can outperform all baselines by having a rel-
ative improvement up to 84.3% in terms of AUC. RAP4DQ can obtain a high AUC of 0.84,
0.88, and 0.94 on identifying relevant API documentation on Twitter, eBay, and AdWords,
respectively.

Keywords Developer forums · Question answering · API documentation · Deep learning ·
Learning-to-Rank

1 Introduction

Accurately and effectively using Application Programming Interfaces (APIs) becomes
critical in modern software development (Uddin and Khomh 2017). Recently, developer
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question and answering (Q&A) websites have become critical and essential online forums
that allow developers to ask and answer questions regarding APIs, share and learn knowl-
edge of using APIs, and have discussions on APIs (Mamykina et al. 2011). Quite often,
API-related developer questions are answered by suggesting relevant API documentation
that contains references for helping solve developer questions. Thus, automatically recom-
mending relevant API documentation can help answer API-related developer questions (Li
et al. 2018a).

Recently, two main types of developer Q&A websites have become popular among
developers: general-purpose Q&A websites (e.g., Stack Overflow StackExchangeNetwork,
2020) and API Q&A forums that are run by API providers, e.g., Twitter API development
forum (Twitter 2020). We use Stack Overflow (SO) as an example of general-purpose Q&A
websites in the following discussion. The main differences between SO and API Q&A
forums can be summarized as follows: (1) The questions on an API forum can be only rele-
vant to the specific API, while SO accepts the questions relevant to any APIs; (2) Typically,
an API forum is run by the API provider and has employees from the API development team
to answer developer questions relevant to the API. The empirical investigation in existing
empirical study (Li et al. 2020) suggests that about 87% of the questions that have answers
on API forums are answered by API development teams. Developers tend to ask API-
specific questions on API forums (Squire 2015), and API development teams on API forums
can offer fast and right-to-the-point responses to API specialized questions (Venkatesh et al.
2016); and (3) SO provides incentives, e.g., badges and a voting system, to improve the
published questions and their answers by allowing other developer users to edit them (Wang
et al. 2018). A question or an answer can be modified multiple times on SO, while API
Q&A forums often do not allow developers to modify others’ questions or answers based on
our observations. There have been some existing studies on Stack Overflow, such as (Silva
et al. 2019; Huang et al. 2018; Gu et al. 2016; Li et al. 2018b). Despite the importance
of API forums, little research has been focused on API forums. Therefore, our main goal
in this paper is to automatically learn to recommend relevant API documentation to devel-
oper questions on API forums. In addition, we also evaluate our work on Java API related
questions on Stack Overflow.

This goal is quite different from generating answers for open-domain questions. The
”open-domain” here refers to the lack of the relevant context for any arbitrarily asked fac-
tual question. There are two main differences between them. The first difference is that
open-domain question answering often requires the documentation used to answer ques-
tions should have relationships with each other. These relationships could be used for the
existing models to generate the correct answer (often be a sentence) across documenta-
tion. But for our problem, the developers often do not know the order of the related API
methods, and it does not influence the developers’ understanding of the related API docu-
mentation. The second difference is that open-domain question answering often deals with
short questions with short answers. But in our scenario, the API documentation could often
be very long (over 1K words). Running the open-domain question answering approaches to
our problem takes a huge amount of resources (over hundreds of GB memories) and a very
long time (over several days) in our machine. For example, we tried to run several existing
open-domain question answering approaches (He et al. 2020; Cao et al. 2020), the approach
from He et al. (2020) we ran for one day without getting any results, and when we ran the
other approach from (Cao et al. 2020), our machine reported the ”out of memory” issue (our
machine has 128GB memory).
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As for our goal, to identify relevant API documentation to a given question, a wide
range of existing approaches can be used, and they can be classified into the following two
streams:

– Unsupervised Approaches, such as Rajaraman and Ullman (2011), Robertson et al.
(2009), Mikolov et al. (2013), Lilleberg et al. (2015), Brokos et al. (2016), and Kusner
et al. (2015). Quite often, this type of approaches first generate vectors for documen-
tation and questions, then calculate the similarities among them. However, they do not
work well if the wordings in documentation and questions are very different. Typi-
cally, API documentation and developer questions are in different wordings (Li et al.
2018a), which makes it challenging for unsupervised approaches to search relevant API
documentation for a question.

– Supervised Approaches, such as Sutskever et al. (2014), Luong (2015), and Li et al.
(2018a). To improve the matching of different vocabularies in documentation and ques-
tions, some supervised approaches, such as Xue et al. (2008) and Nicosia et al. (2015),
employ statistical and language models to identify relations among documentation and
questions by relying on hand-crafted learning features. Some other approaches, such
as Li et al. (2018a), Sutskever et al. (2014), and Palangi et al. (2016), adopt deep learn-
ing to automatically learn relations among documentation and questions. However, the
existing approaches are often trained with only positive samples that are pairs of the
question and its relevant document. In an API documentation list, some API docu-
mentation can have very similar descriptions, which makes only training with positive
samples insufficient.

To overcome the aforementioned limitations, we propose a deep learning-based approach
to identify relevant API documentation from the API documentation list to answer devel-
oper questions. Specifically, RAP4DQ first learns word embeddings for API documentation
and questions using word2vec (Mikolov et al. 2013). Second, to add more discriminative
power into RAP4DQ, we build RAP4DQ to train on positive and negative samples. For a
given question, q, a positive sample is a document that is relevant to q, and a negative
sample is a document that is irrelevant to q. Third, due to the high heterogeneity in word-
ings of an API document and a developer question, we learn the representation vectors for
documentation and questions separately from their word embedding vectors using Gated
Recurrent Unit (GRU) (Cho et al. 2014). Furthermore, we add trainable weights to the API
documentation, as distinct API documentation can have different importances on an API
forum. Last, RAP4DQ classifies if an API document is relevant to a question or not using
SoftMax (Bishop 2006). To train RAP4DQ, we develop a new loss function that aims to
reduce the distance between questions and their relevant API documentation but increase the
distance between questions and their irrelevant API documentation. To get a higher quality
of recommendations, after our relationship learning approach, we also added a learning-to-
rank layer to rank the API documentation list for each API related question. By using both
the representation vectors generated by GRUs for questions and documentations together
as the relationship feature vectors, the learning-to-rank model can help to rank the API
documentation to generate the higher quality recommendations for API related questions.

We have conducted several experiments to evaluate RAP4DQ on three popular API
Q&A forums, Twitter (Twitter 2020), eBay (eBay 2020), and Google AdWords (Adwords
2020), and their API documentation. We compare RAP4DQ with 17 state-of-the-art
approaches, including some unsupervised approaches, such as TF-IDF (Rajaraman and Ull-
man 2011), BM25 (Robertson et al. 2009), Word2vec (Mikolov et al. 2013), IDFword2vec
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(Lilleberg et al. 2015), Word Mover Distance (WMD) (Kusner et al. 2015), and CenIDF +
K-Nearest Neighbors (KNN) + WMD (Brokos et al. 2016) (This baseline contains 4 dif-
ferent approaches.), and some other learning-based approaches, such as seq2seq(Sutskever
et al. 2014), seq2seq with attention (Luong 2015), QDLinker (Li et al. 2018a), ELMo(Peters
et al. 2018), Bert (Devlin et al. 2018), GPT-2 (Radford et al. 2019), BIKER (Huang et al.
2018), and CROKAGE (Silva et al. 2019). Our empirical results show that RAP4DQ can
outperform all 17 baselines on recommending relevant API documentation to API related
questions on API forums. RAP4DQ can relatively improve the baselines by up to 84.3% in
terms of AUC. RAP4DQ can achieve a high AUC of 0.84, 0.88, and 0.94 on Twitter, eBay,
and AdWords forms, respectively.

We also evaluate RAP4DQ on Stack Overflow. Specifically, We compare RAP4DQ with
four Java APIs question-answering approaches (Silva et al. 2019; Huang et al. 2018; Gu
et al. 2016; Li et al. 2018b). The results show that RAP4DQ outperforms all baselines by
improving up to 117.1% in terms of AUC on Stack Overflow.

In this paper, we make the following contributions:

– Learning to identify relevant web API methods for developer questions on API
Q&A forums. Little research has been conducted on API specialized Q&A forums,
even though they are one of the popular types of Q&A websites. To the best of
our knowledge, our work is the first to automatically recommend relevant API doc-
umentation to answer developer questions on API Q&A forums that have different
characteristics from the ones of Stack Overflow.

– A new deep learning-based approach that identifies relevant API methods in the
documentation.We build a new Gated Recurrent Unit (GRU) based approach that can
learn different representation vectors for documentation and questions, train on posi-
tive and negative samples, differentiate the importance of various API documentation,
employ a new loss function that trains RAP4DQ towards reducing distances between
questions and their relevant documentation, but increasing distances between questions
and their irrelevant documentation, and a learning-to-rank technique to improve the
recommendation accuracy.

