Empirical Software Engineering (2022) 27: 8
https://doi.org/10.1007/510664-021-10034-0

®

Check for
updates

Mining and relating design contexts and design
patterns from Stack Overflow

Laksri Wijerathna' © . Aldeida Aleti' - Tingting Bi' - Antony Tang?3

Accepted: 4 August 2021 / Published online: 23 October 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract

Design contexts are factors that shape a design, and whilst they are recognised by develop-
ers, they are typically tacit. Unlike software requirements, software engineering researchers
have paid little attention to design contexts and there is little or no systematic research on
how design contexts influence design. In this paper, we conduct an empirical investigation
using Stack Overflow with the aim of mining design context knowledge that is related to
design patterns. We chose to study design patterns because they are clear and identifiable.
In this work, we develop a new taxonomy of design context terms related to design patterns.
We introduce a new automated mining approach, DPC Miner, for mining design context
knowledge from Stack Overflow. Finally, we analyse the Stack Overflow posts and present
how design context impacts decisions about design patterns in practice.

Keywords Design context - Design pattern - Collective knowledge mining -
Stack overflow - Empirical analysis

Communicated by: Shaowei Wang, Tse-Hsun (Peter) Chen, Sebastian Baltes, Ivano Malavolta,
Christoph Treude, and Alexander Serebrenik

This article belongs to the Topical Collection: Collective Knowledge in Software Engineering

P4 Laksri Wijerathna
laksri.wijerathna@monash.edu

Aldeida Aleti
aldeida.aleti@monash.edu

Tingting Bi
Tingting.Bi@monash.edu

Antony Tang

atang @swin.edu.au

Faculty of Information Technology, Monash University, Melbourne, Australia
Vrije Universiteit, Amsterdam, The Netherlands

Swinburne University of Technology, Melbourne, Australia

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-021-10034-0&domain=pdf
http://orcid.org/0000-0001-5681-2241
mailto: laksri.wijerathna@monash.edu
mailto: aldeida.aleti@monash.edu
mailto: Tingting.Bi@monash.edu
mailto: atang@swin.edu.au

8 Page2of53 Empir Software Eng (2022) 27: 8

1 Introduction

Software design decisions, and in particular the decisions regarding design patterns can be
made under different circumstances. These circumstances are known as design contexts.
Design Context (DC) can be defined as “a representation of the external relevant informa-
tion describing a situation that decision-makers are interested in to have access to, before a
decision or during a decision process” (Carlson et al. 2016). The most relevant information
is often not explicitly documented, and is in the form of implicit requirements and envi-
ronmental factors (Tang et al. 2008). Although design context has a crucial role in shaping
design decisions, our understanding of it is very limited. This is because, until now, there
are very few studies on design contexts, and those that exist rely on case studies, inter-
views, and workgroups as research methods, which are limited in scope and can only cover
a small range of contextual factors. With the very large number of contextual factors and
combinations, (Dyba et al. 2012), the research to date has only scratched the surface of
this very important area. Therefore, to cover the large combination of design context and
related knowledge, a more diversified and large knowledge source would be beneficial to
both knowledge expansion and future research.

Design patterns (DPs) are solutions to reoccurring problems in software design that have
been proven to work well, and are often used by software developers (Washizaki et al.
2020; Riehle 2011). In this paper, we use the terminology DP to refer to a broader category
of patterns that provide reusable solutions in the software design phase. As an example, a
simple object-oriented pattern like Singleton and a general scope architecture pattern like
Broker are both referred to as DP. There are many design patterns that programmers and
developers have developed over the years. These design patterns serve different purposes
such as providing better program structures, division of responsibilities in the structure of
a system, or regulating communications between threads and processes. We broadly group
them into three categories: programming, communication and architecture-related design
patterns. Programming design patterns deal with object creation, such as abstract factory
and builder, object-oriented structures, such as adaptor and bridge, and software behaviours,
such as iterator and observer. Design patterns that operate at the architecture level are con-
cerned with the structure of the software and how the different architectural elements are
grouped together. Examples of such patterns are the client-server pattern and SOA. Finally,
the communication-oriented design patterns deal with networking, communication and con-
currency issues. Examples of such patterns are connection pooling and publish-subscribe
pattern. While design patterns are well known and they are often accompanied by certain
design guidelines, there is little knowledge on how design patterns are used in certain con-
texts. In discussion forums such as Stack Overflow, developers often asked if a certain
design pattern can be used. The dialogue often comes to “it depends”, in which developers
clarify the environments of the application before deciding how to use the design pattern.
The circumstances that underpin the applicability of a design pattern is its design contexts.

Applying a design pattern to solve a particular design problem requires some experience
with knowing when and how to use design patterns. The effectiveness of a design pattern
depends on many contextual factors, for which we do not have a comprehensive and struc-
tured knowledge repository that can help with this process. Instead, software developers often
rely on community-based question-answer sites and online forums to discuss their design-
related concerns. Stack Overflow is one of the most popular platforms where software develop-
ers have posted more than 21 million questions and 31 million answers so far, many of which
are related to design patterns. This information repository is growing fast, and contains
valuable knowledge about design patterns and their context, which is yet to be mined.

@ Springer

Empir Software Eng (2022) 27: 8 Page3of53 8

Previous studies have realised the great potential of Stack Overflow by successfully
mining architecture-related knowledge. One such work is on the effective mining of archi-
tecture smells (Tian et al. 2019). The study uses a Grounded Theory method to analyse
Stack Overflow posts and discover why architecture smells happen, the approaches and tools
that developers use for detecting and refactoring architecture smells, the quality attributes
affected, and difficulties in detecting and refactoring architecture smells. Soliman et al.
(2016) extracts Stack Overflow knowledge related to architecture decisions by classifying
the types of architecture-relevant posts in Stack Overflow. The study presents an analysis
of the terms in Stack Overflow posts that distinguish architecture-relevant posts from pro-
gramming posts. For a comprehensive overview of approaches that mine Stack Overflow
we refer the reader to the survey by Ahmad et al. (2018).

The closest work to our study is the preliminary analysis of how developers discuss archi-
tecture patterns, quality attributes and design context in Stack Overflow (Bi et al. 2018).
The study reports that the most frequently asked design question is of the type “should I use
this architecture pattern in this application?”, which indicates that context is a notable con-
sideration in Stack Overflow posts. The authors argue that “developers often need to know
certain information when designing with architecture patterns, such as the relationships
between quality attributes and architecture patterns, characteristics and potential issues of
using a pattern”. These findings inspired our study, which is focused on discovering new
design knowledge from empirical data that is regarded as important by developers when
considering design patterns, with particular design contexts.

In this paper, we perform an empirical analysis of Stack Overflow posts to discover the
contextual factors that influence the choice of design patterns. We consider design patterns
at all three levels: programming, communication, and architecture. To deal with a large
amount of information in Stack Overflow, the majority of which may not contain design
context-related knowledge, we develop an automated mining approach that extracts design
context-related posts. Since the literature has no consolidated taxonomy for design con-
text required for labelling and analysing the posts, we develop a new DPC (Design Pattern
Context) taxonomy. We employ a statistical stopping criterion to ensure that the taxon-
omy covers all relevant terms within a confidence interval. Finally, we label and analyse
1,500 Stack Overflow posts and discover how design context is considered in practice when
deciding on a design pattern. In summary, this paper makes the following contributions:

— We introduce a consolidated taxonomy that covers context terms that are relevant to
design patterns.

— We develop an automated mining approach that can successfully mine design context
knowledge from Stack Overflow. The mining approach has an accuracy of 0.871, pre-
cision of 0.815, recall of 0.88, and Area Under the Receiver Operating Characteristic
(ROC) Curve of 0.87.

— We present an analysis of how design contexts is discussed in relation to the design
pattern decisions in practice.

2 Background
2.1 Design Patterns
A software design pattern is a solution to solving a problem that occurs over and over

again (Gamma et al. 1995). Since its inception in the early 90’s, as documented in (Gamma

@ Springer

8 Page4of53 Empir Software Eng (2022) 27: 8

et al. 1995; Buschmann and Henney 1993), the general concept of design pattern (DP) has
been used in software design at different levels of design abstraction. At the programming
level, patterns have been used to address object creation (e.g. abstract factory and builder),
object-oriented structures (e.g. adaptor, bridge, MVC), software behaviour (e.g. Iterator,
Observer). There are also design patterns that address software structure design. That is,
they are solutions to structure software by their architectural elements (Bass et al. 2012).
Examples of design patterns include layered pattern, client-server pattern, multi-tier pat-
tern, and SOA. There are also design patterns that address networking, communication and
concurrency issues (Schmidt et al. 2013). Examples are connection pooling and publish-
subscribe patterns. Different design patterns have been created for specific design issues at
different levels of design abstraction such as architecture design, programming design, and
communication design.

2.2 Design Contexts

In addition to requirements, many environmental factors influence software design but they
are not so well defined. We call these factors design contexts. Software design is very much
context dependent. Consider the difference between a bank and a travel agency. The design
contexts can dictate what kind of system each business would end up with and that could be
vastly different. A bank would have to satisfy design contexts such as financial institution
regulations, IT standards, and security guidelines. These contexts could guide an architect to
end up designing a multi-tier SOA architecture. Whereas a travel agency may have limited
budget and IT expertise that would likely drive it to acquire a software package. Even though
design contexts are forces that influence design decisions, they are not stated explicitly and
are often tacit.

Design context (DC) is an intuitive concept and it is very hard to define due to its highly
dynamic nature (Chattopadhyay et al. 2018). Design contexts can be seen as “conditions
that influence design decisions but they are not specified explicitly as requirements” (Tang
et al. 2008). Harper and Zheng (2015) suggest that design contexts are forces (internal
and external) that influence stakeholders’ concerns . Dyba et al. (2012) argue that technol-
ogy selection can be influenced by different contexts or environmental factors. Power and
Wirfs-Brock found that sometimes design decisions are made in a narrow context of feature
delivery, ignoring long-term issues that may affect a design. They also found that geo-
graphic distributions of software developers and trust relationships are factors that influence
architecture decisions (Power and Wirfs-Brock 2018). Kitchenham et al. (2002) suggested
to ”specify as much of the industrial context as possible”.

There are some works that categorise design contexts. Bedjeti et al. (2017) identified
four context categories of the viewpoint (i.e., platform context, user context, application
context, and organizational context) . Petersen and Wohlin (2009) provided a checklist for
documenting design contexts from six perspectives: product, processes, practices and tech-
niques, people, organization, and market . Carlson et al. developed a context model through
a workshop for architectural decision making. The main categories of the context model
are organization, product, stakeholder, development method and technology, market and
business (Carlson et al. 2016). Groher and Weinreich studied environmental factors that
influence decision making. They suggested eight categories: Company Size, Business Fac-
tors, Organizational Factors, Technical Factors, Cultural Factors, Individual Factors, Project
Factors, and Decision Scope (Groher and Weinreich 2015). Bi et al. extracted posts from
Stack Overflow to investigate design contexts, which were categorized into application
context, platform context and organizational context (Bi et al. 2018).

@ Springer

Empir Software Eng (2022) 27: 8 Page50f53 8

Dyba et al. found interrelated contexts such as geographic location, human factors, cul-
tures that influence technology decisions (Dyba et al. 2012). They classify contexts into
omnibus contexts and discrete contexts. Omnibus contexts specify the phenomenon (what),
subjects (who), location (where), time (when), and rationale (why). Discrete contexts have
three classes: technical, social, and environmental. They further argue that there are “infi-
nite number of contextual factors and combinations to consider” and as such ”do not expect
a single, precise, technical definition of context in SE”.

Although design contexts are important in shaping design decisions, there are only lim-
ited empirical studies on what they are and even fewer studies on how they shape design
decisions. The empirical works that are cited mostly rely on case studies, interviews, and
workgroups as research methods. With the “infinite number of contextual factors and com-
binations” (Dyba et al. 2012), research in this area is scarcely enough. We explore design
contexts in relation to design patterns for a number of reasons. First, there is a large amount
of empirical data in Stack Overflow that can tell us what design contexts are considered by
developers when they are dealing with design patterns. Second, design patterns are well-
defined concepts in the software community and it is an atomic entity that is easier to relate
with design contexts than less well-defined entities such as an application system. Third,
we can use machine learning methods to mine large amount of data from Stack Overflow to
produce attainable results that relate these two subjects.

2.3 Mining Architecture Information from Discussion Forums

There are several work done in architecture-related information extraction from discus-
sion forums. Velasco-Elizondo et al. applied information extraction techniques (i.e., entities
extraction) and knowledge representation (i.e., ontology) based approach to automatically
analyse architecture patterns in terms of quality attributes (e.g., Performance) (Velasco-
Elizondo et al. 2016). Specifically, the approach uses an ontology that contains two
sub-types of ontologies. One is English grammar-based ontology, and the other is perfor-
mance ontology that defines performance-specific concepts (e.g., throughput). To identify
the relationships between architecture patterns and quality attributes, from architecture pat-
tern descriptions or specifications, they used information extraction techniques (i.e., entity
extraction) and an ontology. The experiment results show that the approach helps inexperi-
enced architects select architecture patterns by knowing whether specific quality attributes
are promoted or inhibited.

Mirakhorli et al. compared six classification algorithms (SVM, C45, Bagging, SLIPPER,
Bayesian logistic regression, AdaBoost) to semi-automatically identify architecture tactics
from source code (Mirakhorli and Cleland-Huang 2016). In another work, (Mirakhorli et al.
2012), Mirakhorli et al. applied classification techniques and information retrieval to iden-
tify architecture tactic-related classes in source code. This approach can be used to construct
traceability links between source code and architectural tactics automatically. In addition,
their approach helps minimise the human efforts for building traceability that can be used
to support maintenance activities and prevent architectural erosion.

Casamayor et al. (2012) proposed an approach that applies NLP techniques and the
K-means algorithm to categorise candidate responsibilities into groups. The input of this
approach is requirement documents, and then the approach applied the POS tagging tech-
nique to detect the actions and tasks that the system needs. The authors then applied
K-means to group similar responsibilities into architectural components. The results show
that grouped architectural components by using this approach correspond to the expected
ones made by experts. Gokyer et al. (2008) applied NLP and machine learning techniques in

@ Springer

8 Page 6 0f 53 Empir Software Eng (2022) 27: 8

requirements documents to classify related NFRs into architectural concerns. This approach
can guide architects in linking architectural concerns from the problem domain to the
running components and connectors of the solution domain. Zhang et al. (2006) utilised
NLP techniques (e.g., POS tagging) and ontology-based analysis in architecture documents
and source code to identify potential components. This approach can mine architecture
knowledge (e.g., data and control communications between components and implemented
design patterns), which can assist the maintainers to comprehend the system architecture by
identifying components and studying their properties.

2.4 Machine Learning Approaches for Mining Software Engineering Knowledge

There are several machine learning based approaches adopted in mining software engineer-
ing (SE) related knowledge from various data sources, such as software repositories and
discussion forums. For information retrieval, various Natural Language Processing (NLP)
based Language Models (LM) are used. These LMs can predict the probability of words
by analysing the sequence of linguistic units such as words, sentences, or documents in
data. Primarily, there are two types of language models: 1) Statistical language models and
2) Neural Language Model. Statistical Language Models estimate a probability distribu-
tion while Neural Language Model learns a distributed representation for given tokens(i.e.,
words, sentences) of input data.

Statistical language models (SLM) are capable of determining the probabilistic sequence
of words (Goodman 2001) or a given tokens of language depending on the application.
These language models can be in the form of uni-gram, n-gram, bidirectional, exponential,
and adaptive models (Rosenfeld 2000). Uni-gram is the simplest form of the language model
and evaluates each word independently without considering the context in the probabilistic
calculation. The n-gram approach can create a probability distribution for a sequence of n,
where n can be any number (Song and Croft 1999). The goal of a trained language model is
to assign a low probability to less meaningful words while assigning a higher probability to
more human-friendly words, after learning the joint probability functions from sequences
of words. Variations of SLM approaches are used in SE-related knowledge mining applica-
tions, such as making programming language code suggestions (Hindle et al. 2016), defect
code detection (Choi et al. 2011), and source code repository mining (Allamanis and Sutton
2013b). However, these SLMs suffer from the “curse of dimensionality” due to the massive
scale of possible sequences of words in a language (Bengio et al. 2003).

Neural Language Models (NLM) are designed to overcome the “curse of dimensionality”
problem by using a distributed representation of words (Bengio et al. 2003). These models
learn the distributional representation of words and represent the words as a non-linear
combination of weights, thus achieves the dimensionality reduction. Therefore, NLMs are
more computationally feasible in larger datasets compared to SLM (Mikolov et al. 2013a).
NLMs are used in many software engineering related knowledge mining approaches, such
as predicting the programming language of questions from Stack Overflow (Alreshedy et al.
2018), summarise answers for developers questions (Xu et al. 2017), semantically related
question identification (Xu et al. 2016; Zhang et al. 2017), design pattern prediction (Liu
et al. 2020).

Further, there are non-statistical information retrieval approaches like Vector Space
Model (VSM) and latent Semantic Indexing (LSI) (Thomas 2011). Initially, VSM used for
automatic document indexing (Salton et al. 1975) and later expanded to text classification
and text mining. VSM creates a unique set of words given a document and maps each word
into a numeric value. This numerical value is used as a weight to indicate the overall impact

@ Springer

Empir Software Eng (2022) 27: 8 Page70of53 8

of the particular word in training. VSM uses different weighting techniques such as Term
Frequency and Term Document Frequency (Ali et al. 2018). VSM-based approaches are
used in classifying GitHub repositories (Cai et al. 2016) and for software design pattern clas-
sification (Hussain et al. 2017). LST also uses the underlying latent semantic structure of the
data for document indexing as VSM. LSI generates a co-occurrence term matrix but uses a
Singular Value Decomposition(SVD) to reduce the co-occurrence matrix and eliminate the
noise in the document by retaining the latent semantics of the document (Deerwester et al.
1990). LSI learns latent topics by matrix decomposition. LSI-based approaches are used in
concept extraction from source code (Marcus et al. 2004; Marcus et al. 2005; Poshyvanyk
et al. 2006), understanding conceptual relationships between source code entities (Chen
et al. 2012), and software evolution change impact analysis (Borg et al. 2017).

