
https://doi.org/10.1007/s10664-021-10049-7

Analysis of a many-objective optimization approach
for identifying microservices from legacy systems

Wesley K. G. Assunção1 · Thelma Elita Colanzi2 · Luiz Carvalho1 ·
Alessandro Garcia1 · Juliana Alves Pereira1 ·Maria Julia de Lima3 ·Carlos Lucena1

Abstract
The expensive maintenance of legacy systems leads companies to migrate such systems
to modern architectures. Microservice architectural style has become a trend to modern-
ize monolithic legacy systems. A microservice architecture consists of small, autonomous,
and highly-independent services communicating by using lightweight network protocols.
To support the designing of microservice architectures, recent studies have proposed either
single or multi-objective approaches. In order to improve the effectiveness of existing
approaches, we introduced toMicroservices that is a many-objective search-based
approach to aid the identification of boundaries among services. In previous studies, we
have focused on a qualitative evaluation of the applicability and adoption of the proposed
approach from a practical point of view, thus the optimization process itself has not been
investigated in depth. In this paper, we extend our previous work by performing a more in-
depth analysis of our many-objective approach for microservice identification. We compare
our approach against a baseline approach based on a random search using a set of perfor-
mance indicators widely used in the literature of many-objective optimization. Our results
are validated through a real-world case study. The study findings reveal that (i) the criteria
optimized by our approach are interdependent and conflicting; and (ii) all candidate solu-
tions lead to better performance indicators in comparison to random search. Overall, the
proposed many-objective approach for microservice identification yields promising results,
which shed light on insights for further improvements.

Keywords Microservice architecture · Many-criteria optimization · Industrial case study ·
Performance indicators

Communicated by: Aldeida Aleti, Annibale Panichella, and Shin Yoo

This article belongs to the Topical Collection: Advances in Search-Based Software Engineering (SSBSE)

� Wesley K. G. Assunção
wesleyklewerton@gmail.com

1 Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
2 State University of Maringá (UEM), Maringá, Brazil
3 Tecgraf Institute, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil

Empirical Software Engineering (2022) 27: 51

Accepted: 1 September 2021/
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Published online: 1 February 2022

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-021-10049-7&domain=pdf
http://orcid.org/0000-0002-7557-9091
mailto: wesleyklewerton@gmail.com

1 Introduction

Microservices are small and autonomous services that work together by using lightweight
network protocols (Newman 2015). Fundamentally, microservices are distributed systems
built as a collection of intercommunicating fine-granularity services with independent com-
putational resources. Microservices architectural style has become a trend to develop highly
scalable and available software systems (Dragoni et al. 2017).

A crucial step for a well-designed microservice architecture is the identification of proper
microservice boundaries, which allow the adequate implementation of microservices. Some
authors discuss that this identification should take into account the coupling and cohesion of
the microservices (Newman 2015; Di Francesco et al. 2019). In addition, other authors rec-
ommend the conception of microservices based on business capabilities (Di Francesco et al.
2019). That is, intrinsically related to the main features in each microservice. Thus, sev-
eral criteria should be used to adequately identify microservices, where a criterion defines
rules or properties on how to deal with existing information to support the decision-making
process of defining microservices boundaries.

Recent studies show that practitioners have to simultaneously consider five typical cri-
teria – cohesion, coupling, feature modularization, reuse and network overhead (Carvalho
et al. 2019a, 2019b, 2020a) – along the decision-making process. However, most of the
state-of-the-art approaches are single or multi-objective, commonly optimizing only cou-
pling and cohesion, without their validation in industrial systems (Mazlami et al. 2017;
Jin et al. 2018; Eski and Buzluca 2018; Jin et al. 2019; Escobar et al. 2016; Zhang et al.
2020) (further described in Section 2). To fulfill this existing gap in practice, in a recent
study we defined toMicroservices, a many-objective optimization approach consider-
ing the five criteria mentioned above (Carvalho et al. 2020a, 2020b) (Section 3). In previous
studies (Carvalho et al. 2020a; Assunção et al. 2021), we performed an initial evaluation
of the performance of toMicroservices and focused on the practical adoption of the
microservices by maintainers of a legacy system. Those results pointed out that our many-
objective approach is more promising than the single and multi-objective ones. However, the
optimization process of our many-objective approach has not been investigated in depth. In
addition, to the best of our knowledge, the relationship among the criteria adopted as objec-
tive functions has not been investigated yet, such as the interdependence among network
overhead, feature modularization and reuse.

In this sense, the objective of this paper is to investigate the complexity of the microser-
vice identification problem when optimizing five objectives. As an extension of our previous
work in which we defined toMicroservices (Carvalho et al. 2020a, 2020b), in this
paper, we report a detailed study (Section 4) with in-depth analysis (Section 5) of the
optimization process of our many-objective approach for microservice identification. We
compare toMicroservices, based on NSGA-III with five objectives, against a random
search (RS) using six performance indicators widely used in the literature, differently from
our previous study that used only two performance indicators. Also, we extended our anal-
ysis with correlation analysis to investigate the interdependent and conflicting nature of the
five criteria used as objective functions. The approach was validated in a real-world case
study to answer the following research questions:

– RQ1. To what extent are the five objective functions interdependent and conflicting in
an industrial system?

– RQ2. How do NSGA-III and RS compare in terms of performance indicators when
optimizing five criteria?

Empir Software Eng (2022) 27: 51Page 2 of 3151

To answer RQ1, we investigate the correlation between pairs of objective functions
related to the criteria of microservice identification. By analyzing this correlation, we can
understand how difficult the problem we are dealing with is. The correlation serves as an
indicator of the complexity of the microservice identification problem justifying or not the
use of a many-objective optimization approach. To address RQ2, we investigate the behavior
of NSGA-III in comparison to an RS for solving the many-objective optimization prob-
lem of microservice identification. A search algorithm can always be compared against at
least a random search to check that its success is not due to the simplicity of solving the
posed problem (Arcuri and Briand 2014). In such evaluations we analyzed: (i) the results
according to six performance indicators and three statistical tests widely used in the SBSE
field (Colanzi et al. 2019; Colanzi et al. 2020), and (ii) how the criteria are optimized by
search algorithms.

The main contribution of our work is a detailed analysis of the complexity of the
microservice identification problem when optimizing five objectives. Such an analysis was
done in the context of the many-objective treatment for the microservice identification prob-
lem given by toMicroservices, as the related work (Mazlami et al. 2017; Jin et al.
2018; Eski and Buzluca 2018; Jin et al. 2019; Escobar et al. 2016; Zhang et al. 2020) do not
deal with more than 3 objectives. Our main findings indicate that (i) the referred problem
deserves to be considered as a many-objective optimization problem since all criteria are
important to the problem, (ii) the five criteria optimized during the microservice identifica-
tion are in conflict and some of them are interdependent, and (iii) NSGA-III properly deals
with the problem. This implies that further studies can deal with microservice identification
as a many-objective problem without requiring this kind of investigation.

2 Background

This section presents a background of microservice architectures, migration from legacy
systems, the activity of identifying microservices in the code, basic concepts on many-
objective optimization, and an illustrative example of the identification of microservices
from legacy systems.

Microservice architectures. Microservices are small and autonomous services that work
together (Newman 2015), where a service is a unit of software that is independently replace-
able and upgradeable (Di Francesco et al. 2019; Dragoni et al. 2017). The “small” aspect
refers to the fact that a microservice should have fine granularity and address a single
responsibility (Di Francesco et al. 2019; Dragoni et al. 2017). A microservice is also
expected to be “autonomous”: (i) it should consist of a service highly independent from
others, and (ii) it should enable independent use of technologies.

A microservice is not an entirely isolated architectural element. A microservice architec-
ture usually relies on lightweight protocols. Each protocol provides reliable communication
without responsibility for processing business rules (Di Francesco et al. 2019). For example,
a common lightweight synchronous protocol communication is HTTP. The characteris-
tics aforementioned involving a microservice and their relationships define what is a
microservice architecture (Newman 2015).

Migration tomicroservice architectures. There are several studies reporting the migration
to microservice architectures, as reported in a mapping study (Di Francesco et al. 2019).
The migration is usually motivated by many limitations, including difficult maintainability

Empir Software Eng (2022) 27: 51 Page 3 of 31 51

and inadequate resource usage in a cloud environment. One of the most challenging activ-
ities of the migration is the identification of microservices by defining their boundaries
based on the legacy code (Luz et al. 2018; Francesco et al. 2018). The manual identifica-
tion of microservices in legacy code is a time-consuming, risky activity. Several manual and
(semi-)automated approaches have been proposed to identify microservices.

Microservice identification in legacy code. The problem of microservice identification in
legacy code is commonly seen as a software remodularization task (Anquetil and Lethbridge
1999), which is known to be an NP-hard problem. There is a huge number of possible com-
binations of source-code elements and its multi-criteria nature (Mitchell and Mancoridis
2006). In addition to the huge combinations of source-code elements, there are also the
desired properties to be achieved or criteria/constraints that should be taken into account
when performing the remodularization (Bavota et al. 2010). Existing approaches adopt dif-
ferent criteria to identify microservices. Coupling is the most adopted criterion (Mazlami
et al. 2017; Jin et al. 2018; Eski and Buzluca 2018; Jin et al. 2019; Escobar et al. 2016;
Zhang et al. 2020). Similarly to coupling, cohesion is also commonly used by automated
approaches to promote better modularization (Jin et al. 2019; Zhang et al. 2020). Besides,
some features can be used to derive execution cases of the legacy system (Jin et al.
2018; Jin et al. 2019) to measure dynamic coupling or cohesion. However, there is no
approach that uses features’ information in objective functions. The same applies to reuse
and communication overhead, which are also basic criteria for microservice identification
in practice (Carvalho et al. 2019b; Carvalho et al. 2019a). Based on existing limitations, we
defined an automated approach that uses five criteria as objective functions to provide an
approach that suits better practitioners’ expectations (Carvalho et al. 2020a; Carvalho et al.
2020b). In addition, our approach operates at the granularity of methods rather than only
classes; in fact, features may be tangled and scattered in classes. This is one contribution of
our work since existing approaches only operate at the class level, which leads to a coarse-
grained analysis of undesirable outputs. For instance, let us consider a possible threat in
restricting to classes: legacy systems often consist of very large classes, which incorporates
too many features. The result is that each class is artificially tagged with a single function-
ality, possibly the one with more class elements realizing it. Even worse, the other feature
realized by the same class (but ignored by the tagging strategy) is likely to be mislocated in
the resulting decomposition of the microservices.