– An extensive comparative evaluation and in-depth analysis.
Through a series of empirical evaluations, our results show that RAP4DQ outperforms
the state-of-the-art baselines on both API forums and Stack Overflow datasets. We also
conducted a sensitivity analysis of the impact of different factors on RAP4DQ. Fur-
thermore, we built a large labeled dataset as a benchmark for recommending relevant
documentation on API forums. Our replication package is available publicly (Rap4DQ
Replication 2020).

2 Motivation and Approach Overview

2.1 Motivating Example

From the results of the existing study (Li et al. 2020), we can see that about 63% of the
questions were answered by using API methods in the API documentation. This high per-
centage shows that a lot of developer questions in the API Q&A forums are related to API
methods. Here is a real developer question as follow:

Figure 1 shows a real developer question example from the eBay forum. The question is
asking about how to use the product ID to get the description of the item that he is finding.
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Fig. 1 An Example of a Real Developer Question (Ebay 2019) with its Answer from the eBay Development
Team. The Relevant API Method is Underlined in Red

And the development team replied to him that he could use the Trading API’s GetItem call
to achieve the function that he wants. From the answer that the development team provided,
we can easily figure out that the API method GetItem is closely relevant to this developer
question. However, some API methods are similar to GetItem that may confuse the devel-
opers. For example, the API methods GetSingleItem and GetMultipleItems are
very similar to GetItem. All of these three API methods have similar names and are used
to get the product information, but the API method GetItem can get private information
while the other two can only get public information for the product. So the GetItem is
often been used for product owner and the GetSingleItem and GetMultipleItems
are often been used for customers. With this example, we come up with the following
observations:

Observation 1 The vocabulary in the API documentation and API related questions are
different by using different words, using different sentence structures, and using different
sentence tones. For example, in Fig. 1, in the question, the developer asks questions by using
the sentence like ”How do not print?” while in the documentation, it uses descriptions to
explain the API method, like ”Use this call to retrieve the data for a single item listed on an
eBay site.” Existing Q&A approaches cannot deal with it well because they often regard the
question and documentation in the same domain with the same vocabularies. For example,
the QDLinker (Li et al. 2018a) cannot find the related API documentation for this question
because it considers all questions and documentation with the same vocabulary to find the
similarity between questions and documentation.
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Observation 2 There are some API methods with the similar name but the functionality of
them are different such as the GetItem and GetSingleItem in Fig. 1. These similar
API methods sometimes even have similar documentation content with little difference. The
existing Q&A approach cannot figure out the differences between them. For example, the
QDLinker (Li et al. 2018a) encodes the documentation directly without strategies to separate
these two similar API methods. It causes the QDLinker cannot correctly recommend related
API documentation.

2.2 Key Ideas

According to the above observations, we have the following key ideas:

Idea 1. Learning Similarity Between Developer Questions and API Documentation
To catch the relationship between the developer questions and API documenta-
tion, we would like to use a deep learning framework to encode both the questions
and the documentation separately. In the encoded vector space, The questions
and the relevant documentation representation vectors should have a smaller dis-
tance while the question and the irrelevant documentation representation vectors
should have a bigger distance.

Idea 2. Considering Negative Samples. In order to reduce the influence of the similar
API calls, we would like to bring in the idea of using irrelevant API documenta-
tion as negative samples to enhance the deep learning framework to let the model
can find out the most relevant API documentation from a group of similar API
documentation.

Idea 3. Distinguishing Documentation Importance Even we use negative samples to
distinguish similar API calls, sometimes the similar API documentation is still
hard to be separated when making the recommendation. To improve the accuracy
of the recommendation and reduce the influence from similar API calls, we would
like to add weights for different API documentation to specialize the importance
of each API documentation.

Idea 4. API documentation Ranking To solve the problem that a question may have
more than one related API documentation, we would like to use a ranking
technique to rank the API documentation. The ranking technique can take the
generated representation vectors from GRUs with some processings as the fea-
ture vectors to learn and predict the ranked API documentation list as the final
recommendation of RAP4DQ.

2.3 Overview of RAP4DQ

To overcome the drawbacks of existing approaches, we propose a deep learning-based
approach to identify relevant APIs for a given question. RAP4DQ has the following main
steps as illustrated in Fig. 2:

Step 1. Learning Word Embeddings. We first pre-process API documentation, devel-
oper questions, and their answers by removing stop words and special characters
in textual description and extracting method names from code. Then, we learn
word embeddings of all words in the pre-processed API documentation, devel-
oper questions, and their answers using word2vec (Mikolov et al. 2013). Each
question and API documentation is represented as a sequence of word vectors.
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Fig. 2 The Overview of RAP4DQ

Step 2. Building Training Samples. A developer question can be answered by one or
more API methods (i.e., each method is described on a web page). We first create
a one-to-one mapping q → m between a question, q, and a relevant API method,
m. The same question can have multiple one-to-one mappings. Second, for each
q → m, we randomly select a set of irrelevant API documents (denoted as NS)
for the q as negative samples, so we form a tuple < q → m → NS > for the q.

Step 3. Learning API Question and Documentation Representations. We build a
two-parallel-layer architecture to generate question and API document represen-
tations. We use one Gated Recurrent Unit (GRU) (Cho et al. 2014) layer to
generate one representation vector for a developer question, q, and another GRU
layer to generate representation vectors for API documentation relevant or irrel-
evant to q. As various API documentation have different importances on an API
forum, we add weights to distinct documentation and generate documentation
representation vectors using GRU. To get the most suitable parameters in GRUs
during training, we firstly use question and API documentation representation
vectors to calculate the cosine similarity as the distance between a question and
the API documentation. Then we come up with a new loss function that makes
the model reduce the distance between a question and its relevant documentation
but increases the distance between the question and its irrelevant documentation.
Based on the loss function, the parameters in GRUs will be updated after each
running of the model during training.

Step 4. Recommending API Documentation to Developer Questions. We create a
learning-to-rank layer on top of the deep learning-based model generated features
to rank the API documentation for each question to improve the accuracy of the
API documentation recommendation. Given a list of API documentation D for a
developer questions q, we apply a scoring function to generate the ranking score
S(qi, dj ) for each documentation dj in D by using the representation vectors qi

and dj generated from the well-trained deep learning-based model in step 3 and
rank the relevant documentation also based on this score. We finally recommend
the ranked documentation list for the developer question q. The detailed ways of
calculating the S(qi, dj ) can be found in the approach section.
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3 Approach

In this section, we delve into the details of each main step of RAP4DQ.

3.1 Step 1: LearningWord Embeddings

In this step, we would like to use the existing language model to generate the word embed-
ding for each word in the questions, answers, and API documentation. The input of this step
is the textural part in developer questions, their answers, and API documentation, including
description and code. And the output of this step is the word embeddings for all words in
questions, answers, and API documentation.

We take the following steps to process the textual description and code in the API docu-
mentation, developer questions, and their answers: First, we remove any special characters
(e.g., $ and #) that are not commonly used in natural languages as suggested in NLTK
(2020) and stop words from the textual description. Second, we extract keywords from the
code, such as a method name, and remove all other parts of the code.

After data cleaning, we learn the word embeddings for each word in the API documenta-
tion (D), API related questions (Q), and their answers (A) using word2vec (Mikolov et al.
2013), a neural network that takes a text corpus as an input and generates a set of feature
vectors for words in the corpus. This step takes all words from D, Q, and A of each API
forum.

For example, in Fig. 3, we process the sentence “Unfortunately I only find the specific
criterias for the dsas (https://developers.google.com/adwords /api/docs/guides
/dynamic-search-ads?hl=en) and not the option ’All websites’.” into the following sentence
“Unfortunately I only find the specific criterias for the dsas https developers . google .
com adwords api docs guides dynamic-search-ads hl en and not the option ’ All websites
’ .”, then, we use space to separate each element in this cleaned sentence and learn word
embeddings.

3.2 Step 2: Building Training Samples

After having the word embeddings, we would like to build the positive samples and negative
samples for each question to prepare to do the training in the next step. The input of this step
is the word embeddings, the developer questions, and the API documentation. We regard
the generated pairs of the question, the positive sample, and the negative samples as the
training samples, and it is the output of this step.

Specifically, first of all, we use the generated word embedding in the last step to replace
each word with its word vector in all questions and API documentation to make them can
be used by the deep learning model in the next step. The questions and API documentation
will become a sequence of vectors. Next, before we created the training samples, we found
that a developer question can be answered by one or more API method documents. For
example, Fig. 3 shows that there are two API documents,Webpage andWebpageParameter,
that are relevant to the question in Fig. 3. We first create a one-to-one mapping between
a question, q, and a relevant API method document as a positive sample, m, denoted as
q → m. The same question can have multiple one-to-one mappings. For each mapping
q → m, we randomly select N irrelevant API documents that are not used in the answers
to q as negative samples (denoted as NS), so we form a training tuple < q → m → NS >

for q. N is a parameter that can be learned empirically.
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Fig. 3 An Example AdWords Question (AdWords 2019) and Its Answer from the AdWords API Develop-
ment Team. The Relevant API Methods are Underlined in Red

For example, in Fig. 3, we create two one-to-one mappings for the question: question
→ Webpage and question → WebpageParameter . Then, we randomly select N other
AdWords API documents as negative samples for each mapping. Then for each mapping, we
replace all words with word vectors in the question, positive sample, and negative samples
to create a training sample.