Latent Dirichlet Allocation (LDA) is a generative probabilistic model that uses the hier-
archical Bayesian model (Blei et al. 2003). Given a set of documents, LDA uses the word
distribution in the documents and represents the documents as a random mixture of latent
topics. LDA is often used in tasks like classification, document summarising, and similar
document identification. The LDA-based approaches are used in software artifacts mining,
such as automatically categorising software systems in open source repositories (Tian et al.
2009) and archives (Kawaguchi et al. 2003). Further, in mining software concepts from
source code (Linstead et al. 2007a; Linstead et al. 2007b; Lukins et al. 2008), explaining
software defects (Chen et al. 2012), finding main discussion topics in developer discus-
sions (Barua et al. 2014) and mining source code repositories (Allamanis and Sutton 2013a).
The drawback of LDA is that it does not work well with short texts (Zhang et al. 2017).

While several machine learning models are used for SE-related tasks, there are no
automated mining approaches aimed at extracting design context knowledge. To mine
domain-specific knowledge such as design context from a crowd-sourced repository like
Stack Overflow, we require a machine learning approach that is effective with short text.
Therefore, in this paper, we implement a continuous skip-gram model-based Representa-
tion Learning (RL) model, enhanced with collocations to learns high-quality semantic and
syntactic word embedding (Mikolov et al. 2013a) for design pattern context.

3 Motivation and Research Questions

As discussed in Section 2.2, software design is very much context dependent and design
context plays an important part in shaping design decisions. As such, we conjecture that
using design patterns is dependent on design contexts, except we do not know what design
contexts influence which design pattern. While there is some existing work in identifying
and modelling context elements of a software system (Bedjeti et al. 2017) and on under-
standing design context concerning design decisions, such as architecture patterns (Bi et al.
2018), there are no previous studies that provides a comprehensive taxonomy of design
pattern contexts based on empirical data. The research questions we aim to answer in this
paper are:

RQ1. What contextual factors that are relevant to practitioners when considering a
design pattern? Usually, design context factors are not specified explicitly as require-
ments, thus they remain tacit. Further, due to the scarcity of empirical evidence and an
infinite number of contextual factors and combinations, most of the contextual factors and
their influence in design patterns are not sufficiently documented or communicated. There-
fore, the contextual factors can be overlooked or ignored, and practitioners might miss

@ Springer

8 Page 80f53 Empir Software Eng (2022) 27: 8

essential knowledge that might be leading to a particular design pattern(s) selection. How-
ever, if such knowledge is classified and readily available, the aforementioned issue can
be avoided. In this work, we explore such knowledge through an empirical analysis, and
provide an overview of the relation of design context on design patterns.

Exploring and identifying design contextual knowledge from knowledge repository
would be a nearly impossible task without a proper classification mechanism. We found
no readily available taxonomy with respect to design context and design patterns. On the
contrary, from several literature we found the traces of knowledge which could be formu-
lated into an initial DPC taxonomy. We generated an initial taxonomy by analysing several
literature sources. The use of this taxonomy is to get an overall structure in knowledge
exploration. Along the process we refined DPC taxonomy, which allow us to make more
reliable knowledge exploration with a reliable set of labels.

RQ2. How can we automatically mine design context knowledge related to design pat-
terns? Existing research on design context mostly relies on case studies, interviews, and
workgroups as research methods. While these existing studies helped us in getting initial
insights about design context, these research methods are confined by the number of par-
ticipants/cases that can be part of the study at a given time frame, hence it is possible that
they may miss important contextual factors. The crowd-sourced Q&A sites like Stack Over-
flow provide a tremendous amount of information, which allows us to mine an extensive
amount of knowledge. Software engineers frequently share the problems they encountered
in designing, developing, and testing software solutions with eminent background informa-
tion. Further, there are a lot of new post creations on a daily basis in the Stack Overflow
hence, it provides a tremendous growing knowledge structure that the future researchers can
use to update/expand the knowledge curation.

For an enormous crowd-sourced knowledge repository like Stack Overflow, the man-
ual mining process would be a labour-intensive process and practically impossible on a
large scale. On the contrary, to extract knowledge an automated and reliable mining method
would have many merits. To address this concern, we develop a Design Pattern Context
(DPC) Miner, which is an automated approach for mining and classifying posts that contain
design context knowledge related to design patterns.

RQ3. What Design Context terms are discussed in relation to Design Patterns? Design
patterns are used under different constraints and opportunities, which form the context of
where a particular DP is or isn’t effective. As an example, in a scenario where a devel-
oper is building a web application, the design pattern which is selected would be different
depending on whether the application is an enterprise system or a mobile app. There is no
comprehensive knowledge on what contexts are discussed with DPs. Our research goal is to
gather this knowledge systematically from empirical data.

4 Methodology

Context is hard to study due to the methodological and theoretical problems that can
arise due to study-to-study variations in the research finding (Dyba et al. 2005). Empiri-
cal research methods help identify universal relationships that are independent from work
and process settings (Dyba et al. 2005). A possible way of doing empirical research is to
“collect qualitative data that illuminate context effects and interactions ... that can aid in
making inferences about the situation” (Dyba et al. 2012). Using an empirical method, we

@ Springer

Empir Software Eng (2022) 27: 8 Page9of53 8

collect qualitative data from Stack Overflow to help us identify the relationship between
design context and design patterns. An empirical methods allows us to “measure multi-
ple dependent variables that can uncover situational context when used in conjunction with
one another or explain the gap in meaning” (Dyba et al. 2012). We analyse the relation-
ship between design context and design patterns, which helps us reflect on what context is,
and what contexts are discussed in design decisions, and in particular, the choice of design
patterns.

As shown in Fig. 1, Step 1 of our methodology is the set-up. In this step, we initially
explore the DC and DP (explained in Section 4.1.1) to helps us to create an initial set of
keywords, which forms the preliminary taxonomy. The initial exploration of DP and DC is
used also to identify a set of design patterns that helps us filter the Stack Overflow posts
(Section 4.1.2).

Step 2 is the Design Pattern Context (DPC) Taxonomy generation. From the list of key-
words identified during Step 1.2, we create an initial keyword-based taxonomy (Step 2.1),
described in Section 4.3.1. This taxonomy is created from keywords found in the initial
exploration of DP and DC (Step 1.1), and may not be representative of the context terms
discussed by software developers. Hence, we extract and label (Step 2.2) Stack Overflow
posts to evolve (Step 2.3) and consolidate this initial taxonomy (Step 2.4). Data labelling
happens in several stages (Step 2.2, 3.1, and 4.2), described in Section 4.2. Section 4.3.2

Step 1: Set-up Step 3: DPC Miner (RQ2)
1.1 Initial Exploration
of DPC and DPs

Step 2: DPC Taxonomy (RQ1)

stackoverflow j 3.1 Data Labelling 2 H 3.2 Data Preprocessing
| 4‘
Y

1.3 Data Preparation
3.4 Collocation Generation
A,
3.3 Supervised Learning

A,

2.1 Formulation of an initial ‘ wwef DPC Miner

Refined SO
Posts

A

3.5 RL Model training and
Feature Extraction

>‘ keyword-based taxonomy

Step 4: Empirical Analysis (RQ3)

2.2 Data Labelling 1

4.1 SO Post Mining
Y No No X
New Stopping
concept criterion

4.2 Data Labelling 3
Yes Yes DPC
+ + Taxonomy
2.3 Taxonomy 2.4 Taxonomy DPC-DP
Update Consolidation Relationship

Fig.1 Overview of the methodology

)\

4.3 Quantitative Analysis

@ Springer

8 Page 10 0f 53 Empir Software Eng (2022) 27: 8

explains how we update the taxonomy, the stopping criterion for deciding when to consider
the context terms complete, and the taxonomy consolidations step. The output of this step
is a final taxonomy of design context terms considered in relation to design patterns, which
answers RQI.

Step 3 focuses on answering RQ2 and is aimed at developing an automated mining
approach for extracting design context knowledge from Stack Overflow (described in detail
in Section 4.4). First, the data is preprocessed (Step 3.2), as described in Section 4.4.1.
Next, we create a domain specific feature learning model (Step 3.5), which learns the word
embedding by capturing the semantic and syntactic similarity of the words from the DP
question posts. To enhance the learning capability of the feature learning model, we first
generate collocations (Step 3.4). In the textual content, some words hold more meaning
when they are considered together as a collocation. As an example, the term “web applica-
tion” has more meaning in context identification than when considered as separate words,
“web” and “application”. In the collocation generation, we automatically identify these
collocations using the syntactic structure of the sentence and feed them as features to the
Representation Model (RL). The generation of collocations is described in Section 4.4.2.
We investigate eight different supervised learning algorithms (Step 3.3) which are described
in Section 4.4.4. The output of Step 3 is DPC Miner which answers RQ2.

Step 4 of our methodology is focused on answering RQ3, which is about analysing the
relationship between design context and design patterns. First, we employ the DPC Miner
to mine more Stack Overflow posts (Step 4.1) that contain design pattern-related context
terms (described in Section 4.5.1). These posts are manually labelled (Step 4.2) following
the method described in Section 4.2 and quantitatively analysed (Step 4.3) as described in
Section 4.5.2. Finally, the results of this quantitative analysis are presented in Section 5.3.

4.1 Set-up

The overview of the Set-up is shown in Fig. 1 - Step 1. We use the published literature and
Stack Overflow as our input sources to derive a list of common terms that describe design
context and prepare the data downloaded from SO.

4.1.1 Initial Exploration of DPC and DPs

To mine knowledge from empirical data, it is essential to have an overview of the knowledge
factors that we are going explore. Therefore, to gain insight of the preliminary overview of
DPC and DPs, first, we explore the published literature in two aspects: 1) literature on design
patterns, and 2) literature studying design context. This step is important for the process of
data preparation, as it provides a simple guideline that we can follow in the data extraction.
From the design pattern-related literature (Gamma et al. 1995; Bass et al. 2012; Jacob-
son 2004; Adam 2007; Zamudio Lopez et al. 2012; Evans 2004), we identified 56 design
patterns. These identified design patterns can be categorised into 3 categories namely, 1)
Architecture 2) Communication and 3) Programming. We list the identified design pat-
terns below. These design patterns are used in Section 4.1.2 to extract the relevant Stack
Overflowtags. The list of design patterns extracted from the literature is as follows:

Abstract factory, Active record, Adapter, Bridge, Broker, Builder, Chain of responsi-
bility, Client-server, Command, Composite, Connection Pooling, Data access object
(DAO), Decorator, Domain-driven design (DDD), Data transfer object (DTO), Event-
driven architecture (EDA), Entity component system (ECS), Facade, Factory method,

@ Springer

Empir Software Eng (2022) 27: 8 Page 110f53 8

Flyweight, Front controller, Identity map, Interceptor, Interpreter, Inversion of con-
trol (IoC), Iterator, Lazy loading, Mediator, Memento, Microservices, Model view
adapter (MVA), Model View Controller (MVC), Multitier, Model View Presen-
ter (MVP), Model View Viewmodel (MVVM), N-Layer, N-Tier, Naked objects,
Observer, Peer-to-peer (P2P), Prototype, Presentation Abstraction Control, Proxy,
Publish—subscribe, Repository, Representational state transfer (REST), Service loca-
tor, Singleton, Service-oriented architecture (SOA), Simple Object Access Protocol
(SOAP), Specification, State, Strategy, Template method, Visitor, WCF Message
Exchange.

By analysing the literature related to design context (Bi et al. 2018; Carlson et al. 2016;
Bedjeti et al. 2017; Kyakulumbye et al. 2019; Belecheanu et al. 2006; Harper and Zheng
2015; Power and Wirfs-Brock 2018; Babar et al. 2009; Tang and Lau 2014; Riaz et al. 2015;
Petersen and Wohlin 2009; Groher and Weinreich 2015; Clarke and O’connor 2012) we
identified an initial list of keywords and their definitions which we then use in deriving the
taxonomy as described in Section 4.3. The list of design context related terms we found is
as follows:

Web Application, Distributed Systems, Mobile application, Embedded systems,
Finance systems, Transport systems, Databases, Network Context, Hardware Context,
Stakeholder Context, Quality Standards, Testing Standards, Availability, Functional-
ity, Maintainability, Performance, Security, Usability.

4.1.2 Data Preparation

We downloaded the publicly available Stack Overflow data dump' released in September
2019. The dataset spans 133 months, from 31st July 2008 to 1st of September 2019, con-
taining 45,919,820 posts in total, including questions and answers. For this research, we
only use the questions posts’ text content as the concerns of DPC is raised in the form of
questions text.

The data dump from Stack Overflow has six XML files: Badges . xml, Comments .xml,
PostHistory.xml, PostLinks.xml, Posts.xml, and Tags.xml. The
Posts.xml consists of Stack Overflow posts and as the first step we extract question posts
from Posts.xml file. This Posts.xml file is around 75GB and consists of 8 different
post types (i.e. Question posts, Answer posts, Wiki posts etc). Each of these post type can
be identified by the Post Type ID attribute. By using Post Type ID we extract the
question posts which has the Post type ID of 1. This results in 18,154,493 question posts.

To reduce the scope of the study to the most relevant posts, we applied a filtering criterion
on the question posts. We use the list of design patterns identified in Section 4.1.1 to extract
the relevant Stack Overflow tags. A Stack Overflow tag consists of a tag description that
explains the intended use of the tag. We analysed the tag descriptions and identified 53
corresponding tags for the identified design patterns, as shown in Table 1.

We group DPs into three groups (architecture, programming and communication) based
on their main functions. Architecture DPs are used mainly to help architecture design.
Whilst some of them such as Model View Controller (MVC) have programming support,

Uhttps://archive.org/download/stackexchange

@ Springer

https://archive.org/download/stackexchange

8 Page 12 0f 53

Empir Software Eng (2022) 27: 8

Table 1 Design Pattern Tags used to filter DP questions from Stack Overflow

Architecture Programming Communication
activerecord abstract-factory connection-pooling
client-server adapter front-controller
dao bridge mediator
domain-driven-design builder publish-subscribe
eda chain-of-responsibility wef

entity-component-system
identity-map
microservices
model-view-controller
multi-tier

mvp

mvvm

n-layer
n-tier-architecture
naked-objects

p2p

repository-pattern

rest

service-locator

soa

soap

specification-pattern

command-pattern
composite
decorator

dto

facade
factory-method
flyweight-pattern
interceptor
interpreter-pattern
inversion-of-control
iterator
lazy-loading
memento
observer-pattern
prototype-pattern
proxy-pattern
singleton
state-pattern
strategy-pattern
template-method-pattern

visitor-pattern

we deem its purpose architectural. DPs in the communication group also have program-
mer support but their main purpose is to provide patterns for communication design. The
DPs in the programming group serve different purposes, some are about software struc-
ture and some about software behavior. At this stage, we do not see any advantages for
further classification, so we leave them in the one group as patterns to support software
programming.

Certain design patterns that we identified during the literature review phase, such as
“action-domain-responder” and “model-view-adapter” did not appear as tags or tag descrip-
tions, hence were not included in the final ‘Stack Overflow tags’ list. These tags were
used to select the question posts that were tagged with a particular design pattern. After
applying the tag-based filtering, the Stack Overflow dataset is reduced to 215,942 question
posts. Some question posts include code segments in the form of <pre><code>
</code></pre> HTML tags. We remove all code segments and only use the sentences
from the question posts to obtain the refined Stack Overflow posts.

@ Springer

Empir Software Eng (2022) 27: 8 Page 130f53 8

4.2 Data Labelling

First, a pilot study is conducted by the first author, and the results are discussed among
authors to prepare a labelling guideline. Using the labelling guideline, each annotator ini-
tially labels a sample of 50 posts, which is discussed among all three annotators to identify
discrepancies and conflicts. Any discrepancies or conflicts are discussed and resolved, the
labelling guideline is updated, and the labelling process is started.

The data labelling happens in three stages. In the first stage, the purpose is to consolidate
the DPC taxonomy. In this stage, the labels have not been finalised yet, and dynamically
grow. We stop the labelling once a stopping criterion is met, which is described in the next
sections. Once the taxonomy is consolidated, we have a final, unchanging set of labels
which is used in the second stage to label the posts required for training and validating the
DPC Miner. The trained DPC Miner is used to select context related posts from the very
large Stack Overflow corpus. In the third stage, the context-related posts identified by the
DPC Miner are manually labelled according to the detailed taxonomy with context sub-
categories. This final dataset consisting of 1,500 labelled posts is then used to analyse the
relationship between design context and design patterns.

The level of agreement between three annotators is measured using Fleiss’ Kappa test
(Fleiss 1971), which extends Cohen’s kappa (Zaiontz 2021). We calculate Fleiss’ Kappa for
a sample of 50 posts where all three annotators annotate the sample posts and as design con-
text related or non-design context related. We obtained the kappa value of 0.795, meaning
substantial agreement(Landis and Koch 1977) between three annotators.

4.3 DPC Taxonomy

The DPC Taxonomy is derived following an iterative approach as shown in Fig. 1, Step 2.
First, an initial keyword-based taxonomy is formulated using the keywords derived from the
literature review. This taxonomy is then updated with new terms found during the labelling
of Stack Overflow posts. A statistical stopping criterion is used to decide when to stop
labelling posts and consider the taxonomy complete. Finally, the taxonomy is consolidated
by merging common terms and removing redundant keywords.

