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Abstract
When a new bug report is assigned to developers, they first need to understand what the
bug report expresses (what) and why this bug occurs (why). To do so, developers usually
explore different bug related data sources to investigate whether there are historical bugs
with similar symptoms and causes related to the bug at hand. Automatic bug classifica-
tion with respect to what and why information of bugs would enable developers to narrow
down their search of bug resources and improve the bug fixing productivity. To achieve this
goal, we propose an approach, BugClass, which applies a deep neural network classifica-
tion approach based on Hierarchical Attention Networks (HAN) to automatically classify
the bugs into different what and why categories by exploiting the bug repository and commit
repository. Then, we explore the causal link relationship between what and why categories
to further improve the accuracy of the bug classification. Experimental results demonstrate
that BugClass is effective to classify the given bug reports into what and why categories,
and can be also effectively used for identifying the why category for new bugs based on the
causal link relations.

Keywords Bug comprehension · Bug classification · Causal link ·
Hierarchical attention network

1 Introduction

As the size of the software continuously increases, platform compatibility, user demand
changes and software version evolution bring new functional modules and new conflicts
between each other, and result in a large number of bugs (Zhou et al. 2020; Timperley et al.
2018; Zhou et al. 2019; Zhou et al. 2018; Le Goues et al. 2015). Promptly fixing software
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bugs to maintain the quality of the system is a prerequisite for ensuring the quality of the
software (Wang et al. 2017; Tan et al. 2014). As a common practice, researchers design and
propose lots of approaches to explore automatic program repair (Le et al. 2017; van Tonder
and Le Goues 2018; Xiong et al. 2017; Wen et al. 2018; Jiang et al. 2018; Xia and Lo 2017;
Soto and Le Goues 2018). These approaches could generate positive results, but sometimes
suffer from the overfitting problem (Le et al. 2018) and may be only suitable for specific
types of bugs (Motwani et al. 2018; Zhou et al. 2020; Sun et al. 2019; Zhong and Mei 2018).
Moreover, it is difficult for these techniques to fix bugs based on the given free-style bug
reports (Motwani et al. 2018; Zhong and Mei 2018; Chaparro et al. 2017; urphy-Hill et al.
2015).

Kim and Whitehead Jr. (2006) reported that the median time for fixing a single bug is
about 200 days, and developers always spend more than half of their time on the bug com-
prehension activity to confirm what happened to the software (i.e., symptom) and why it
happened (i.e., cause) to determine where in the code the bug actually locates before start-
ing modifying the program. Given a new bug report, developers need to first understand its
cause and symptom before they get a patch resolution (Bȯhme et al. 2017). However, an
in-depth study of bugs at different projects, along with a more general survey of developers
(Davies and Roper 2014; Bugde et al. 2008), indicates that information in the majority of
new bug reports is incomplete and inaccurate. Users or testers typically report the circum-
stances leading to the exposure of a bug and the likely impact to the users in the new bug
report, while information about the cause of a bug is not always obvious until a bug has
been verified, fixed and closed.

For clarity, let’s consider a real bug report from Mozilla, one of the two projects taken
into account in our study. Given the bug report 1067042 in Fig. 1, we can easily identify
that the function of the bookmark does not match the design requirements from the title
and description, which is the symptom. By further analyzing the comments and attachments
(i.e., commit files) in Fig. 2, we notice that the bug is caused by a parameter call error (Lines
290-295 in buggy code), expressing the cause information for this bug. In fact, the bug has
been repaired for more than half a year (2014-2015). As revealed in the comments, at first
developers thought the suspicious code was at line 277, then at line 315, which may be a
logic problem. When the initial patch was submitted, the test failed and the initial patch was
overturned. Finally, developers correctly located to line 286 and resubmitted a new patch.
For a new bug report, there are few comments or commit files for developers to analyze
or deduce the cause information. Therefore, developers can more easily analyze the symp-
tom of the new bug based on the text content in the bug report, but difficult to determine
its cause.

A lot of research works have targeted the area of automatic cause classification of
software maintenance requests including bug triage, severity prediction, duplicate bug
detection, bug location and so on (Podgurski et al. 2003; Huang et al. 2015; Thung et al.
2015; Ocariza et al. 2017; Terdchanakul et al. 2017; Qin and Sun 2018; Nayrolles and
Hamou-Lhadj 2018; Catolino et al. 2019; Ni et al. 2020). Bugs are initially classified before
their cause is investigated manually. Accurate cause classification can not only help project
managers improve software control and allocate their testing resources effectively, but also
support developers speed up the comprehension activities with much less human effort. For
example, assuming that developers know that the cause of the bug 1067042 belongs to the
Interface category (see Table 1 for a detailed explanation of the category), they may prefer
to locate the buggy code at line 286. However, almost all work attempts to group together
bugs with the same or similar causes by combining text content in bug reports and code
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Fig. 1 The bug report of bug 1067042 in Mozilla Bugzilla

features or only by code features. Few works take into account the premise that a new bug
report lacks code files. When the code features are removed, the bug cause classification
results are much worse.

Fig. 2 The commit file of bug 1067042 in Mozilla Bugzilla
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At the same time, we notice that researchers always start from a certain perspective to
complete the practice of automatic bug classification. On the basis of orthogonal classifica-
tion of bug reports from three perspectives (i.e., root causes, impacts, and components), Tan
et al. found that there are some correlation between attribute categories in different perspec-
tives (Tan et al. 2014). For example, the majority of security bugs are caused by semantic
bugs. Inspired by the work of Tan et al., we form a initial conjecture that there are some sta-
ble strong association between cause categories and symptom categories, which can help
improve cause classification. In this article, instead of classifying the cause directly accord-
ing to the text content of a new bug, we extract the potential associations between the two
attributes of cause and symptom from the fixed historical bug data as the prior knowledge,
and predict the cause category according to the bug symptom category. To achieve this, we
have to overcome the following challenges:

– Although researchers have proposed several ways to classify bugs, existing bug classi-
fication approaches fail to meet the comprehensive understanding of both the symptom
and the cause for bugs (Hamill 2015). Moreover, there is no good benchmark for us
to systematically evaluate the associations between them (Le Goues et al. 2015; Shan
et al. 2005).

– The associations between the two attributes of cause and symptom are usually various
and complex. It is difficult to analyze and represent the associations between them.

– We need to predict the cause of the bug based on its symptom. However, most of the
existing bug classification methods combine artificial feature engineering and machine
learning classifiers, which do not fully mine the semantics in the bug report and can not
give a satisfactory result of bug symptom classification.