3.3 Step 3: Learning API Question and Documentation Representations

With the training samples generated in the last step, in this step, we would like to use train-
ing samples as input to train our deep learning model to learn the representation vectors for
questions, positive samples, and negative samples. In order to make the generated represen-
tation vectors have higher accuracy, we propose a new loss function for our representation
learning model to update the model parameters during the training. These representation
vectors are the output of this step and will be used in the next step.

Within this step, because the language structures and vocabularies of API specialized
questions and API documentation can be very different, we use two Gated Recurrent Unit
(GRU) layers (Cho et al. 2014) to generate representation vectors for API questions and
documentation. Specifically, we first learn representations for API questions. After step 2, a
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question, q, is represented as a sequence of word vectors, and we use a GRU layer to learn
the question representation vector by using the sequenced word vectors of q.

Second, we apply another GRU layer on word vectors of API documentation to generate
representation vectors for the API documentation. Based on existing study (Li et al. 2020),
we find that the API documents can have different numbers of times they are mentioned
on an API forum (e.g., a large portion of documents are not even mentioned once.), which
indicates that distinct API documents have different importances. To reflect the importance
of different API documents, we assign a weight to each API document (i.e., including a m

and NS). For the i-th API document, we calculate the weight, wi , as follows:

wi =
{

p1 ∗ Ti

Tmax
Ti > 0

1 Ti = 0
(1)

Where wi is the weight for the i-th API document, pi is an automatically trained param-
eter, Ti is the number of times the i-th API document mentioned in an API forum, Tmax is
the maximum number of times an API document among all API documents mentioned in
the API forum.

To get the best parameters in the GRUs for our tasks, once we get representation vectors
for questions and API documentation, we use cosine similarity to calculate the distances
between questions and API documentation and create a loss function to update the GRUs
parameters to increase the total performance.

Given a set of training tuples, for each tuple, < q → m → NE >, that has a question
(q), a relevant API document (m) to q, and a set of irrelevant API documents (NS), we aim
to create a loss function that leads to reduce the distance between q and m, but increases
the distance between q and every API document in NS. We formulate our aim into the
following optimization problem:

L = min−log

T∏
i=1

P(mi |qi) (2)

where T is the total number of training tuples, 1 <= i <= T , P(mi |qi) is the probability of
a relevant API document given the i-th question. We further expand (2) into the following
one containing a loss function:

min
T∑

i=1

−log(
eS(V

q
i ,V m

i )

eS(V
q
i ,V m

i ) + ∑|NE|
j=1 eS(V

q
i ,V

NEj
i )

) (3)

Where S(V
q
i , V m

i ) is the cosine similarity between a representation vector of i-th ques-
tion and its relevant API document representation vector, |NE| is the number of negative

samples, S(V
q
i , V

NEj

i ) is the cosine similarity between a representation vector of i-th
question and a representation vector of j -th irrelevant API document in NS to the i-th
question.

During training, for a training tuple containing the mappings, < q → m → NE >, we
pass a question (q) into one GRU layer and both positive and negative samples (m and NS)
into another GRU layer and for the training target, we set the value 1 for relevant and 0 for
irrelevant.

During the prediction, our model generates data tuples by using < q → D > where q

for an incoming question q and D for one of the API documentation. And then, our well-
trained model could learn the representation vectors for both q and D that are the output for
this step and will be used in the next step.
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3.4 Step 4: Recommending API Documentation to Developer Questions

After we have the deep learning-based model from step 1 to step 3, during prediction, we use
the generated representation vectors for questions and API documentation in the last step as
the input for this step. We will generate a ranked documentation list as the recommendation
for developers in this step as the output.

In particular, we concatenate V
q
i and V d

j that are representation vector of i-th question qi

and the j -th API documentation into one feature vector Vf . Vf represents the relationship
between the question qi and the API documentation rj . Then we feed the Vf to a learning-
to-rank schema. The learning-to-rank schema can use different features to do the ranking
and can automatically learn the ways of combining these features. In this step, we train the
learn-to-rank model using LambdaMART (Wu et al. 2010) and learn a scoring function as
follow:

S(qi, rj ) =
K∑

k=1

wk ∗ fk(qi, rj ) (4)

where each feature fk(qi, rj ) ∈ Vf measures a relationship between the question and the
API documentation. wk is a trainable weight for the k-th feature. We train the ranking model
using Ranklib (Ranklib 2020), a java library of learning-to-rank algorithms.

With the scoring function above, we could measure the relevance between the question
qi and the API documentation dj by using the score S(qi, dj ) and use this score to rank
the API documentation. We will provide a ranked list of API documentation as the final
recommendation of our model.

4 Experimental Setup

We conduct several empirical experiments to evaluate RAP4DQ on a desktop with a 4-core
Intel CPU and a single GTX Titan graphics card.

4.1 Research Questions

Through our empirical experiments, we aim to answer the following research questions:
RQ1. Unsupervised Question Answering Comparative Study on API Forums. How

well does our approach perform in comparison with existing state-of-the-art unsupervised
approaches?

RQ2. Supervised Question Answering Comparative Study on API Forums. How
well does our approach perform in comparison with existing state-of-the-art supervised
approaches?

RQ3. Supervised Question Answering Comparative Study on Stack Overflow (SO).
How well does our approach perform in comparison with existing approaches on Java API
related questions on SO?

RQ4. Sensitivity Analysis. How do various factors affect the overall performance of our
approach?

4.2 Data Collection and Processing

We evaluate RAP4DQ on different datasets: three API forum datasets and one Java API
Stack Overflow dataset (Li et al. 2018a).
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API Forum Datasets: We use the three forum datasets (Twitter, eBay, and AdWords API
forums) from Li et al. (2020). Each dataset contains the questions, the answers, and the
relevant API methods of a form. Table 1 shows descriptive statistics of the three forum
datasets.

Golden Set The collected API forum datasets do not have labels. Therefore, we build a
golden set from them to evaluate approaches. In each forum dataset, a question is associated
with their relevant API methods, and each API method has a document describing the API
method. Specifically, during the labeling, each time, we randomly picked one question from
the questions having at least one answer. Given a question, q, we manually study each
answer from the API development team to q. If the answer to q cannot be answered using
API documentation, we discard q and move to the next question. If the answer contains any
API method names, we label the API methods as relevant to q.

We conduct manual labeling, as the API methods mentioned in an answer are (1) quite
often implicit and require humans to extract them, and (2) not relevant anymore to the ques-
tion due to API evolution (e.g., API deletions). In (2), the API development team usually
directs the questioner to another API method in a newer version of the API. For simplicity,
we use the most up-to-date version of the API documentation to answer the questions. If any
API methods mentioned in an answer to a question do not exist anymore in the newer API
version, we simply discard the question, as old web API documentation is not accessible
anymore.

To avoid biases in the manual labeling, We recruited three participants to conduct the
labeling. We use the majority-win rule to decide the final label for a question. The majority-
win rule means that among three participants if at least two participants agree with one
label, this label will be the final label of the question. Overall, we obtained a high inter-rater
agreement of 0.85, indicating that the quality of our labeling is good and our golden set is
good for evaluation. The reason of having a high inter-rater agreement is because in most
cases, participants simply extracted the relevant API names from the answers provided by
the official API development team. Therefore, the accuracy of the labeling is high in this
situation. In total, due to the limited manpower, we collected 1,000 questions with labels for
each forum. Because the dataset is built with real data and the biases have been controlled
at an acceptable level, the evaluations on this dataset are reliable.

Stack Overflow Dataset: We evaluate RAP4DQ on a Java API Stack Overflow dataset (Li
et al. 2018a). Table 2 shows descriptive statistics of the Stack Overflow dataset.

Table 1 Statistics of our collected API forum dataset

Statistics Twitter eBay AdWords

# of API docs 410 457 2,774

# of Questions 16,874 6,204 23,731

# of Total Words 8.05M 5.51M 8.39M

# of Unique Words 13k 12k 18k

Average # of Words in an API doc 763 755 516

Average # of Words in a Question 459 368 326

Max Number of Words in an API Doc 3,991 3,986 6,578

Max Number of Words in a Question 1,789 2,431 1,342
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Table 2 Statistics of our
collected stack overflow dataset Statistics Stack overflow

# of API docs 2608

# of Questions 16876

# of Total Words 6.72M

# of Unique Words 15k

Average # of Words in an API doc 196

Average # of Words in a Question 10

Max Number of Words in an API Doc 3992

Max Number of Words in a Question 40

Dataset Size: During the training of RAP4DQ, there are 11K question-document pairs gen-
erated from each API forum dataset. Within these pairs, they contain 9K+, 8K+, and 11K+
unique words on Twitter, eBay, and AdWords datasets that are at the same level as the Stack
Overflow dataset (15K+). We applied the Dropout layer to reduce the overfitting. We also
evaluate RAP4DQ on the Stack Overflow dataset.