4.3.1 Formulation of the Initial Taxonomy and Taxonomy Update

The fist step of generating the initial taxonomy is based on the keywords identified from
the DPC literature as explained in Section 4.1.1. We generalised these identified keywords
and formulate an initial taxonomy which has two level: the main categories, and the sub-
category. Subcategories are formulated using the identified keywords from DPC literature,
which are then clustered into the main categories. As an example from subcategories like
Web Application, Mobile Application, Embedded Systems we formulate a main category
called Application Technology. Then, we revisit the literature using the main categories and
subcategories as search terms to get more insight into possible subcategories and update the
draft taxonomy. As an example, we identified Information Systems as a possible subcategory
for Application Technology.

For the second iteration, we employ the identified context categories on Stack Overflow
posts and conduct a pilot study by labelling 50 posts to obtain more categories and subcat-
egories that we may have missed and update the taxonomy accordingly. As an example, in
this iteration, we found discussions like:

@ Springer

8 Page 14 0of 53 Empir Software Eng (2022) 27: 8

Example 1. | am about to create a Desktop App (with .NET windows forms) ...

where the terms “Desktop App” are part of the design context. After discussing among
authors, we considered it as a possible subcategory of the taxonomy and introduce a
subcategory called Standalone Systems under Application Technology.

Other examples are:

Example 2. | have upload a small sample application ...
Example 3. We have a large Rails application that is not quite a traditional multi-tenant app

which mention the size of the application. When we analysed these posts, there was no
category to represent the size of the application, hence it was agreed among authors to add
a new category called Application Size and two subcategories namely Small and Large. At
the end of this process, we have a non-final draft of the taxonomy which goes through the
taxonomy update and consolidation step, described in the next section.

4.3.2 Taxonomy Update and Consolidation

In order to develop a consolidated taxonomy, we use the draft taxonomy created using the
keywords (as described in Section 4.3.1) to further label Stack Overflow posts and update it
with new context terms that arise while labelling. This process is repeated until a statistical
stopping criterion is met.

The objective of the stopping criterion is to decide when to stop analysing the Stack Over-
flow posts. The common intuition is to stop analysing posts when there is no more unique
design context found after analysing » number of posts. However, these unique design con-
text and n number of posts are not known at the time of analysing the posts, and might
depend on the distribution of unique design context terms in the output of the analysed data
which is also unknown. Therefore, we introduce a statistical estimator U Cp (unique context
per batch with size P) to estimate the UCp distribution and to find n. Moreover, we pro-
pose a batch-wise analysis on the estimator as the taxonomy generation is continuous. The
benefit of using statistical analysis to estimate the number of Stack Overflow posts needed
to analyse before taxonomy consolidation is to implement a systematic approach for taxon-
omy consolidation and to predict the distribution of the unknown data sample by employing
statistical significance.

For each batch of Stack Overflow posts, the mean of the estimator UCp is calculated
and the statistical significance of the UCp is estimated as in (1):

1
ME = t(1_g/2) * ((ﬁ > (e —)/ 1P)
ucelUcCy

where uc is the number of unique context terms for post p, uc is the total number of unique
context terms identified so far, « is the desired significance level and 7 is the size of the
difference relative to the variation in the batch of the t-distribution. The margin of error M E
of the estimator UCp is checked against a threshold value M E;; (e.g. 0.002) for at least
nty (e.g. 10) of occurrences before consolidating the taxonomy.

@ Springer

Empir Software Eng (2022) 27: 8 Page 150f53 8

Algorithm 1 Statistical stopping criterion for taxonomy consolidation.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

19
20
21
22

nye =0;
nyc =0;
nrg = 10;
while ny g < nry do
for p € P do
ncp, = 0;
for new unique context € p do
nep ++;
nyc ++;
end
NC <« Append(nc));
end
for nc € NC do
ucp = ’lé/LlC ;

UC, < Append(uc) ;
end
m = ZucEUC,, % ;
ME = t(1_q)2) * ((ﬁ Zuceucp(uc —uc,;)?)/VIPD;
if ME < ME,, then
| nye ++;
end

end

®© N

These steps are listed in Algorithm 1 and can be summarised as follows.

Initiate the counter variable (n g, nyc) to zero (line 1-2).

Set a value for the number of iterations required to satisfy the stopping criterion (nr)
to 10 iterations (line 3).

For each post p in P count the number of unique context terms (ny;¢) and context posts
(ncp) (line 5-12). As an example, consider the first batch P;. For the first post p; in
P1, and assume we found the context terms Web Application, Learning Management
Systems, Databases, Performance. Therefore, for pj the value of nyc is 4 as it is the
first time all these terms are found, with the nc;, value of 1. Next, for p;, assume we
found a term related to Distributed Systems and Performance. The term Performance is
already found in p; so we do not consider it as a unique context in p;. Only Distributed
Systems is considered as UC and therefore the value is ny¢ is updated to 5, with the
ncp of 2. Likewise, we calculate the ny ¢ for all 20 posts in Pj.

Calculate the value of the estimator (U Cp) for the batch (P) using the equation in line
14.

Calculate the mean value of the estimators (UCp) (line 17).

Obtain the margin of error of the estimator (line 18).

If the obtained M E is less or equal to the M E;j, increment the ny/g (line 19-21).
Proceed to the next batch until the condition in the line 4 is satisfied.

Next, by following the bottom up approach, the new context terms identified are placed

under an appropriate main category to consolidate the taxonomy. As an example, we found

@ Springer

8 Page 16 0f 53 Empir Software Eng (2022) 27: 8

context terms like Operating System which we placed under the main category of Platform
Context.

4.4 DPC Miner

The overview of the DPC Miner is shown in Fig. 1, Step 3. DPC Miner uses both unsu-
pervised and supervised learning approaches. The RL model is an unsupervised learning
approach. The objective of RL model is to generate a domain specific — DP-related — dis-
tributed vector representation from the input text by capturing the semantic and syntactic
features. In Supervised learning, we train the model by providing design context labeled
posts. For both model training, we use the refined Stack Overflow posts after data prepro-
cessing. Finally, both the representation learning model and supervised learning model are
incorporated for further DPC mining. Further, we enhance the DPC miner with collocation
generation, which creates additional textual features.

4.4.1 Data Prepossessing

Tokenizing Each Stack Overflow post is broken down into its corresponding words using
a well known NLTK? package. These word form a single unit of text known as a unigram.

Stopword Removal Natural language text consist of a lot of words that makes the text more
readable for humans but are not useful for machine learning, and are considered as noise
for automated text analysis, impacting their performance. In NLP research, these words are
refereed as stop words (e.g., the, a, an). In the DPC Miner the focus should be on more
domain specific keywords which define the content of the text. Therefore, we decided to
exclude the stop words from the text.

POS Tagging Natural language is made up of a number of parts of speech such as verbs,
nouns, adverbs. In POS tagging, the words in the sentence are assigned with the parts of
speech (POS) tags based on the sentence structure. These POS tags are the lexical units of
the sentence. We use the Python NLTK package? for POS tagging. As a part of DPC Miner
features we generate collocations. We use this POS tags in these collocation generation
described in Section 4.4.2.

4.4.2 Collocation Generation

Collocations are a combination of unigrams, which are created via tokenizing. The purpose
of generating the collocations is to provide the representation model with more insight about
the textual content and enhance the feature set. As an example there are words in DPC

29 <

posts which have more meaning as a set of words (i.e. “model view controller”, “connection
pooling”, “web application”) than evaluating them individually. Therefore, we argue that
using the collocations can improve the performance of the DPC Miner.

Some lexical units contribute more compared to the others to identifying domain spe-
cific terms. Therefore, we perform syntactic filtering in collocation generation. We use the

POS tags of the lexical unit in this syntactic filtering. For this study, we focus on nouns,

Zhttps://www.nltk.org/api/nltk.tokenize html
3http://www.nltk.org/book/ch05.html

@ Springer

https://www.nltk.org/api/nltk.tokenize.html
http://www.nltk.org/book/ch05.html

Empir Software Eng (2022) 27: 8 Page 17 of 53 8

verbs, adjectives, and foreign words in syntactic filtering. We use NN (noun, singular), NNS
(noun plural), NNP (proper noun, singular), and NNPS (proper noun, plural) POS tags for
the nouns, VB (verb, base form), VBD (verb, past tense), VBG (verb, gerund/present par-
ticiple), VBN (verb, past participle), VBP (verb, sing. present), VBZ (verb, 3rd person sing.
present) POS tags for verbs. For adjective we used JJ (adjective), JJR (adjective, compar-
ative), JJS (adjective, superlative) POS tags and FW (foreign word) POS tag for foreign
words.

Next, we collapse the adjacent syntactically filtered lexical units into collocations.
Figure 2 shows an example of a Stack Overflow post and the notion of extracted key-terms.
The key-terms underlined in blue are the collocations generated by feature generation for
the question post. As we can see, the model is capable of generating collocations like “rest
design principle”, “web application” and “banking application”. The key-terms underlined
in orange colour are the words identified in the feature generation. DPC Miner identified
terms like “performance”, “UI”, “impacting” and “bank”. The output of the collocation

Limit the number of service calls in a RESTful application

Asked 10 years, 8 months ago Active 10 years, 8 months ago Viewed 315 times

Top Collocations extracted
['service call', 'banking application', 'rest design principle', 'web application’, ‘property
currency', ‘account has’, 'accountservice currencyservice', 'separate class', 'service
call', 'http verb']

Currency and a Bank as a property, Currency being a separate class, as well as Bank. The code
1 might look something like this:

public class Account

public Currency Currency { get; set; }
public Bank Bank { get; set; }

Other keywords

[‘kind', 'screen’, 'bank', 'code', 'resource’, 'method’', 'case', 'accountservice
currencyservice', 'bankservice', 'creating’, 'ui’, 'list', 'dropdown’, impacting', ‘performance’,
‘normal’, ‘number’]

According to the REST design principles, each resource in the application should have its own
service, and each service should have methods that map nicely to the HTTP verbs. So in our case,
we have an AccountService, CurrencyService and BankService.

In the screen for creating an account, we have some UI_ to select the bank from a@ of banks, and

to selecta curren?y_f;a—m*3 list of currencies. Imagine it is a web application, and those lists are
d_rgpdowr_x; This means that one dropdown is populated from the CurrencyService and one from
the BankService. What this means is that when we open the screen for creating an account, we

need to make two service calls to two different services. If that screen is not by itself on a page,

_normal in such an application? If not, how can it be avoided? How can the design be modified
without going away from REST?

c# web-services rest

Fig.2 Example of generated collocations and keywords

@ Springer

8 Page 18 of 53 Empir Software Eng (2022) 27: 8

generation is key-terms, which are used as the feature in the next phase of representation
learning and consist of collocations and words.

4.4.3 Representation Learning Model Training and Feature Extraction

Representation Learning (RL) model is the unsupervised learning component of the DPC
Miner. In RL model training, we generate a vocabulary V with size W. V consists of key-
terms that are a combination of collocations and uni-grams.

In the RL model, we use V as a feature to generate a dense low-dimensional vector
representation based on the assumptions that key-terms (uni-grams and collocations) with
similar meaning are present in a similar context space (Harris 1954). We use the continuous
skip-gram model proposed by Mikolov et al. (2013a) for the RL model implementation.

The learning objective of the RL model is to learn a vector representation for a given key-
term w; in the V to successfully predict the surrounding key-terms w, ; within a training

window of size c. For a given key-term sequence of wi, wy, ..., wr the objective is to
maximise the average log probability as shown in (2):

1 T

T2 2 log plwilw) 2)

t=1 —c<j=<c,j#0

The value of log p can be defined as in (3), which is the conditional probability defined
using the softmax function (Mikolov et al. 2013b):

exp(v ’ va,)

pwiyjlw) = ————— 3)
2 =1 EXP(V) Vi)

where vy, and v /, are the ‘input’ and ‘output’ vector representations of w, and W is the
vocabulary size. The output of the RL model is a learned vector v for each key-term w.

For RL Model training, after tuning the hyperparameters, we used vector dimension of
200, window size of 3, and 100 of learning epochs.

As the next step of feature extraction, for a given post, we average the v of key-terms in
the post and generate a feature-vector for the post v,,s; to feed into the DPC Miner.

4.4.4 Supervised Learning

Next, we use the supervised learning to train the classifiers. The objective is to learn to clas-
sify a given post as a DPC or non DPC post, thus, we use binary classification techniques.
We use the DPC labelled dataset to train the classifiers as supervised learning requires a
labels in model training.

Further, to decide the most suitable classifier technique for the DPC Miner implemen-
tation we implemented eight well-known classifiers using Python Scikit-learn package
(Pedregosa et al. 2011). They are Support Vector Classifier (SVC), Random Forest Clas-
sifier (RF), Gradient Boosting Classifier (GB), Logistic Regression Classifier (LR), Naive
Bayes classifier (NB) , Decision Tree Classifier (DT), K-Neighbours Classifier (KNN),
and Multi-layer Perceptron classifier (MLP). Based on the results as shown in the table
we selected Support Vector Classification (SVC) to implement the DPC Miner. We use
the default parameter setting for each classifier (Pedregosa et al. 2011) for the compar-
ison and only changed the parameter of class_weight = balanced. We change the
class_weight = balanced to ensure the values of that class weights will adjust inverse
proportionally to class frequency in the input data hence, to mitigate any bias on results due

@ Springer

Empir Software Eng (2022) 27: 8 Page 190f53 8

to the class imbalance. Finally, in the DPC Miner, we use the feature-vectors learned from
the RL model as features to feed into the Supervised Learning model to mine more DPC
related posts.

4.5 Analysing the Relationship Between Context and Design Patterns

The final step of our methodology is the quantitative analysis of posts mined from Stack
Overflow. First, we extend our DPC data corpus with more posts from Stack Overflow
which are mined using the proposed DPC miner. Finally, we analyse how each DPC term is
discussed with respect to the design patterns.

4.5.1 Mining more Posts

Finally, we use the trained DPC Miner for more context related post mining to expand the
dataset. As the input, we provide the DPC Miner with a new set of posts that are not used
in DPC Miner training. Next, the trained DPC Miner explores the syntactic and semantic
structure of the new set of posts and generates the feature vectors. These feature vectors
are used to classify the new set of posts as design context related or not. After the mining
process of a new set of posts, we manually evaluate the predicted posts for their design
context relatedness, and label them according to the taxonomy.

4.5.2 Quantitative Analysis

To study the relationship between design patterns and context, we perform a cross-case
analysis and examine the number and percentage of discussions that are focused on com-
binations of context and design patterns. For example, we analyse the proportion of
discussions that discuss testing standards for each design pattern. This analysis uncovers the
main contextual factors for each design pattern.

5 Results

In this section, first we present the DPC Taxonomy which provides an answer to RQ1. We
also show the results of the statistical stopping criterion which is used to consolidate the
taxonomy. To answer RQ2, we presented the evaluation of the DPC Miner in Section 4.4,
which demonstrates that our approach is effective in mining context knowledge related to
design patterns. Finally, to answer RQ3, we analyse 1,500 Stack Overflow posts which
are manually labelled, and present an overview of how design context is discussed when
contemplating which design pattern to use. All the data, replication code, analysis, and
results of this paper are available.*

5.1 RQ1: DPC Taxonomy

The consolidated DPC Taxonomy is shown in Fig. 3. The first level of the hierarchy struc-
ture shows the main categories identified from the design context terms. In the consolidated
taxonomy we identified seven main categories: 1) Application Technology, 2) Application

“https://github.com/laksW/Mining-and-Relating-Design-Contexts-and-DesignPatterns-from-Stack-Overflow.
git

@ Springer

https://github.com/laksW/Mining-and-Relating-Design-Contexts-and-DesignPatterns-from-Stack-Overflow.git
https://github.com/laksW/Mining-and-Relating-Design-Contexts-and-DesignPatterns-from-Stack-Overflow.git

8 Page 200f53

Empir Software Eng (2022) 27: 8

[

DPC Taxonomy

!

l

l

Y

Y

] (Platform) (Organisation)

Learning
—> Manage-
ment

Fig.3 DPC taxonomy

Application Application Application
Technology Domain Size
Distributed
S;sstrelmu © > Entertainment Small [Database
Embedded
System > ERP Large > Development
|Snf0rmat|0r| > Financial > Hardware
ystem
Mobil
A°b' € | Health > Network
pp
Standalone Operating
System > HR System
—> Web App —» Transport

Schedule

Finance

Stakeholder

!

!

Software
Development

Quality
Attribute

Development
Methodol-

ogy

Quality
Standards

Testing
Standards/
Methods

> Availability

| Functionality

| Interoperability

> Maintainability

> Modifiability

> Performance

> Reliability

I Safety

> Security

> Testability

L Usability

Domain, 3) Application Size, 4) Platform Context, 5) Organisation, 6) Software Develop-
ment Context, and 7) Quality Attributes. These first level categories come from various
literature as discussed in Section 4.1.1 and from the taxonomy update and consolidation
step discussed in Section 4.3.2. Design context terms that we identified are shown as sub
categories under each main design context. As an example the design context Application
Technology has 6 subcategories namely Distributed System, Embedded System, Information
System, Mobile Application, Standalone system and Web Application.

To illustrate how these categories are identified we use the following examples which are
part of a Stack Overflow question post.

Example 1. | am part of a team building a proprietary Learning Management System for
our organization. When a user is enrolled into an online course, ... this is causing some
performance issues. | am looking into developing a framework for queuing Our platform
is deployed via an Azure web app and Azure SQL database. It is written in .NET MVC and
we are sending emails via SMTP ...

Example 2. Imagine some kind of a banking application, with a screen to create accounts.
Each Account has a Currency and a Bank as a property ...

@ Springer

Empir Software Eng (2022) 27: 8 Page 210f53 8

In Example 1, we can identify four subcategories from the taxonomy, which have been
underlined. First, the post mentions a Learning Management System (LMS), which is the
domain of the application, hence it falls under Application Domain and has a subcategory
of Learning Management. Secondly, we can see the discussion raises a concern related to a
measurable property of the application by stating some performance issue, thus subcategory
of Performance under Quality Attribute is selected. Thirdly, the post mentions technologies
related to the application by stating web app. Therefore, we identify the subcategory of Web
Application under Application Technology. Finally, we find the term database, hence we
categorise the post under the Platform Context.