Multi- andMany-Objective Optimization. Multi-objective optimization is an area of mul-
tiple criteria decision making that is concerned with mathematical optimization problems
involving two or three objective functions to be optimized simultaneously (Coello et al.
2007). In general, there is more than one solution for this kind of problems. Thus, several
good solutions represent the trade-off between the defined objectives. Many-objective opti-
mization refers to a class of optimization problems that have more than three objectives.
Multi-objective evolutionary algorithms (MOEAs), such as the Non-Dominated Sorting
Genetic Algorithm II (NSGA-II) (Deb et al. 2002) and the Strength Pareto Evolution-
ary Algorithm 2 (SPEA2) (Zitzler et al. 2001), have received immense recognition due
to their effectiveness and efficiency in tackling multi-objective optimization problems.
Recently, numerous studies on MOEAs revealed that when handling many-objective opti-
mization problems, MOEAs encounter challenges and the behavior of MOEAs resembles
a random walk in search space as the proportion of non-dominated solutions increases
subsequently (Palakonda and Mallipeddi 2020). The Non-Dominated Sorting Genetic

Empir Software Eng (2022) 27: 51Page 4 of 3151

Algorithm III (NSGA-III) (Deb and Jain 2014) was designed to solve many-objective prob-
lems and has been successfully applied. In the SBSE field, NSGA-III was also applied to
solve Software Engineering many-objective problems, such as software product line test-
ing (Jamil et al. 2019), software remodularization (Mkaouer et al. 2015) and software
refactoring (Mkaouer et al. 2014).

Example of Many-Objective Analysis Next we illustrate the need for simultaneously ana-
lyzing many criteria during microservice identification. Figure 1a depicts a monolithic
architecture of a legacy system (related to our case study described in Section 4.1), which is
the source of information for the identification of microservices. The goal is to identify the
boundaries to extract the microservices that implement the features Algorithm and Project.
Figure 1a, b, and c illustrate alternative microservice architectures, each one with two
microservice candidates and the residual legacy system. Implementation elements respon-
sible for the feature Algorithm are highlighted in blue whereas the elements are related to
Project are in red. The numbers in the dependencies represent calls between implementa-
tion elements in the normal operation of the systems, which can be obtained with dynamic
analysis. Several details were omitted in this figure to improve legibility, such as attributes,
methods, relationships, as this is only an illustrative example.

Alternative 1, presented in Fig. 1b, is an architecture candidate that has one microservice
with implementation exclusively of the feature Project. This architecture also has another
microservice with implementation elements only related to Algorithm. In this architecture,
the features Project and Algorithm are well modularized regarding their implementation ele-
ments, which might benefit a better visualization and source code organization. However,
it does not represent a proper architecture if we consider the traditional metrics of coupling
and cohesion, as we can observe dependencies between classes in different microservices.
Maintenance in one feature might require modifying two microservices. The simplistic
assumptions that features of the existing legacy system usually have well-modularized fea-
tures in files do not hold in practice, as we further discuss in the results of our case study
(Section 5). Furthermore, Alternative 1 does not take into account that a method allo-
cated in the Project microservice candidate can massively call a method allocated within
the Algorithm, and vice-versa, leading to prohibitive network overhead. In our illustrative
example, we can observe that a dependency of 20 calls between the classes Project and
Parameter become network communication.

The architecture candidate in Fig. 1c allows easier maintenance, since it groups elements
that are structurally dependents. Alternative 2 also avoids prohibitive network overhead
as dependent elements are in only one microservice. We can say that this solution is
good in accordance with coupling, which is low. However, it reduces the cohesion of this
architecture, as elements that realize the feature Algorithm are in another microservice.
Existing approaches for microservice identification usually are based on the traditional met-
rics of coupling and cohesion to evaluate solutions. Consequently, we can observe that
features are not well-modularized, since the implementation of Algorithm is scattered in
two microservices, and more importantly, Algorithm is tangled with Project in the second
microservice.

To reach an architecture candidate that presents better cohesion, still avoiding the prob-
lem of massive calls between the two microservices, we can keep in Project only the method
that this microservice is highly dependent on. Alternative 3, in Fig. 1d, presents an archi-
tecture in which one method of the class Parameter was decoupled to be kept in the
microservice responsible for the feature it belongs to. The method createOutput(...)

Empir Software Eng (2022) 27: 51 Page 5 of 31 51

Project

isDirectory(...)

Parameter

getGroups(...)

createInput(...)

createOutput(...)

Browser

Apache

User

createUser(...)

getUser(...)

Authentication

createToken(...)

Log

getRecord(...)

Attribute

getName(...)

ServerProject

isLocked(...)

Node

getId(...)

Legacy System

6

20

Project

isDirectory(...)

Parameter

getGroups(...)

createInput(...)

createOutput(...)

Browser

Apache

User

createUser(...)

getUser(...)

Authentication

createToken(...)

Log

getRecord(...)

Attribute

getName(...)

ServerProject

isLocked(...)

Node

getId(...)

Legacy System AlgorithmProject

6

20

Browser

Apache

User

createUser(...)

getUser(...)

Authentication

createToken(...)

Log

getRecord(...)

Attribute

getName(...)

ServerProject

isLocked(...)

Node

getId(...)

Legacy System AlgorithmProject

6

Project

isDirectory(...)

Parameter

getGroups(...)

createInput(...)

createOutput(...)

20
Project

isDirectory(...)

Parameter

getGroups(...)

createInput(...)

Browser

Apache

User

createUser(...)

getUser(...)

Authentication

createToken(...)

Log

getRecord(...)

Attribute

getName(...)

ServerProject

isLocked(...)

Node

getId(...)

Legacy System AlgorithmProject

Parameter

createOutput(...)

20

6

3

Fig. 1 Alternative architectures for the legacy system

that is responsible for implementing Algorithm was moved to the proper microservice. This
modification created a new dependency with 3 calls between microservices, increasing the
coupling, which does not lead to prohibitive network overhead. However, it still does not
have an optimal feature modularization.

The alternative architecture candidates illustrate that more than two criteria are needed
to achieve satisfactory microservice identification. In addition, software engineers notably
can have different needs or preferences in the scenario they work on. For legacy systems,
as the case study we deal with in this study, approaches should consider several criteria
and optimize them to obtain a suitable microservice architecture. This also highlights the

Empir Software Eng (2022) 27: 51Page 6 of 3151

shortcoming of existing approaches that make simplistic assumptions about real systems
from which microservices will be identified and extracted, e.g., features of the existing sys-
tem usually has well-modularized features in files, not being tangled and scattered through
several methods of those files.

3 Many-Objective Identification of Microservices

In this work, we use toMicroservices for the identification of microservices,
which was introduced in a recent work (Carvalho et al. 2020a; Carvalho et al. 2020b).
toMicroservices is an automated approach to identify microservice candidates to
aid developers in designing microservice-based systems. Our approach relies on a many-
objective optimization with five objective functions related to criteria classified by devel-
opers as useful to identify microservices (Carvalho et al. 2019b). The criteria are coupling,
cohesion, feature modularization, network overhead, and reuse, which are described in
Section 3.2. This approach requires three pieces of information as input: (i) an initial rep-
resentation of the system to be implemented as microservices, e.g. a class diagram or the
source code of a legacy system; (ii) a list of features with mapping to their implementation
elements; and (iii) the number of microservices to be identified. It is important to note that
our approach analyzes the input at the method level to achieve fine-grained microservices.
The output generated is a set of candidate solutions, named Pareto front (PF), where each
solution is an alternative microservice architecture.

In the next subsections, we describe details about toMicroservices, such as
representation, objective functions, genetic operators and previous findings.

3.1 Representation

The proposed approach uses a graph-based representation. Each vertex represents a method,
which is assigned to its respective feature. The edges are labeled with a triple e = (sc, dc, ds)
in which sc contains information about static calls, dc the dynamic calls, and ds represents
the estimated size of data used in the communication between methods. The optimization
process is responsible for using these three pieces of information in the edges to group
vertices of the graph that will be the microservices.

Figure 2 depicts an example of input and a possible output based on the case study
described in Section 4.1. The input graph in Fig. 2a has 11 methods/vertices from which
there are seven calls among them. The features assigned to each vertex are presented
between “<” and “>”. For example, the method Manager.addListener(...) imple-
ments part of the feature Algorithm. The output in Fig. 2b presents an example of a
microservice architecture, where the methods are grouped into three microservices, corre-
sponding to features Algorithm, Project, and Authentication. In this example of output, we
can see the dependencies between microservices, which will become network communica-
tions. For example, three methods that belong to Microservice Algorithm (blue in
the figure) call two methods that belong to Microservice Project (red in the figure).

3.2 Objective Functions

In this section, we describe the criteria adopted as objective functions. The criteria of
coupling and cohesion were based on related work, but adapted in our approach to a fine-
grained, i.e., method level. The criteria of feature modularization and reuse have been

Empir Software Eng (2022) 27: 51 Page 7 of 31 51

Fig. 2 Example of representation used by our approach

also used in the context of traditional architectures, which inspired us on proposing and
adapting their application to the context of microservices. Network overhead is a criterion
designed specifically for microservice architecture. From now on, MSA (MicroServices
Architecture) refers to the graph of the microservice candidates (vertices) and their commu-
nications (edges) generated by our approach, and MSC (MicroService Candidate) refers to

Empir Software Eng (2022) 27: 51Page 8 of 3151

some vertices in the MSA. The criteria are defined next, with illustrative examples of their
computation using the output presented in Fig. 2b.

1. Coupling: coupling for each microservice candidate MSc is computed by the sum of
the number of static calls from any method vi that belongs to MSc to any methods vj

that do not belong to MSc (see Eq. 1), similarly to (Chidamber and Kemerer 1994). A
static call consists of a syntactic call to another vj method in the body of the vi method.
The total coupling of a solution, i.e., an individual, is the sum of the values of coupling
associated with every MSc in a MSA (see Eq. 2).

δ(MSc) =
vi ∈ MSc ∧ vj /∈ MSc∑

sc(vi, vj) (1)

Coupling(MSA) =
∀MSc∈MSA∑

δ(MSc) (2)

In the MSA presented in Fig. 2b, Microservice Algorithm has three depen-
dencies to another microservice, as for example Parameter.getGroups(...)
depends on Node.getId(...). This dependency has 6 static calls, as we can
observe in the first item of the tuple (6,7,10). To compute the coupling of this
first microservice, we sum the static calls for those three dependencies Eq. 1,
as follows: δ(Microservice Algorithm) = 6 + 4 + 2 = 12.
Microservice Project has two dependency to other microservices, namely
a dependency with 20 static calls to Microservice Algorithm and a
dependency with 3 static calls to (Microservice Authentication).
This lead to δ(Microservice Project) = 20 + 3 = 23.
Microservice Authentication has no dependency to other microservices,
then δ(Microservice Authentication) = 0. Finally, the coupling for the can-
didate solution is Coupling(MSA) = 12 + 23 + 0 = 35, which is the sum of coupling
for every microservice Eq.2.