4.3 EvaluationMetrics

We use Area Under the ROC Curve (AUC) to evaluate the effectiveness of an approach on
identifying relevant APIs to developer questions. The AUC is calculated as follows:

AUC = 1

|Q|
∑
q∈Q

1

|I+
q ||I−

q |
∑

i∈I+
q ,j∈I−

q

δ(i > j) (5)

where Q is the total number of questions, I+
q is True Positive (TP)+True Negative (TN),

I−
q is False Positive (FP) + False Negative (FN), and δ(i > j) is an indicator function that
takes the value 1 if and only if (i > j) is true. In other words, we are counting the fraction
of times that the ’observed’ documentation i is preferred over ’non-observed’ documenta-
tion j . As our goal is to recommend a set of relevant APIs that can be used to answer a
question, the ranking of the recommended APIs is not important, but the relevance of an
API to a question is important. Therefore, we use AUC as our training target to maximize
the possibility of a relevant API in our recommended set. An AUC value of 0.5 implies
that a classifier is no better than random guessing. A larger AUC value indicates a better
performance.

In our evaluation, even though we use AUC as the main target, we also use some other
evaluation metrics to help do the evaluation together. These metrics include Accuracy, MAP,
MRR, Precision at top 20, Recall at top 20, NDCG. We use the formulas in Table 3 to
calculate these metrics. Among the formulas, TP is true positive; TN is true negative; FP
is false positive; FN is false negative; n is the total number of results; k is the current rank
in the list; rel(k) is an indicator function equaling to 1 if the item at rank k is true, and to
zero otherwise; Q is the total number of classification types; ri is the score of the result at
position i; Rk is the rank of the actual true label in the resulting list up to the position k;
ranki refers the rank position of the first relevant document for the i-th question; AvgP is
calculated asAvgP = ∑n

k=1 P(k)rel(k);DCGk is calculated asDCGk = ∑k
i=1

ri
log2(i+1) ;

and IDCGk is calculated as IDCGk = ∑|Rk |
i=1

2ri −1
log2(i+1) .
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Table 3 The evaluation metrics

Measure Definition Description

Accuracy Accuracy = T P+T N
T P+T P+FP+FN

The degree of closeness to the true label

MAP MAP =
∑Q

q=1 AvgP (q)

Q
Mean of the average precision scores for each query

MRR MRR = 1
|Q|

∑|Q|
i=1

1
ranki

Average of the reciprocal ranks of results

NDCG nDCGk = DCGk

IDCGk
All queries can be averaged to obtain a measure of the
average performance of a ranking algorithm

4.4 RQ1. (Unsupervised Question Answering Comparative Study on API Forum.)
Analysis Approach.

4.4.1 Comparison baselines

We build the following unsupervised 12 baselines to identify a set of relevant API methods
to a question:

– TF-IDF (Rajaraman and Ullman 2011): It uses TF-IDF to generate vectors for
both questions and documentation, and calculates the cosine similarity between the
questions and the API documentation.

– Okapi BM25 (Robertson et al. 2009): It uses Okapi BM25 to get vectors for both ques-
tions and documentation, and calculates the cosine similarity between the questions and
the API documentation.

– word2vec (Mikolov et al. 2013): It uses word2vec to get word vectors and utilizes them
to build question and documentation vectors to calculate the cosine similarity.

– IDF + Word2vec (Lilleberg et al. 2015): The baseline generates word vectors using
word2vec, and assigns IDF scores to word vectors. Second, it uses the weighted word
vectors of the questions and the API documentation to calculate the similarity.

– Word Mover Distance (WMD) (Kusner et al. 2015): WMD is a very powerful way to
calculate the similarity between the text documentation. We directly apply WMD to
calculate the similarity between the questions and the API documentation.

– Centriod IDF + K-nearest neighbors (KNN) (Brokos et al. 2016): It first has the centroid
IDF vectors, and then uses KNN to find the relevant API documentation to questions.

– Centriod IDF + Approximate Nearest Neighbors (ANN) (Brokos et al. 2016): This
baseline is similar to the above one, except that it uses ANN instead of KNN.

– Centriod IDF + KNN + WMD (Brokos et al. 2016): It uses the above method, Centroid
IDF + KNN, to get top 50 documents for a question. Then, it applies WMD to re-rank
the top 50 documents.

– Centriod IDF + ANN +WMD (Brokos et al. 2016): This baseline is similar to the above
one, except using ANN instead of KNN.

– Pre-trained ELMo (Peters et al. 2018): This baseline uses the pre-trained ELMo model
from Peters et al. (2018) to learn word vectors and directly calculates the cosine
similarity between the questions and API documents.

– Pre-trained Bert (Devlin et al. 2018): This approach is designed to use the pre-trained
Bert model and directly calculates the cosine similarity between the questions and API
documents.
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– Pre-trained GPT-2 (Radford et al. 2019): This approach is designed to use the pre-
trained GPT-2 model and directly calculates the cosine similarity between the questions
and API documents.

4.4.2 Model Training and Parameters Tuning

In this RQ, we evaluate the baselines on three API forum datasets. The input of the model
in this RQ is the question title with the question body, and the expected output is the related
API documentation.

Within this RQ, RAP4DQ requires learning word vectors for questions and API docu-
ments (e.g., using TF-IDF or word2vec). We use all words from the questions in the training
dataset and their answers on each forum and all API documentation to learn word vectors.
When making a prediction, if there come the unseen words, we use zero-vector to represent
it. With the learned word vectors, we run all applied baselines and RAP4DQ on the well-
labeled golden set. We tune all baselines to achieve the best results on our dataset. Due to
the page limit, we skip the explanation for baselines that do not need tuning.

Several baselines use KNN and ANN as a component. We use the package sklearn

(Scikit-learn 2020) and the package annoy (Annoy 2020) to automatically tune KNN and
ANN for the best results on our dataset, respectively. Several baselines use word2vec to
obtain word vectors. For word2vec, we do not directly use the pre-trained word2vec because
the word distribution in API related questions and documentation would be different from
other topics, and that makes the pre-trained word2vec cannot encoding the information in
our problem well. As for training our own word2vec, we set the parameters as size =
300, window = 10, sample = 1e − 4, threads = 10 and all other parameters as default
values introduced in keras (Keras 2019). We use the same Word2vec setting for all relevant
baselines and RAP4DQ. The word2vec is trained on all words and sentences in questions
and documentation except the 1,000 API related questions that we picked and labeled to
do the evaluation. As for the pre-trained ELMo, Bert, and GPT-2, we directly use their pre-
trained morel to select relevant API documentation. The usage of a pre-trained model can
be regarded as the unsupervised approach.

For RAP4DQ, we tune the following hyperparameters: learning rate [0.01,
0.05, 0.1, 0.15], epoch size [150, 200, 250, 300], and batch size [16, 32, 48, 64].

4.5 RQ2. (Supervised Question Answering Comparative Study on API Forum)
Analysis Approach.

4.5.1 Comparison baselines

We build the following six supervised baselines to identify a set of relevant APIs to a
question:

– Seq2seq (Sutskever et al. 2014): This baseline uses Seq2seq to learn the relations
between questions vectors to API documentation vectors and translates a given question
to a vector, v. Then, it calculates the similarity between v and every API documentation
to identify the relevant ones.

– Seq2seq attention (Luong 2015): This baseline adds an attention layer to the above
Seq2seq.
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– QDLinker (Li et al. 2018a): It mainly uses a Deep Neural Network (DNN) to
detect relevant documentation, uses a learning-to-rank model to re-rank the detected
documentation, and recommends the most relevant documentation.

– Re-trained ELMo (Peters et al. 2018): Unlike the unsupervised baseline Pre-trained
ELMo, this baseline adopts the architecture of ELMo in Peters et al. (2018) and re-train
the ELMo using our forum datasets with true labels to learn embeddings and relevance
between questions and API documents.

– Fine-tuned Bert (Devlin et al. 2018): This baseline adopts the pre-trained Bert model
and uses our forum datasets to fine-tune the pre-trained Bert model. The fine-tuning
process is supervised and updates the word embeddings in the pre-trained Bert model
to the downstream tasks.

– Fine-tuned GPT-2 (Radford et al. 2019): This approach is similar to the above one,
except that this one uses the pre-trained GPT-2 and fine-tunes it.

– BIKER (Huang et al. 2018): This approach is an API recommendation approach to
automatically recommend relevant APIs for a programming task described in natural
language.

– CROKAGE (Silva et al. 2019): This approach takes the description of a programming
task and provides a comprehensive solution for the task.

4.5.2 Model Training and Parameters Tunning

Similar to RQ1, the input in this RQ is the question title and the question body, and the
expected output is the related API documentation. The only extra thing is that in this RQ,
we use 80% of the golden set to train supervised baselines, 10% to tune the model, and
another 10% for testing.

word2vec in this RQ we keep the same parameters as RQ1 including size =
300, window = 10, sample = 1e − 4, threads = 10 and all other parameters as default
values introduced in keras (Keras 2019).