In Example 2, the discussion is about banking application, which is the domain under
which the application is going to be used. However, there is no subcategory called banking
application, but we can see a subcategory for Financial Systems. Since we already have
a suitable subcategory that we can abstract banking application, we categorise Example 2
under Financial Systems.

For the taxonomy consolidation and the calculation of the stopping criterion, we use a
batch size P = 20 posts, « = 0.95, ME;;, = 0.002, n;;, = 10. Table 2 shows how UCp
varies over the number of batches. We stop labelling batches and consider the identified
context terms complete when ME < ME;;, and ny g = ny,. This means that to be con-
fident that we have covered all context terms, we must continue labelling at least 10 new
batches once we reach the threshold value for M E. If M E remains at or below the thresh-
old value M E;j, for n;, (in our case, 10) batches of Stack Overflow posts, than we consider
the taxonomy complete.

The starting value for UC p (average number of unique context terms per post) is 1.567,
and the initial value for M E is 0.518. These two values, however converge quickly and we
are able to reach the threshold level of M E after batch 9. For the next nine consecutive

Table 2 Results of the stopping

criterion Batch nyce Ucp ME nME
Batch - 1 15 1.567 0518 0
Batch - 2 6 0.671 0.059 0
Batch - 3 5 0.459 0.015 0
Batch - 4 1 0.386 0.018 0
Batch - 5 0 0.297 0.011 0
Batch - 6 3 0.254 0.003 0
Batch - 7 2 0.239 0.003 0
Batch - 8 0 0213 0.005 0
Batch - 9 2 0.196 0.002 1
Batch - 10 2 0.181 0.002 2
Batch - 11 1 0.171 0.002 3
Batch - 12 0 0.161 0.002 4
Batch - 13 1 0.148 0.002 5
Batch - 14 0 0.140 0.002 6
Batch - 15 1 0.133 0.001 7
Batch - 16 0 0.125 0.001 8
Batch - 17 0 0.118 0.001 9
Batch - 18 0 0.111 0.001 10

@ Springer

8 Page 22 0of 53 Empir Software Eng (2022) 27: 8

batches M E stay below the M E;; and reach the n,,. At this point, using the statistical
significance analysis performed, with 95% confidence we can claim that our sample with
UCp of 0.111 covers all context terms related to design patterns with an error margin of
0.001.

Finally, we consolidate our taxonomy after exploring 18 batches and the answer to RQI is:

()
Answer to RQ1: From the consolidated DPC Taxonomy we identified seven main
contextual factors, namely Application Technology, Application Domain, Applica-
tion Size, Platform, Organisation, Software Development, and Quality Attributes,
which practitioners consider when choosing design patterns. For each of these main
context categories, we identified subcategories that further classify design context
in more detail.

5.2 RQ2: DPC Miner

As explained in Section 4.4 we use eight classification techniques to implement the super-
vised learning component of the DPC Miner. In addition, we implement an approach to
derive collocations, which aims at enhancing the set of features used for supervised learn-
ing. To evaluate the DPC Miner and its different components, we also explore the following
sub research questions to evaluate if the methods for mining the posts for design contexts
and design patterns are effective.

RQ2.1 Which classification technique in DPC Miner performs the best?
RQ2.2 Do collocations improve the performance of DPC classification techniques?
RQ2.3 Is DPC Miner an effective automated technique for mining DPC posts?

For the RQ2.1 and RQ2.2 evaluations we use the data labelled from Data labelling 1 (Step
2.21in 1) and Data labelling 2 (Step 3.1 in 1). We use relatively similar size data (50% of total
for each class) for the both positive (DPC discussions) and negative (non DPC discussions)
class.

To answer RQ2.1 we apply 10 fold stratified cross-validation and compare the perfor-
mances of the 8 classifiers. The objective of using the Stratified cross-validation is to get
stratified folds to eliminate class imbalance concerns that can affect to the results in lcassi-
fication. These stratified folds are made by preserving the percentage of samples for each
class and ensure that each set contains approximately the same percentage of samples of
each target class as the complete set. We use the 9 folds (90% of data) to train the technique
and the remaining fold is to test the performance of the model. We repeat the process 10
times by rotating the training and test folds.

The performance of the classifiers is measured in terms of traditional classification
Accuracy as well as using bipartition-based metrics like Precision, Recall, F1-Score, ROC,
AUC. These bipartition-based metrics compute the averaged scores from both classes hence,
mitigate the concerns of class imbalance in classification results.

— Accuracy is a metric which gives a measure of correct predictions from all predictions,
definedas A(y,y) = % Zl":_ol 1(3; = y;), where 3; is the predicted value of i’ sample,
y; is the corresponding true value, n is the number of samples and / is the indicator
function.

@ Springer

Empir Software Eng (2022) 27: 8 Page 23 0f53 8

— Precision is defined as P = TP /(T P + F P), where T P is true positive(i.e. correctly
predict the positive class) and F P is false positive (i.e. incorrectly predicts the positive
class).

— Recall is the ability of predicting all the positive samples, definedas R =TP /(TP +
FN), where FN is the number of false negatives (i.e. incorrectly predicts the negative
class).

— F1-Score is the weighted average of the precision and recall and is defined as F1 =
2x (PXR)/(P+ R).

— Receiver Operating Characteristic(ROC) Curve plots two parameters, True positive
rate(TPR) and the false positive rate(FPR). TPR is a synonym for Recall and FPR is
calculate as; FPR = FP/(FP +TN).

— AUC measures the area under the ROC curve. This represents the relation between true
positive and false positive rate.

Table 3 summarises the result for each classification technique implemented in DPC
Miner. The best value for each evaluation metric is highlighted in boldface and the second-
best value is underlined. According to the results, we can see that all the classifiers perform
well and have an accuracy of over 64%. The support vector classification (SVC) outper-
formed all other classifiers with a considerable performance margin with an accuracy of
0.871, and precision and recall values of 0.815 and 0.880 respectively.

We further analyse the performance of the classifiers using the ROC curve and AUC.
ROC curve is the graphical visualisation of the performance of the classification model at
all classification threshold (Fawcett and An introduction to 2006). AUC measures the area
under the ROC from (0,0) to (1,1) and shows the aggregated measure of performance of all
possible classification threshold. AUC ranges from 0 to 1 where the higher the AUC better
the performance.

Figure 4 shows the ROC curve and respective AUC values for all the classifier implemen-
tations and find that SVC outperforms all other classifiers with an AUC=0.87. Therefore,
we conclude that the answer to RQ2.1 is:

Answer to RQ2.1: Support vector classification (SVC) is the best-performing tech-
nique in learning design context, and has an accuracy = 0.871, precision = 0.815,
recall = 0.880 and AUC = 0.87.

Table 3 Classifier performance

Classifier Accuracy Precision Recall F1-Score
DT 0.711 0.636 0.663 0.648
GB 0.749 0.688 0.688 0.687
KNN 0.643 0.532 0.964 0.685
LR 0.846 0.786 0.847 0.815
MLP 0.852 0.798 0.849 0.822
NB 0.824 0.754 0.837 0.793
RF 0.805 0.837 0.641 0.725
svc 0.871 0.815 0.880 0.846

@ Springer

8 Page 24 0f53 Empir Software Eng (2022) 27: 8

1.0
0.8 -
2
©
@ 0.6 -
[
2
G
o SVC Mean ROC (AUC = 0.87)
g 0417 LR Mean ROC (AUC = 0.85)
[= —— GB Mean ROC (AUC = 0.74)
—— DT Mean ROC (AUC = 0.70)
0.2 - NB Mean ROC (AUC = 0.83)
—— MLP Mean ROC (AUC = 0.85)
—— RF Mean ROC (AUC = 0.78)
0.0 1 KNN Mean ROC (AUC = 0.70)
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Fig.4 ROC Curve of eight different classifiers with the AUC score

To answer RQ2.2, we perform an ablation study by evaluating the DPC Miner by remov-
ing the collocations. Figure 5 shows the results of the evaluation results in term of Accuracy,
Precision, Recall, and F1-Score with and without using collocations.

Across all four evaluation metrics we see that with collocations the evaluation results are
higher than without collocations. The accuracy of the DPC Miner without collocations is
0.862 which increased to 0.871 after introducing the collocation. In the same way, Precision
increased from 0.803 to 0.815, Recall increased from 0.872 to 0.882, and F1-score increased
from 0.835 to 0.846 after using collocations. These results show that collocations identi-
fied in feature generation improve the performance of the DPC Miner. Hence, the answer
to RQ2.2 is:

1.000
0.862 0.871 0.8720.880
0.803 0.815

0.835 0.846

0.800

0.600

0.400

0.200

]

0.000

Accuracy Precision

Ed Without Collocations B With Collocations

Fig.5 Performance of the DPC Miner with and without collocations

@ Springer

Empir Software Eng (2022) 27: 8 Page 250f53 8

Answer to RQ2.2: Collocations improve the performance of the DPC Miner,
increasing precision from 0.803 to 0.815, recall from 0.872 to 0.882, and F1-score
from 0.835 to 0.846.

To answer RQ2.3, we use DPC Miner as a mining approach. The objective of the mining
approach is to aid the process of collecting more data to expand the DPC related posts. DPC
Miner explores the posts and based on the features it automatically suggests the posts as
DPC related or not. Then we can only analyse the suggested posts for DPC terms. Therefore,
the mining performance is calculated on the correctly classified DPC-related posts since
those are the posts we would be using for the processing or further evaluation.

We use the percentage of Precision and Recall to evaluate the DPC Miner performance.
From the Precision, we can get an insight on how many relevant posts are mined from the
retrieved positive posts since Precision calculates the proportion of the DPC Miner classi-
fied positive identifications (true positive and false positive) versus the actual positive (true
positive) posts. The mining approach intends to get positive identifications since we use
these positive identifications for further analyses. We obtained a value of 74.5% for the Pre-
cision. This means that when DPC Miner identifies DPC-related posts 74.5% of the times it
was correct when given a new data set with a similar structure. We further calculate the pro-
portion of actual positives and DPC Miner identified correctly (Recall) posts and obtained
the value of 92%. This indicates that out of 100 positive posts, DPC Miner is capable of
correctly identifying 92 posts. In Fig. 6 we illustrate the normalised confusion matrix of the
DPC miner performance.

The experiment set up and the purpose of RQ2.3 is different from the RQ2.1. In RQ2.1
the model is trained and tested on a pre-identified labelled data (DPC related / not DPC
related) and evaluated accordingly. In RQ 2.3 the trained DPC Miner is evaluated for its
robustness on how it can be utilised as a mining tool to further explore new data. This new
data is structurally similar to the data that the model is trained and tested for but it is likely
that, this data contains noise and unseen text features that DPC Miner has not previously
been trained to recognise.

For experiments in RQ 2.1 and 2.2 the dataset contains 649 DPC-related posts (positive
class) from Data labelling 1 (Step 2.2 in Fig. 1) and Data labelling 2 (Step 3.1 in Fig. 1).

Fig.6 Normalised Confusion DPC miner Identification
Matrix for the DPC Miner Not
performance ©
DPC-related DPC-related
°
3
o
I 0.620 0.052
O
— (=%
© a
g
< 5
It
5T
= & 0.212 0.117
O
o
a

@ Springer

8 Page 26 0f 53 Empir Software Eng (2022) 27: 8

With the help of the DPC Miner we further mined Stack Overflow posts to expand the DPC
related posts. This mined data is labelled in Data labelling 3 (Step 4.2 in Fig. 1). After the
mining, the final dataset consists of 1500 DPC related posts (positive class) in total.

To conclude, the answer to RQ2.3 is:

Answer to RQ2.3: DPC Miner is an effective automated mining technique, and can
mine DPC posts with an overall success rate of 74.5% in identifying DPC-related
posts.

5.3 RQ3: What Design Context terms are discussed in relation to Design Patterns?

To explore the relations between DP and DC, we empirically analyse the 1,500 posts that
were automatically mined using DPC Miner and manually labelled according to the DPC
Taxonomy.

5.3.1 Design Context Referenced by Design Patterns

Figure 7 shows a high-level overview of the relationship between DP and DC. The colours
in the outer circle are unique to each label (e.g., design pattern (DP) - blue colour, Plat-
form Context - orange colour) with the proportion of the circle perimeter representing the
frequency of the posts with each label (i.e. DP has the highest posts and Organisation Con-
texts (Org.) has the least number of posts). The line colour in the inner circle represents the
colour of the corresponding connected label and the line width represents the strength of the
relationship between two labels.

We can see that Quality Attributes (QAs) is the context term with the strongest con-
nection to DPs, followed by Application Technology, Platform Contexts, and Software
Development Contexts. QA is a property of a system that can be testable or measurable to
indicate how well a system satisfies its stakeholder needs (Bass et al. 2012). In design pat-
tern literature, the effect of patterns on software QAs is one of the most discussed topic
(Ampatzoglou et al. 2013). Further, there are several survey studies and systematic litera-
ture reviews that investigate the relationship between QAs and design patterns (Galster and
Avgeriou 2012; Khomh and Guéhéneuc 2008; Zhang and Budgen 2012; Ampatzoglou et al.
2013). Hence, it is not surprising that we find evidence that QAs are the most important
concern when considering design patterns.

Table 4 presents a more detailed analysis of the relationship between DP and DC.
In addition to presenting results for each DP individually, we show the summaries for
the three main design pattern types 1) Architectural Design Patterns, 2) Communications
Design Patterns, and 3) Programming Design Patterns. Each cell shows the number of
posts and their proportion which discuss the particular context terms. For example, out
of the 216 posts that discuss Activerecord, 6 discussions are about Availability, constitut-
ing 2.8% of the Activerecord-related posts. For each row the highest value is highlighted
with boldface.

The most discussed DP type is the Architecture DP with 3,185 mentions, followed by
Programming DP type with 286 mentions. The Communication DP type has the least num-
ber of mentions with only 34 posts and no posts under Application Size, and Organisation.

@ Springer

Page 27 of 53 8

Empir Software Eng (2022) 27: 8

1z4 %8°02lS %S°LEI6 %8°02lS - %L - BT AqLIdSqNS—Ystqng
¥ %St %Sell %Stll - %Sl - - JojeIpajAl
S - %091€ %0CI1 - %021 - - 3ur[ood "uuo)
€ %9°L119 %TSEIET %S€T8 - %9°L119 - %6TIT UonEIIUNUIWO)
€ %L'99lT %eeelt - - - - - dvos
€Tl %1°1219T %T0EILE %€°0TIST %yTlE %€ 0TIST %yTle %E €y VOS
14 %STl1 %STl1 %STIT - %STIT — - 1018907 T-901AIOS
0161 %T8IISLT %ITEIV8Y %6°0TI91€ %E0lS %9921y %L 0101 %TTI8T 159y
L %EPIII %6°TPIE %9°82IT - %EPII - - K1oyisodoy
€€ - %y THIPL %Y 9elTl - %T8II9 - %ell dad
I %y 9€ly %eLTlE %BI6IT el %T8IIT - - TIL-N
I - %0011 - - - - - TAeT-N
96 %6'12I1T %9°6€18€ %8°0210T - %9°STIST - »1Tle INAAN
81 %T Ty %8°LTIS %T Tl - %TTCIY - %9°SIT dAIN
91§ %ETTISTT %TEIS9T BLITITIT %80l %S 1TITTT %9°0l¢ %T 119 DA
0c %S1IE %SElL %STlS - %0Cly %Sl - IO
L61 %1 ETI9Y %€EIS9 %6'1Cl6y %llT %TH1I8T %S1lE %Tly SIOIAIISOIOIA
€ - %eeelt %eeel - %EeEl - - deN—£inuapy
€ %eeelt %eeell %eeelt - - - - vad
L61 %8'TTISy %S'9€ITL %y €TIor »llT BLTTIET %S 0IT %BIYI8 aaa
8¢ %¥81IL %THEIET %6'8TIT - %TELIS - %ESIT ova
681 %E €Ty %L'0€18S %¥'STI8Yy - %81I¢ BTl %S0IT TOATDS JUDITD)
91C %8°0CIS %6°'SEIP8 %HIEILY %S0IT %9°SIT1 %S0IT %819 PI0ORILATIOY
G81¢ %1°02l0%9 %TEEIESOT %9°TTlTL %9°0181 %T1CIYL9 %8°019T BLTIES QIO
eloL, ‘Ad MS vO woyie[d 310 o, ddy az1g ddy urewoq

suroped uSISOp Jo 9sn AQq PIOUAISJAI $)XIUO0D USISIP [9A9] YSTH d|qel

pringer

A's

Empir Software Eng (2022) 27: 8

8 Page 280f 53

€ %L'99lT - - - %eeelt - - IOYISIA
L %9'82IT %I LSIY BEVIIT - - - - £Sorens
6L %TSIITI %9°I€IST %8°LTITT - %S 1TILT %STlT %ETIT uojo[3urg
L %E I %9°8CIT %E VI - %9°8CIT %EPIIT - I0AI9SQO
T %061 - %0611 - - - - OJUSWISIN
9 - %0SI€ %EEEIT - %BLITIT - - Surpeo1-Aze]
L %9°'8CIT %I LSV %EFIIN - - - - IojeIoN
6€ %9°STlol %EEEIET %1°¢Cl6 - %8TIIS %9°Cl1 %9°CI1 [01)U0D)—UOISIOAU]
6 %eEElE %eeele %EEElE - - - - 101dooTom]
81 %961 %€ €9 %8°LTIS - %E€E9 - - POIaIN AI10108]
01 %0¢€lE %0ElE %0¢glE - %0111 - - apede]
oy %S LIIL %0¥191 %S2l01 %STI %ST119 - - oLda
L1 %S €Tl %TIVIL %8°111T - %9LIIE - %6°SI1 10181099(]
4 %08I1 %081 - - - - - wneg 19p[ing
4 - %081 - - %081 - - o3pug
S %0¢l1 %0¢l1 %0¥IT - %02l 1 - - 1)depy
9 %EEElT %0SI€ - - - - %L 9T £10100 108NSqY
99¢ %6'611€S %€SEIb6 %¥¥T1S9 %t0l1 %S 91I¥Y %6°11S %S 1y Surwwrersoid
I - - %0011 - - - - AOM
eloL, ‘A9d MS vO wIoyie[d 310 Yo, ddy az1§ ddy urewo(q

(ponunuoo) y ajqe]

-
[
50
=)
ke
a
w
&l

Empir Software Eng (2022) 27: 8 Page 29 0f53 8

We can see that in all three DP types, QA is the most discussed context. The trend of
having the highest number of DC related discussion among all 3 types of DPs provides
empirical evidence that the DC that matters the most when considering DPs is QAs. Only
for three patterns — WCF, Memento, and Visitor — we did not find any posts that discuss
QA:s.