To address the above challenges, we first examine the fixed historical bug data, track
their fixes and define a classification criterion for the two bug attributes of cause and symp-
tom based on existing standards. Then, we collect 30000 verified fixed bug reports from the
Mozilla project BTS 1 (Bug Tracking System) and 20000 verified fixed bug reports from
the Eclipse project BTS 2. From them, we manually label 1000 and 700 bug reports as the
ground truth. On this basis, we extract Abstract Syntax Trees (AST) of diff structures from
the commit files as code features, and apply the Hierarchical Attention Network (HAN)
(Pappas 2017) to classify the above 50000 historical bugs from two perspectives (i.e., symp-
tom and cause) respectively, forming two attribute datasets. Thirdly, we use the Apriori
algorithm to deal with the attribute datasets, mining association rules between fine-grained
symptom and cause categories. Fourth, we combine association rules and symptom classi-
fication probability to optimize the cause classification probability and predict the new bug
cause category. The major contributions include:

– We provide an orthogonal bug classification criterion from two perspectives: cause and
symptom, and use deep learning network, combining text and code features, to realize
the automatic classification of historical bug.

– We explore the potential causal links between bug symptoms and bug causes, and
express them as quantitative association rules adopting the Apriori algorithm.

– We improve the new bug cause classification by combining association rules and known
symptom category to optimize the cause classification probability. We evaluate our
approach on two open source projects, Mozilla and Eclipse. The results show that our

1https://bugzilla.mozilla.org/
2https://bugs.eclipse.org/bugs/
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approach can effectively improve the accuracy of new bug cause classification, and con-
firm that there are some stable causal links between the two bug attributes of symptom
and cause.

The remainder of this article is structured as follows: Section 2 introduces the back-
ground. In Section 3, we show an automatic classification approach for historical bugs and
new bugs. In Section 4, we present the empirical study and show the empirical results to
evaluate our approach, and followed by the threats to validity in Section 5. We discuss the
related work in Section 6. In Section 7, we conclude this paper and discuss the future work.

2 Background

In this section, we introduce the background concerning bug data sources, bug taxonomies,
and the Hierarchical Attention Network (HAN) model to support our approach.

2.1 Bug Data

As more and more bugs have been reported, in order to conveniently manage and trace these
bugs, many large software projects are equipped with a dedicated Bug Tracking System
(BTS) such as Bugzilla 3 and JIRA 4 to collect and store information and process these bugs.
In the Bugzilla for Mozilla, more than 1.8 million bug reports have been accumulated in the
first two decades from 2000 to 2021. However, there seems to be no universally accepted
definition of the term bug, even in so many BTSs. According to Avizienis et al. (2004), a
failure is “an event that occurs when the delivered service deviates from correct service”,
a fault is “the cause of a failure”. Bugs and defects are synonyms of faults, and failures
are the “observable symptom of software faults”. Thus, we use the terms bug and defect
interchangeably in this article.

There are many bug data, but the new bug is only the bug report submitted by users or
testers. Bug reports are files used to describe software bugs by which users of a system
are able to report a bug to the developers. Their contents are important, including the basic
information of bugs themselves and status migration during the entire bug fixing process.
As Fig. 1 shows, a bug report typically includes these parts: title, description, comment,
attachment, and multiple attributes such as type, component and product. Davies and Roper
(2014) reported ten most important features developers found most useful when fixing bugs.
However, few bug reports have more than five features, and the majority have three or fewer.

Among the information, Steps to reproduce, Observed behavior and Expected behavior
can be found in the description part of most bug reports. In general, developers can deter-
mine the symptom of a new bug by reading its text content and reproducing it. Figure 2
shows the commit file of the bug 1067042, which includes a commit message, file paths,
code diff changes, etc. The information can assist in identifying the cause of a bug. How-
ever, patches (Tarnpradab et al. 2018), Code examples (Tan et al. 2014), Screenshots and
Stack traces (Campos and de Almeida Maia 2017) are relatively rare, especially for new
bugs. This increases the difficulty for developers to infer the causes of new bugs and hin-
ders the subsequent bug fixing process. With such limited information, we are committed

3https://www.bugzilla.org/
4https://www.atlassian.com/software/jira
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to exploring the causal relations between the two bug attributes of symptoms and causes,
which helps to predict the cause of a new bug based on easily known symptom.

2.2 Orthogonal Bug Classification for Symptom and Cause

In this work, we focus on new bug comprehension. The purpose of bug classification is to
explore whether there are stable causal relations between the symptoms and causes of his-
torical bugs. Therefore, we need to give two independent taxonomies from two different
starting points for the same bug. The Orthogonal Defect Classification (ODC) 5 for software
design and code proposed by Chillarege et al. at IBM in 1992 is a widely used defect clas-
sification standard in the industry (Chillarege et al. 1992; Huang et al. 2015; Thung et al.
2012; Thung et al. 2015). It believes that information on bugs is available at two specific
points in time, three attributes (i.e., Activity, Triggers, Impact) could be collected when the
bug is opened and five attributes (i.e., Target, Type, Qualifier, Source, and Age) could be col-
lected when the bug is closed. We have applied ODC’s idea of classification by stages, that
is, classification of symptom mainly based on the description text of bug report, and classi-
fication of cause mainly based on the commit files of bug report. At the same time, we also
refer to the IEEE Standard Classification for Software Anomalies (IEEE Std 1044-2009) 6,
which provides developers with bug classification scheme from multiple perspectives (539,
2010). Based on our experience with many real-world bug reports and the inspirations from
the above two standards , we designed bug taxonomies in two dimensions, cause (the fault)
and symptom (the failure caused by the bug).

2.2.1 Bug Symptom Taxonomy

The standard Symptom RR500 in the IEEE Std 1044-1993 classifies bugs from the perspec-
tive of symptoms, which consists of eight categories (i.e., Operating system crash, Program
hang-up, Program crash, Input problem, Output problem, Perceived total product failure,
System error message, Other). We also consider sub types in the Input problem and Output
problem categories. ODC defines thirteen fine-grained impact categories for the impact of
bugs to the customer. According to the classification statistics of different projects by Huang
et al. (2015) and our real annotation, we exclude seven impact categories with too small dis-
tribution (less than 1%) because they have no significance for association mining. The six
impact categories reserved are Security, Performance, Usability, Reliability, Requirements
and Capability. We combine the above categories in the form of supersets, and classify bugs
into nine symptom categories as shown in Table 1.