For seq2seq and seq2seq attention baselines, we tune hyperparameters via grid search
on our dataset. We test the learning rate with the values of [0.001, 0.005, 0.01]. We test the
following values [200, 250, 300] for the epoch size and [16, 32, 48] for the batch size. We
set all other parameters as default values introduced in keras (Keras 2019).

For the QDLinker, we tune hyperparameters during training on our dataset to achieve the
best results. We test the following filter numbers [32, 64, 96] and sizes of filter [1, 2, 3].

For ELMo, we tune hyperparameters for learning rate [0.003, 0.004, 0.005],
λ[0.0005, 0.001, 0.003], dimension size [200, 250, 300], and batch size [16, 32, 64]; For
Bert, we fine-tune the pre-trained model by setting the epoch size [3, 4, 5], batch size
[16, 32, 64], and learning rate [3e − 4, 1e − 4, 5e − 5]; For GPT-2, we fine-tune the pre-
trained model by setting the learning rate [1e−5, 2e−5, 3e−5] and steps [500, 1000, 1500].
We do not do the re-train on Bert and GPT-2 because re-train them requires a huge amount
of machine resources, and our server cannot handle the computation cost. But for EMLo,
we can run it on our machine perfectly.

In the process of generating the answers for the question, the CROKAGE uses RACK
(Rahman et al. 2016), BIKER (Huang et al. 2018) and NLP2API (Rahman and Roy 2018)
to generate scores for API methods and then use the scores to help generate paragraphs for
answering the questions. To make a fair comparison with RAP4DQ, we directly use these
scores to rank relevant API documents. The output of BIKER contains the relevant API
names. We use these API names as the recommended API methods to rank relevant API
documents. To tune the parameters of the model, because in BIKER and CROKAGE there
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is not a clear instruction, we simply tune the most common parameters such as learning rate
[0.001, 0.005, 0.01], dimension size [200, 250, 300], and batch size [16, 32, 64].

For RAP4DQ, we follow the same process of tuning in RQ1.

4.6 RQ3. (Supervised Question Answering Comparative Study on Stack Overflow)
Analysis Approach.

In this RQ, we bring in a new dataset for Java API from Stack Overflow.

4.6.1 Comparison baselines

– BIKER (Huang et al. 2018): This approach is an API recommendation approach to
automatically recommend relevant APIs for a programming task described in natural
language.

– CROKAGE (Silva et al. 2019): This approach takes the description of a programming
task and provides a comprehensive solution for the task.

– Pre-trained Word2API (Li et al. 2018b): This approach is designed to use the pre-
trained Word2API model and directly predict the related API methods.

– Pre-trained DeepAPI (Gu et al. 2016): This approach is designed to use the pre-trained
DeepAPI model and directly predict the related API methods.

4.6.2 Model Training and Parameters Tuning

In this RQ, we use the Stack Overflow dataset to do the evaluation. Following the existing
approach (e.g., BIKER and CROKAGE), we use question titles as input for all approaches,
and the output should be the related API documents. Word2API and DeepAPI are trained
on code and comment pairs. However, our datasets do not have code and comment infor-
mation. We use the published pre-trained models to do the ranking. Word2API generates
API methods with scores as output, and we directly use the scores to rank relevant API
documents.

Given N questions, DeepAPI generates N API sequences for the questions; each
sequence is for a question. We give the score for each sequence Si to all API methods con-
tained in the sequence Si . If the API methods have multiple scores, we pick the highest one.
If there is a tie during the ranking, we give them the same rank in the output.

As for BIKER and CROKAGE, we do a similar parameter tuning as in RQ2. For
RAP4DQ, we follow the same process of tuning in RQ1.

4.7 RQ4. (Sensitivity) Analysis Approach.

We evaluate the impact of different factors on API forums.
Factor 1: Different API documentation weighting schemes. In Step 3 of RAP4DQ, we

add a weight to each document. Here, we evaluate four weighting schemes: (1) no weight;
(2) a trainable parameter, pi ; (3) Ti/Tmax (introduced in Section 3.3); and (4) pi(Ti/Tmax)

(i.e., the one we use in RAP4DQ introduced in Section 3.3). For (2), it is a common way of
adding weights in deep learning, while (3) is the way to calculate the frequency of usage
in the dataset. The (4) is the combining of (2) and (3). For the weighting scheme (2), we
argue that different documents should have different weights in the process, so we want
to generate specialized weights for each document. For the weighting scheme (3), we aim
to consider the normalized document frequency for each API document. For the weighting
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scheme (4), we combine the weighting scheme (2) and (4) to generate more specialized
weights for each API document. To test the impact of different weighting schemes, we set
the other three factors as: Random Selection (Factor 2), ten negative samples (Factor 3), and
with Learning-to-Rank (Factor 4).

Factor 2: Different algorithms for selecting negative samples. We test seven algo-
rithms for selecting negative samples: (1) Random Selection; (2) TF-IDF + Cosine
Similarity; (3) word2vec + Cosine; Similarity, to select the irrelevant API documents as
negative samples in RAP4DQ. The (1) is the most basic way that regarding all documen-
tation as the same important and select one, the (2) are comparing the word frequency and
documentation frequency, and the (3) are the word content similarity. The reason why we
choose these three algorithms to do the testing is that we want to check if the word fre-
quency, the documentation frequency, and the word content can help select the best negative
samples. To test the impact of different algorithms for selecting negative samples, we set
the other three factors as: pi(Ti/Tmax) (Factor 1), ten negative samples (Factor 3), and with
Learning-to-Rank (Factor 4).

Factor 3: Different numbers of negative samples. We set the number of negative sam-
ples to 0, 1, 5, 10, 15, 20, 25, 30, or 35. To test the impact of different numbers of negative
samples, we set the other three factors as: pi(Ti/Tmax) (Factor 1), Random Selection (Factor
2), and with Learning-to-Rank (Factor 4).

Factor 4: With/Without Learning-to-Rank. We test the performance of RAP4DQ with
and without learning-to-rank. To test the impact of Learning-to-Rank, we set the other three
factors as: pi(Ti/Tmax) (Factor 1), Random Selection (Factor 2), and ten negative samples
(Factor 3).

Factor 5: Impact of Different Components of RAP4DQ. We evaluate the contribution
of different Components by removing them one by one from the full model to see how much
the removed feature can affect the performance of our approach on the API forum datasets.
We remove the following key features in order: adding weights; using negative samples;
learning to rank.

Factor 6: Impact of Different Data Splitting. We evaluate the influence of different
data splitting on RAP4DQ. We test the following data splitting (training/tuning/testing):
80%/10%/10%, 70%/15%/15%, 60%/20%/20%, 50%/25%/25%.

Factor 7: Time Complexity. We collect the training and prediction time.

5 Experiment Results

5.1 Results for Unsupervised Question Answering Comparative Study on API
Forums (RQ1)

Table 4 shows that on three API forum datasets, RAP4DQ outperforms 12 state-of-the-art
unsupervised baselines on recommending relevant API documents to developer questions
on all three API forums.

AUC and Accuracy metrics: RAP4DQ relatively improves the best-performed baseline
GPT-2 on twitter and eBay datasets by 16.7% and 12.8% for AUC and the worst baseline
TF-IDF on twitter and eBay dataset by 68.0% and 69.2% for AUC. RAP4DQ improves
the best-performed baseline EMLo on AdWords dataset by 27.0% for AUC and the worst
baseline TF-IDF on AdWords by 84.3%. It means that means the ability of RAP4DQ to
classify the related API methods and the unrelated methods is better than all baselines.
RAP4DQ also improves the best-performed baseline GPT-2 on twitter and eBay dataset
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Table 4 RQ1 Results: Comparison with the unsupervised baselines in recommending relevant API documen-
tation on three API forum datasets