2. Cohesion: cohesion is defined by dividing the number of the static calls between meth-
ods within the microservice boundary, i.e., the set of methods assigned to the candidate,
by all possible existing static calls, similarly to Chidamber and Kemerer (1994). Hence,
this measure indicates how strongly related the methods are within a microservice can-
didate. In order to compute cohesion, the ce function is defined in Eq. 3 as a boolean
function indicating the existence of at least a static call. The cohesion of a microservice
candidate is presented in Eq. 4, where |MSc| is the cardinality of an MSc. Basically,
Eq. 4 divides the number of static calls by the number of all possible dependencies
between methods of a microservice candidate. In this sense, the denominator of Eq. 4
is the combination two-by-two of all methods within an MSc. The total cohesion of a
solution is the sum of the cohesion associated with every MSc in an MSA (see Eq. 5).

ce(vi, vj) =
{

1, if sc(vi, vj) > 0

0, otherwise
(3)

C(MSc) =
∑∀vi∈MSc∧vj ∈MSc ce(vi, vj)

|MSc|(|MSc| − 1)

2

(4)

Cohesion(MSA) =
∀MSc∈MSA∑

C(MSc) (5)

Empir Software Eng (2022) 27: 51 Page 9 of 31 51

Let us consider the MSA presented in Fig. 2b to illustrate the computation
of Cohesion. According to the denominator of Eq. 4, the number of all possible
dependencies (independently of the direction) between the five methods with-

ing Microservice Algorithm is obtained by
5(5 − 1)

2
= 10. However,

among all these possible two-by-two combinations withing this microservice, there
is only one existing dependency with sc(vi, vj) > 0 Eq. 3, namely between
Parameter.createOutput(...) and Parameter.createInput(...).
This means that the sum of all existing dependencies with static call greater
than 0 is equal to 1, representing the numerator of Eq. 4. In this case,

C(Microservice Algorithm) = 1

10
= 0.1. For Microservice Project,

the number of all possible dependencies is
4(4 − 1)

2
= 6, without exist-

ing any dependency, which lead to C(Microservice Project) =
0

6
= 0. For Microservice Authentication the computation of

possible dependencies is
2(2 − 1)

2
= 1 and it has one dependency, then

C(Microservice Authentication) = 1

1
= 1. Finally, Cohesion(MSA) =

0.1 + 0 + 1 = 1.1.
3. Feature Modularization: a microservice architecture (MSA) can have microservice

candidates (MSc) composed of methods belonging to several features. We used the
vertices labeled to recommend feature modularization in the microservice candidates
with fine granularity and limited responsibility. The predominant feature number for an
MSc is the number of occurrences of the most common feature divided by the sum of
all features occurrences within MSc. Equation 6 defines the predominant feature (pf

function) of an MSc, where FMSc is a set of occurrences by features in an MSc. The
feature modularization of a microservice candidate is defined in Eq. 7, that is, a measure
of the number of occurrences of the most common features divided by the sum of all
features occurrences within a microservice candidate. This equation avoids the fact that
each microservice candidate has largely different features. The feature modularization
of a solution MSA is the sum of the predominant features number in every MSc added
to the division of the number of distinct predominant features (|FRCA|) in the MSA

by the number of microservice candidates (|MSA|), as shown in Eq. 8. It is desired to
have a degree of feature modularization as high as possible.

pf (MSc) = max ∀k∈FMSc
{k} (6)

f (MSc) = pf (MSc)∑∀k∈FMSc {k} (7)

F(MSA) =
∑

∀MSc∈MSA

f (MSc) + |FRCA|
|MSA| (8)

To illustrate the computation of feature modularization, we recall that MSA of our
example implements three features, namely Algorithm, Project, and Authentication.
Starting with Microservice Algorithm, the first step is to identify the maximum
occurrence of the predominant feature Eq. 6. In this case, all methods of this microser-
vice are from the feature Algorithm, i.e., pf (MSc) = 5. This value is the numerator for
Eq. 7, which is divided by all occurrences of features withing the microservice that in

Empir Software Eng (2022) 27: 51Page 10 of 3151

this case is also five:
∑∀k∈FMSc {k} = 5. Then, f (Microservice Algorithm) =

5

5
= 1. The value 1 is the perfect one for a microservice, meaning it has only

methods of a single feature. The other microservices will have the same value of
feature modularization, since in our example, each microservice has methods belong-

ing to only one feature. In other words, f (Microservice Project) = 4

4
= 1

and f (Microservice Authentication) = 2

2
= 1. Finally, the feature modu-

larization for the whole architecture is F(MSA) = (1 + 1 + 1) + 3

3
= 4.

4. Network Overhead: Some non-functional requirements may be affected by the net-
work overhead of the identified microservices. To minimize the overhead, we created a
heuristic that uses dynamic information to predict the network overhead. The heuristic
uses the size of the objects and primitive types passed as parameters between methods
during the execution of the legacy system. In addition, the heuristic considers the net-
work overhead caused by the adopted protocol to communicate with the future extracted
microservices. For example, the HTTP protocol adds a header to each call and, therefore,
the size of this header is considered in our estimation of network overhead. The net-
work overhead measurement is presented in Eq. 9 where the function P(vj) returns the
set of arguments used in the execution of the method vj . The function sizeOf (p,m)

is the size of the p-th parameter in the m-th call from vi to vj . Data traffic function (dt)
is computed as shown in Eq. 10, where dc function is the total of calls from method vi

to method vj in execution time. The network overhead of MSc (see Eq. 11) is the sum
of all data traffic within their methods, and the network overhead of a proposed MSA

is defined as the sum of the sizes of the network traffic data to each MSc (see Eq. 12).

overhead(vi, vj ,m) =
∀p∈P(vj)∑

sizeOf (p,m) (9)

dt (vi, vj) = max
m=dc(vi ,vj)

m=1 (overhead(vi, vj ,m)) (10)

O(MSc) =
∀vi∈MSc∧∀vj /∈MSc∑

dt (vi, vj) (11)

Overhead(MSA) =
∀MSc∈MSA∑

O(MSc) (12)

To compute the network overhead of a solution in Fig. 2b we use the second and
third information of the triple in the edge labels, namely dc the dynamic calls and
the ds size of data used in the communication between methods. The values of ds
is basically the result of Eq. 9, which is obtained from the execution of the legacy
system. Equation 10 considers this information and the number of dc to identify
the maximum potential data traffic between methods. For the sake of simplicity,
in this illustrative example, we consider as result of Eq. 10 the values of ds pre-
sented in the edges as the maximum value. In Eq. 11, we compute the total of data
traffic between methods of different microservices. For example, three methods of
Microservice Algorithm communicate with methods of other microservice,
namely dt (Attribute.getName(...),Project.getFileType(...)) =
3, dt (Manager.addListener(...),Project.getFileType(...)) = 5,
and dt (Parameter.getGroups(...), Node.getId(...)) = 10. In
this case, O(Microservice Algorithm) = 3 + 5 + 10 = 18.
Similarly, O(Microservice Project) = 50 + 2 = 52 and

Empir Software Eng (2022) 27: 51 Page 11 of 31 51

O(Microservice Authentication = 0, as this latter does not communicate
other microservices. Finally, Overhead(MSA) = 18 + 52 + 0 = 70.

5. Reuse: The reuse of a microservice candidate is measured by the relationships between
the microservice candidate and the user of the legacy system (e.g., calling the API or
user interface). To do so, static and dynamic analysis are combined to observe the level
of reuse of a microservice within the microservice architecture. In the dynamic anal-
ysis, each microservice candidate is reusable when it is directly called by a user. This
concept is captured by the mdu function (microservice directly called by the user).
mdu function considers the system executions that allow identifying dynamic calls
between vertices, including start points by the user. Equation 13 measures the reuse
associated with each microservice candidate. Such an equation captures whether each
microservice is useful for other microservices in the architecture or directly by the user.
Whenever a microservice candidate is reused at least twice, the microservice candidate
indicates an adequate reuse level. Ideally, a microservice should be reused as much as
possible or at least twice (Capilla et al. 2019). Thus, whenever a microservice candi-
date is reused at least twice, the result of Eq. 13 indicates an adequate reuse level of the
microservice (i.e., r(MSc) = 1).

The reuse of a microservice architecture is defined in Eq. 14, where |MSA| is the
number of microservices. Reuse assumes the value 1 when all microservices are used
at least twice by another microservice or the user. Its value ranges from 0 to 1. The goal
is to maximize the reuse of the microservices encompassed by a solution.

r(MSc) =
{

1, if
∑vi∈MSc∧vj /∈MSc sc(vj , vi) + mdu(MSc) > 1

0, otherwise
(13)

Reuse(MSA) =
∑∀MSc∈MSA

r(MSc)

|MSA| (14)

For our example in Fig. 2b, we use Eq. 13 to compute the sum of the first and sec-
ond information of the triple of all external call to methods withing a microservice.
To compute the reuse of Microservice Authentication, we observe that its
method User.getUser(...) is called by ServerProject.isLocked(...)
that belongs to another microservice. In this case, the sum of sc = 3 and dc =
4 is greater than 1, so r(Microservice Authentication) = 1. The other
two microservices of this architecture candidate also have their methods called
at least twice, which also lead to r(Microservice Algorithm) = 1 and

r(Microservice Project) = 1. Finally, Reuse(MSA) = 1 + 1 + 1

3
= 1.

3.3 Genetic Operators

In the current version, our approach focuses on the use of a mutation operator, which is
based on related studies that adopted genetic algorithms (Jin et al. 2019; Jin et al. 2018). The
reason for focusing on such a mutation is to avoid architectural violations, guarantee accu-
racy and consistency, which is pointed by Harman and Tratt as very complex when applying
crossover operators for the optimization of software designs (Harman and Tratt 2007). The
mutation of one individual consists of moving methods from one microservice candidate
to another one, i.e., regrouping vertices in the graphs composing different microservices.
In a simplified form, we can see the mutation operator as an analogy of the move method
refactoring (Fowler 1999).

Empir Software Eng (2022) 27: 51Page 12 of 3151

3.4 Previous Findings

In the studies that are the basis of this extension (Carvalho et al. 2020a; Carvalho et al.
2020b), we have observed some interesting findings. In a first evaluation of the use of many-
objective optimization for identifying microservices (Carvalho et al. 2020b), the results
pointed out that the criteria of feature modularization, network overhead, and reuse intro-
duced a new perspective in the optimization of the solutions. Also, we observed that these
additional criteria are not subsumed by coupling and cohesion. Furthermore, the obtained
solutions allow restructuring features to be smoothly migrated to a microservice archi-
tecture. On the other hand, it was noticed that human interaction during the evolutionary
process would obtain solutions to better satisfy the developer’s expectations.

In another study (Carvalho et al. 2020a), we evaluated the performance of NSGA-
III in comparison with NSGA-II, which is the algorithm used in related work (Jin et al.
2019), using the traditional criteria of coupling and cohesion to optimize the microservice
identification. Based on the results of two performance indicators, namely HV and IGD
(Section 4.4), and statistical analysis we observed that NSGA-III outperformed NSGA-II
even when optimizing only two objectives. This confirmed that the NSGA-III was the right
choice for the optimization algorithm of toMicroservices. In addition to the analysis
based on two objectives, we performed a preliminary comparison of toMicroservices
with an RS considering the five criteria as objectives (Carvalho et al. 2020a). Using only two
performance indicators, we observed that the identification of microservices is a complex
problem, requiring an optimization strategy. This becomes clear as toMicroservices
always outperform the RS.

In addition to the preliminary quantitative analysis, we interviewed eight experienced
developers of the legacy system to collect their opinion about the potential adoption of solu-
tions obtained by toMicroservices when optimizing five objectives (Carvalho et al.
2020a). As an overall result of this qualitative analysis, we observed that developers found
the solutions generated by toMicroservices adoptable in practice. Four participants
would adopt all microservices identified by our approach, three participants would adopt
some microservices identified by toMicroservices, and only one participant would
not adopt any microservice.