2.2.2 Bug Cause Taxonomy

Most of the existing bug taxonomies and practices rely on code, such as Basili and Selby
(1987), Humphrey (1995), and Beizer (1990), and Shepperd (1993). The bug report is
reported by the user or tester, which describes an objective phenomenon caused by bugs,
rarely subjective cause judgment. Therefore, we can mainly deduce the cause from the code
review of historical bugs. ODC gives detailed classification for the defect type attribute, the
IEEE Std 1044-1993 also gives the Type IV300 from the perspective of cause. Compared

5The definitions and taxonomy of ODC v5.2 attributes are accessible at http://researcher.watson.ibm.com/
researcher/files/us-pasanth/ODC-5-2.pdf.
6https://standards.ieee.org/standard/1044-1993.html
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Table 1 Bug categories from the cause and symptom perspective

Perspective Bug category Description Abbreviation

Cause Resource Bugs refer to mistakes made with data, variables, or other
resource initialization, manipulation, and release.

RE

Check Bugs are validation mistakes or mistakes made when
detecting an invalid value.

CH

Interface Bugs are mistakes made when interacting with other
parts of the software, such as an existing code library, a
hardware device, a database, or an operating system.

IN

Logic Bugs refer to mistakes made with comparison operations,
control flow, and computations and other types of logical
mistakes.

LO

Timing Bugs that are possible only in multithread applications
where concurrently executing threads or processes use
shared resources.

TI

Function Unlike presented above, bugs cannot be pinpointed to
a single, small set of code lines. Function bugs typi-
cally refer to situations in which functionality is missing
or implemented incorrectly and such bugs often require
additional code or larger modifications to the existing
solution.

FU

Support Support bugs relate to support systems and libraries or
their configurations, change management or version con-
trol.

SU

Documentation Bugs caused by missing, inaccurate, inconsistent or
incomplete documents.

DO

Enhancement The bugs needs to be fixed through the change in program
requirements or code efficiency improvement as it affects
significant capability, end-user interfaces, product inter-
faces, interface with hardware architecture, or global data
structure(s).

EN

Symptom Security The systems, programs, and data have been inadvertently
or maliciously destruction, alteration, or disclosure.

SE

Reliability The software cannot consistently perform its intended
function with unplanned interruption, crash, or hang up.

RB

Input problem Unreasonable input detection, correct input not accepted
or wrong input accepted, incorrect data source, incom-
plete/missing parameters.

IP

Output problem The result output data, incomplete/missing parameters,
incomplete/missing result, incorrect data processing.

OP

Message System error message, unclear or unreasonable message
notification.

ME

Performance The speed of the software as perceived by the customer
and the customer’s end users, that is, functions correctly
but runs/responds slowly.

PE

Usability The software and publications make product hard to
understand and inconvenient for end users, does not affect
the function.

US

Capability The software does not perform its intended functions,
does not meet known requirements, not addressing any of
the previous categories.

CA

Requirements A customer expectation, with regard to capability, which
was not known, understood, or prioritized as a require-
ment for the current product or release.

RM
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with the above bug taxonomies and combined with manual code reviews, bugs are mainly
divided into two groups: functional bugs (affect the correct functioning of a software sys-
tem and related to the code) and non-functional bugs (not affect the correct functioning of
a software system or even not in the code) (Thung et al. 2012). According to the classi-
fication proposed by Mäntylä and Lassenius (2009), we first select six categories belong
to the functional group including: Resource, Check, Interface, Logic, Timing and Func-
tion. Then, based on the Type IV300 standard, we determine three categories belong to the
non-functional group including: Enhancement, Support and Documentation.

To ensure disjoint classification, setting priorities of categories is of critical importance.
Once a bug is labeled as a higher priority category, it will no longer be considered as a
lower priority category. The priority of the category is consistent with the top-down order
of the category being presented in the table. As shown in Table 1, from the perspective
of cause, bugs are divided into nine categories, of which Resource has the highest prior-
ity, and Enhancement has the lowest priority. Similarly, from the perspective of symptom,
bugs are also divided into nine categories, of which Security has the highest priority, and
Requirements has the lowest priority.

2.3 Hierarchical Attention Network (HAN)

In our work, the automatic classification of bugs is the basis for bug comprehension. As
a text classification task for bug reports, the entire process is divided into two parts: fea-
ture engineering and classifier. In the general domain (such as news), traditional approaches
for text classification represent documents with sparse lexical features, such as n-grams
(Wang and Manning 2012; Joachims 1998). Recently, more neural network architectures
have been applied, such as Convolutional Neural Networks (CNN) (Kalchbrenner et al.
2014; Hermann and Blunsom 2014) and Recurrent Neural Network (RNN) (Hochreiter
and Schmidhuber 1997), to automatically acquire feature expression capabilities, remove
complicated artificial feature engineering.

As shown in Fig. 1, most of the textual content in the bug report is contained in three
parts: title, description and comment. On the one hand, there is a lot of redundant user
communication information in comments, so that the information distribution density is
significantly lower than the other two parts. On the other hand, the cause information
that can be probed in the comments is much more. In view of the uneven distribution
of information in the bug report, in this article, we adopt a deep neural network classifi-
cation model called Hierarchical Attention Networks (HAN) based on RNN (Yang et al.
2016) which has shown its effectiveness on other types of user-produced data (Tarnpradab
et al. 2018; Gao et al. 2018; He et al. 2019). HAN mines both semantic relationship
between words in a sentence as well as between sentences in the whole bug report. We
consider a bugset {(bi, li )|i = 1, · · · , N} made of N documents bi (i.e., text content of
the bug report) with labels li ∈ {0, 1}k (i.e., the bug category). Each document is repre-
sented by the sequence of d-dimensional embeddings of their words grouped into sentences,
bi = {w11, w12, · · · , wKT }, where T is the maximum number of words in a sentence, and
K is the maximum number of sentences in a document. The HAN takes as input a docu-
ment bi and outputs a document vector vi , which learns effective sentence representation
by attending to important words, and similarly learns document representation by attending
to important sentences in the document. The details of HAN are shown in Fig. 3. The word
hierarchy is made of an encoder gw with parameters Hw and an attention model αw with
parameters Aw , while the sentence hierarchy similarly includes an encoder and an attention
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Fig. 3 Hierarchical attention network

model (gs , Hs and αs , As). The output vi is used by the classification layer to determine the
label li .