The second most discussed context is Platform Context, with 22.6%, 23.5%, and 24.4%
of all posts in Architecture, Communication, and Programming-related design patterns
respectively. This shows that the Platform Context is an equally important concern for all
DP types. Application Technology is also a frequently discussed context among all DP
types, with most discussions focusing on Architecture DP type, and more precisely related
to REST with 402 discussions.

Application Domain, Application Size and Organisation are not as often considered
across Communication and Programming DP types, while they are a bigger considera-
tion with Architecture-related DPs with 11 out of 19 Architecture-related DPs containing
posts that discuss Application Domain. These three contextual factors are largely to do with
architecture matters than implementation or communication concerns.

Answer to RQ3: Quality Attributes is the context with the strongest connec-
tion to DPs, followed by Application Technology Contexts, Platform Contexts, and
Software Development Contexts. Certain contextual factors such as Application
Domain, Application Size and Organisation are mostly discussed with particular
DP types, and are largely related architecture matters.

Platform

Fig.7 Design contexts cross referenced with design patterns

@ Springer

8 Page300f53 Empir Software Eng (2022) 27: 8

5.3.2 Application Technology Context of Design Patterns

The analysis of how Application Technology is a concern when considering a DP is pre-
sented in Table 5. The majority of the posts are under the Architecture DP type with the
Web Application context being the most discussed context overall. Examples of discussions
from Stack Overflow that mention Web Application are:

Example 1. | have a javascript web application almost totally rendered client side. The data
is exchanged between client and server using models through a REST interface ...
Example 2. I've been trying to adhere to a strict interpretation of MVC in rebuilding a
personal web application at home, but I'm having some issues ...

The next most discussed context is Mobile Applications. An example of a post that
mentions Mobile Applications is:

Example 3. I'm designing a mobile application that communicates with a laptop over LAN
where minimal latency is critical ...

The most frequent design pattern under this context is REST, which is also the most
frequently discussed DP overall (as also shown in the previous section in Table 4). Stack
Overflow posts that fall under Communication and Programming design pattern types
often mention Mobile Application. On the other hand, we do not find any posts that dis-
cuss Communication-related design patterns together with Embedded Systems, Information
Systems, and Standalone Systems.

5.3.3 Application Domain Context of Design Patterns
Application Domain is not often mentioned in Stack Overflow posts, and the majority of

the posts that discuss domain-related factors, focus mainly on Financial Systems, as seen in
Table 6. One example that discusses Financial Systems is:

Example 1. The application is a financial tracking application. I'm stuck at the first page,
which is just a list of the bank account transactions for the month ...

It appears that Architecture DP types are related to Application Domain, such as Finan-
cial Systems and Enterprise Systems. This is probably because the structure, or architecture,
of a system are related to how businesses in a domain operate, like an enterprise is likely
to be geographically distributed and thus use client-server pattern. Enterprise systems is the
second most popular context, and we see that posts discussing this context term cover a
larger set of design patterns compared to the other Application Domains.

The Application Domain is not discussed in conjunction with Programming and
Communication-related design patterns. This is probably because at the implementation
levels, Application Domains are irrelevant.

Overall, it is clear that Architecture design patterns are the prominent DP type in the
Application Domain related discussions, constituting 53 out of 58 mentions.

@ Springer

Page310f53 8

Empir Software Eng (2022) 27: 8

suoneorddy qop=va ‘SwaisAS ouofepueig=SS ‘suonedrddy S[IqQON=VA ‘SWISAS UONBULIOJU[=S] ‘SWISAS PappaquIg=SH ‘SWISAS pAINquIsiq=Sq

ST %0810T - %1 %1 - %TllE VOS
I %0011 - - - - - 10100 T—ADIAIOS
or %1¥LI186T %T Ol %6°€2196 %S0lT %S0lT %L0lE 1sad
I %0011 - - - - - K1oysodoy
9 %08S1€ - - %LITIT - %EEElT dad
14 %081 %081 - - - - IIL-N
Sl %L IYIL - %LIYIL %L1 - - WAAN
14 %0512 - %05$1T - - - dAIN
Il %9°68156 %8'11T %9°ClIpl - - - DAIN
¥ %001 |+ - - - - - TN
8¢ %E¥9I81 - %Ll - - %9°'8CI8 SOOTAIOSOIONA
I %0011 - - - - - dey—Amuepy
€T %ET6I1T - - - - %L'8lT aaa
S %08% %0TIT - - - - ova
e %9°'L9I€T %6°SIT %9°0TIL - - %6°SIT ToAIS UAI[D
4! %E8SIL - %EEElY - - %€ 81 PIOOAIAAIDY
vL9 %L0"SLI90S %BYO'1IL BELGTIEET %YL OIS %0€°01T el €Elle QIMIOANYOIY
[eloL, VM SS VIN SI sq sa

suroned usisap £q paduarajal 1xauod A3ojouyde) uonedrddy g ajqel

pringer

A's

suonedrddy qop =V ‘SWISAS suorepue}S=SS ‘suonedijddy 9[IQOIN=VIA ‘SWIISAS UONBULIOJU[=S] ‘SWISAS pPoppaqug=SH ‘SWISAS pAnqusigq=Sq

Empir Software Eng (2022) 27: 8

1 - - - - J0JISTA
I %8'8s101 %6'SI1 %S eTly %6'SIT uoje|sulg
4 %0011T - - - uIa)jed I9AISqO
I %0011 - - - Surpeo1-4ze
S %0011S - - - [OTUOD~UOISISAU]
9 %00119 - - - poyIsIN 101084
! - - %0011 - opeoeq
9 %E €8IS - %LITIT - oLd
€ %0011€ - - - 10JeI009(]
! %0011 - - - oSpug
1 %0011 - - - 10ydepy
44 %BLTLLI ¥E %LTTIT %¥9°ET9 %LTTIT SurururerSord
14 %Sell - %08IT %Sl ‘sqng-ystqnd
I %0011 - - - I01RIPOIN
! %00TIT - - - Surjood ‘uuo))
9 %051¢ - %eEEElT %L9Y|1 UOTJEITUNTITIO.)
VM SS VIN sa

8 Page320f53

(ponunuoo) g ajqe)

pringer

A's

Page330f53 8

Empir Software Eng (2022) 27: 8

I - - - - - %0011 uo[Surg
I - - - - - %0011 [0NUO)—UOTSIOAU]
! - - - - - - %00TIT I0je1092(]
[- - - - - - %0011 L0108 10ENSqY
14 - - - - - - %001y Suruwessorq
I %00TIT - - - - - - aquosqns—ystqnd
1 %00TIT - - - - - - uonedIuNWWo))
14 - - %0SIT - %05S1T - - VoS
81 %95°GI1 - - - %0S16 %9S°SIT %6°8€IL 1S3y
I - - - - - %00TIT dud
T %0511 - - - - - %0811 INAAN
I - - - - - - %001IT dAN
9 - %L 9TIT - - %0SI€ - %eeelT DA
12 - - - - %SLIE - %STIT SIOIAIRSOIDIN
8 - - %0S°TIIT %0S°TIIT %0S"79IS %0S°TIIT - adaa
4 - - - - %00TIT - - ova
T - - - - - %00TIT IOAIDS UAI[D
9 %HLYOTIT - - - %L9°99lp - %LY9TIT PI00RIOANOY
€S %99°Sle %68 111 %99°SlE %6811 %€8°TSI8T WHLLEIT %HETIST QIMIOANYOLY
[eI0L, ‘Suel[, SIN'T JH yresy “urg d94 ‘ug

suroned uSisop Aq paouarajal 1xoJuod urewop uoneorddy g ajqep

pringer

A's

8 Page34o0f53 Empir Software Eng (2022) 27: 8

5.3.4 Application Size Context of Design Patterns

Application Size is rarely discussed in Stack Overflow posts. In the posts that discuss Appli-
cation Size, we see that the majority of discussions are about small applications. A summary
of the results is shown in Table 7.

Most architecture-related design patterns are discussed in the context of Large appli-
cations, while only one Programming design pattern (Inversion-Control) is covered in
Large applications. When discussing Small applications, we observe a wider coverage
of design patterns compared to Large applications. We did not find any posts that dis-
cuss communication-related design patterns when considering the size of the application.
This finding seems to indicate that the size of the application is related to the business
and architecture design. Size of application appears to be irrelevant to Programming and
Communication design patterns.

Overall, we can see that Architecture DP type discussed more Application Size compared
to the other two design pattern types. This shows that Application Size is more relevant to
architecture patterns.

5.3.5 Technology Platform Context of Design Patterns

Most platform related discussions are concerned with Databases, and the posts discussing
aspects related to Databases cover most DPs (more than any other platform-related context).
Some examples of such discussion in Stack Overflow posts are:

Example 1. I'm implementing an API using CakePHP3 with a MySQL database ...
Example 2. We are addressing some infrastructure concerns of having so many distinct
databases...most urgently, a high number of simultaneous database connections when
processing ...

Table 7 Application size context

referenced by design patterns Large Small Total

Architecture 5/19.23% 21(80.77 % 26
Activerecord - 11100% 1
Client Server 1125% 3175% 4
DDD - 11100% 1
Microservices 1133.33% 2166.67% 3
Multi-Tier - 1/100% 1
MVC - 3]100% 3
REST 2120% 8/80% 10
SOA 1133.33% 2|66.67% 3

Programming 2140% 3160% 5
Inversion—Control 11100% - 1
Observer Pattern - 11100% 1
Singleton - 2[100% 2

@ Springer

Empir Software Eng (2022) 27: 8 Page350f53 8

As seen in Table 8 apart from Client Server and P2P, the highest share of posts for each
design pattern is the Database context. The Network Context is mainly considered when
discussing the Client Server and P2P architectural patterns.

Operating system is not very often discussed, with only 8 posts, 6 of which are under
the architecture-related design patterns. The Development and Hardware context are mostly
considered under the REST design pattern, and there are no posts that discuss development
context when considering communication-related design patterns.

Overall, it is clear that Platform Context is important to all three categories of design
patterns. Although Database context is the most popular context in all of the design patterns,
the other Platform Contexts such as Hardware and Network are also important.

5.3.6 Organisation Context of Design Patterns

Context factors that fall under the Organisation are Schedule, Finance, and Stakeholder.
Table 9 shows the different organisation-related concerns that are related to the differ-
ent design patterns. We found only one post that discusses Finance, which was related to
microservices architectural pattern. On the other hand, Stakeholder concerns are the most
discussed when it comes to both architecture and programming-related design patterns. One
of the example posts is shown in Example 1 where the stakeholder is the customer.

Example 1. If a Customer wants to make an advert in these templates he chooses a
template and if its in stock all is good to go ...

The majority of DPs do not appear in Table 9, which indicates that organisation-related
aspects are not considered when choosing these design patterns. In particular, we did not
find any post under the communication-related design patterns that discusses Organisation
Context. On the other hand, most of the design patterns that are concerned with Organisation
Contexts are Architecture design patterns. It is likely that Organisation Contexts have an
influence on structural design issues rather than implementation issues.

5.3.7 Software Development Context of Design Patterns

There are three contextual factors that are under the Software development context category:
Development Methodology, Quality Standards, and Testing Standards and Methods.

For the Development Methodology Context we considered the factors that are related to
different development methodologies (i.e. agile, waterfall). Some of the examples we found
discussing Development Methodology Context are:

Example 1. ... how can | get a user’s token and send it to client side after authentication
on the API ...

Example 2. ... uploading the media for both HMAC authentication middleware ...
Example 3. ... what kind of authentication would you suggest for the REST web services?...

In Example 1, we can see that the post discusses the agile development and state the ten-
sion of architecture choice in the Agile environment with dynamic requirements where
some members are familiar with old technologies such as SQL procedure, against using

@ Springer

Empir Software Eng (2022) 27: 8

8 Page360f53

I - - - - %0011 J0M
S - %0OYIT %0TI1 - %0¥IT aqUOSqNS—YsTqnd
I - - - - %0011 I0JeIpajN
I - - - - %0011 Surjood uonosuuo)
8 - %STlT %0SCII1 - %8°791S UONBDIUNWIWO))
ST - %02lS %1 %TllE %1991 vOS
I - - - - %001IT 101800 T-901AIDS
9I¢ - %BLYTTTL %8S°1IS %TTTIL %ELELIEET 1sad
T - - - - %001IT K1oysodoy
4! - %EE"€8I0T - - %L991IT dad
1 - - - - %00TIT YALL-N
0z - %S| %S - %06/81 IWAAN
14 - %STl1 - - %SLIE dAIN
48! %68°0l1 i ladle %89°ClE %89°ClE %62°68100T JAN
S - - %021 - %081 RIL-NNN
6 %¥0°Cl %0T°011S %TI9lE %TI9lE %ISSLILE SAOIAIISOIOTIA
I - - - - %0011 depN—Kmuapy
1 - - - - %0011 vada
9t %LITIT - %BLITIT %BLLTIT %8¥°"€6/€ aaa
1 - - %60°6l1 - %16°06l01 ova
81 %ST9lE %SLEVITT BLIYIT WBLUYIT %LY'1¥10C RETNEINSIE 9]
L9 - - - - %0011L9 PI0IAIRATIOY
IcL %€8°0l9 %S 9Tl6T1 %STISI %¥9°Cl6l %E€SLLI6SS QIMOANYIIY
[eI0L e} JI0MIN MH geled aa

suroyed uStsop £q paouaIajer 1xoJuod wIojje[d 8 d|qel

pringer

A's

Page370f53 8

Empir Software Eng (2022) 27: 8

waysAs Sunerado=gQ ‘oremprey=pMH ‘yuowdo[oadp=49(J ‘eseqerep=gq

I - - - - %00T/T A3ayeng
(44 %SS I %SSHIT %60°6C %BSSHIT %LTLLILY uol[Surg
I - - - - %0011 I9A198Q0
I - - - - %001IT OJUSWIDIA]
4 - - - - %0011 SurpeoT-Aze]
I - - - - %00TIT JTopexa]
6 - %BITTIIT - - %68°88!8 [0UO)—UOISIOAU]
€ - %eEEEl - - %1L9°991T J10ydosrauy
s - - %0TI1 - %08p POYIN K10108]
¢ weeeelt - - - %L9°99IT opedy
01 - %02lT - - %08!8 oLd
C - - - - %001!T 10Je1009(J
T - %081 - - %0811 mdepy
S9 %80°€1T %LLOTIL %T9 e %Y1l %081TS Sunuure1sord
[el0], SO YIomioN MH ad aa

(ponunuod) g ajqey

pringer

A's

8 Page380f53 Empir Software Eng (2022) 27: 8

Table 9 Organisation context referenced by design patterns

Schedule Finance Stakeholder Total
Architecture 6]33.33% 115.56% 11/61.11% 18
Activerecord 1/100% - - 1
DDD - - 2(100% 2
Microservices 1150% 1150% - 2
MVC 1125% - 3|75% 4
N-Tier 1/1100% - - 1
REST 1120% - 4/|80% 5
SOA 1133.33% - 2166.67 % 3
Programming - - 1/100% 1
DTO - - 1/100% 1

newer technologies such as OOP, SOLID, Refactoring. In Example 2, the discussion is
about DevOps. DevOps is a software development methodology in that the steps of software
development are redefined to streamline programming, testing, and deployment.

For the Quality Standards Context, we consider the factors that assure the quality con-
cerns of the system. From the discussions, we found these quality standards contexts are
vaguely discussed and concealed within descriptions. Therefore, we have to perceive the
whole idea of the post. In most cases, we found that these discussions are around ensuring
the quality of the system/application. As an example, in the Example 3, we can see it is try-
ing to question a plausible way to ensure a secure application development, specifically in
the areas of user authentication and authorization.

Example 4. One of these applications is CAS which is used for all authorization ...
Example 5. ... is the correct authorization string of the concatenation of the name and
token encoded in ...

Example 6. Within my architecture, the resource server and authorization server are the
same entity ...

For the category of Testing Standards/ Methods Context, we considered the testing method-
ologies (i.e unit testing) and some of the examples are:

Example 7. Now | have noticed that the performance is dreadful. | started some speed
tests with ...