As the main reason why some participants would not adopt all microservices generated
by toMicroservices is the granularity level of the obtained microservices, in another
study (Assunção et al. 2021), we asked the same participants to evaluate three solutions
generated by toMicroservices using different granularity levels during another inter-
view. The results show that toMicroservices is flexible and able to generate solutions
according to the developers’ needs and preferences. Empirical evidence reveals that the
solutions generated by our approach allow restructuring features to be smoothly migrated to
a microservice architecture. The main findings of our study (Assunção et al. 2021) include
discovering that (i) the features were modularized as microservices aligned with the busi-
ness capabilities of the legacy system; (ii) the developers of the legacy system consider
mainly the criteria included in our strategy; and (iii) reuse and customization opportunities
arouse from the redesign of features as microservices.

It is important to highlight that the goal of toMicroservices is not to provide a
ready-to-use solution, but providing near-optimal solutions that can be used as a starting
point by software engineers, who must analyze some generated solutions and make the
necessary changes before the migration process.

The preliminary findings of our study show that toMicroservices is a promis-
ing approach to aid the microservice identification during the process of modernization

Empir Software Eng (2022) 27: 51 Page 13 of 31 51

of legacy systems with microservices. The fact of using five criteria that were observed
as useful in practice is beneficial for the optimization process. However, the relationship
among these criteria, their conflicting or dependent nature, has not been investigated yet.
For instance, there is no study in the literature investigating the relationship among the net-
work overhead, feature modularization, and reuse criteria. Also, a more strong quantitative
analysis with more performance indicators and statistical analysis can bring more evidence
on the advantages of using toMicroservices in industrial settings.

4 Study Design

To answer the RQs raised in Section 1, we designed the study described next.

4.1 Industrial Subject System

Our case study relies on a monolithic legacy system, in the domain of the oil and gas indus-
try, currently subject to a modernization process by extracting features as microservices.
This legacy system has been maintained for more than 15 years and is predominantly devel-
oped in Java. The developers reported that the maintenance of this system is very complex
and time-consuming. In addition, either the inclusion of new features or the adoption of new
technologies is a cumbersome task.

System under analysis. The monolithic architecture of the legacy system shares software
libraries and holds highly coupled components with overlapping responsibilities. Our part-
ner has experienced severe challenges with this architecture when trying to rapidly change
or develop new features: (i) the legacy system holds a huge amount of features, resulting
in unnecessary complexity and confusion; (ii) there are many calls and dependencies cross-
crossing the system, resulting in hard to identify errors; and (iii) developers are limited to
the technologies of the legacy system. To overcome these problems, we aim to rely on the
extractive approach to substitute the large components of the monolithic architecture with
ten independent microservices. The benefit of adopting an extractive approach is directly
to group related responsibilities of the system. Thus, evolution and maintenance opportuni-
ties can be easily discovered. Through interviews with our partner, we obtained three main
features they prefer to extract as microservices in the first moment: algorithm, project, and
authentication.

– Algorithm: provides algorithms information by a REST API, including parameters,
binary, documents, and connection points with other algorithms. In addition, this
information can be stored using different resources.

– Project: responsible for the concept of a collaborative environment between the sys-
tem’s users. This collaborative environment includes shared projects and their metadata
between different users or types of users.

– Authentication: authenticates and provides information of system users. This includes
the creation and validation of tokens, verification of login and password, update of pass-
word, and related simple information about users. Source codes related to this feature
are used extensively in the entire system for checks and information retrieval.

Empir Software Eng (2022) 27: 51Page 14 of 3151

Information use. As discussed in Section 3, our approach uses a mapping of features to
their corresponding methods and a dependency graph between methods (see Fig. 2a). As
an example, the method Manager.addListener(...) implements part of the fea-
ture algorithm and it makes a call to the method Project.getFileType(...) that
implements the feature project. After the complete mapping, we can use this information
to identify microservice solutions. For example, we have as output three groupings: the
left blue grouping of methods labeled algorithm, the right red grouping of methods labeled
project, and the right down green grouping of methods labeled authentication (see Fig. 2b).
These groups are used by the many-objective algorithm to optimize the criteria of coupling,
cohesion, network overhead, feature modularization, and reuse. In the following sections,
we will explain the algorithm in detail.

4.2 Implementation Aspects and Parameter Settings

State-of-the-art approaches to deal with the identification of microservices are based on
NSGA-II (Jin et al. 2019; Jin et al. 2018; Zhang et al. 2020), which is the most common
evolutionary algorithm to deal with multi-objective problems. However, NSGA-II faces
some challenges and difficulties for problems with more than three objectives (Deb and Jain
2014). Since our approach relies on five criteria, which are the objective functions, we adopt
NSGA-III as the search-based algorithm. NSGA-III is designed to face up with many objec-
tives at the same time (Deb and Jain 2014). Despite NSGA-III having a different strategy
to compose the set of non-dominated solutions, its algorithmic complexity is quite similar
to NSGA-II (Curry and Dagli 2014). This algorithm was implemented on top of jMetal1

that is a Java-based framework that includes modern state-of-the-art algorithms (Durillo and
Nebro 2011). We also used jMetal to implement an RS algorithm, which is considered as
the baseline in our study.

To represent solutions in our implementation, we create a class Vertex that repre-
sents each method. Then, a class named Microservice has a list of List<Vertex>
vertices, which stores the methods that belong to a microservice. Finally, a solution is
an object of a class named MicroservicesSolution that implements the jMetal inter-
face Solution. This class has a field List<Microservice> microservices,
described above, that stores all microservices of the architecture.

In the implementation, we decided to treat the microservice identification as a minimiza-
tion problem. Hence, the objective functions related to cohesion, feature modularization
and reuse have their values inverted during the evolutionary process. In addition, a con-
straint related to the minimum and maximum numbers of methods per microservice was
established in order to balance the granularity and preserve the reasonability of each
microservice. Solutions that violate this constraint are discarded.

Settings. For the experiments, NSGA-III was configured as follows. The population size
of 100 individuals. The maximum number of fitness evaluations is equal to 10,000, which is
also the stopping criterion. In addition to these traditional parameters, there are three more
parameters related to our problem: (i) the fraction of methods exchanged by the mutation
operator, that was set to the minimum of 1 to the maximum of 50% of all microservice
methods; (ii) the number of microservice candidates was set to 10; and (iii) number of

1http://jmetal.sourceforge.net/

Empir Software Eng (2022) 27: 51 Page 15 of 31 51

http://jmetal.sourceforge.net/

methods allocated in each microservice was set to between 3% and 16% of the total number
of methods. For the RS, the random selection of vertex per each microservices follows the
size of the constraints previously presented. For statistical significance, we executed 30
independent runs for each algorithm.

Solution sets. For analysis, we rely on three sets of solutions: (i) PFapprox is the Pareto
front of non-dominated solutions obtained in each run of an algorithm. Since each algorithm
is run 30 times, we have 30 PFapprox sets for each algorithm. (ii) PFknown is the set of non-
dominated solutions found by an algorithm, considering the union of all solutions obtained
in all its runs, eliminating the dominated ones. (iii) PFtrue is conceptually known as the set
with ideal solutions for a problem. As the PFtrue of our problem is not known in advance,
we adopted a common way to estimate this Pareto front that is using the non-dominated
solutions found by all algorithms in all runs (Zitzler et al. 2003).

Feature label in the vertices. We developed an extractor to perform a pre-processing trace-
ability step. This step was performed before the optimization process to label each vertex
with the feature that it implements. In other words, our optimization process is independent
of this extractor. We present how the extractor works next. In spite of that, for other legacy
systems that use different technologies, the data can be extracted differently.

The input for the extractor was provided by a developer with experience in the legacy
system. The input was the source code, the list of features to redesign with corresponding
entry points to their source code, and the functional test cases related to these features. For
the feature labeling, the expert on the legacy system informed the entry points in the trace
execution of the three features selected to become microservices, and their subfeatures.
Each entry point defines one of the possible entries to the feature boundaries. Then, all
entry points are used in the trace execution to label the vertices of the graph representation
(Section 3.1). This definition of the entry points was the only manual analysis required
during the analysis of the legacy system.

Our extractor is based on the execution of functional test cases. Here, the entry points are
used to associate features with execution traces. In summary, an entry point is a relationship
between a regular expression and a feature. These expressions are compared with patterns
in the names of packages, classes, or methods in the execution trace. When there is a match
between the entry point with a feature label, and the method in the execution trace, it is
labeled in graph vertex with the related feature. All methods in the execution trace that
are not entry points are then labeled with the feature of the last entry point (lower depth
number).

To illustrate this process, Listing 1 shows an excerpt of trace execution and List-
ing 2 presents entry points to Algorithm and Project. When performing the comparison,
Algorithm.getAdminIds is matched with the regular expression associated with the
feature Algorithm, since this method is an entry point and labeled with this feature. Also,
the following methods with higher depth are also labeled with the feature Algorithm until
reach the method ProjectService.getAllProjects. At this point, this method
matches the regular expression Project, then it is labeled with the feature Project as well
as ProjectInfoService.getInfo because it has a higher depth. Next, the method
Algorithm.algorithmsToVector is labeled with Algorithm, due the lower depth as
an entry point is Algorithm and not Project.

Empir Software Eng (2022) 27: 51Page 16 of 3151

Name:Algorithm.getAdminIds#Depth:12
Name:Algorithm.getAllAlgorithms#Depth:13
Name:Algorithm.loadLocalAlgorithmCache#Depth:14
Name:Algorithm.getPermission#Depth:13
Name:AlgorithmPermission.getAllPermissionIds#Depth:14
Name:AlgorithmPermission.getPermissionIds#Depth:15
Name:ProjectService.getAllProjects#Depth:16
Name:ProjectInfoService.getInfo#Depth:17
Name:Algorithm.algorithmsToVector#Depth:14

Listing 1 Execution trace example

4.3 Correlation Test

To analyze the correlation between the five objectives (RQ1), we firstly applied the Shapiro-
Wilk normality test (Shapiro and Wilk 1965) to verify the distribution of data. In the
cases the test points out that all sets have non-normal distribution, the Spearman corre-
lation test (Spearman 1904) is applied to check for any correlation (positive or negative)
between the pairs of objective functions. Spearman’s rank correlation coefficient is a non-
parametric measure of rank correlation (statistical dependence between the rankings of two
variables). Both tests were applied with confidence level of 95% (significance level 5% -
p-value< 0.05). These tests are widely used in Software Engineering studies (Arcuri and
Briand 2014; Colanzi et al. 2019; Colanzi et al. 2020). To better understand the correlation
coefficient, we used the following scale (Hinkle et al. 2002):

– 0.9 to 1.0 (or -0.9 to -1.0): very high positive (or negative) correlation;
– 0.7 to 0.9 (or -0.7 to -0.9): high positive (or negative) correlation;
– 0.5 to 0.7 (or -0.5 to -0.7): moderate positive (or negative) correlation;
– 0.3 to 0.5 (or -0.3 to -0.5): low positive (or negative) correlation;
– 0.0 to 0.3 or 0.0 to -0.3: negligible correlation.