HAN consists of the following parts: a word sequence encoder, a word-level attention
layer, a sentence sequence encoder, a sentence-level attention layer and a softmax layer.

2.3.1 GRU-BasedWord Sequence Encoder Layer

The word hierarchy reads an input sentence and outputs a sentence vector. The function gw

encodes the sequence of input word embeddings {wit |t = 1, · · · , T } for each sentence si of
the document, noted as:

hit
w = {gw(wit )|t = 1, · · · , K} (1)

HAN commonly uses the bi-directional Gated Recurrent Unit network (Dey and Salem
2017) noted as BiGRU as the encoder. GRU is a variant of Long Short-Term Memory
(LSTM), one of the state-of-the-art RNNs. The BiGRU computes the new state as a con-
catenation of the hidden states for each input word vector obtained from the forward GRU−→
gw , and the backward GRU

←−
gw as:

hit
w = [−→gw(wit ); ←−

gw(wit )] (2)

The same concatenation is applied for the hidden state representation of a sentence hi
s .

2.3.2 Word-Level Attention Layer

Not all words contribute equally to the representation of the sentence meaning. Similarly,
the sentences in the document are not equally important. HAN introduces an attention mech-
anism at each hierarchy (noted as αw and αs) to extract such words that are important to
the meaning of the sentence, then aggregate the representation of those informative words
to form a sentence vector si . Ww and bw are model parameters.

uit = tanh(Wwh(it)
w + bw) (3)

αit
w = exp(u�

it uw)
∑

t exp(u�
it uw)

(4)

Page 9 of 36     118



Empir Software Eng (2021) 26:  118

si = 1

T

T∑

t=1

α(it)
w h(it)

w (5)

2.3.3 GRU-Based Sentence Sequence Encoder Layer

The sentence hierarchy encodes the sequence of input sentences {si |i = 1, · · · , K} and
outputs the document vector d. Similarly, the BiGRU concatenates the hidden states for
each input sentence vector obtained from the forward GRU −→

gs , and the backward GRU ←−
gs

to represent each sentence as:
hi

s = [−→gs (si); ←−
gs (si)] (6)

2.3.4 Sentence-Level Attention Layer

Similarly, in the sentence hierarchy, we extract sentences that are important to the meaning
of the whole document, then aggregate the representation of those informative sentences to
form the last document vector v as follows, Ws and bs are model parameters :

ui = tanh(Wsh
i
s + bs) (7)

αi
s = exp(u�

i us)
∑

i exp(u�
i us)

(8)

v = 1

K

K∑

i=1

αi
sh

i
s (9)

2.3.5 The Output Layer

The document vector v is a high-level representation of the document and fed to a softmax
layer for classification, with a loss L based on the negative log likelihood of the correct
labels (Yang et al. 2016).

p = sof tmax(Wcv + bc) (10)

L = −
∑

d

logpdj
(11)

Wc and bc are model parameters.

3 Approach

In the face of a new bug report with little information, if developers can get the new bug
cause category with accurate judgment, the difficulty of bug comprehensive will be alle-
viated. In this section, we present our automatic bug report classification approach called
BugClass combining deep learning and association rules. As illustrated in Fig. 4, the classi-
fication framework consists of three phases: 1) classification of historical bug reports from
two perspectives of causes and symptoms separately to build the multi-attribute database; 2)
mining rational association rules between bug symptoms and bug causes from the attribute
classification information of historical bug reports; 3) prediction of the new bug report cause
category optimized by association rules and symptom category probability.

118    Page 10 of 36
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Fig. 4 Our approach Bugclass to classify bug reports from the symptom and cause perspectives

3.1 Classification of Historical Bug Reports for theMulti-Attribute Database

In our approach, basic HAN model is used to identify both the symptom category (a.k.a.
whath) and cause category (a.k.a. whyh) of historical bug reports separately. We use HAN
for classification as HAN: 1) mines both semantic relationship between words in a sen-
tence as well as between sentences in bug reports; 2) effectively extracts more important
words and sentences from bug reports. HAN has shown its effectiveness on other types of
user-produced data (Pappas 2017; Gao et al. 2018). The classified historical bug reports con-
stitute a multi-attribute database, which lays a bugset for the next step of rational association
rules mining.

3.1.1 HAN-Based Historical Bug Symptom Classification

We use the HAN model as classifier to process the text content in the historical bug
reports and identify the bug symptom category, which includes three steps including text
pre-processing, word embedding and HAN model learning.

Text Pre-processing We extract text content (i.e., title, description and comments) from
each bug report to form a bug document, and remove links, XML tags, all numbers and
punctuation marks as they often have weak correlation with the meaning of the bug reports.
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Then, we pre-process bug documents with the Natural Language Toolkit (NLTK) 7. Specif-
ically, we perform word tokenization, remove stop Words, employ the Snowball stemmer
to transform the words into their root forms (e.g., “results” and “resulting” are reduced to
“result”), and employ the Truecase to restore uppercase to the most probable state (e.g.,
“Page Title” is reduced to “page title”) in order to unify similar words into a common
representation.

Word Embedding After tokenization, each bug document is divided into a series of word
tokens. By translating these word tokens into low-dimensional word vectors, word embed-
ding can capture the semantic and syntactic information of words from a large amount of
unclassified bug data. Compared to random initialization, we pre-train the word embeddings
on the larger bugsets (seen in Table 3) by the Word2Vec tool 8 using the skip-gram model,
as it trains faster, takes up less memory and disk space (Hu et al. 2018). In this way, we con-
vert each bug document into a tensor of size BK×T ×e, where K is the number of sentences
per document, T is the number of words per sentence, and e is the word embedding size.
These tensors become the input for the HAN model.

HAN Model Learning Because the corpus constructed by manual annotation is relatively
small, we select 20% of the bug reports as the test set. Then, the 5-fold cross-validation
method is used for the remaining 80% data in the corpus. We use sequential optimization
with gradient boosted trees to find the best hyper-parameters for our HAN (Gao et al. 2018)
model. This optimization method uses a gradient boosted tree-based regression model to
predict the model performance at unexplored hyper-parameter settings. We use this opti-
mization method because tree-based optimization has been shown to converge faster than
traditional Bayesian optimization (Gao et al. 2018). The following hyper-parameters need
to be tuned: (1) size of word embeddings (100-500); (2) type of RNN unit used (GRU or
LSTM); (3) number of hidden GRU or LSTM cells used in each bidirectional RNN layer
(50-200); (4) size of hidden layer in attention mechanism (50-300); (5) dropout on final
document embedding (0.5 or none).