Table 10 presents an overview of the results that show the relationship between design
patterns and the Software Development Context. We observe that Quality Standards Con-
texts are the most discussed context when considering Architecture and Communication
DP types, whereas in Programming DP type, we see a higher number of posts (26
posts, 49.06%) that focus on Development Methodology Context. Communication design

@ Springer

Empir Software Eng (2022) 27: 8

Page390f53 8

Table 10 Software development context referenced by design patterns

Dev. Methodology Quality Standards Testing Stand. Total
Architecture 217|33.91% 406/63.44% 17]2.66% 640
Activerecord 12]26.67% 29|64.44% 4|8.89% 45
Client Server 9120.45% 33|75% 214.55% 44
DAO 3142.86% 4|57.14% - 7
DDD 11|24.44% 34(75.56 % - 45
EDA - 1/100% - 1
Microservices 21145.65% 25|54.35% - 46
Multi-Tier 1133.33% 2166.67 % - 3
MVC 40|34.78% 72(62.61% 3|12.61% 115
MVP 1125% 3|75% - 4
MVVM 11|52.38% 10|47.62% - 21
N-TIER 2150% 2150% - 4
Repository Pattern - 1/100% - 1
REST 98135.64% 169(61.45% 8|12.91% 275
Service-Locator 1/100% - - 1
SOA 7126.92% 19|73.08 % - 26
SOAP - 2[100% - 2
Communication - 6/100% - 6
Mediator - 11100% - 1
Publish—Subscribe - 5/100% - 5
Programming 26/49.06 % 23143.40% 417.55% 53
Abstract Factory 21100% - - 2
Adapter - - 1/100% 1
Builder Pattern - 1/100% - 1
Decorator 1125% 3|75% - 4
DTO 4|57.14% 3|42.86% - 7
Facade 2(66.67 % 1133.33% - 3
Factory Method 1/100% - - 1
Interceptor 2|66.67 % 1133.33% - 3
Inversion—Control 2|120% 660 % 2120% 10
Iterator 1150% 1150% - 2
Memento 1/100% - - 1
Observer 1/100% - - 1
Singleton 4133.33% 7158.33% 118.33% 12
Strategy—Pattern 2100 % - -
Visitor 2/100% - -

patterns are only discussed in the context of Quality Standards, and we do not find any posts
that mention these design patterns in the context of Development Methodology and Testing
Standards. Testing Standards are the least discussed context, with the majority of the posts
focusing on Architecture DP types.

@ Springer

8 Page40o0f53 Empir Software Eng (2022) 27: 8

5.3.8 Quality Attribute Context of Design Patterns

Quality attributes (QAs) are an important consideration when applying design patterns, and
the relationship between the two has been extensively studied in the literature (Harrison and
Avgeriou 2007; Feitosa et al. 2019; Bi et al. 2018). In this section, we analyse how design
patterns are discussed with respect to QAs as summarised in Table 11.

Depending on the property of the system that a particular QA addresses, QAs can be
divided into two categories: 1) QAs related to the runtime and 2) QAs related to the devel-
opment time of a system. As an example, Performance describes the property of a system at
runtime and Modifiability describes a property related to the development time of the sys-
tem. Security, on the other hand, is related to both runtime and development time aspects of
a system.

By definition, security is a “measure of the system’s ability to protect data and infor-
mation from unauthorised access while still providing access to people and systems that
are authorised” (Bass et al. 2012). We observe that security-related discussions cover most
phases of software development, including securing physical access to the stored data.

Security is the most discussed QA under the architecture-related design patterns, with
482 posts, constituting 45.77% of the total. In both programming and communication-
related design patterns, Security is the third most frequently discussed QA. Further analysis
of each DP under Architecture DP type reveals that out of 19 patterns only 4 have Security
as the most discussed QA. Those patterns are REST, Service Locator, Multi-tier, and MVC.
The majority of security-related posts are about REST (302 posts). Indeed, Security was
one of the QAs that was considered when designing the REST constraints (Fielding 2000).
In-depth analysis of security-related discussions shows that most frequently used key-terms
are Authentication and Authorization. As an example, we often found discussions related to
authentication such as:

Example 1. ... how can | get a user’s token and send it to client side after authentication
on the API ...

Example 2. ... uploading the media for both HMAC authentication middleware ...
Example 3. ... what kind of authentication would you suggest for the REST web services?...

Further, there are examples on authorisation:

Example 4. One of these applications is CAS which is used for all authorization ...
Example 5. ... is the correct authorization string of the concatenation of the name and
token encoded in ...

Example 6. Within my architecture, the resource server and authorization server are the
same entity ...

According to Table 11, we can see that Performance is the most discussed QA
under the programming-related design patterns, with 42 out of 92 posts (45.74%), and
communication-related design patterns, with 7 posts out of 13 posts (53.85% of the posts in
this category). In architecture-related design patterns, even though Performance is the sec-
ond most discussed QA with 339 (32.19% of the discussions) we can see that the majority

@ Springer

Page 410f53 8

Empir Software Eng (2022) 27: 8

I - - - - - - - = %00°001/1 - - - - dvos
LE %OLTIT - WEL6TIIT %IT8lE - - %PTEHIOT BIT8lE %OLTIT %OLTII - - %0LTIl VOS
I - - 9%00°00TIT - - - - - - - - - — "00TT-OJIAIS
v8Y - BIF0IT %OV'T9IT0E %SOTI8 %66°SI6T - BLEETIIIT BLTTITT BSHIIL - %E80ly BITOIT %esoly 1sad
€ - - - - peeeell - gpeeeell wpeeeel - - - - - foysodoy
P1 - - 9%ILSElS - - %YILIT %00°0SIL - - - - - %PILIT ded
¢ - - - - - - oeeeell weeeell weceelt - - - - TIL-N
I - - - - - - ~ %00°001/T - - - - - AN
8¢ %EITIT %EYTIT %S6'STITT - %9Tsle - BITYEIEL B6YLIE %9TSIT - %68°LlE - %9TSIT INAAN
S - - %0002l - - - 9%00°09€ %000Cl1 - - - - - dAIN
ST BITIIT %E0ElS %9 erlTL - %E0°Els - %0£0€l0S weCEITT %r9El9 - %ITIl - %190l DA
L - - %98°Thle - - - %I8THIE %6TPIIT - - - - - D-nmpy
S9 - - BLLOEIOT BYSTIT %S0EIT %¥STIT BSYEEITT %ET6I9 %80°€ElT - %ST9ly = %LL'OTIL S9IIAIOSOIIA
I - - - - - = 9%00°001IT - - - - - - depy—Amuepy
I - - - - - - — %00°001/T - - - - - vad
L %8LTIT %6E T %68 €Ol %6E 1T - - %BLYTHIOE %TTTTI9N %€E819 - BLIYIE - BLIYIE aaa
€l - - %80°¢ele - - - 9%S8ESIL w80cTle - - - - - ova
8 wTLIII - %99°6£l€T - - - %TLIsloE wSvele LTl - - = %TLIIT IeAIRS UL
78 - - %I18€TloT - %LSElE - %EPIPl6E BYTOTILT B6I'TII - %6I'TIT - %LSElE PIOAIAANOY
€601 %99°0lL %S80l6 BLLSPIT8Y %ETTIET %66°EITy %610IT %61TElGEE %SH8I68 %99°TIST %60°0IT BIVTILT %60°0IT %8ITIET IMmdAYdIY
[eioL, ‘qesn) "8IS, noAs ‘e[eos 9Jes RATEN | ROAER| JIPOIN “urejurey “dorojuy pung dwo) TIeAY

suroped udisop Aq paouaIajar s)xa)u0d Aynque Aend) || d|qel

pringer

A's

Empir Software Eng (2022) 27: 8

8 Page42of53

14 - - - - - - - %00°SLlE - 9%00°STlT - - - urned—A39rens
ST - - %00CIlE - - = %009SIPT %00°0TIS %00°CIlE - - - - uoR[3uIg
4 - - - - - - %00°0SIT %00°0SIT - - - - - uned 10A1Sq0
€ - - opeeeell - - - %L999IT - - - - - - Surpeo-Aze]
14 - - - - - - %00°0SIT %00°0SIT - - - - - Jlojeron
€l - - %8ECIIT - - - %or'8Els %ovselS - - - - %69°LIT IUOD—JO-UOISIOAU]
€ - - opeeeell - - - peeeell - - - o%eeeelt - - J101deoroiu]
9 - - - - - - %LYIY wecetlT - - - - - POy A10)08]
€ - - 9%L9'99IT - - - oeeeelt - - - - - - opeor
91 %STIIT %STIll %ST Il - - - 9%00'0SI8 %00°SCly - %STIIl - - - oLa
L - - 9%LS8TIT - - - %ITHIE BETHII - - - - %6THII Ioje109Qg
I - - - - - = %00°001/1 - - - - - - ureed Iop[ng
I - = %00°001IT - - - - - - - - - - a3pug
I - = %00°001IT - - - - - - - - - - 1adepy
€ - - - - - - - %L999IT - %eeeell - - - k101081 10ENSqY
6 %80T %80 1T %ETVIIET - - - %SYSHlty wLI'LTIST %ITEIE BSEVIY %8O'TIT - %LITlT Suruwessold
6 - - - %I - - %L9'9919 %rTTele - - - - - ‘sqns-ysiqnd
I - - - - - - - = %00°001/1 - - - - IojeIpaN
€ - - oeeeell - - - oeeeell - oeeeelt - - - — Surjood uonosuuo)
€l - - %69LIT %69LIT - - 9%SSESIL BYESIIT »8ESIIT - - - - uoneIIUNWWOD
eoL, ‘qes) 8IS, RIbEIN ‘B[R0S 9JeS "BIOY RIGAER | JIPOIN curejurey doxdyup oung dwo) TIeAY

(panunuoo)

L1 3lqeL

pringer

A's

Empir Software Eng (2022) 27: 8 Page430f53 8

of the design patterns in this category (11/19 design patterns) have Performance as the main
concern. Some posts mention performance explicitly, such as:

Example 7. Now | have noticed that the performance is dreadful. | started some speed
tests with ...

Other posts mention performance related metrics, such as throughput:

Example 8. ‘If | hit my web application directly - for each server | am able to achieve a
throughput of 50 RPS per server...”

In both Programming and Communication DP types Modifiability is the second most
discussed QA. Even though Modifiability does not have a high proportion of all posts, it is
discussed in relation to most design patterns. As one person puts it:

Example 9.While I'm attracted by the SOA concept (encapsulating reusable business logic
into services) | can’t figure out how it's supposed to work if data tables encapsulated ...

This finding indicates that practitioners are often concerned about the runtime properties
(i.e., Performance) of the system across all three DP types.
Often, the trade-off between QAs is considered. For example, one person writes:

Example 11. | am seeking here for the best way to handle database connection(s),
concerning aspects of : maintainability, performance, security and implementation ...

When looking at the different QAs discussed for each design pattern, we observe that
REST has the highest number of different QAs covered by posts (10 different QAs),
followed by Microservices (9 QAs), DDD (9 QAs), and SOA (8 QAs).

6 Discussion

Software design impacts on the quality, cost, and timeliness of the final solution (Carlson
et al. 2016) and involves a knowledge-intensive problem-solving activity (Babar et al. 2009)
with many critical decisions (Papatheocharous et al. 2015). Requirements, contexts, and
architecture evaluation are the three main knowledge sources that drive the architecture
design decisions (Babar et al. 2009). In this paper, we focus on context. Dyba et al. (2012)
present a number of ways that enable the exploration and analysis of contextual impact. Our
study falls under three of the categories (Dyba et al. 2012):

— “Study critical events that can punctuate context and make possible research and theory
that form part of a larger whole”. In our study, we investigate the relationship between
context and design patterns, which addresses the gap in our understanding of design
context.

@ Springer

8 Page44of53 Empir Software Eng (2022) 27: 8

— “Collect qualitative data that illuminate context effects and interactions that might affect
behavior in a studied setting, or that can aid in making inferences about the situation”.
We mine contextual factors from qualitative data in Stack Overflow posts that impact
the choice of design patterns, which enables us to make inferences on their relationship.

— “Measure multiple dependent variables that can uncover situational context when
used in conjunction with one another or explain the gap in meaning”. The use of
design patterns depends on different contextual factors. In this study, we analyse these
dependencies.

Following the guidelines suggested by Dyba et al. (2012), we employed an empirical
method to discover the relationships of design patterns by mining expert knowledge from
Stack Overflow. This allowed us to understand what contextual factors are important to
design patterns. For instance, if a developer wants to use a multi-tier architecture, she would
then need to ask what size application, what Organisation Contexts is intended because
these factors are important to help shape decisions.

A new DPC Taxonomy As mentioned earlier there are several work done in this area and
our initial DPC Taxonomy construction is based on the different studies related to design
context (Bi et al. 2018; Carlson et al. 2016; Bedjeti et al. 2017; Kyakulumbye et al. 2019;
Belecheanu et al. 2006; Harper and Zheng 2015; Power and Wirfs-Brock 2018; Babar
et al. 2009; Tang and Lau 2014; Riaz et al. 2015; Petersen and Wohlin 2009; Groher and
Weinreich 2015; Clarke and O’connor 2012).

Groher and Weinreich (2015) studied environmental factors that influence architectural
decision making. This study was conducted qualitatively by analysing expert interviews
regarding the decision making process. The authors interviewed 25 experts from 22 different
companies in 10 different countries and identified eight categories of factors that influence
the architecture decision making namely: Company Size, Business Factors, Organisational
Factors, Technical Factors, Cultural Factors, Individual Factors, Project Factors, and Deci-
sion Scope. Further, they analyse these architecture decisions in the aspects of how, when,
and by whom the decisions are made in different organisation contexts. From this analysis,
the authors show that the context in which an architect works influences the decision-
making process. In our work, we use this study to get an insight into the context. However,
the focus of this study is different from our work since our focus is on design pattern con-
text and our use case is based on both literature and Stack Overflow discussions with a
statistically supported quantitative analysis.

Carlson et al. (2016) proposed a context model to allow the explicit representation of
the context in the architectural decision making. The proposed context model is comprised
of two levels, emphasising the relevance of the context elements in the process of architec-
ture decision making. The top level of the context model consists of five context elements
namely: organisation, product, stakeholder, development method and technology, market,
and business. The elements under each type of top-level context are defined based on the
literature. Further, the authors distinguished the context based on the usage of the context as
internal and external context. In our work, we use the same approach like this work where
we formulate the second level of context elements based on the literature in our initial taxon-
omy generation. However, one difference of our work compared to this work is we explore
the context elements beyond the literature by exploring further into Stack Overflow discus-
sions. Another difference is the considered domain of the context elements, where we use
the design pattern domain instead of architecture decision making.

@ Springer

Empir Software Eng (2022) 27: 8 Page450f53 8

In the work done by Bedjeti et al. (2017), authors present a Context Description View-
point (CDV) to describe the context in the software architecture. The authors performed a
systematic literature review and identified four context categories (i.e., platform context,
user context, application context, and organizational context). These context categories are
used as input to create a list of Context Constituents. These Context Constituents are defined
as pieces of information about the context in which the system operates. The authors state
that these Context Constituents can aid design decisions making in software architecture.
Further, to model these Context Constituents a graphical model called Context Description
Viewpoint was introduced. In our work, we consider these Context Constituents and context
categories when formulating our initial taxonomy.

The closest work to our study is the preliminary analysis of how developers discuss archi-
tecture patterns, quality attributes and design context in Stack Overflow (Bi et al. 2018).
The study reports that the most frequently asked design question is of the type “should I use
this architecture pattern in this application?”, which indicates that context is a notable con-
sideration in Stack Overflow posts. The authors argue that “developers often need to know
certain information when designing with architecture patterns, such as the relationships
between quality attributes and architecture patterns, characteristics and potential issues of
using a pattern”. These findings inspired our study, which is focused on discovering new
design knowledge from empirical data that is regarded as important by developers when
considering design patterns, with particular design contexts.

DPC Miner To classify the posts as DPC related discussion or not DPC Miner uses a classi-
fier. In the classification, one of the concerns that can occur is the class imbalance problem.
This happens because the input classes are not equally proportioned hence one class may
favor compared to another which might affect the final results of the outcome. In machine
learning imbalanced data set is unavoidable. It is the same with the DPC Miner. In the pro-
cess of selecting the negative class samples (non-DPC related posts) for the DPC Miner
training and testing, we tried to minimise this by selecting the same percentage (50% each)
class samples for both classes. To select non-DPC-related posts we automatically filtered
the Stack Overflow discussion posts that do not contain any keywords or phrases related
to DPC. However, since we do not manually inspect all of these non-DP posts we used the
following measures to ensure imbalance data does not influence the results of the classi-
fier. First, in the classification setting, we used the balanced,,eight to ensure that the class
weights are adjusted to the input class frequency. Second, we used Stratified sampling in the
evaluation to ensure the class imbalance-related concerns are eliminated by stratified folds.
The stratified folds preserve the percentage of samples for each class and ensure that each set
contains approximately the same percentage of samples of each target class as the complete
set. Finally, apart from the traditional evaluation metrics like the accuracy of the classifier
we used bipartition-based (Precision, Recall, F1-Score) metrics that by default compute the
averaged scores from both classes. Further, we used measures like AUC (Area Under the
ROC Curve) that shows the relation between true-positive rate and false-positive rate.

The use of DPC Miner The DPC Miner is a machine learning model that is trained to mine
the design pattern context related posts from Stack Overflow. The purpose of the DPC Miner
is to predict the possible DPC related discussions such that the number of posts one has to
evaluate can be reduced. As an example, lets assume there is a data set with 10,000 posts.
In this case a practitioner can use the DPC miner to predict the DPC related posts. Since
we already identified the performance of the DPC miner as 74.5% it is likely to predict
around 7,450 posts out of 10,000 correctly classified. In our use case, even though we used

@ Springer

8 Page460f53 Empir Software Eng (2022) 27: 8

the DPC Miner to mine more posts, we manually labelled all the posts since we wanted to
evaluate the mining performance. However, in practice, once we use DPC Miner to expand
the dataset, we only need to label the predicted values.

Relationships between Design Context (DC) and Design Pattern (DP) We found that of
all the DPs, irrespective of type, the most discussed DCs are (a) quality attributes; (b)
platforms; (c) application technology and (d) software development (see Fig. 7).