4.4 Performance Indicators

The use of performance indicators is the most common way to compare multi/many-
objective optimization algorithms (Yen and He 2013). In this way, we can observe their
use in many SBSE studies (Colanzi et al. 2019; Colanzi et al. 2020). Performance indi-
cators enable us to assign scores to PF found by multi/many-objective optimization
algorithms (Yen and He 2013). In addition, these indicators enable the decision-maker to
visualize the consequences of his/her choices regarding the performance of a criterion at the
expense of one or other criteria, supporting appropriate decisions (Yen and He 2013).

As a single performance indicator alone cannot provide a comprehensive measure for
multi/many-objective optimization algorithms (Yen and He 2013), we choose to use six
performance indicators with different purposes, namely the evaluation of convergence, dis-
tribution, coverage and cardinality of solutions (Zitzler et al. 2003). Generational Distance
(GD) (Van Veldhuizen 1999) and Inverted Generational Distance (IGD) (Radziukyniene

Algorithm<Algorithms.getAdminIds>
Project<ProjectService.*>

Listing 2 Entry points of the features Algorithm and Project

Empir Software Eng (2022) 27: 51 Page 17 of 31 51

and Zilinskas 2008) measure the closeness of the solutions to the theoretical Pareto front.
Hypervolume (HV) (Zitzler et al. 2003) considers both closeness and diversity at the same
time. Coverage (C) (Zitzler and Thiele 1998) compares a pair of algorithms in terms of the
dominance of the solutions found. Error Ratio (ER) (Van Veldhuizen 1999) counts the num-
ber of Pareto optimal solutions in the set found by an algorithm. Furthermore, we used the
Euclidean Distance to the Ideal Solution (ED) (Cochrane and Zeleny 1973) as an indicator
to identify the solution with the best trade-off among the objectives as the decision-makers
usually prefer to select this solution from the set of alternative solutions. These indicators
are described in detail in the following.

HV measures the area of the objective space from a reference point to a front of solu-
tions (Zitzler et al. 2003). This indicator enables to analyze both closeness and diversity
of a PF (Yen and He 2013). In this study, we use the HV computed by a recursive and
dimension-sweep algorithm (Fonseca et al. 2006). To compute HV we normalized each
PFapprox between 0 and 1, and adopted a reference point with the value of 1.1 for all five
objectives. Pareto fronts with high values of HV are the best since their solutions are far
from the reference point.

GD and IGD measure the convergence/closeness between PFapprox and PFtrue. GD
is an error measure used to examine the distance of the solutions found by an algorithm
(PFapprox) to the best solutions known (PFtrue) (Van Veldhuizen 1999). IGD is an indicator
based on GD, but with the goal of evaluating the distance from PFtrue to PFapprox , i.e., the
inverse of which is considered by GD (Radziukyniene and Zilinskas 2008). Values of GD
and IGD closer to 0 are desired, which indicates that the solutions of both PFapprox and
PFtrue are close to each other.

ED is used to find the closest solution to the best theoretical objectives, i.e., an ideal
solution (Cochrane and Zeleny 1973). For our minimization optimization, to compute ED,
we normalized each PFapprox between 0 and 1, and the ideal solution has a value equal to 0
for all objectives. The solution with the lowest value of ED represents the solution with the
best trade-off among the objectives.

C measures the dominance between two sets of solutions (Zitzler and Thiele 1998).
C(PFa , PFb) represents a value between 0 and 1 according to how much the PFb solutions
are dominated by the PFa solutions. Similarly, C(PFb, PFa) returns how many solutions in
PFa are dominated by solutions in PFb. A value equal to 0 for C indicates that the solutions
of the former set do not dominate any element of the latter set and, on the other hand, the
value 1 indicates that all solutions of the latter set are dominated by elements of the former
set.

ER is an error measure to compute the number of PFknown solutions that are not in
PFtrue (Van Veldhuizen 1999). Higher values of ER mean that the algorithm does not have
good convergence. The lower the ER, the better is the performance of the algorithm because
a larger number of solutions of PFknown were found in PFtrue.

4.5 Statistical Analysis

To analyze the statistical difference between NSGA-III and RS regarding the performance
indicators (RQ2), firstly we evaluated the distribution of the values with the Shapiro-
Wilk normality test (Shapiro and Wilk 1965), the same test used in the analysis of the
correlation between criteria. Then we used the Wilcoxon rank-sum test (Bergmann et al.
2000), which is a non-parametric test based on the median of the values, and Welch Two
Sample t-test (Welch 1947), which is a parametric test based on the mean of the values.
Furthermore, we also compute the effect size with Â12 Vargha and Delaney (Vargha and

Empir Software Eng (2022) 27: 51Page 18 of 3151

Delaney 2000). These tests are widely used to assess search-based algorithms in Software
Engineering (Arcuri and Briand 2014; Colanzi et al. 2019; Colanzi et al. 2020).

5 Results and Analysis

Next we describe and analyze the results of our study to answer the RQs.

5.1 RQ1 - Objective Functions Correlation

Multi/Many-objective algorithms usually return a few solutions when the objectives are
directly related since the optimization of one objective implies in the optimization of the
other one. On the other hand, a high number of solutions is obtained in the presence of
conflicting objectives since the optimization of one objective compromises the other one.
In this way, as mentioned in RQ1, we evaluated whether there is a significant correlation
between each pair of objective functions used by NSGA-III. The sample-set used as input
to evaluate the correlation between the functions is the PFknown obtained by this algorithm.
NSGA-III obtained the median of 76 non-dominated solutions per run, pointing out the
existence of negative correlations between the objectives.

Analysis. To analyze the correlation between the five objectives, we firstly applied the
Shapiro-Wilk test to verify the distribution normality of the values for each objective func-
tion. Table 1 presents the results of the distribution test. The basis for this analysis is the
PFknown, which is the set of non-dominated solutions obtained after the union of the solu-
tions found in the 30 independent runs. The results point out that none of the distributions
is normal, i.e., p-value < 0.05.

Table 2 presents the results of the Spearman correlation test, for each pair of objec-
tive functions, including the p-value and the correlation level. This table also presents the
interpretation of the correlation level, which provides evidence of the existence of a correla-
tion between the investigated objective functions. Negative values mean that the correlation
is negative, i.e., if one function increases the other one always decreases. It is important
to highlight that the criteria of feature modularization, cohesion, and reuse must be natu-
rally maximized. However, as we are dealing with a minimization problem, in the objective
functions related to these three criteria the values have been inverted.

High correlation. The test indicates a significant negative correlation between cohesion
and coupling, which means the objective functions are highly related but are inversely pro-
portional. We can realize the correlation between these functions by observing the fitness
of the solutions in Fig. 4a, since as coupling decreases, cohesion increases and vice-versa.

Table 1 Shapiro-Wilk test results for objective function values achieved by PFknown sets of NSGA-III

Objective Function p-value Conclusion

Cohesion 4.117e-10 Non normal distribution

Coupling 2.731e-05 Non normal distribution

Feature Modularization 0.001058 Non normal distribution

Overhead 2.2e-16 Non normal distribution

Empir Software Eng (2022) 27: 51 Page 19 of 31 51

Table 2 Spearman Rank Correlation Coefficient between PFknown sets

Objective Functions p-value Correlation Conclusion

Level

Cohesion x Coupling 2.2E-16 −0.7699418 High negative correlation

Cohesion x Feature Modularization 2.2E-16 −0.4439882 Low negative correlation

Cohesion x Overhead 0.0002356 −0.1569073 Negligible correlation

Coupling x Feature Modularization 2.23E-02 0.1805772 Negligible correlation

Coupling x Overhead 0.002094 −0.1315126 Negligible correlation

Feature Modularization x Overhead 3.85E-10 −0.3043058 Low negative correlation

Low correlation. The Spearman coefficient also indicates a negative correlation between
the pairs (cohesion, feature modularization) and (feature modularization, overhead), how-
ever, the correlation is low. We noticed that the other correlations are negligible, which
points out the other pairs of functions are not interdependent. Hence, we can conclude that
the optimization of all functions is important for the microservice identification problem
as four criteria are not highly interdependent and these criteria allow evaluating different
characteristics of each obtained solution.

Many-objective optimization is necessary. Regarding the conflict among the objective
functions, we can see in the third column of Table 2 that all correlations are negative,
except for the pair (coupling, feature modularization). Despite the correlation level, the
negative correlations suggest that there is some kind of conflict between some pairs of
objectives, namely (cohesion, coupling), (cohesion, feature modularization) and (feature
modularization, overhead), justifying the need of many-objective optimization. The value
of the objective function related to the reuse of all solutions is 1.0. This single fitness value
impaired the application of statistical tests. Therefore, the objective function reuse was not
considered for the correlation tests.

5.2 RQ2 - Quantitative comparison between NSGA-III and RS

The quantitative analysis between NSGA-III and RS takes into account six performance
indicators (see Section 4.4). These indicators have different Pareto fronts as a source of
information (see Section 4.2). Four indicators, namely HV, GD, IGD, and ED, were com-
puted for the PFapprox sets. Two indicators, which are ER and C, were computed based on
PFknown.

Comparison of PFapprox sets. Table 3 presents the results for the performance indicators of
HV, GD, IGD, and ED. To corroborate the analysis of these indicators, Fig. 3 presents the

Empir Software Eng (2022) 27: 51Page 20 of 3151

Table 3 Statistical tests and effect size measure among PFapprox sets

Indi- Shapiro-Wilk Wilcoxon Welch Â12 Effect Size

cator NSGA-III RS rank-sum t-test NSGA-III RS

HV 0.88560 0.32040 2.20E-16 2.20E-16 1 0

GD 0.97780 0.73620 4.84E-13 7.00E-12 0.96667 0.03333

IGD 0.00018 0.43570 4.84E-13 4.15E-15 0.96667 0.03333

ED 0.37950 0.56310 2.20E-16 2.20E-16 1 0

boxplots. Regarding the individual behavior of each algorithm, the results of the Shapiro-
Wilk test (second and third column in the table) present the distribution of the values
computed for each performance indicator. Most of the values are normally distributed,
except for IGD for NSGA-III. This strongly indicates the algorithms have a standard per-
formance. In the qqplots of Fig. 3 we can see that most of the data points are close to the
reference line. For the exception case, IGD for NSGA-III, some points are distant from the
reference (the right-side of Fig. 3h). The values of the effect size measure are presented
in the last two columns of the table, where we can observe that NSGA-III finds the best
solutions in almost 100% of the runs for all indicators.

Regarding the comparison between the performance of NSGA-III (our approach) and
RS, the fourth and fifth columns in Table 3 present the results of the Wilcoxon rank-sum
test (based on the median) and Welch t-test (based on the mean). Both tests point out a
significant difference between the two algorithms for all indicators. We can identify the best
algorithm by observing the boxplots in Fig. 3. On one hand, higher values of HV are the
best (Fig. 3a); on the other hand, lower values GD, IGD, and ED are the best (Figs. 3d, g,
and j). NSGA-III has the best performance for these four indicators.