Twitter AUC Accuracy MAP MRR NDCG

TF-IDF 0.5 0.11 0.08 0.09 0.07

BM25 0.51 0.14 0.09 0.11 0.09

IDF+word2vec 0.71 0.46 0.14 0.13 0.12

CentIDF+KNN 0.72 0.49 0.18 0.19 0.19

CentIDF+ANN 0.72 0.49 0.18 0.19 0.19

CentIDF+KNN+WMD 0.63 0.37 0.23 0.26 0.21

CentIDF+ANN+WMD 0.63 0.37 0.23 0.26 0.21

WMD 0.7 0.50 0.31 0.33 0.33

ELMo (Pre-trained) 0.69 0.54 0.39 0.40 0.41

Bert (Pre-trained) n/a n/a n/a n/a n/a

GPT-2 (Pre-trained) 0.72 0.57 0.43 0.45 0.45

RAP4DQ 0.84 0.61 0.46 0.48 0.55

eBay AUC Accuracy MAP MRR NDCG

TF-IDF 0.52 0.09 0.07 0.08 0.06

BM25 0.52 0.10 0.08 0.09 0.07

Word2vec 0.72 0.23 0.07 0.11 0.07

IDF+word2vec 0.65 0.25 0.11 0.13 0.10

CentIDF+KNN 0.75 0.39 0.14 0.15 0.12

CentIDF+ANN 0.75 0.39 0.14 0.15 0.12

CentIDF+KNN+WMD 0.61 0.42 0.19 0.21 0.15

CentIDF+ANN+WMD 0.61 0.42 0.19 0.21 0.15

WMD 0.81 0.45 0.21 0.25 0.19

ELMo (Pre-trained) 0.72 0.51 0.25 0.33 0.28

Bert (Pre-trained) n/a n/a n/a n/a n/a

GPT-2 (Pre-trained) 0.78 0.53 0.31 0.38 0.32

RAP4DQ 0.88 0.65 0.36 0.45 0.37

AdWords AUC Accuracy MAP MRR NDCG

TF-IDF 0.51 0.11 0.06 0.09 0.11

BM25 0.51 0.14 0.08 0.11 0.12

Word2vec 0.69 0.15 0.10 0.13 0.15

IDF+word2vec 0.6 0.18 0.11 0.15 0.17

CentIDF+KNN 0.58 0.19 0.14 0.17 0.21

CentIDF+ANN 0.58 0.19 0.14 0.17 0.21

CentIDF+KNN+WMD 0.57 0.22 0.21 0.24 0.23

CentIDF+ANN+WMD 0.57 0.22 0.21 0.24 0.23

WMD 0.56 0.25 0.28 0.29 0.25

ELMo (Pre-trained) 0.74 0.31 0.33 0.36 0.32

Bert (Pre-trained) n/a n/a n/a n/a n/a

GPT-2 (Pre-trained) n/a n/a n/a n/ n/a

RAP4DQ 0.94 0.44 0.42 0.48 0.41
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for accuracy by 7.0% and 22.6% and the worst baseline TF-IDF by 454.5% and 622.2%.
RAP4DQ improves the best-performed baseline ELMo on AdWords dataset for accuracy
by 41.9% and the worst baseline TF-IDF by 300.0%. The higher accuracy means that more
API methods we predict correctly. By considering both the AUC and accuracy, RAP4DQ
shows better performance on the overall fitness.

Ranking-based metrics: RAP4DQ can improve the MAP, MRR, and NDCG up to
600.0%, 462.5%, and 685.7%, respectively. Higher MAP, MRR, NDCG indicates that
RAP4DQ achieves the ranking closer to the perfect ranking and the related API methods
appear higher in the top list.

Specifically, no individual approach consistently outperforms other unsupervised
approaches. However, CentIDF+KNN performs better than others on eBay whileWord2vec
performs better than others on Twitter and AdWords. RAP4DQ can significant improve Cen-
tIDF+KNN and Word2vec by 16.7%, 17.3%, 62.1% and 15.1%, 22.2%, 36.2%, on Twitter,
eBay, and AdWords for AUC, respectively. The pre-trained Bert cannot run on our dataset
as its input length limit is around 500 words. However, some of the API methods’ docu-
mentation and questions have more than 500 words. The pre-trained GPT-2 model cannot
run on AdWords because it also has an input limit (around 4,000 words). In the AdWords
dataset, there are several documents with 5,000-6,000 words, which is out of the input limit.

As for the results of RAP4DQ, it performs the best in dataset AdWords, and on the Twitter
and eBay datasets, RAP4DQ performs a little bit lower. The reason for this is because, on the
AdWords forum, the developers ask questions more specifically on the API usage, while on
the eBay forum, the developers often ask questions more at a high level with fewer details.
Without detailed information, our model is harder to find the key information for related
API documentation. As for the Twitter forum, the developers’ questions are much longer
than on the other two forums. More words mean more biases for the model to catch the
useful information, so that’s the reason why RAP4DQ performs worst on the Twitter dataset.

5.2 Results for Supervised Question Answering Comparative Study on API Forums

Table 5 shows that RAP4DQ outperforms 4 state-of-the-art supervised baselines on recom-
mending relevant API documents to developer questions on all three API forums.

AUC and Accuracy metrics: RAP4DQ relatively improves the best performed baseline
GPT-2 on twitter and eBay dataset by 6.3% and 7.3% for AUC and the worst baseline
BIKER on twitter and eBay dataset by 20.0% and 66.0% for AUC. RAP4DQ improves
the best performed baseline EMLo on AdWords dataset by 17.5% for AUC and the worst
baseline CROKAGE on AdWords by 59.3%. RAP4DQ also improves the best performed
baseline BIKER on twitter and AdWords dataset for Accuracy by 5.2% and 4.8% and the
worst baseline Seq2seq by 32.6% and 33.3%. RAP4DQ improves the best performed base-
line GPT-2 on eBay dataset for Accuracy by 6.6% and the worst baseline CROKAGE by
160.0%.

Ranking based metrics: RAP4DQ can improve theMAP,MRR, and NDCG up to 250.0%,
220.0%, and 54.2% respectively. On twitter dataset, QDLinker, and RAP4DQ have the same
NDCG score while on AdWords dataset, BIKER has a higher NDCG score than RAP4DQ.
But considering all metrics, RAP4DQ is still the best performed approach.

Specifically, RAP4DQ andGPT-2 perform better than others on Twitter and eBay forums,
but the GPT-2 cannot run on AdWords dataset. Comparing with RAP4DQ, RAP4DQ can
improve GPT-2 by 6.3% and 7.3% for AUC, on Twitter and eBay respectively. ELMomodel
performs better than all other baselines on the AdWords dataset, but out model still can
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Table 5 RQ2 Results: Comparison with the supervised baselines in recommending relevant API documenta-
tion on three API forum datasets

Twitter AUC Accuracy MAP MRR NDCG

Seq2seq 0.70 0.46 0.31 0.35 0.48

Seq2seq attention 0.71 0.48 0.35 0.34 0.51

QDLinker 0.76 0.51 0.37 0.39 0.55

ELMo (Re-trained) 0.78 0.55 0.39 0.38 0.50

Bert (Fine-tuned) n/a n/a n/a n/a n/a

GPT-2 (Fine-tuned) 0.79 0.54 0.42 0.40 0.52

BIKER 0.68 0.58 0.41 0.41 0.50

CROKAGE 0.75 0.49 0.41 0.43 0.51

RAP4DQ 0.84 0.61 0.46 0.48 0.55

eBay AUC Accuracy MAP MRR NDCG

Seq2seq 0.72 0.49 0.27 0.38 0.28

Seq2seq attention 0.74 0.48 0.29 0.41 0.24

QDLinker 0.79 0.52 0.32 0.40 0.33

ELMo (Re-trained) 0.80 0.55 0.31 0.42 0.32

Bert (Fine-tuned) n/a n/a n/a n/a n/a

GPT-2 (Fine-tuned) 0.82 0.61 0.33 0.43 0.34

BIKER 0.53 0.36 0.20 0.24 0.31

CROKAGE 0.56 0.25 0.20 0.22 0.33

RAP4DQ 0.88 0.65 0.36 0.45 0.37

AdWords AUC Accuracy MAP MRR NDCG

Seq2seq 0.66 0.33 0.31 0.38 0.33

Seq2seq attention 0.66 0.35 0.32 0.41 0.35

QDLinker 0.71 0.41 0.35 0.44 0.38

ELMo (Re-trained) 0.80 0.39 0.39 0.42 0.37

Bert (Fine-tuned) n/a n/a n/a n/a n/a

GPT-2 (Fine-tuned) n/a n/a n/a n/a n/a

BIKER 0.71 0.42 0.39 0.43 0.49

CROKAGE 0.59 0.34 0.11 0.13 0.24

RAP4DQ 0.94 0.44 0.42 0.48 0.41

improve the AUC by 17.5% on AdWords. The Bert still cannot run on our dataset based on
the same reason mentioned in the RQ1.

5.3 Results for Supervised Question Answering Comparative Study on Stack
Overflow. (RQ3)

Similar to in the API forum datasets in RQ1 and RQ2, in Table 6, it shows the running
results for RAP4DQ and baselines on Stack Overflow dataset. The results in the table show
that RAP4DQ can outperform all baselines on all metrics.

AUC and Accuracy metrics: RAP4DQ relatively improves the best-performed baseline
DeepAPI by 17.1% for AUC and the worst baseline Word2API by 117.1% for AUC.
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Table 6 RQ3 Results: Comparison with the java related question answering baselines in recommending
relevant API documentation on stack overflow datasets

AUC Accuracy MAP MRR NDCG

BIKER 0.73 0.19 0.41 0.44 0.52

CROKAGE 0.71 0.34 0.40 0.41 0.48

Word2API 0.41 0.45 0.18 0.20 0.26

DeepAPI 0.76 0.34 0.44 0.47 0.50

RAP4DQ 0.89(↑ 17.1%) 0.85(↑ 88.9%) 0.50 (↑ 11.1%) 0.53(↑ 12.8%) 0.62(↑ 24.0%)

↑ XX% indicates the improvements comparing with the best performed baseline

RAP4DQ also improves the best-performed baseline Word2API for Accuracy by 88.9% and
the worst baseline BIKER by 347.4%.