After learning, we get the bug symptom automatic classifier (a.k.a. classifier1) and
classify the historical bug reports in bugsets, representing the symptom category label as la .

3.1.2 HAN-Based Historical Bug Cause Classification

There are rich information for the fixed bug information in the BTS. Most of the histori-
cal bug reports have detailed text descriptions and completed patch files. The developers
can repair the historical bugs effectively only if they correctly judge the causes of the
bugs. Therefore, according to this fact, we have reason to think that the analysis of the
patch file that has been verified fixed is conducive to the backward deduction of the cause
of the bug. Hence, we combine the two different sources (i.e., text and code) by intro-
ducing the diff code structure as a feature to assist in identifying the cause categories of
historical bug reports. There are four steps including text pre-processing, word embed-
ding, code feature extraction and HAN model learning. The first two steps are to deal with
the text content in the bug report, the fourth step is the training process of HAN model.
They are the same as the processing procedure in the previous Section 3.1.1. The third

7http://www.nltk.org/
8http://https//code.google.com/p/word2vec/
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step is code feature extraction, which is divided into two parts: AST extraction and AST
classification.
AST Extraction As shown in Fig. 2, the buggy revision and the fixed revision are displayed
at the same time in the commit file. Developers can directly view the differences between
them (a.k.a. diff). A simple way to classify diff is to just view the source code as plain
text , and the structural information will be omitted. The Abstract Syntax Tree (AST) is a
tree representation of the abstract syntax structure of source code. Each node in the AST
represents a code structure. We use GumTreeDiff 9, a code differencing tool proposed by
Falleri et al. (2014) to convert diff to ASTs.

AST Classification Since the diff structure can be represented as an AST T , differences
between trees can be used to compare the information of key nodes to analyze the type of
code structure changes.

According to the cause categories shown in Table 1, we define six diff structure types
as code features: resource, check, interface, logic, timing, function. We analyze the diff
structures in the BTS, summarize fix patterns for each of the first five diff structure types
and construct the diff pattern set which is represented as C. Unlike those presented above,
the type function refers to larger bugs in which functionality is missing or implemented
incorrectly and such bugs often require additional code or larger modifications to the exist-
ing solution. Therefor, the type function cannot be pinpointed to a single, small set of fix
patterns.

We match the code change mode for historical bugs by the following formula.

match (x, e) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if l (x) = l (e)

and sim2g (v (x) , v (e)) ≥ f

0 otherwise

(12)

x and e are nodes in AST. l (x) denotes the label of x, and v (x) denotes the value of x. f is
the threshold for the string similarity (in default, f=0.6).

The matching procedure (Chawathe et al. 1996) mentioned in the algorithm consists in
identifying the appropriate node x (x ∈ T ) and the similar type pattern element e (e ∈ C) .
Two nodes match if their strings are similar according to a given string similarity measure
sim(x, e). We use the method proposed by Adamson and Boreham to calculate the similar-
ity of two strings by setting their n-grams as a relationship (Adamson and Boreham 1974).
We use the n-gram similarity measure as it is more fault-tolerant, and does not rely on the
longest common subsequence. Instead, it mainly focuses on common characters and sec-
ondarily on word order. N-grams are the sequence of n items in a given text. The n-gram
similarity measure is the ratio of twice the number of shared n-grams and the total numbers
of n-grams in two strings sa and sb:

simng (sa, sb) = 2 × ∣
∣n − grams (sa)

⋂
n − grams (sb)

∣
∣

n − grams (sa)
⋃

n − grams (sb)
(13)

The algorithm to mine the diff structure is presented in Algorithm 1. The input of the
algorithm is the grammatical structure tree T of the diff file analyzed based on the AST. The
output of the algorithm is a collection of type fix patterns for the current diff results, indi-
cating the type to which the current code structure belongs. The algorithm first calculates

9https://github.com/GumTreeDiff/gumtree
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the degree of matching of all nodes with the characteristics of the corresponding type (Lines
2-6). The elements in Ctmp are ranked in a descending order according to node similarity
(Line 9), and the best match result is added to the final pattern set Cf inal for T (Lines 8-10).

Naturally, we can determine the type of the AST structure based on the type of the best
match result in Cf inal . In particular, when there are multiple best matching fix patterns in
Cf inal , and the types of fix patterns are not consistent, that is, there are multiple diffs of
different types in one bug, we consider this situation as a function type.

From the changed code structure, we can analyze some of the causes of bugs. For exam-
ple, part (a) in Fig. 2 is the partial buggy version of the bug 1067042, and part (b) is the
corresponding fixed version. It can be seen that there is a call error occurred and matched
to the interface structure type . So for bug 1067042, it can be viewed as a bug caused by
the Interface category. Finally, we take the type of diff structure as a feature and reload it
into HAN for processing, and the cause category as shown in Fig. 4 can be identified, rep-
resenting as lb. In order to distinguish, we call the learned historical bug cause classifier as
classifier2.

3.2 Mining Association Rules of Bug Categories

For new bug reports, there is little information and no commit files. Compared to the symp-
tom, it is more difficult to identify the cause of the bug based solely on the textual content
in the bug report. It is difficult to identify the cause of a new bug report by using neural
network alone. We choose to combine the association rules with neural network, mining
the association in bug category data as a prior knowledge to tune the confidence of cause
recognition results.

3.2.1 Association Rules Between Symptoms and Causes

As one of the most important branch of data mining, association rule mining (Agrawal and
Srikant 1994) identifies the associations and frequent patterns among a set of items in a
given database. Association rules can be used to find the association of each attribute of
the target in a large number of data, so as to assist in the decision-making of the target
attribute type. They are widely used in multiclass and multilabel algorithm (Bian et al. 2018;
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Sharma et al. 2018; Azmi et al. 2019). This article mainly focuses on the classification of
two dimensional attributes of bug reports, namely, bug causes and bug symptoms. Therefore,
the relevant definitions of the applied association rules are as follows:

Definition 1 We use the trained classifier1 and classifier2 in Section 3.1 to classify histor-
ical bug reports in the larger bugset shown in Table 3, and get the symptom category (i.e.,
la) and cause category (i.e., lb) of each historical bug report respectively. In our approach,
we mine association rules from a larger bugset rather than simply from a manually anno-
tated corpus for two reasons: (1) Although the annotated corpus is accurate, the amount of
data is too small to fully reflect the main causal link between bug attributes in a huge bug
database; (2) In the follow-up experiments, we use the annotated corpus as the ground-truth
to train and test the classifier. If only the association rules mined from the corpus are used
as a prior knowledge, the test results are not objective and accurate.