Developers are concerned with how quality attributes of DPs shape a solution, and
how quality requirements dictate what DPs can be used. We break down the DPs into 3
categories, architecture, programming and communication, and analyse the relationships
between each category and DCs. We find that architecture DPs are most concerned with
DCs, having 1053 quality attribute DC related discussions. Whereas quality attribute related
discussions only appear in communication and programming DP discussions 13 and 92
times, respectively (see Table 11). Additionally, amongst all the different quality attribute
sub-categories, security and performance are by far the most concerned DCs in architecture
DPs. Performance is the most concerned DC in programming and communication DPs.

Platform contexts are closely related to architecture design patterns. A vast majority of
context discussions, i.e., 721 out of a total of 794, are architecture DP related (see Table 8).
It basically means that whenever developers discuss the use of architecture DP, they also
discuss platform contexts. Amongst these platform contexts, database and networking are
discussed the most. This can mean the two contexts are tricky in design and needed informa-
tion is unavailable to the developers. Similar to platform contexts, application technology
contexts are closely related to architecture DPs. Table 5 shows that 674 out of a total of 724
application technology DC discussions are related to architecture DPs.

The popularity of software development contexts is a surprising finding as one would not
normally associate a technical design issue with DP to a software development methodology
or process. From the mined data, we found that quality standards is the main context for
DPs, especially for architecture DPs (i.e. 640 out of a total of 699 discussions, Table 10).
This implies that developers want to know quality implementation of DPs, and part of that is
testing. Development methodology is also a concern. Developers want to know how DPs can
be used in conjunction with a new development environment that they find themselves in.

The need for mining design pattern knowledge Developers often ask about similar ques-
tions such as how to use a DP with a particular technology and what would that mean to
certain quality attributes. In example 3 in Section 5.3.2, a developer asked about how using
a DP in a mobile app affects communication latency. The repeated appearance of similar
questions that have interrelated contexts tells us that there is a need to mine and organise
such knowledge to allow developers to easily find development knowledge. This kind of
software engineering knowledge gathering and dissemination is a bottom-up data mining
approach. It is different from the top-down textbook approach that provides principles and
theories. As discussed earlier, design context is about the design environment and this envi-
ronment is highly dynamic in nature. This environment creates a question on how to extract
and organise knowledge for the software development community.

As developers share their development experience in discussion forums such as Stack
Overflow, the data mining approach that we propose in this article allows us to mine and
relate software engineering knowledge, in this case what design contexts to look out for
when using design patterns. The categorisation of DPs and DCs and their relationships
provide a structure for developers to follow.

@ Springer

Empir Software Eng (2022) 27: 8 Page 47 of53 8

Whilst Stack Overflow at this point in time contains relevant data to allow us to carry
out mining for this knowledge, it does not necessarily provide ALL relevant context-DP
knowledge. It is likely that some contexts are missing and we do not know about them. A
methodology such as the one described in this article can and should be used repeatedly
over time and on different forums to mine more knowledge. In the end, it would be difficult
to test that the context factors can ever be complete as new contexts can emerge over new
situations and time.

Future use of Design Pattern Knowledge Design Pattern knowledge (DPK) can be defined
as the relation between DP and DPC. Since DPK is mined and readily available it is now
possible that we use this structure to guide developers to find relevant posts within Stack
Overflow by indexing the URLs of the posts through DC and DP categorisation. We can
build an automated tool to structure link DC-DP relationships to the actual discussion. This
can help developers find, with a click of a button, the detailed discussions of developers
grouped by any of the relationships that we list in Section 5.3. This facility can greatly help
developers find out more about the considerations of using certain DPs.

Further, with the use of a knowledge management tool such as an ontology, we can
structure this DPK into both machine and human interpretable format and can allow further
access to the identified knowledge.

7 Threats to Validity

Internal Validity We use the Stack Overflow tags to identify posts that are related to design
patterns. It is possible that these tags are not accurate. To minimise this threat, we assess
the accuracy of the tag during the labelling process, and remove posts that were wrongly
labelled with a design pattern tag.

Further, there are few occasions that the identified DC is not semantically referring to the
DC. This is because the keywords related to the DC in the posts but it does not really discuss
the design context. As an example, the post “I read through Agile Web Development with
Rails in order to get up to speed ...” contains the term “Agile Web Development”, which is
a software development methodology. However, the term appears because it is the name of
the book that he happened to mention in the post. We identify these as false positives and
can be a threat to internal validity.

Another threat to the internal validity of the results is the hyperparameter tuning for
the machine learning models. We performed a random parameter search for the RL model
and for the machine learning algorithms, we used the default parameter settings. It is pos-
sible that the performance of the ML algorithms can be improved by further tuning the
parameters. However, the DPC Miner achieved good performance even with the default
values.

The labelling of the data may involve some bias, as different annotators may have a
different understanding of context. To minimise this threat, the data was labelled by three
annotators that are knowledgeable with design patterns and familiar with the literature in
design context. In addition, we assessed the agreement between annotators using Fleiss’
Kappa test, as discussed in Section 4.2.

External Validity External validity is about how much our results can be generalised.

Whilst we have mined Stack Overflow extensively, it does not mean that Stack Overflow
contains all the DPs and DCs that are known to the SE community. We did not mine other

@ Springer

8 Page48o0f53 Empir Software Eng (2022) 27: 8

Q&A sites and there are DCs and DPs that are never discussed in these public forums. As
such, our claims in this research is limited to what we have mined so far.

Construct Validity We select Stack Overflow because of the amount of Q&A posted by
developers related to design patterns. It is possible that some of the questions are posted by
users instead of developers, however, through a manual inspection, we observe that the vast
majority of the posts are by professional programmers. To reduce this threat, we considered
only posts that have a positive score. We have high precision of correctly labelling design
contexts and design patterns, therefore we have high confidence of the accuracy of the rela-
tionships between them. Another construct validity coincide with selection of appropriate
evaluation metrics. To mitigate this threat, we used multiple evaluation metrics, such as Pre-
cision, Recall, F1-Score, Accuracy, and ROC-AUC which are well used in many SE related
mining and classification approaches (Beyer et al. 2019; Ali et al. 2018; Alreshedy et al.
2018; Mirakhorli and Cleland-Huang 2016; Zanoni et al. 2015). Therefore, we believe the
threats to construct validity are minimal.

8 Conclusion

Design contexts that influence the use of design patterns have never been systematically
investigated. In this work, we systematically mine design contexts and relate them to design
patterns from Stack Overflow. There are three main contributions that this study makes.
First, we introduce a consolidated taxonomy of design context related to design patterns,
which covers context terms that developers consider when implementing design patterns in
practice. Second, we develop an automated approach that successfully mines design pattern
context knowledge from Stack Overflow. Third, we present an empirical analysis of the
relationships between design context and design patterns, uncovering knowledge about what
design contexts are considered with design patterns.

As future work, we can extend our mining method to analyse the relationships between
the different context categories to reveal important insights around the interplay of the dif-
ferent contextual factors. For instance, the trade-offs between different quality attributes can
reveal the interactions between various design contexts such as quality attributes and the
application domain. Furthermore, we can expand this study to analyse user profiles such as
the expertise of the user (Yang et al. 2014), the reputation of the user (Sillito et al. 2012)),
and technological aspects (Chen et al. 2016) of the posts to obtain insights about the demo-
graphics of DP and DPC related posts. One can also analyse the timeline of the mentions of
DP and DPC to get an insight into the trend line of DP and DPC over time.

References

Adam (2007) Entity Systems are the future of MMOG development — Part 1. http://t-machine.org/index.php/
2007/09/03/entity-systems-are- the-future- of-mmog-development-part- 1/

Ahmad A, Chong F, Shi G, Yousif A (2018) A survey on mining stack overflow: question and answering
(Q&A) community. Data Technol Appl 52(2)

Ali I, Asif M, Shahbaz M, Khalid A, Rehman M, Guergachi A (2018) Text categorization approach for
secure design pattern selection using software requirement specification. IEEE Access 6:73928-73939.
https://doi.org/10.1109/ACCESS.2018.2883077

@ Springer

http://t-machine.org/index.php/2007/09/03/entity-systems-are-the-future -of-mmog-development-part-1/
http://t-machine.org/index.php/2007/09/03/entity-systems-are-the-future -of-mmog-development-part-1/
https://doi.org/10.1109/ACCESS.2018.2883077

Empir Software Eng (2022) 27: 8 Page490f53 8

Allamanis M, Sutton C (2013a) Mining source code repositories at massive scale using language modeling.
In: Proceedings of the 10th working conference on mining software repositories, MSR ’13. IEEE Press,
Piscataway, pp 207-216. http://dl.acm.org/citation.cfm?id=2487085.2487127

Allamanis M, Sutton C (2013b) Mining source code repositories at massive scale using language model-
ing. In: IEEE international working conference on mining software repositories, (Iim), pp 207-216.
https://doi.org/10.1109/MSR.2013.6624029

Alreshedy K, Dharmaretnam D, M German D, Srinivasan V, A Gulliver T (2018) Predicting the pro-
gramming language of questions and snippets of stackoverflow using natural language processing.
arXiv:1809.07954

Ampatzoglou A, Charalampidou S, Stamelos I (2013) Research state of the art on GoF design patterns: A
mapping study. J Syst Softw 86(7):1945-1964. https://doi.org/10.1016/j.jss.2013.03.063

Babar MA, Dingsgyr T, Lago P, Van Vliet H (2009) Software architecture knowledge management: Theory
and practice. https://doi.org/10.1007/978-3-642-02374-3

Barua A, Thomas SW, Hassan AE (2014) What are developers talking about? an analysis of topics and trends
in stack overflow. Empir Softw Eng 19(3):619-654

Bass L, Clements P, Kazmanm R (2012) Software architecture in practice, 3rd edn. Addison-Wesley
Professional, Boston

Bedjeti A, Lago P, Lewis GA, De Boer RD, Hilliard R (2017) Viewpoint: Modeling context with an archi-
tecture. In: Proceedings - 2017 IEEE international conference on software architecture, ICSA 2017,
pp 117-120. https://doi.org/10.1109/ICSA.2017.26

Belecheanu R, Riedel J, Pawar KS (2006) A conceptualisation of design context to explain design trade-
offs in the automotive industry. R D Manag 36(5):517-529. https://doi.org/10.1111/j.1467-9310.2006.
00451.x

Bengio Y, Ducharme R, Vincent P, Jauvin C (2003) A neural probabilistic language model. J Mach Learn
Res 3(Feb):1137-1155

Beyer S, Macho C, Di Penta M, Pinzger M (2019) What kind of questions do developers ask on Stack
Overflow? A comparison of automated approaches to classify posts into question categories. Empir
Softw Eng. https://doi.org/10.1007/s10664-019-09758-x

Bi T, Liang P, Tang A (2018) Architecture patterns, quality attributes, and design contexts: How devel-
opers design with them. In: Proceedings - Asia-pacific software engineering conference, APSEC,
2018-Decem(December), pp 49-58. https://doi.org/10.1109/APSEC.2018.00019

Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation. J Mach Learn Res 3(Jan):993-1022

Borg M, Wnuk K, Regnell B, Runeson P (2017) Supporting change impact analysis using a recommenda-
tion an industrial case study in a system: safety-critical context. IEEE Trans Softw Eng 43(7):675-700.
https://doi.org/10.1109/TSE.2016.2620458

Buschmann F, Henney K (1993) Pattern-oriented software architecture

Cai X, Zhu J, Shen B, Chen Y (2016) Greta: Graph-based tag assignment for github repositories. In: Com-
puter software and applications conference (COMPSAC), 2016 IEEE 40th Annual, vol 1. IEEE, pp
63-72

Carlson J, Papatheocharous E, Petersen K (2016) A context model for architectural decision support. In:
Proceedings - 2016 1st international workshop on decision making in software ARCHitecture, MARCH
2016, pp 9-15. https://doi.org/10.1109/MARCH.2016.6

Casamayor A, Godoy D, Campo M (2012) Functional grouping of natural language requirements for assis-
tance in architectural software design, vol 30, pp 78-86. https://doi.org/10.1016/j.knosys.2011.12.009.
http://www.sciencedirect.com/science/article/pii/S0950705111002759

Chattopadhyay S, Nelson N, Nam T, Calvert M, Sarma A (2018) Context in programming: an investigation
of how programmers create context. pp 33-36. https://doi.org/10.1145/3195836.3195861

Chen C, Xing Z, Han L (2016) TechLand: Assisting technology landscape inquiries with insights from stack
overflow. In: 2016 IEEE international conference on software maintenance and evolution (ICSME). pp
356-366. https://doi.org/10.1109/ICSME.2016.17

Chen T-H, Thomas SW, Nagappan M, Hassan AE (2012) Explaining software defects using topic models. In:
Proceedings of the 9th IEEE working conference on mining software repositories, MSR ’12. Piscataway,
IEEE Press, pp 189-198. http://dl.acm.org/citation.cfm?id=2664446.2664476

Choi J, Choi C, Kim H, Kim P (2011) Efficient malicious code detection using N-gram analysis and SVM.
In: Proceedings - 2011 International conference on network-based information systems, NBiS 2011,
pp 618-621. https://doi.org/10.1109/NBiS.2011.104

Clarke P, O’connor RV (2012) Towards a comprehensive reference framework, vol 54, pp 433-447. http://
doras.dcu.ie/16823/1/ClarkeAndOConnor- Vol54No5-pp433-447.pdf

Deerwester S, Dumais ST, Furnas GW, Landauer TK, Harshman R (1990) Indexing by latent semantic
analysis. J Am Soc Inf Sci 41(6):391-407

@ Springer

http://dl.acm.org/citation.cfm?id=2487085.2487127
https://doi.org/10.1109/MSR.2013.6624029
http://arxiv.org/abs/1809.07954
https://doi.org/10.1016/j.jss.2013.03.063
https://doi.org/10.1007/978-3-642-02374-3
https://doi.org/10.1109/ICSA.2017.26
https://doi.org/10.1111/j.1467-9310.2006.00451.x
https://doi.org/10.1111/j.1467-9310.2006.00451.x
https://doi.org/10.1007/s10664-019-09758-x
https://doi.org/10.1109/APSEC.2018.00019
https://doi.org/10.1109/TSE.2016.2620458
https://doi.org/10.1109/MARCH.2016.6
https://doi.org/10.1016/j.knosys.2011.12.009
http://www.sciencedirect.com/science/article/pii/S0950705111002759
https://doi.org/10.1145/3195836.3195861
https://doi.org/10.1109/ICSME.2016.17
http://dl.acm.org/citation.cfm?id=2664446.2664476
https://doi.org/10.1109/NBiS.2011.104
http://doras.dcu.ie/16823/1/ClarkeAndOConnor-Vol54No5-pp433-447.pdf
http://doras.dcu.ie/16823/1/ClarkeAndOConnor-Vol54No5-pp433-447.pdf

8 Page500f53 Empir Software Eng (2022) 27: 8

Dyba T, Moe NB, Arisholm E (2005) Measuring software methodology usage: Challenges of conceptualiza-
tion and operationalization. In: 2005 International symposium on empirical software engineering, ISESE
2005, pp 447-457. https://doi.org/10.1109/ISESE.2005.1541852

Dyba T, Sjgberg DI, Cruzes DS (2012) What works for whom, where, when, and why? On the role of context
in empirical software engineering. In: International symposium on empirical software engineering and
measurement, (7465), pp 19-28. https://doi.org/10.1145/2372251.2372256

Evans E (2004) Domain-driven design: tackling complexity in the heart of software. Addison-Wesley, Boston

Fawecett T, An introduction to ROC (2006) analysis. Pattern Recognit Lett 27(8):861-874. https://doi.org/10.
1016/j.patrec.2005.10.010

Feitosa D, Ampatzoglou A, Avgeriou P, Chatzigeorgiou A, Nakagawa E (2019) What can violations of good
practices tell about the relationship between GoF patterns and run-time quality attributes?, vol 105,
pp 1-16. https://doi.org/10.1016/j.infsof.2018.07.014. http://www.sciencedirect.com/science/article/pii/
S0950584918301617

Fielding R (2000) Architectural styles and the design of network -based software architectures. http://search.
proquest.com/docview/304591392/

Fleiss JL (1971) Measuring nominal scale agreement among many raters. Psychol Bull 76(5):378-382

Galster M, Avgeriou P (2012) Qualitative analysis of the impact of SOA patterns on quality attributes. In:
Proceedings - international conference on quality software, pp 167—170. https://doi.org/10.1109/QSIC.
2012.35

Gamma E, Helm R, Johnson R, Vlissides J (1995) Design patterns: elements of reusable object-oriented
software. Addison-Wesley Longman Publishing Co., Inc., Boston

Gokyer G, Cetin S, Sener C, Yondem MT (2008) Non-functional requirements to architectural concerns: ML
and NLP at crossroads. In: 2008 the third international conference on software engineering advances. pp
400-406. https://doi.org/10.1109/ICSEA.2008.28

Goodman JT (2001) A bit of progress in language modeling. Comput Speech Lang 15(4):403-434.
https://doi.org/10.1006/cs1a.2001.0174

Groher I, Weinreich R (2015) A study on architectural decision-making in context. In: Proceed-
ings - 12th Working IEEE/IFIP conference on software architecture, WICSA 2015, pp 11-20.
https://doi.org/10.1109/WICSA.2015.27

Harper KE, Zheng J (2015) Exploring software architecture context. In: Proceedings - 12th working
IEEE/IFIP conference on software architecture, WICSA 2015, pp 123-126. https://doi.org/10.1109/
WICSA.2015.22

Harris ZS (1954) Distributional structure. WORD 10(2-3):146-162. https://doi.org/10.1080/00437956.1954.
11659520

Harrison NB, Avgeriou P (2007) Leveraging architecture patterns to satisfy quality attributes. In: Euro-
pean conference on software architecture, 4758 LNCS. pp 263-270. https://doi.org/10.1007/978-3-540-
75132-8.21

Hindle A, Barr ET, Gabel M, Su Z, Devanbu P (2016) On the naturalness of software. Commun ACM
59(5):122-131. https://doi.org/10.1145/2902362