Comparison of PFknown sets. Table 4 allows us to analyze the ability of the algorithms on
finding the best solutions. ER considers the performance on finding solutions in the PFtrue

and C compares the dominance between the PFknown sets. The PFtrue set is composed of
554 solutions from which 545, which is the whole PFknown set, were found by NSGA-III;
and 9 out of 904 were found by RS. This huge difference in finding solutions in the PFtrue

is demonstrated by ER in the fourth column of Table 4. Regarding the paired comparison
of the PFknown sets, C (fifth column in the table) indicates that the solutions of NSGA-III
dominate 99.0044% of the RS solutions, which corresponds to 895 of 904 solutions. On the
other hand, no solution of NSGA-III is dominated by solutions of RS. Hence, NSGA-III
found the best solutions.

Trade-off visualization. Figure 4 demonstrates the trade-off among the criteria for both
PFknown sets. At first, we can observe that the range of criteria values of solutions found
by NSGA-III are better than solutions of RS. Our problem is a minimization and most of
the NSGA-III solutions are in the lower parts of the figure. In both charts the conflicting
interdependence between coupling and cohesion is clear. In addition, as discussed in the
previous RQ, there is also some interdependence among the criteria of cohesion, feature
modularization and network overhead as one can observe in the blue lines of Fig. 4a.

Empir Software Eng (2022) 27: 51 Page 21 of 31 51

Fig. 3 Boxplots and QQPlots of the PFapprox sets

Empir Software Eng (2022) 27: 51Page 22 of 3151

Table 4 Error Ratio (ER) and Coverage (C) between PFknown sets

Algorithm #PFtrue #PFknown ER C

NSGA-III 554 545 1.63% 0.990044

RS 904 98.37% 0

6 Threats to Validity

In this section, we discuss the main threats to the validity of our study.

Internal Validity. The internal validity of this study is threatened by the evolutionary algo-
rithm adopted by toMicroservices and its parameter configuration. We adopted the
state-of-the-art evolutionary algorithm NSGA-III (Deb and Jain 2014) that has shown high
accuracy to solve many-objective problems in the SBSE field. The algorithm parameters
were set based on an existing work (Jin et al. 2019). Nonetheless, we acknowledge that the
use of other parameter values may lead to different results. Still, conducting experiments
with other algorithms and tuning parameters is an important next step, which is part of our
future work.

The second threat is related to the set of microservice candidate solutions generated by
NSGA-III. Due to the many-objective nature of NSGA-III, the solutions may converge to a
different set of local optimum, i.e., microservice candidates, in each run without finding the
global optimum. To mitigate this threat, we executed 30 independent runs, as recommended
in Colanzi et al. (2019), Colanzi et al. (2020), and Arcuri and Briand (2014), and used
performance indicators that analyze different solution sets, such as PFapprox and PFtrue.

The generated solutions can also be subject to bias regarding the manual definition of the
entry points for the feature mapping and the execution traces. The result is also dependent
of the legacy system at hand, since all execution traces are generated using given test cases.
To mitigate this threat in our study, the developer in charge of the microservice identifica-
tion has sufficient knowledge of the system under analysis, including test cases, execution
environment, and parameter settings. Thus, we believe that the test cases and defined entry

Fig. 4 Solutions’ trade-off among the five criteria of PFknown sets

Empir Software Eng (2022) 27: 51 Page 23 of 31 51

points for the feature mapping cover the maximum number of business capabilities and thus
can find suitable microservices.

Another limitation is the lack of an objective function to evaluate the database impact,
which we intend to address in future work. Despite this limitation, the network overhead
function – which measures the traffic of data between microservices – is able to partially
capture such kind of data coupling softening this threat.

External Validity. A threat to external validity is related to the used case study. The obtained
results cannot be generalized as our study is based on one industrial case study. Even though
this system has the typical characteristics of any legacy code and is a consolidated real-
world legacy system with more than 15 years of existence under the process of migration
to microservices. We focused on a single system to be able at making an in-depth, robust
analysis of the performance of our approach. Subsequently, we can perform such an analysis
also over other systems by extending our current implementation to generalize our findings
and improve our approach and its results.

7 RelatedWork

The problem of identifying microservice from legacy systems can be seen as a software
remodularization problem (Anquetil and Lethbridge 1999; Bavota et al. 2010). This prob-
lem has been widely investigated in the literature from different perspectives. For example,
as a sequence of refactoring operations (Zanetti et al. 2014), by using structural and non-
structural characteristics of the system under analysis (Jalali et al. 2018), including expert
knowledge in the process (Hall et al. 2018), and to organize feature of software product
lines (Nicolodi et al. 2020). A critical analysis about the use of traditional criteria o cou-
pling and cohesion for the remodularization is presented by Candela et al. (2016). Due the
complexity of this problem, search-based approaches have been applied with satisfactory
results (Mkaouer et al. 2015; Mahouachi 2018). Despite all these pieces of work, next we
focus on those ones in the scope of microservices.

A recent study mapped existing pieces of work focusing on migrating legacy systems to
microservices (Wolfart et al. 2021). The main result of this work is a roadmap process for
conducting the migration. Among the activities that should be performed for the migration,
the decomposition of the legacy system for identifying the microservices is acknowledged
as one of the most complex ones. Similarly, the study of Ponce et al. (2019) reports a
rapid review on 20 primary studies that performed the migration to microservices. These
authors classified approaches for the identification of microservices in three groups: (i)
model-driven, which rely on design elements as a source of information, such as business
objects, domain entities, functional and non-functional requirements, and data flow dia-
grams; (ii) static analysis, approaches based on the source code that uses the dependencies,
couplings (static or evolutionary), and cohesion between source code entities for identifying
the microservices; and (iii) dynamic analysis, approaches focusing on the analysis of the
system functionalities at runtime, mainly using execution traces as a source of information
to group source code entities that will originate microservices. Fritzsch et al. (2018) also
describe categories of approaches for the decomposition of legacy systems into microser-
vices. In addition to static, dynamic, and model-driven (named Meta-Data aided in this
work), they included the (iv) workload-data category, in which approaches focus on finding
suitable microservices cuts by measuring the application’s operational data. Fritzsch et al.
(2018) also highlight that finding an appropriate granularity for the microservices can be

Empir Software Eng (2022) 27: 51Page 24 of 3151

seen as the main challenge during the migration. Yet, they mention about a decomposition
around business capabilities, using bounded context (Lewis and Fowler 2014).

Some studies are devoted to investigating the identification of microservices in prac-
tice. In a survey with practitioners that migrated legacy systems to microservices, Fritzsch
et al. (2019) reported that usually the identification of microservices is based on func-
tional decomposition. Less frequently, Domain-Driven Design was also observed among
practitioners. Finally, some practitioners mentioned using non-systematic approaches. Sur-
prisingly, some survey participants mentioned that they preferred to rewrite the legacies
using current technologies, because of the absence of a suitable decomposition approach.
This reinforces the need for studies like ours presented in this paper. Another survey with
experts was conducted by Carvalho et al. (2019b). In this study, the authors investigated
the criteria used for identifying microservice in legacy systems. The result of their study
revealed that practitioners commonly consider at least four criteria simultaneously, which
characterizes the microservices identification as a many-objective problem.

In order to identify common activities performed during the migration to microservices,
Balalaie et al. (2018) reported a set of migration patterns. Among the patterns, there are two
related to the identification of microservices: (i) using a domain-driven design to identify
subdomains, which constitute a bounded context, of the business that the system is operating
in, similarly to what was pointed by Fritzsch et al. (2018); and (ii) identifying microservices
using data ownership, by finding different cohesive sets of data entities that can be grouped
with their business logic into a microservice. However, these authors make it clear that a
proper method for the identification depends on the context and characteristics of the legacy,
which they refer to situational method engineering (Henderson-Sellers et al. 2014).

To deal with the complexity of the identification of microservices, some approaches use
search-based software engineering (Colanzi et al. 2019). Existing search-based approaches
for microservice identification apply evolutionary algorithms, such as genetic algo-
rithms (Jin et al. 2018; Jin et al. 2019; Zhang et al. 2020), to optimize some source code
quality criteria extracted from execution traces, and thus, generate a set of microservice
candidates. These solutions commonly make use of one or two criteria (Mazlami et al.
2017; Jin et al. 2018; Jin et al. 2019; Zhang et al. 2020). The two most conventional cri-
teria adopted in the literature by automated approaches are coupling (Mazlami et al. 2017;
Jin et al. 2018; Jin et al. 2019; Zhang et al. 2020) and cohesion (Jin et al. 2018; Jin et al.
2019; Zhang et al. 2020). The approach proposed in (Zhang et al. 2020) also considers a
non-functional criterion as their search-based approach is developed to optimize the iden-
tification of microservices with high-cohesion-low-coupling and load balance of CPU and
memory consumption. In addition to the use of only a few criteria that does not entirely
represent the practical needs of microservices identification, the performance of existing
approaches is mostly evaluated on illustrative non-industrial systems.

To fill the gap existing in the literature and practice, toMicroservices uses five
relevant in practice and well-defined criteria, namely coupling, cohesion, feature modular-
ization, network overhead, and reuse (Carvalho et al. 2019b; Carvalho et al. 2019a) (see
criteria definition in Section 3.2). This implies that we turn the search-based microservice
identification problem into a many-objective problem. To the best of our knowledge, there
is no effort to solve such SBSE problems based on many objectives to formally represent
the several criteria involved in the microservice identification. This new perspective repre-
sents an important challenge in this field. Yet, a recent exploratory study with practitioners
has revealed that the efficiency of migrating legacy systems to microservice architectures
depends on several criteria beyond coupling and cohesion (Carvalho et al. 2019b; Carvalho

Empir Software Eng (2022) 27: 51 Page 25 of 31 51

et al. 2019a) e.g., the criterion network overhead is relevant given the architectural style of
distributed components. In case of important criteria that are not considered by an approach,
its solutions can hardly align with the desired benefits of microservices.

Another point in which our study is different from existing literature, is that work
has a comparison of performance, that is, how the criteria are properly optimized by
toMicroservices and random search. The performance comparison considers different
criteria and search-based algorithms commonly used. Thus, our work has a complementary
nature by conveying previous studies and further investigating additional criteria to better
satisfy business needs. Furthermore, other recent studies, such as (Ma et al. 2021; Gao et al.
2020; Lin et al. 2019), have employed optimization algorithms to deal with problems related
to microservice architectures, however their focus is not microservice identification as ours.

8 Conclusion

In this work, we quantitatively analyzed a many-objective optimization for the microser-
vice identification problem in a two-fold perspective: (i) the correlation among the objective
functions, and (ii) comparing the performance of NSGA-III against an RS. The experi-
mental results pointed out that the problem deserves to be tackled as a many-objective
problem because the criteria that are important to be considered from the developer’s point
of view are conflicting and interdependent. NSGA-III solved the referred problem more effi-
ciently than an RS achieving a greater diversity of non-dominated solutions with different
compromises among the objectives.