Ranking-based metrics: RAP4DQ can improve the MAP, MRR, and NDCG up to
177.8%, 165.0%, and 138.5%, respectively. And comparing with the baseline best-
performed results, RAP4DQ can improve the MAP, MRR, and NDCG at least for 11.1%,
12.8%, and 24.0%, respectively.

The results show that even on the OS API dataset, compared with existing OS API related
question answering approaches, RAP4DQ can perform better on all evaluation metrics
which proves that even though our approach is designed for web API question answering,
for OS API related question answering, RAP4DQ is still useful and reliable.

5.4 Results for Sensitivity Analysis (RQ4)

Table 7 shows that different API documentation weighting schemes can affect the AUC
of RAP4DQ. Adding weights to differentiate API documents can improve the results of
RAP4DQ, and pi(Ti/Tmax) achieves the best results compared with the other three weight-
ing schemes. This result proves that adding weights for different API documentation is
helpful. Also, only adding a trainable weight or only considering the popularity of the doc-
umentation is not enough. Combining these two together can help the model to figure out
the importance of different API documentation the most.

Table 8 shows that different algorithms for selecting negative samples have an impact
on RAP4DQ. Overall, Random Selection can outperform the other two algorithms. There-
fore, we use Random Selection in RAP4DQ. Our explanation is that Random Selection may
bring high diversities in negative samples. For example, from Fig. 4, we can see the cosine
similarity between selected negative samples and the related documents. The figure shows
that the negative samples selected by the Random Selection are more diversified, while
the negative samples selected by the other two weighting schemes selected have cosine
similarity scores close to 1.

Table 7 RQ4. Results of Factor
1: Different API documentation
weighting schemes

Category Twitter eBay AdWords

No Weight 0.79 0.82 0.87

A trainable parameter, pi 0.83 0.84 0.87

Ti/Tmax 0.81 0.86 0.89

pi(Ti/Tmax) 0.84 0.88 0.94

Training setting: Random
Selection (Factor 2), one negative
sample (Factor 3), and with
Learning-to-Rank (Factor 4)
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Table 8 RQ4. Results of Factor 2: Different algorithms for selecting negative samples

Category Twitter eBay AdWords

Random Selection 0.84 0.88 0.94

TF-IDF + CS 0.76 0.82 0.86

Word2vec + CS 0.79 0.83 0.88

CS: Cosine Similarity; Training setting: pi(Ti/Tmax) (Factor 1), ten negative samples (Factor 3), and with
Learning-to-Rank (Factor 4)

Table 9 shows that the number of negative samples can affect the results of RAP4DQ.
Adding more negative samples does not improve the results. On the contrary, it can hurt the
results. And if the number of negative samples is not enough, the model cannot separate the
most suitable documentation from other similar documentation. So as a conclusion, on our
dataset, selecting ten negative samples can help us achieve the best results.

Table 10 shows that the learning-to-rank approach can help increase the accuracy
of RAP4DQ. Our idea of using the learning-to-rank to rank the API documentation has
been proved to be useful and can improve the performance of the overall listing. This result
also shows that our idea of separating similar documentation is important, and only adding
weights on different documentation is not enough to achieve this key point.

Table 11 shows that by removing each component from the model, the AUC on three
API forum datasets will decrease. It proves that each component of our model can con-
tribute to the final performance of the model. To be more specific, by removing wights, the
AUC decrease 2.4%, 2.3%, 5.6% on twitter, eBay, and AdWords. When removing negative
samples, the AUC decrease 2.5%, 4.9%, 4.7% on twitter, eBay, and AdWords. And when
removing learning to rank, the AUC decrease 11.1%, 9.3%, 11.8% on twitter, eBay, and
AdWords. The results show that learning to rank influences the results the most.

Table 12 shows that if the training dataset size is over 60% of overall data, the per-
formances of RAP4DQ are comparable. Comparing the settings of 80%/10%/10% and
60%/20%/20%, the training data decreased 20%. However, the performance in terms of
AUC was only reduced by 4%-5% on three API forums. Furthermore, comparing between

Fig. 4 RQ4. Cosine Similarity Distribution for Different Weighting Schemes
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Table 9 RQ4. Results of Factor
3: Different numbers of selected
negative samples

# of Negative Samples Twitter eBay AdWords

0 0.74 0.76 0.79

1 0.78 0.82 0.83

5 0.81 0.84 0.87

10 0.84 0.88 0.94

15 0.83 0.87 0.91

20 0.79 0.88 0.86

25 0.75 0.84 0.82

30 0.74 0.79 0.76

35 0.72 0.74 0.74

Training setting: pi(Ti/Tmax)

(Factor 1), Random Selection
(Factor 2), and with
Learning-to-Rank (Factor 4)

the settings of 80%/10%/10% and 50%/25%/25%, the training data decreased 30%. How-
ever, the performance in terms of AUC was only reduced by 11%-13% on three API
forums.

Table 13 shows the time cost for running our approach and supervised baselines on three
API forum datasets. On three API forum datasets, our model all takes about 6 hours to do
the training and 2-3 seconds for the prediction. Deep learning-based approaches are known
to take more time for training. However, for prediction, the speed of RAP4DQ is at the same
level as the best-performed baselines, and our approach performs better.

6 Discussion and Implication

Let us present one in-depth case studies to understand why RAP4DQ can work well and
why it can perform better than the baselines.

Case Study Figure 5 shows an unclear question with only word description on eBay. The
developer wanted to know how to find an item by using API functions with some spe-
cific information. The eBay API development team suggested the questioner see the API
documentation for f indI temsAdvance.

To analyze why our approach can pick the correct API method f indI tems− −Advance

for the question, we select a base model without adding weights, using negative samples, and
using learning to rank these three components and test the performance change by adding
each component one by one. From Fig. 5b, we can see that if we use the base model, the
model can get the correct API method on rank nine which is the performance for the basic
GRU model. And then, if we add learning to rank to the base model, the reranking can help
us pick the correct API method at the fifth position in the ranking list. Similarly, if we add

Table 10 RQ4. Results of Factor 4: With/without learning-to-rank

Twitter eBay AdWords

Without Learning-to-Rank 0.78 0.85 0.77

With Learning-to-Rank 0.84 (↑ 7.7%) 0.88 (↑ 10.6%) 0.94 (↑ 22.1%)

↑ XX% indicates the improvements; Training setting: pi(Ti/Tmax) (Factor 1), Random Selection (Factor
2), and ten negative samples (Factor 3)

23   Page 24 of 34 Empir Software Eng (2022) 27: 23



Table 11 RQ4. Results of Factor 5: Impact of key different components of RAP4DQ

Twitter eBay AdWords

RAP4DQ 0.84 0.88 0.94

w/o weights 0.82 0.86 0.89

w/o weights and negative samples 0.80 0.82 0.85

w/o weights, negative samples and learning to rank 0.72 0.75 0.76

negative samples, the model can predict the correct API method at the third position. Com-
bining all the components, we can see that each key component could improve the accuracy
of the model prediction. By using all of them, our approach can have higher accuracy in
predicting the correct API methods for the questions.

Approach Limitations. Through the manual analysis of the results, we identify the
following limitations of RAP4DQ:

First, RAP4DQ does not work well on the questions that contain too much code and few
words. In RAP4DQ, we only analyze the tokens to catch information. This kind of question
is hard for our model to deal with. In future work, we are planning to do a more detailed
code analysis that can help improve the performance of our model on this. Second, RAP4DQ
does not work well on the questions that are too general. If a question is too general, it is
even hard for the API development team to give a proper recommendation.

7 Threats to Validity

We identify the following threats to validity:

Implementation of baselines To compare with existing approaches, we directly use
the published code of the baselines, except QDLinker (Li et al. 2018a). The code of
QDLinker is not publicly available. We completely implemented QDLinker. The QDLinker
paper reported slightly higher results than what we reported using our implementation of
QDLinker in this paper. One possible reason is that QDLinker performs differently on var-
ied datasets, and some implementation details are not mentioned in their paper, which may
make our version of QDLinker slightly different from the one in the original paper. How-
ever, we tried our best to build and tune the QDLinker parameters on our dataset, and this
is the best effort we can make when the code is not publicly available. We tuned RAP4DQ
and QDLinker both on our dataset, which makes it fair for both RAP4DQ and QDLinker.
Also, the link for the baseline CROKAGE is not working. So similar as QDLinker, we also
completely implemented CROKAGE and evaluated it with other approaches fairly just like
QDLinker.