Hussain S, Keung J, Khan AA (2017) Software design patterns classification and selection using text
categorization approach. Appl Soft Comput J 58:225-244. https://doi.org/10.1016/j.as0c.2017.04.043

Jacobson I (2004) Object-oriented software engineering: a use case driven approach. Addison Wesley
Longman Publishing Co., Inc., Boston

Kawaguchi S, Garg PK, Matsushita M, Inoue K (2003) Automatic categorization algorithm for evolvable
software archive, pp 195-200. https://doi.org/10.1109/IWPSE.2003.1231227

Khomh F, Guéhéneuc YG (2008) Do design patterns impact software quality positively? In: Proceed-
ings of the European conference on software maintenance and reengineering, CSMR, pp 274-278.
https://doi.org/10.1109/CSMR.2008.4493325

Kitchenham BA, Pfleeger SL, Pickard LM, Jones PW, Hoaglin DC, El Emam K, Rosenberg J (2002) Prelim-
inary guidelines for empirical research in software engineering. IEEE Trans Softw Eng 28(8):721-734.
https://doi.org/10.1109/TSE.2002.1027796

Kyakulumbye S, Pather S, Jantjies M (2019) Knowledge creation in a participatory design context: The use
of empathetic participatory design. Electron J Knowl Manag 17(1):49-65

Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics
33(1):159-174. http://www.jstor.org/stable/2529310

Linstead E, Rigor P, Bajracharya S, Lopes C, Baldi P (2007a) Mining concepts from code with proba-
bilistic topic models. In: ASE’07 - 2007 ACM/IEEE international conference on automated software
engineering, pp 461-464. https://doi.org/10.1145/1321631.1321709

@ Springer

https://doi.org/10.1109/ISESE.2005.1541852
https://doi.org/10.1145/2372251.2372256
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1016/j.infsof.2018.07.014
http://www.sciencedirect.com/science/article/pii/S0950584918301617
http://www.sciencedirect.com/science/article/pii/S0950584918301617
http://search.proquest.com/docview/304591392/
http://search.proquest.com/docview/304591392/
https://doi.org/10.1109/QSIC.2012.35
https://doi.org/10.1109/QSIC.2012.35
https://doi.org/10.1109/ICSEA.2008.28
https://doi.org/10.1006/csla.2001.0174
https://doi.org/10.1109/WICSA.2015.27
https://doi.org/10.1109/WICSA.2015.22
https://doi.org/10.1109/WICSA.2015.22
https://doi.org/10.1080/00437956.1954.11659520
https://doi.org/10.1080/00437956.1954.11659520
https://doi.org/10.1007/978-3-540-75132-8_21
https://doi.org/10.1007/978-3-540-75132-8_21
https://doi.org/10.1145/2902362
https://doi.org/10.1016/j.asoc.2017.04.043
https://doi.org/10.1109/IWPSE.2003.1231227
https://doi.org/10.1109/CSMR.2008.4493325
https://doi.org/10.1109/TSE.2002.1027796
http://www.jstor.org/stable/2529310
https://doi.org/10.1145/1321631.1321709

Empir Software Eng (2022) 27: 8 Page510f53 8

Linstead E, Rigor P, Bajracharya S, Lopes C (2007b) Mining eclipse developer contributions via author-topic
models. In: Proceedings - ICSE 2007 workshops: fourth international workshop on mining software
repositories, MSR 2007, pp 7-10. https://doi.org/10.1109/MSR.2007.20

Liu D, Jiang H, Li X, Ren Z, Qiao L, Ding Z (2020) DPWord2 Vec: better representation of design patterns
in semantics. IEEE Trans Softw Eng 5589(c):1-1. https://doi.org/10.1109/tse.2020.3017336

Lukins SK, Kraft NA, Etzkorn LH (2008) Source code retrieval for bug localization using latent Dirich-
let allocation. In: Proceedings - working conference on reverse engineering, WCRE, pp 155-164.
https://doi.org/10.1109/WCRE.2008.33

Marcus A, Sergeyev A, Rajlieh V, Maletic JI (2004) An information retrieval approach to concept location
in source code. In: Proceedings - working conference on reverse engineering, WCRE, pp 214-223.
https://doi.org/10.1109/WCRE.2004.10

Marcus A, Rajlich V, Buchta J, Petrenko M, Sergeyev A (2005) Static techniques for concept location
in object-oriented code. In: Proceedings - IEEE workshop on program comprehension, pp 33-42.
https://doi.org/10.1109/wpc.2005.33

Mikolov T, Chen K, Corrado G, Dean J (2013a) Efficient estimation of word representations in vector space.
https://doi.org/10.1162/153244303322533223. arXiv:1301.3781

Mikolov T, Sutskever I, Chen K, Corrado G, Dean J (2013b) Distributed representations ofwords and phrases
and their compositionality. In: Advances in neural information processing systems. pp 1-9

Mirakhorli M, Cleland-Huang J (2016) Detecting, tracing, and monitoring architectural tactics in code. IEEE
Trans Softw Eng 42(3):205-220. https://doi.org/10.1109/TSE.2015.2479217

Mirakhorli M, Shin Y, Cleland-Huang J, Cinar M (2012) A tactic-centric approach for automating trace-
ability of quality concerns. In: 2012 34th international conference on software engineering (ICSE). pp
639-649. https://doi.org/10.1109/ICSE.2012.6227153

Papatheocharous E, Sentilles S, Petersen K, Shah SMA, Cicchetti A, Gorschek T (2015) Deci-
sion support for choosing architectural assets in the development of software-intensive sys-
tems: The GRADE taxonomy. In: ACM international conference proceeding series 07-11-Sept.
https://doi.org/10.1145/2797433.2797483

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss
R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesna E (2011) Scikit-
learn: Machine learning in {P}ython. J Mach Learn Res 12:2825-2830

Petersen K, Wohlin C (2009) Context in industrial software engineering research

Poshyvanyk D, Guéhéneuc YG, Marcus A, Antoniol G, Rajlich V (2006) Combining probabilistic rank-
ing and latent semantic indexing for feature identification, pp 137-146. https://doi.org/10.1109/ICPC.
2006.17

Power K, Wirfs-Brock R (2018) Understanding architecture decisions in context. In: European conference
on software architecture, vol 1. Springer International Publishing, pp 147-155. PowerKenandWirfs-
Brock2018UnderstandingContext, https://doi.org/10.1007/978-3-030-00761-4

Riaz M, Breaux T, Williams L (2015) How have we evaluated software pattern application? A system-
atic mapping study of research design practices. Inf Softw Technol 65:14-38. https://doi.org/10.1016/j.
infsof.2015.04.002

Riehle D (2011) Lessons learned from using design patterns in industry projects. In: Lecture notes in
computer science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol 6510, pp 1-15. 10.1007/978-3-642-19432-0_1

Rosenfeld R (2000) Two decades of statistical language modeling: where do we go from here? Proc IEEE
88(8):1270-1278. https://doi.org/10.1109/5.880083

Salton G, Wong A, Yang CS (1975) A vector space model for automatic indexing. Commun ACM
18(11):613-620. https://doi.org/10.1145/361219.361220

Schmidt DC, Stal M, Rohnert H, Buschmann F (2013) Pattern-oriented, software architecture patterns for
concurrent and networked objects, vol 2. Hoboken, Wiley

Sillito J, Maurer F, Nasehi SM, Burns C (2012) What makes a good code example?: A study of programming
Q&A in StackOverflow, pp 25-34. https://doi.org/10.1109/ICSM.2012.6405249

Soliman M, Galster M, Salama AR, Riebisch M (2016) Architectural knowledge for technology decisions
in developer communities an exploratory study with stackoverflow. In: 2016 13th Working IEEE/IFIP
conference on software architecture (WICSA). pp 128-133. https://doi.org/10.1109/WICSA.2016.13

Song F, Croft WB (1999) General language model for information retrieval. In: International conference
on information and knowledge management, Proceedings, pp 316-321. https://doi.org/10.1145/319950.
320022

Tang A, Lau M (2014) Software architecture review by association. J Syst Softw 88(1):87-101. https://doi.
org/10.1016/j.jss.2013.09.044

@ Springer

https://doi.org/10.1109/MSR.2007.20
https://doi.org/10.1109/tse.2020.3017336
https://doi.org/10.1109/WCRE.2008.33
https://doi.org/10.1109/WCRE.2004.10
https://doi.org/10.1109/wpc.2005.33
https://doi.org/10.1162/153244303322533223
http://arxiv.org/abs/1301.3781
https://doi.org/10.1109/TSE.2015.2479217
https://doi.org/10.1109/ICSE.2012.6227153
https://doi.org/10.1145/2797433.2797483
https://doi.org/10.1109/ICPC.2006.17
https://doi.org/10.1109/ICPC.2006.17
https://doi.org/10.1007/978-3-030-00761-4
https://doi.org/10.1016/j.infsof.2015.04.002
https://doi.org/10.1016/j.infsof.2015.04.002
https://doi.org/10.1109/5.880083
https://doi.org/10.1145/361219.361220
https://doi.org/10.1109/ICSM.2012.6405249
https://doi.org/10.1109/WICSA.2016.13
https://doi.org/10.1145/319950.320022
https://doi.org/10.1145/319950.320022
https://doi.org/10.1016/j.jss.2013.09.044
https://doi.org/10.1016/j.jss.2013.09.044

8 Page520f53 Empir Software Eng (2022) 27: 8

Tang A, Kuo F-C, Lau M (2008) Towards independent software architecture review, pp 306-313.
https://doi.org/10.1007/978-3-540-88030-1_25

Thomas SW (2011) Mining software repositories using topic models. In: Proceedings of the 33rd
international conference on software engineering, iCSE ’11. ACM, New York, pp 1138-1139.
https://doi.org/10.1145/1985793.1986020

Tian F, Liang P, Babar MA (2019) How developers discuss architecture smells? An exploratory study on
stack overflow. In: Proceedings - 2019 IEEE international conference on software architecture, ICSA
2019, pp 91-100. https://doi.org/10.1109/ICSA.2019.00018

Tian K, Revelle M, Poshyvanyk D (2009) Using latent dirichlet allocation for automatic categorization of
software. In: Proceedings of the 2009 6th IEEE international working conference on mining software
repositories, MSR 2009, pp 163-166. https://doi.org/10.1109/MSR.2009.5069496

Velasco-Elizondo P, Marin-Pina R, Vazquez-Reyes S, Mora-Soto A, Mejia J (2016) Knowledge representa-
tion and information extraction for analysing architectural patterns. Sci Comput Program 121:176-189.
https://doi.org/10.1016/j.scico.2015.12.007

Washizaki H, Ogata S, Hazeyama A, Okubo T, Fernandez EB, Yoshioka N (2020) Landscape of
architecture and design patterns for IoT systems. IEEE Internet Things J 7(10):10091-10101.
https://doi.org/10.1109/JI0T.2020.3003528

Xu B, Ye D, Xing Z, Xia X, Chen G, Li S (2016) Predicting semantically linkable knowledge in
developer online forums via convolutional neural network. In: Proceedings of the 31st IEEE/ACM
international conference on automated software engineering - ASE 2016, (Id 510357). pp 51-62.
https://doi.org/10.1145/2970276.2970357. http://dl.acm.org/citation.cfm?doid=2970276.2970357

Xu B, Xing Z, Xia X, Lo D (2017) AnswerBot: Automated generation of answer summary to developers’
technical questions. In: ASE 2017 - Proceedings of the 32nd IEEE/ACM international conference on
automated software engineering, pp 706—716. https://doi.org/10.1109/ASE.2017.8115681

Yang J, Tao K, Bozzon A, Houben G-J (2014) Sparrows and owls: Characterisation of expert behaviour in
stackoverflow. In: International conference on user modeling, adaptation, and personalization. Springer,
pp 266-277

Zaiontz C (2021) Real statistics using excel. real-statistics.com/reliability/interrater-reliability/fleiss-kappa/

Zamudio Lopez SA, Santaolaya Salgado R, Fragoso Diaz OG (2012) Restructuring object-
oriented frameworks to model-view-adapter architecture. IEEE Latin Am Trans 10(4):2010-2016.
https://doi.org/10.1109/TLA.2012.6272488

Zanoni M, Arcelli Fontana F, Stella F (2015) On applying machine learning techniques for design pattern
detection. J Syst Softw 103:102—117. https://doi.org/10.1016/j.jss.2015.01.037

Zhang C, Budgen D (2012) What do we know about the effectiveness of software design patterns? IEEE
Trans Softw Eng 38(5):1213-1231. https://doi.org/10.1109/TSE.2011.79

Zhang WE, Sheng QZ, Lau JH, Abebe E (2017) Detecting duplicate posts in programming QA communities
via latent semantics and association rules. pp 1221-1229. https://doi.org/10.1145/3038912.3052701

Zhang Y, Witte R, Rilling J, Haarslev V (2006) Ontology-based program comprehension tool supporting
website architectural evolution. In: 2006 Eighth IEEE international symposium on web site evolution
(WSE’06). pp 41-49. https://doi.org/10.1109/WSE.2006.15

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Laksri Wijerathna is a Ph.D. Candidate in the Faculty of Informa-
tion Technology, Monash University, Australia. In 2014, she received
an MSc in Artificial Intelligence from the University of Moratuwa,
Sri Lanka, and in 2011, she graduated from the Sri Lanka Institute
of Information Technology with a first-class Honours in Informa-
tion Technology. Her research interests include mining software
repositories, software design pattern knowledge management, natu-
ral language processing, machine learning, and empirical studies in
software engineering.

@ Springer

https://doi.org/10.1007/978-3-540-88030-1_25
https://doi.org/10.1145/1985793.1986020
https://doi.org/10.1109/ICSA.2019.00018
https://doi.org/10.1109/MSR.2009.5069496
https://doi.org/10.1016/j.scico.2015.12.007
https://doi.org/10.1109/JIOT.2020.3003528
https://doi.org/10.1145/2970276.2970357
http://dl.acm.org/citation.cfm?doid=2970276.2970357
https://doi.org/10.1109/ASE.2017.8115681
real-statistics.com/reliability/interrater-reliability/fleiss-kappa/
https://doi.org/10.1109/TLA.2012.6272488
https://doi.org/10.1016/j.jss.2015.01.037
https://doi.org/10.1109/TSE.2011.79
https://doi.org/10.1145/3038912.3052701
https://doi.org/10.1109/WSE.2006.15

Empir Software Eng (2022) 27: 8

Page 53 0f53 8

Aldeida Aleti is an Associate Professor at the Faculty of Informa-
tion Technology, Monash University in Australia, and the Associate
Dean of Engagement and Impact. Aldeida’s research is in the area of
search-based software engineering (SBSE), with a particular focus on
what makes software engineering problems (design, testing, program
repair) hard to optimise and designing approaches that make it easier
to apply SBSE techniques to new problems. Aldeida has published
more than 50 papers in top optimisation and software engineering
venues, and has served as PC member and organising committee at
both SE and optimisation conferences, such as ASE, ICSE, GECCO,
FSE, SSBSE. Aldeida has attracted more than 2.5M in competitive
funding to conduct research in the areas of fairness testing of ML-
based healthcare systems and for developing search based methods
for testing autonomous vehicles. Aldeida was awarded the prestigious
Discovery Early Career Researcher (DECRA) Award from the Aus-
tralian Research Council, and she has received multiple “best paper”
and “best reviewer” awards.

Tingting Bi candidate in the Faculty of Information and Technology,
Monash University, Australia and the School of Computer Science,
Wuhan University, China. She was a visiting Ph.D. candidate at the
Faculty of Science, Engineering and Technology, Swinburne Univer-
sity of Technology, Australia. Her current research interests include
software architecture, empirical software engineering, natural lan-
guage processing, and machine learning. She has published several
articles in peer-reviewed international journals and conferences.

Antony Tang is Adjunct Professor in Swinburne University of Tech-
nology, Australia and VU Amsterdam, The Netherlands. He received
a PhD degree in Information Technology from Swinburne in 2007.
Prior to being a researcher, he had spent many years designing and
developing software systems. His main research interests are software
architecture design reasoning, software development processes, and
software architecture knowledge management.

@ Springer

	Mining and relating design contexts and design patterns from Stack Overflow
	Abstract
	Introduction
	Background
	Design Patterns
	Design Contexts
	Mining Architecture Information from Discussion Forums
	Machine Learning Approaches for Mining Software Engineering Knowledge

	Motivation and Research Questions
	RQ1. What contextual factors that are relevant to practitioners when considering a design pattern?
	RQ2. How can we automatically mine design context knowledge related to design patterns?
	RQ3. What Design Context terms are discussed in relation to Design Patterns?

	Methodology
	Set-up
	Initial Exploration of DPC and DPs
	Data Preparation

	Data Labelling
	DPC Taxonomy
	Formulation of the Initial Taxonomy and Taxonomy Update
	Taxonomy Update and Consolidation

	DPC Miner
	Data Prepossessing
	Tokenizing
	Stopword Removal
	POS Tagging

	Collocation Generation
	Representation Learning Model Training and Feature Extraction
	Supervised Learning

	Analysing the Relationship Between Context and Design Patterns
	Mining more Posts
	Quantitative Analysis

	Results
	RQ1: DPC Taxonomy
	RQ2: DPC Miner
	RQ3: What Design Context terms are discussed in relation to Design Patterns?
	Design Context Referenced by Design Patterns
	Application Technology Context of Design Patterns
	Application Domain Context of Design Patterns
	Application Size Context of Design Patterns
	Technology Platform Context of Design Patterns
	Organisation Context of Design Patterns
	Software Development Context of Design Patterns
	Quality Attribute Context of Design Patterns

	Discussion
	A new DPC Taxonomy
	DPC Miner
	The use of DPC Miner
	Relationships between Design Context (DC) and Design Pattern (DP)
	The need for mining design pattern knowledge
	Future use of Design Pattern Knowledge

	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity

	Conclusion
	References