We now intend to improve our approach by investigating the application of crossover
operators. We also plan to improve the reuse metric as it was not so sensitive to quantify the
difference among the solutions regarding the solution’s reuse degree. In addition, we evalu-
ated an extractive approach for identifying microservices from the legacy system. However,
we also plan to evaluate our approach to deal with the proactive approach, where a soft-
ware system is designed from scratch as a set of microservices; and the reactive approach,
in which the microservices are used to evolve a legacy system.

Acknowledgements This study was partially funded by CNPq grants 151723/2020-6, 428994/2018-0,
434969/2018-4, 312149/2016-6, 309844/2018-5, 421306/2018-1, and 408356/2018-9 CAPES grants 175956
and 88887.473590/2020-00 FAPERJ grants 22520-7/2016, 010002285/2019, and PDR-10 Fellowship
202073/2020; FAPPR grants 51152 and 51435.

References

Anquetil N, Lethbridge TC (1999) Experiments with clustering as a software remodularization method. In:
6th working conference on reverse engineering. IEEE, pp 235–255

Arcuri A, Briand L (2014) A Hitchhiker’s guide to statistical tests for assessing randomized algorithms in
software engineering. Softw Test Verif Reliab 24(3):219–250

Assunção WKG, Colanzi TE, Carvalho L, Pereira JA, Garcia A, de Lima MJ, Lucena C (2021) A multi-
criteria strategy for redesigning legacy features as microservices: An industrial case study. In: 2021
IEEE International conference on software analysis, evolution and reengineering (SANER). pp 377–387.
https://doi.org/10.1109/SANER50967.2021.00042

Balalaie A, Heydarnoori A, Jamshidi P, Tamburri DA, Lynn T (2018) Microservices migration patterns.
Softw Pract Exp 48(11):2019–2042

Empir Software Eng (2022) 27: 51Page 26 of 3151

https://doi.org/10.1109/SANER50967.2021.00042

Bavota G, De Lucia A, Marcus A, Oliveto R (2010) Software re-modularization based on structural and
semantic metrics. In: 17th working conference on reverse engineering. pp 195–204. https://doi.org/
10.1109/WCRE.2010.29

Bergmann R, Ludbrook J, Spooren WPJM (2000) Different outcomes of the Wilcoxon-Mann-Whitney test
from different statistics packages. Am Stat 54(1):72–77

Candela I, Bavota G, Russo B, Oliveto R (2016) Using cohesion and coupling for software remodularization:
Is it enough? ACM Trans Softw Eng Methodol 25(3). https://doi.org/10.1145/2928268

Capilla R, Gallina B, Cetina C, Favaro J (2019) Opportunities for software reuse in an uncertain world: From
past to emerging trends. JSEP-ICSR’18-Special Issue 31(8):1–22. http://www.es.mdh.se/publications/
5550-

Carvalho L, Garcia A, Assunção WKG, Bonifácio R, Tizzei LP, Colanzi TE (2019a) Extraction of config-
urable and reusable microservices from legacy systems: An exploratory study. In: 23rd International
systems and software product line conference - Volume A, SPLC ’19. ACM, New York, pp 26-31

Carvalho L, Garcia A, Assunção WKG, de Mello R, de Lima MJ (2019b) Analysis of the criteria adopted in
industry to extract microservices. In: Joint 7th Intl. workshop on conducting empirical studies in industry
and 6th intl. workshop on software engineering research and industrial practice, CESSER-IP ’19. IEEE
Press, Piscataway, pp 22–29

Carvalho L, Garcia A, Colanzi TE, ao WKGA, Pereira JA, Fonseca B, Ribeiro M, de Lima MJ, Lucena
C (2020a) On the performance and adoption of search-based microservice identification with toMi-
croservices. In: IEEE international conference on software maintenance and evolution (ICSME). IEEE.
https://doi.org/10.1109/icsme46990.2020.00060

Carvalho L, Garcia A, Colanzi TE, Assunção WKG, Lima MJ, Fonseca B, Ribeiro MA, Lucena C (2020b)
Search-based many-criteria identification of microservices from legacy systems. In: Genetic and evolu-
tionary computation conference companion, GECCO ’20. ACM, New York, pp 305–306. https://doi.org/
10.1145/3377929.3390030

Chidamber SR, Kemerer CF (1994) A metrics suite for object oriented design. IEEE Trans Softw Eng
20(6):476–493

Cochrane J, Zeleny M (1973) Multiple criteria decision making. University of South Carolina Press,
Columbia

Coello CAC, Lamont GB, Van Veldhuizen DA et al (2007) Evolutionary algorithms for solving multi-
objective problem. Springer Science & Business Media, Berlin

Colanzi TE, Assunċão WKG, Farah PR, Vergilio SR, Guizzo G (2019) A review of ten years of the sym-
posium on search-based software engineering. In: Symposium on search-based software engineering
(SSBSE). pp. 42–57

Colanzi TE, Assunção WKG, Vergilio SR, Farah PR, Guizzo G (2020) The symposium on search-based
software engineering: Past, present and future. Inf Softw Technol 127:106372. https://doi.org/10.1016/
j.infsof.2020.106372

Curry DM, Dagli CH (2014) Computational complexity measures for many-objective optimization problems.
Procedia Comput Sci 36:185–191. https://doi.org/10.1016/j.procs.2014.09.077

Deb K, Jain H (2014) An evolutionary many-objective optimization algorithm using reference-point-based
nondominated sorting approach, part i: Solving problems with box constraints. IEEE Trans Evol Comput
18(4):577–601

Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: Nsga-ii.
IEEE Trans Evol Comput 6(2):182–197

Di Francesco P, Lago P, Malavolta I (2019) Architecting with microservices: A systematic mapping study. J
Syst Softw 150:77–97

Dragoni N, Giallorenzo S, Lafuente AL, Mazzara M, Montesi F, Mustafin R, Safina L (2017) Microservices:
yesterday, today, and tomorrow. Springer International Publishing, Cham

Durillo JJ, Nebro AJ (2011) jmetal: A java framework for multi-objective optimization. Adv Eng Softw
42(10):760–771

Escobar D, Cárdenas D, Amarillo R, Castro E, Garcés K, Parra C, Casallas R (2016) Towards the understand-
ing and evolution of monolithic applications as microservices. In: Latin American computing conference.
pp 1–11

Eski S, Buzluca F (2018) An automatic extraction approach: Transition to microservices architecture from
monolithic application. In: 19th international conference on agile software development: companion, XP
’18. pp 25:1–25:6

Fonseca CM, Paquete L, Lopez-Ibanez M (2006) An improved dimension-sweep algorithm for the hypervol-
ume indicator. In: IEEE international conference on evolutionary computation. pp 1157–1163

Fowler M (1999) Refactoring: improving the design of existing code. Addison-Wesley Longman Publishing
Co., Inc., Boston

Empir Software Eng (2022) 27: 51 Page 27 of 31 51

https://doi.org/10.1109/WCRE.2010.29
https://doi.org/10.1109/WCRE.2010.29
https://doi.org/10.1145/2928268
http://www.es.mdh.se/publications/5550-
http://www.es.mdh.se/publications/5550-
https://doi.org/10.1109/icsme46990.2020.00060
https://doi.org/10.1145/3377929.3390030
https://doi.org/10.1145/3377929.3390030
https://doi.org/10.1016/j.infsof.2020.106372
https://doi.org/10.1016/j.infsof.2020.106372
https://doi.org/10.1016/j.procs.2014.09.077

Francesco PD, Lago P, Malavolta I (2018) Migrating towards microservice architectures: An industrial
survey. In: International conference on software architecture (ICSA). pp 29:01–29:09

Fritzsch J, Bogner J, Zimmermann A, Wagner S (2018) From monolith to microservices: a classification
of refactoring approaches. In: International workshop on software engineering aspects of continuous
development and new paradigms of software production and deployment. Springer, pp 128–141

Fritzsch J, Bogner J, Zimmermann A, Wagner S (2019) From monolith to microservices: A classification of
refactoring approaches. In: Bruel JM, Mazzara M, Meyer B (eds) Software engineering aspects of con-
tinuous development and new paradigms of software production and deployment. Springer International
Publishing, Cham, pp 128–141

Gao M, Chen M, Liu A, Ip WH, Yung KL (2020) Optimization of microservice composition based on
artificial immune algorithm considering fuzziness and user preference. IEEE Access 8:26385–26404

Hall M, Walkinshaw N, McMinn P (2018) Effectively incorporating expert knowledge in automated software
remodularisation. IEEE Trans Softw Eng 44(7):613–630. https://doi.org/10.1109/TSE.2017.2786222

Harman M, Tratt L (2007) Pareto optimal search based refactoring at the design level. In: 9th annual
conference on genetic and evolutionary computation (GECCO). ACM, New York, pp 1106–1113

Henderson-Sellers B, Ralyté J, Ågerfalk PJ, Rossi M (2014) Situational method engineering. Springer,
Berlin. https://doi.org/10.1007/978-3-642-41467-1

Hinkle DE, Wiersma W, Jurs SG (2002) Applied statistics for the behavioral sciences, 5th edn. Cengage
Learning, Boston

Jalali NS, Izadkhah H, Lotfi S (2018) Multi-objective search-based software modularization: structural and
non-structural features. Soft Comput 23(21):11141–11165. https://doi.org/10.1007/s00500-018-3666-z

Jamil MA, Alhindi A, Arif M, Nour MK, Abubakar NSA, Aljabri TF (2019) Multiobjective evolution-
ary algorithms nsga-ii and nsga-iii for software product lines testing optimization. In: 2019 IEEE
6th international conference on engineering technologies and applied sciences (ICETAS). pp 1–5.
https://doi.org/10.1109/ICETAS48360.2019.9117500

Jin W, Liu T, Cai Y, Kazman R, Mo R, Zheng Q (2019) Service candidate identification from monolithic
systems based on execution traces. IEEE Trans Softw Eng: 1–1

Jin W, Liu T, Zheng Q, Cui D, Cai Y (2018) Functionality-oriented microservice extraction based on
execution trace clustering. In: International conference on web services (ICWS). IEEE, pp 211–218

Lewis J, Fowler M (2014) Microservices: a definition of this new architectural term. https://martinfowler.
com/articles/microservices.html. Online

Lin M, Xi J, Bai W, Wu J (2019) Ant colony algorithm for multi-objective optimization of container-based
microservice scheduling in cloud. IEEE Access 7:83088–83100

Luz W, Agilar E, de Oliveira MC, de Melo CER, Pinto G, Bonifácio R (2018) An experience report on the
adoption of microservices in three Brazilian government institutions. In: XXXII Brazilian symposium
on software engineering. ACM, New York, pp 32-41

Ma W, Wang R, Gu Y, Meng Q, Huang H, Deng S, Wu Y (2021) Multi-objective microservice deploy-
ment optimization via a knowledge-driven evolutionary algorithm. Complex Intell Syst 7:1153–1171.
https://doi.org/10.1007/s40747-020-00180-1

Mahouachi R (2018) Search-based cost-effective software remodularization. J Comput Sci Technol
33(6):1320–1336. https://doi.org/10.1007/s11390-018-1892-6

Mazlami G, Cito J, Leitner P (2017) Extraction of microservices from monolithic software architectures. In:
International conference on web services (ICWS), pp 524–531