Given the bug multi-attribute database DB,

I = {la1, la2, · · · , la9, lb1, lb2, · · · , lb9}
is the set of all bug attribute categories as shown in Table 1. T is a subset of I , representing a
set of two attributes of a bug. Each bug T has a unique ID, that is, the ID of each bug report in
the BTS. Because each bug is categorized in two perspectives, and the attribute categories in
each perspective are disjoint, we only need to consider frequent 2-itemset. Association rules
in dataset DB are expressed as implication Ai ⇒ Bj , and Ai ∈ I, Bj ∈ I, Ai ∩ Bj = ∅.
The symptom category is the former item Ai , while the cause category is the latter item Bj ,
and the latter item is recommended on the basis of the former item. For example:

Ai = {la3(Input problem)} Bj = {lb4(Logic)}
The association rule can be expressed as:

{la3(Input problem)} ⇒ {lb4(Logic)}

Definition 2 To study the causal links between symptom and cause categories, we use three
statistical metrics called support, confidence and lift (Han et al. 2011). They are defined as
follows:

support (Ai ⇒ Bj ) = P(AiBj ) = |Ai ∩ Bj |
|Ai ∪ Bj | (14)

conf idence(Ai ⇒ Bj ) = P(AiBj )

P (Ai)
(15)

lif t (Ai ⇒ Bj ) = P(AiBj )

P (Ai) ∗ P(Bj )
(16)

where P(Ai) is the probability that a bug belongs to the category Ai and P(Bj ) is the
probability that a bug belongs to the category Bj . Support P(AiBj ) is the probability that a
bug belongs to both category Ai and Bj . Confidence is an indication of how often the rule
has been found to be true, while lift is used to judge the independence and correlation of
events.

Take the bug 1067042 in Fig. 1 as an example , there are in total 1000 sampled bugs in
the Mozilla corpus, 289 of which are Capability bugs, 79 of which are Interface bugs, and
38 of which are Interface bugs that cause failure impacting Capability, we can calculate the
values of support, confidence and lift as 0.038, 0.1315, and 1.66. We show the lift results on
the Mozilla corpus in Table 2. We only keep the lift value greater than 1, which means there
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Table 2 Correlation between bug causes and bug symptoms in Mozilla (The horizontal axis is the
abbreviation of cause category, and the vertical axis is the abbreviation of symptom category)

category RE CH IN LO TI FU SU DO EN

SE 0 0 0 0 0 1.53 2.64 0 0

RB 0 8.08 0 0 0 0 2.61 0 0

IP 0 0 0.94 0 0 0 0 5.79 1.02

OP 4.19 0 0 1.56 0 0 0 0 0

ME 0 0 0 0 2.05 1.47 0 0 2.3

PE 0 0 1.94 0 8.71 1.27 0 0. 0

US 1.37 0 0 0 0 0 0 0 3.5

CA 1.11 0 1.66 1.94 0 0 1.04 0 0

RM 0 0 0 0 0 2.18 0 0 1.56

Values in bold denote the highest values

is a positive correlation. Values greater than 3 are shown in bold. In RQ3 in Section 4.4, we
further explore the influence of the dataset DB size on the results of association rule mining
and the overall approach.

3.2.2 Mining Association Rules with Apriori Algorithm

We use the Apriori algorithm (Agrawal and Srikant 1994; Liu et al. 2018) to calculate the
above statistical metrics, formulate association rules, and exclude some rules with low prob-
ability of occurrence. Apriori algorithm has two important threshold parameters, minsupp
and minconf, which represent the minimum value of support and confidence respectively.
The process of mining association rules is divided into three steps:

Step 1: The database DB is scanned globally, and frequent 1-itemset L1 is extracted by
minsupp.

Step 2: By connecting each frequent 1-itemset L1, pruning to obtain frequent 2-itemset
L2.

Step 3: Calculate confidence and lift, filter strong association rules with confidence value
greater than minconf and lift value greater than 1.

According to the above strong association rules, the causal link of different cause categories
on the symptom categories can be obtained. We convert the filtered association rules into
a matrix W9×9, with rows representing nine symptom categories and columns representing
nine cause categories. The element value in the matrix is the confidence value of the cor-
responding association rule. If there is no strong association rules between Ai and Bj , the
corresponding element ai,j is 0.

3.3 New Bug Cause Category Prediction Based on Association Rules

There is no commit file in the new bug report, so we can only analyze the symptom and
cause of a new bug through the text content (i.e., the title and description), which is mainly
divided into three steps as shown in Fig. 4: 1) classify the symptoms of new bug reports
(a.k.a.whatn) based on HANmodel; 2) classify the causes of new bug reports (a.k.a.whyn1)
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based on HAN model; 3) fine-tune the raw cause category (a.k.a. whyn1) based on asso-
ciation rules and known symptom category (a.k.a. whatn) for an optimized cause category
(a.k.a. whyn).

3.3.1 HAN-Based Symptom Classification for New Bugs

Since there are few comments in a new bug report, we just take the title and description from
it as input, and adopt the trained classifier1 in Section 3.1.1 to classify the new bug symp-
tom. After learning and softmax operation, we use the function classifier.predict Proba() to
get the symptom probability vector VA. Each element in VA represents the prediction prob-
ability value of the bug in the corresponding symptom category P(y = Ai |x). The label
with the maximum probability value will be output as the symptom category of the input
new bug report.

we assign the association matrix W9×9 to the output symptom probability vector VA,
making it to be the prediction probability vector VB for cause categories.

VB = W�VA (17)

Each element in VB represents the prediction probability of the bug in the corresponding
cause category P(y = Bj |x) .

3.3.2 HAN-Based Cause Classification for New Bugs

We still use HAN model as the underlying classifier to carry out a preliminary classification
of new bugs. The correctness of commit files cannot be guaranteed until the new bug has
been successfully fixed. So we give up the commit files, just like analyzing symptoms,
only extract the title and description of a new bug report as cause classification input. After
learning and softmax operation, we get the raw bug cause category probability vector VCraw .
Each element in VCraw represents the raw prediction probability value of the bug in the
corresponding cause category P(y = Ci |x). Different from historical bugs (i.e., classifier2),
we call the preliminary learned new bug cause classifier as classifier3.