Table 12 RQ4. Results of
Factor 6: Impact of different
data splitting

Training/Tuning/Testing Twitter eBay AdWords

80%/10%/10% 0.84 0.88 0.94

70%/15%/15% 0.82 0.87 0.91

60%/20%/20% 0.79 0.84 0.89

50%/25%/25% 0.73 0.76 0.81
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Table 13 RQ4. Results of Factor 7: Time complexity

Training (Minutes) Prediction (Seconds)

Twitter eBay AdWords Twitter eBay AdWords

Seq2seq 251 243 264 1 1 1

Seq2seq attention 273 299 287 1 1 1

QDLinker 169 175 172 1 1 1

ELMo (Re-trained) 1048 991 1217 14 13 17

Bert (Fine-tuned) n/a n/a n/a n/a n/a n/a

GPT-2 (Fine-tuned) 416 397 n/a 17 21 n/a

BIKER 1 1 1 1 1 1

CROKAGE 1 1 1 1 1 1

RAP4DQ 372 351 395 2 2 3

Fig. 5 Case Study
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Manual construction of labeled golden set To evaluate approaches, it is necessary to have
a labeled golden set. During the labeling process, most answers can clearly show the rele-
vant APIs. However, some answers can contain outdated links for API documents, which
makes it very difficult to determine the right relevant APIs. We discard such answers to try
our best to minimize the bias. Although this part of work is common in question and answer-
ing, this process will bring bias to our results since the authors of this paper are not from
API teams.

Selection of API forums There are many API forums for different APIs. In our research,
we only focused on three very popular API forums, Twitter, eBay, and AdWords. Thus,
we cannot claim that RAP4DQ is generic for all API forums. However, the key drivers of
RAP4DQ outperforming the baselines are general across forums.

8 RelatedWork

Here, we summarize the related work to our study.

Statistical and Language Model Based Question and Answer Retrieval Recently, exten-
sive research using statistical and language models has been proposed to improve question
and answer retrieval (Cao et al. 2010; Figueroa and Neumann 2016; Jeon et al. 2005; Duan
et al. 2008; Ji et al. 2012; Zhou et al. 2011; Sakai et al. 2011; Sun et al. 2005; Surdeanu
et al. 2008; Yen et al. 2013; Xue et al. 2008; Berger et al. 2000; Yao et al. 2015; Nicosia
et al. 2015; Singh and Simperl 2016; Tan et al. 2016; Burke et al. 1997; Zhou et al. 2013;
Brokos et al. 2016). For example, Yen et al. (2013) propose a model to categorize the answer
type of a given question and build a context-ranking model to re-rank retrieved documen-
tation. Burke et al. (1997) and Zhou et al. (2013) use WordNet and Wikipedia to expand
the semantics of questions to improve the question retrieval. Sakai et al. (2011) propose
an approach to build an answer selection system involving multiple answer assessors and
graded-relevance information retrieval metrics. Yao et al. (2015) report a set of rules to
detect high-quality questions and help users to identify a useful answer that can gain posi-
tive feedback from other users. Sun et al. (2005) study the dependency relationships among
the matched terms of documentation and questions, and use the analyzed relationships to
rank answers. Nicosia et al. (2015) propose an automatic answer selection system to detect
the right answer for the target questions by incorporating the position of answers in ques-
tion threads. Singh and Simperl (2016) present a searching system using semantic keyword
search to find similar questions between answered questions and unanswered ones. Tan et al.
(2016) develop machine learning models to find different sections in answers that are suit-
able to describe the complex semantic relationships between questions and their answers.
Brokos et al. (2016) proposed the ways of improving traditional answer retrieval solutions
with Word Mover Distance (Kusner et al. 2015) in order to improve question and answer
retrieval techniques have higher results. Word Mover Distance (Kusner et al. 2015) is a sta-
tistical model that measures the dissimilarity between two text documents as the minimum
amount of distance that the embedded words of one document need to ”Travel” to reach the
embedded words of another document. None of the above-mentioned approaches are pro-
posed for developer Q&A websites. However, we borrowed some techniques to implement
our baselines, such as Word Mover Distance (Kusner et al. 2015), in this paper. Through
our experiments, RAP4DQ can outperform the baselines.
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Deep Learning Based Question and Answer Retrieval In recent years, deep learning has
become popular in question and answer retrieval. Some deep learning based approaches
have been proposed (Er et al. 2016; Kokkinos and Margaritis 2015; Nassif et al. 2016; Sev-
eryn and Moschitti 2015, 2016; Zhou et al. 2015, 2016; Yan et al. 2016; Li et al. 2018a;
Palangi et al. 2016; Guo et al. 2016). For example, Severyn and Moschitti (2015) propose a
convolution neural network (CNN) (Kim 2014) architecture to embed short-text questions
and documentation to their distributed vectors for effective retrieval. Yan et al. (Yan et al.
2016) learn a deep neural network (DNN) to detect the relationships between the query con-
text and the answers. Palangi et al. (2016) develop a model with LSTM to improve answer
selection. Nassif et al. (2016) design a model based on stacked bidirectional Long Short-
term Memory (LSTM)s (Hochreiter and Schmidhuber 1997) and Multi-layer Perceptron
(MLP) (Pal and Mitra 1992) to search the relationships on semantics between questions
and answers. Zhou et al. (2015, 2016) used a deep neural network to learn the semantic
of questions and answers to solve the mismatch question problem. However, unlike the
above-mentioned studies, we aim to directly link questions with API documentation without
retrieving answers.

Also, answering the open-domain questions is also a popular topic in recent years (He
et al. 2020; Cao et al. 2020). He et al. (2020) propose a model using BERT or other state-
of-the-art contextual language models to learn representations from QA data to answer
open-domain questions. Cao et al. (2020) build a decomposed transformer, which substi-
tutes the full self-attention with question-wide and passage-wide self-attentions in the lower
layers. But as we mentioned in the introduction section, these open-domain approaches can
only deal with short questions with short answers while RAP4DQ can deal with. And also,
for open-domain Q&A, they often need to catch the relationship between documentation
to find the most suitable answer, while in our problem, we often do not the order and the
relationship between documentation which makes the open-domain Q&A approaches can-
not work. For example, within the example in Fig. 3, there are two relate API methods
Webpage and WebpageParameter. From the developer team’s answer, we don’t know
the order of these two API methods, and this order does not influence the developer to solve
this problem after carefully reading the documentation for this two API documentation. But
for open-domain Q&A approaches, they cannot build the relationship network to analyze
and find the best results without knowing the order of API methods in the answers. That’s
also the difference between our problem and open-domain question answering.

Some existing approaches (Huang et al. 2018; Li et al. 2018a, b; Silva et al. 2019; Gu
et al. 2016) are similar to our approach. BIKER (Huang et al. 2018) uses similar question
retrieval to pick relevant API methods. Word2API (Li et al. 2018b) develop a model to learn
the relatedness of words and APIs. CROKAGE (Silva et al. 2019) presents a searching sys-
tem to search relevant code examples on the web for programming tasks. DeepAPI (Gu
et al. 2016) construct an RNN encoder-decoder model to generate API usage sequences for
a given query. All these four existing studies are designed and evaluated on the Stack Over-
flow data for Java APIS, while our approach is mainly designed for API forums and web
APIs. And the most similar work to ours is QDLinker (Li et al. 2018a). QDLinker utilizes a
deep neural network to retrieve the top 50 relevant Java API documentation for a developer
question and use a learning-to-rank technique to re-rank the retrieved 50 Java API docu-
ments. The major differences between RAP4DQ and QDLinker are listed as follows: First,
RAP4DQ is designed to train on positive and negative samples to add more discriminative
power to distinguish API documentation with similar descriptions. Second, RAP4DQ dif-
ferentiates API documentation by adding weights to various API documentation. However,
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QDLinker treats all API documentation equally. Third, QDLinker is proposed for Stack
Overflow and only Java documentation. However, RAP4DQ is developed for API Q&A
forums and three web API documentation.

9 Conclusion

Directly recommending relevant API documentation to answer a developer question on
API Q&A forums can be very useful. However, little research has been done on helping
answer developer questions on API Q&A forums. In this paper, we propose a deep learning-
based approach that identifies relevant API documentation from the API documentation
list to answer a developer question. Specifically, RAP4DQ employs word2vec to obtain
word embedding vectors for the words in API documentation and questions. Second, we
design RAP4DQ to train on positive and negative samples. Third, we use two GRUs to train
question and API documentation embedding vectors separately and differentiate distinct
API documents with different importances by having the weights. Last, we design a new
loss function to effectively train RAP4DQ to distinguish relevant API documentation from
irrelevant documentation.

We evaluate RAP4DQ against a set of state-of-the-art baselines on three web API forums
and the Stack Overflow. The empirical results show that RAP4DQ can outperform all of the
studied state-of-the-art approaches on all three studied API forums and the Stack Overflow.
Specifically, we can gain a relative improvement up to 84.3% in terms of AUC score on API
forums and 117.1% in terms of AUC score on the Stack Overflow.

We plan to study more API forums and create a larger labeled dataset. We also plan to do
word-level similarity analysis instead of only on the whole question/documentation level.
Moreover, we will test RAP4DQ on Stack Overflow data. Through the analysis, we find that
API documentation and questions can contain a lot of code and sometimes incomplete code
blocks. Therefore, we plan to improve our code processing and modeling.
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