Mitchell BS, Mancoridis S (2006) On the automatic modularization of software systems using the bunch
tool. IEEE Trans Softw Eng 32(3):193–208

Mkaouer MW, Kessentini M, Bechikh S, Deb K, Ó Cinnéide M (2014) High dimensional search-based
software engineering: Finding tradeoffs among 15 objectives for automating software refactoring using
nsga-iii. In: Proceedings of the 2014 annual conference on genetic and evolutionary computation,
GECCO ’14. ACM, New York, pp 1263–1270. https://doi.org/10.1145/2576768.2598366

Mkaouer W, Kessentini M, Shaout A, Koligheu P, Bechikh S, Deb K, Ouni A (2015) Many-
objective software remodularization using NSGA-III. ACM Trans Softw Eng Methodol 24(3). https://
doi.org/10.1145/2729974

Newman S (2015) Building microservices: designing fine-grained systems. O‘Reilly Media, Inc., Sebastopol
Nicolodi LB, Colanzi TE, Assunção WKG (2020) Architectural feature re-modularization for software

product line evolution. In: 14th Brazilian symposium on software components, architectures, and
reuse, SBCARS ’20. Association for Computing Machinery, New York, pp 31–40. https://doi.org/
10.1145/3425269.3425271

Palakonda V, Mallipeddi R (2020) An evolutionary algorithm for multi and many-objective optimiza-
tion with adaptive mating and environmental selection. IEEE Access 8:82781–82796. https://doi.org/
10.1109/ACCESS.2020.2991752

Empir Software Eng (2022) 27: 51Page 28 of 3151

https://doi.org/10.1109/TSE.2017.2786222
https://doi.org/10.1007/978-3-642-41467-1
https://doi.org/10.1007/s00500-018-3666-z
https://doi.org/10.1109/ICETAS48360.2019.9117500
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://doi.org/10.1007/s40747-020-00180-1
https://doi.org/10.1007/s11390-018-1892-6
https://doi.org/10.1145/2576768.2598366
https://doi.org/10.1145/2729974
https://doi.org/10.1145/2729974
https://doi.org/10.1145/3425269.3425271
https://doi.org/10.1145/3425269.3425271
https://doi.org/10.1109/ACCESS.2020.2991752
https://doi.org/10.1109/ACCESS.2020.2991752

Ponce F, Márquez G, Astudillo H (2019) Migrating from monolithic architecture to microservices: A rapid
review. In: 38th International conference of the chilean computer science society (SCCC). IEEE, pp 1–7

Radziukyniene I, Zilinskas A (2008) Evolutionary methods for multi-objective portfolio optimization. In:
World congress on engineering 2008, Vol II

Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika
52(3-4):591–611

Spearman C (1904) The proof and measurement of association between two things. Am J Psychol 15(1):72–
101

Van Veldhuizen DA (1999) Multiobjective evolutionary algorithms: classifications, analyses, and new inno-
vations. Tech. rep., Air Force Institute Of Technology, Wright-Patterson Air Force Base School of
Engineering

Vargha A, Delaney H (2000) A critique and improvement of the cl common language effect size statistics of
McGraw and Wong. J Educ Behav Stat 25(2):101–132

Welch BL (1947) The generalization of student’s problem when several different population variances are
involved. Biometrika 34(1/2):28–35

Wolfart D, Assunção WKG, da Silva IF, Domingos DCP, Schmeing E, Villaca GLD, Paza DDN (2021)
Modernizing legacy systems with microservices: A roadmap. In: Evaluation and assessment in software
engineering, EASE 2021. ACM, New York, pp 149-159. https://doi.org/10.1145/3463274.3463334

Yen GG, He Z (2013) Performance metric ensemble for multiobjective evolutionary algorithms. IEEE Trans
Evol Comput 18(1):131–144

Zanetti MS, Tessone CJ, Scholtes I, Schweitzer F (2014) Automated software remodularization based
on move refactoring: A complex systems approach. In: 13th international conference on modularity,
MODULARITY ’14. ACM, New York, pp 73-84. https://doi.org/10.1145/2577080.2577097

Zhang Y, Liu B, Dai L, Chen K, Cao X (2020) Automated microservice identification in legacy systems with
functional and non-functional metrics. In: 2020 IEEE international conference on software architecture
(ICSA). pp. 135–145

Zitzler E, Laumanns M, Thiele L et al (2001) Spea2: Improving the strength pareto evolutionary algorithm.
In: Evolutionary methods for design, optimization and control with applications to industrial problems
(EUROGEN), International Center for Numerical Methods in Engineering. pp 95–100

Zitzler E, Thiele L (1998) Multiobjective optimization using evolutionary algorithms – a comparative case
study. In: Eiben AE, Bäck T, Schoenauer M, Schwefel HP (eds) Parallel problem solving from nature –
PPSN V. Springer, Berlin, pp 292–301

Zitzler E, Thiele L, Laumanns M, Fonseca CM, da Fonseca VG (2003) Performance assessment of
multiobjective optimizers: An analysis and review. IEEE Trans Evol Comput 7:117–132

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Wesley K. G. Assunção is currently a Post-Doctoral researcher at
Pontifical Catholic University of Rio de Janeiro (PUC-Rio) - Brazil,
University Assistant at Johannes Kepler University Linz (JKU) - Aus-
tria, and visiting professor at the Graduate Program in Computer
Science at Western Paraná State University (Unioeste) - Brazil. Wes-
ley received his M.Sc. in Informatics (2012) and Ph.D. in Computer
Science (2017) both from Federal University of Paraná (UFPR) -
Brazil. His areas of interest are Software Modernization, Variabil-
ity Management, Collaborative Engineering of Complex Systems,
Software Testing, and Search Based Software Engineering. He pub-
lished research papers, in collaboration with international researchers,
in conferences like ICSME, SANER, MSR, EASE, SPLC, SSBSE,
GECCO, to cite some, as well as in journals such as EMSE, IST,
and JSS. Wesley has also been serving as reviewers for many con-
ferences and journal, and as organizer of conference, symposiums,
workshops, competitions, and meetings. Further information: https://
wesleyklewerton.github.io/

Empir Software Eng (2022) 27: 51 Page 29 of 31 51

https://doi.org/10.1145/3463274.3463334
https://doi.org/10.1145/2577080.2577097
https://wesleyklewerton.github.io/
https://wesleyklewerton.github.io/

Thelma Elita Colanzi is currently a post-doctoral researcher at PUC-
Rio, Brazil. She received the DS degree in 2014 from Federal
University of Paraná (UFPR), Brazil. She has a master’s degree in
Computer Science and Computational Math from University of São
Paulo (ICMC/USP), Brazil. She is an associate professor at State Uni-
versity of Maringá since 2006. Her main area of interest is Software
Engineering and her current research project focuses on combining
search-based software engineering techniques with software archi-
tecture, and system modernization with microservices. Thelma has
regularly published scientific papers in premier conferences and jour-
nals. She has served as an associate editor of JSERD and also as
a reviewer to premier journals, such as JSS, TSE and IST. She has
participated in conference organizations and in numerous program
committees, which are relevant to her research area.

Luiz Carvalho received his master’s degree in informatics from the
Pontifical Catholic University of Rio de Janeiro. He is currently a
PhD student in the Interdisciplinary Centre for Security, Reliabil-
ity and Trust at the University of Luxembourg. His main research
interests focus on software testing and formal methods. He also has
experience conducting research related to microservices, refactoring,
configurable systems, and search-based software engineering.

Alessandro Garcia holds a Ph.D. in Computer Science from the Pon-
tifical Catholic University of Rio de Janeiro (PUC-Rio, 2004). He is
currently an Associate Professor at the Department of Informatics at
PUC-Rio. His research interests include software architecture, soft-
ware decay, software refactoring, program comprehension, software
modularity, software robustness, code review, software measurement,
microservices and technical debt. He has served in recent years on
the Editorial Board of three of the leading journals in his field: IEEE
Transactions on Software Engineering, Empirical Software Engineer-
ing Journal, and Journal of Systems and Software. He is currently part
of the steering committee of ESEC/FSE (ACM Joint European Soft-
ware Engineering Conference and Symposium on the Foundations of
Software Engineering). He is currently a CNPq PQ Scholar (level 1B)
and holds a Scientist of our State award (FAPERJ funding agency).

Empir Software Eng (2022) 27: 51Page 30 of 3151

JulianaAlves Pereira is currently a Post-Doctoral researcher at PUC-
Rio (Brazil). She was a researcher at the University of Rennes I (Inri-
a/Irisa, France). Juliana received her Ph.D. degree with distinction
in 2018 from the University of Magdeburg, Germany. Her research
thrives to automate software engineering by combining methods from
software analysis, machine learning, and meta-heuristic optimization.
In recent years, she has published and revised research papers in pre-
mier software engineering conferences, symposiums, and journals.
She is regularly presenting courses, tutorials, tools, and scientific
results at national and international venues.

Maria Julia Lima is currently a project manager at Tecgraf/PUC-
Rio Institute. She has been conducting, for almost 20 years, several
R&D projects with partners from industry and academia. In one of
her projects, she currently leads the evolution of a legacy platform,
adopted by different systems, to a microservice architecture. Maria
Julia received her doctoral degree in 2002 from PUC-Rio. Her main
areas of interest are distributed computing, software engineering,
cloud native architectures, and scalability.

Carlos Lucena received the B.Sc. degree from the Pontifical Catholic
University of Rio de Janeiro (PUC-Rio), Brazil, in 1965, the M.Math.
degree in computer science from the University of Waterloo, Canada,
in 1969, and the Ph.D. degree in computer science from the Uni-
versity of California at Los Angeles, in 1974. He has been a Full
Professor with the Departamento de Informatica, PUC-Rio, since
1982. He is a member of the IEEE Computer Society and various
other scientific organizations. He received many international awards,
such as the ACM Fellow (in 2013) for contributions in software engi-
neering and multiagent systems, and for computer science leadership
in Brazil.

Empir Software Eng (2022) 27: 51 Page 31 of 31 51

	Analysis of many-objective optimization for identifying microservices
	Abstract
	Introduction
	Background
	Microservice architectures.
	Migration to microservice architectures.
	Microservice identification in legacy code.
	Multi- and Many-Objective Optimization.
	Example of Many-Objective Analysis

	Many-Objective Identification of Microservices
	Representation
	Objective Functions
	Genetic Operators
	Previous Findings

	Study Design
	Industrial Subject System
	System under analysis.
	Information use.

	Implementation Aspects and Parameter Settings
	Settings.
	Solution sets.
	Feature label in the vertices.

	Correlation Test
	Performance Indicators
	Statistical Analysis

	Results and Analysis
	RQ1 - Objective Functions Correlation
	Analysis.
	High correlation.
	Low correlation.
	Many-objective optimization is necessary.

	RQ2 - Quantitative comparison between NSGA-III and RS
	Comparison of PFapprox sets.
	Comparison of PFknown sets.
	Trade-off visualization.

	Threats to Validity
	Internal Validity.
	External Validity.

	Related Work
	Conclusion
	References