3.3.3 Cause Classification Optimized by Association Rules

According to the experimental results of RQ1 discussed in Section 4.4 , we can confirm
that if the label with the maximum probability value in VCraw is directly output as the cause
category of the new bug report, the classification accuracy is relatively low. We try to mine
association rules from two-dimensional attribute data of bugs as prior knowledge to fine
tune the confidence of raw cause recognition results.

In details, the new cause classification probability is optimized as:

VCnew = VCraw × (1 − αC) + VB × αC (18)

αC is the weight parameter to adjust the degree of optimization, which controls whether
to modify the raw classification result to association rule result. The larger the αC is , the
more likely the bug cause attribute will be modified by association rules. However, if αC

is too large, not only the influence of association rules will decrease, but also the results
in some special cases may be modified by mistake, resulting in low accuracy. Through the
experiment, we find that when αC exceeds 0.5, the test results will not change. So we set it
to 0.5. Although there will be false modification, the advantage of association rules will be
reflected when the correct example of modification exceeds the false example.
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In Bugclass, the causal relations between causes and symptoms are mined from the
historical bug categories, which are introduced into the new bug automatic classification
system to obtain a more reliable cause category. With it, developers can directly access
the historical bugs with the same attribute categories for reference, reducing the difficulty
of information retrieval. On the other hand, they have a credible repair direction, which
improves the efficiency of bug location.

4 Empirical Study

In this section, we use the bug data from two projects (i.e., Mozilla and Eclipse) illustrated
in Table 3 to conduct our empirical study.

4.1 Research Questions

To show the effectiveness of our approach, we mainly focus on the following research
questions:
RQ1: How effective does HAN-based classification approach perform compared with
the state-of-the-art bug classification techniques?

Our approach uses the HAN model as the underlying learning algorithm to classify bugs
from the cause and symptom perspectives. We try to mine association rules as prior knowl-
edge from the attribute classification of historical bugs, and predict the cause category of
a new bug according to its symptom category. Therefore, we first investigate whether the
HAN model can improve the classification effectiveness compared with state-of-the-art bug
classification techniques.
RQ2: How effective is our proposed approach in inferring the cause category of a new
bug with association rules?

In practice, it is more difficult to determine the cause of a new bug than the symptom. We
use the association rules between symptoms and causes to optimize cause classification for
new bugs. So we need to investigate whether such association rules are effective to predict
the cause category for a new bug.

RQ3: How is the performance of our proposed approach affected with varying
amount of historical bugs used to mine association rules?

We mine association rules from the symptom and cause classification of historical bugs.
However, as a ground truth, the scale of human annotation corpus is limited. Therefore, we
need to observe the impact of the amount of historical bugs on association rules.

4.2 Datasets

4.2.1 Tagging of Bug Category

Given a bug report, we can classify the bug into the above defined bug categories from both
the cause and symptom perspectives. For example, the bug 1067042 in Fig. 1 belongs to the
Capability category according to the symptom perspective and Interface category according
to the cause perspective. To ensure correct classification, we only sample bug reports for
resolution “fixed” and status “verified”, “resolved” and “closed” because these bug reports
consist of meaningful information for the experiment.

As shown in Table 3, we randomly collect 30,000 fixed bug reports from theMozilla BTS
and 20,000 fixed bug reports from the Eclipse BTS to be two individual bugsets according
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Table 3 The distribution of our datasets

Project Bugset Corpus Setences in Corpus Tokens in Corpus

Mozilla (historical bug) 30,000 1,000 53,452 807,534

Mozilla (new bug) - 1,000 6,791 50,029

Eclipse (historical bug) 20,000 700 34,307 581,574

Eclipse (new bug) - 700 4,025 27,608

to components. There are many components in a project. The number of bug reports in a
component can be very large, up to tens of thousands, also can be very small, even only a
few dozen, with a huge gap between each other. If the sampling is completely random, there
will be a “loss of a component” situation. Then, by stratified sampling according to the
components, 1,000 verified fixed bug reports have been obtained from the Mozilla bugset
and 700 verified fixed bug reports have been obtained from the Eclipse bugset. Bugs on
the same component tend to belong to the same or several fixed symptom categories. We
use stratified sampling according to the components to avoid category imbalance caused by
random sampling.

We manually assign bug categories to these 1,700 bugs to form two classification cor-
pora and use them as ground truths. The annotation process is performed by 4 annotators
who are either teachers or graduate students in our lab with 4+ years of programming expe-
rience. The whole process lasts for one month, which is divided into two stages: training
and labeling. In Stage 1, we give all annotators an 1-hour tutorial regarding both of the two
bug classification standards. Before annotation, we have labeled 300 bug reports in advance,
covering most of the components of Mozilla and Eclipse. Then these annotation examples
are equally divided into four parts for annotators to practice. Each annotator is required to
pre-label at least 75 bugs with an accuracy of 90%. In the meantime, it’s inevitable that in
some cases, the annotator disagrees with the categories of annotation examples provided.
For these controversial cases (only 11), we discuss with all annotators, reach consensus and
add some more detailed definitions to each category.

After a week of training, the annotators have mastered the tagging method and are famil-
iar with the two software projects to be tagged. Then it entered the labeling stage which lasts
for 3 weeks. The stage 2 is further divided into three sub stages. In Stage 2.1, each annota-
tor is assigned with 350 bug reports. During this manual annotation process, we ask them
to report to us when there are deficiencies, and when certain bugs are hard to be labeled
using the bug categories we develop. After annotation, we use the feedback from our anno-
tators to improve our software bug categories, and clean up the annotated data. Then, we let
annotators cross validate the data, i.e., the same set of bugs from Stage 2.1 is examined by a
different annotator in Stage 2.2. In Stage 2.3, a final sweep to all the annotated data is made
by four annotators to improve the consistency of our annotation projects. If the results are
inconsistent, they discuss and reach a consensus.

We use Cohen’s Kappa coefficient (Vieira et al. 2010) to measure the level of agreement
among annotators. Cohen’s Kappa coefficient is widely used as a rating of interrater reli-
ability and it represents the extent to which the corpus constructed in our study correctly
represents the bug category to be assign. In the annotation, each bug report has been checked
at least twice, and we assign annotators according to components, so we no longer calculate
the agreement level between annotators, but instead calculate the agreement level between
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the last two check results. The value of the Cohen’s Kappa coefficient is computed by the
following equation:

kappa(K) = PO − PE

1 − PE

= 0.925 − 0.457

1 − 0.457
= 0.861 (19)

The value of kappa coefficient falling between 0.81 and 1 demonstrates an almost perfect
agreement between check results.

4.2.2 Datasets Details

In this article, we first mine the association relations between the two bug attributes (i.e.,
cause and symptom) from the historical bugset, and then predict the cause category of a new
bug according to the association rules.

Figures 5 and 6 summarize the distribution of different bug categories in the Mozilla
bugset and Eclipse bugset. The horizontal axis shows the proportion of different symptom
categories to the total number of bugs. The vertical axis shows the proportion of different
cause categories in a specific symptom category. We notice that, for the symptom cate-
gories, the largest proportion is Capability (Abb:CA) category (28.9% in Mozilla and 28%
in Eclipse), that is, the function realization is inconsistent with the design requirements. We
analyze all bugs belonged to the Capability category. Among them, the main causes are dif-
ferent between the two projects. In the Mozilla project, the main cause is Logic (Abb:LO,
proportion: 28.37%), while in the Eclipse project, the main cause is Interface (Abb:IN, pro-
portion: 39.29%). This difference is due to the different implementation features of Mozilla
and Eclipse. One of Mozilla’s main open source projects is Firefox, which is a browser.
Therefore, most of the bugs are related to GUI of the browser, for example, some GUI func-
tions were not well implemented. The amount of code modified is not very large, mainly
due to some loops, selection statements or logical sequence errors. However, Eclipse is an
open source, Java-based, extensible development platform. Therefore, most bugs are caused
by calls between services or between plugins, and developers need to modify the parameter
settings of interface functions.

In the experiment, we use the manually annotated corpus as the ground truth to train and
test all the three classifiers (i.e., classifier1, classifier2 and classifier3 ) in our approach.
We can only extract the title and description from a historical bug report to simulate a

Fig. 5 Distribution of different bug categories from both the cause and symptom perspectives in Mozilla
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Fig. 6 Distribution of different bug categories from both the cause and symptom perspectives in Eclipse

new bug report. As shown in Table 3, in order to distinguish the datasets used in different
experimental sessions, we refer to the extracted corpus (with only the title and description
information) as new bug corpus, and the original corpus is called historical bug corpus.

4.3 Experiment Setup

In our experiments, we use a HAN classifier as the underlying learning algorithm for clas-
sifier training and set up three independent classifiers. (1) classifier1: we directly use HAN
model to classify the text content of a bug report and get the symptom category (i.e., whath
and whatn). The model is trained on the symptom corpus (historical bug) , and tested on
the symptom corpus (historical bug and new bug) respectively; (2)classifier2: we use HAN
model, combined with the text and code content of a historical bug report, to classify the
historical bug and get its cause category (i.e., whyh). Both training and testing are based on
the cause corpus (historical bug); (3) classifier3: at first, we use HAN model to classify the
new bug report (only the title and description) and get the raw cause category of the new
bug (i.e., whyn1). Both training and testing are based on the cause corpus (new bug). Then,
we use the association matrix to fine tune the raw cause category probability obtained from
the previous test result to get the optimized cause category (i.e., whyn).

4.3.1 Parameter Settings

In the experiment, the training process of these three classification models is similar. HAN
runs for about 30 epochs and we select the best model that has best results on the validation
set as the final model. The model is then evaluated on the test set by calculating the average
accuracy. We zero-pad documents up to a maximum of 30 words per sentence and 100
sentences per document. The parameters are shown as follows:

– The stochastic gradient descent (SGD) with Adam until convergence was used to train
the parameters. SGD is an iterative method for optimizing a differentiable objective
functions (Ge et al. 2015).

– Our approach used 100 hidden BiGRU cells in each encoder layer. The size of hidden
layer in attention mechanism was set to 100, and 100-dimensional word embeddings at
every level.

– The learning rate was set to 0.1 and the learning rate was decayed using the rate 0.99.
– We used dropout with 0.5 to prevent over-fitting.
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– The optimization weight αC for cause probability was set to 0.5.

4.3.2 Evaluation Metrics

The performance evaluation metrics for text categorization are mainly recall (R), precision
(P ), F-score, andmacro-average andmicro-average for evaluating accuracy (Pappas 2017).
Since bug classification in our approach is a multi-class classification task, we need to com-
bine F-score of all categories for consideration. The micro-F score and macro-F score are
widely used for evaluating multi-class classification tasks. For macro-F score, each category
has equal weight; for micro-F score, each instance has equal weight. The micro-F score can
better reflect the classification performance for given instances in the corpus while macro-F
score is better for given categories in the corpus. Because the number of bugs in each cate-
gory in our corpus is unbalanced, micro-F score is used as the classifier training evaluation
metric in the epoch.

P micro =
∑

Ci∈C T Pi
∑

Ci∈C(T Pi + FPi)
(20)

Rmicro =
∑

Ci∈C T Pi
∑

Ci∈C(T Pi + FNi)
(21)

Fmicro = 2P microRmicro

P micro + Rmicro
(22)

Fmacro = 1

|C|
∑

Ci∈C

F(Ci) (23)

T Pi represents that a sample i originally belongs to positive class and is divided into positive
classes by the classification technique; FPi represents that a sample i originally belongs
to negative class but is divided into positive classes; and FNi represents that a sample i

originally belongs to positive class but is divided into negative classes.

4.3.3 Baseline

There are many bug classification methods. Although the specific classification standards
are different, they are all based on various multi-class classification models. We use the
following state-of-the-art classification models as baselines in our study:

– SVM 10, Support Vector Machine (SVM) has been shown to be effective in many past
studies in mining software repository. Compared with other machine learning algo-
rithms, it has been proved to perform well in bug classification tasks based on ODC
classification scheme (Huang et al. 2015; Thung et al. 2012; Thung et al. 2015).

– NB, Naive Bayes (NB) is also a well-known machine learning classification algorithm,
which is widely used in many bug report analysis tasks, including ODC-based bug
classification tasks (Huang et al. 2015; Thung et al. 2012; Thung et al. 2015).

– CNN, as a deep learning algorithm, CNN has been widely used in the field of text
classification. We use the basic CNN architecture proposed by Kim (Kim 2014).

– LSTM, Long Short Term Memory networks (LSTM) is a typical recurrent neural net-
work (RNN). Compared with traditional RNN, LSTM is good at handling long term
dependency and has been used for bug report classification (Ye et al. 2018; Qin and
Sun 2018).

10http://svmlight.joachims.org/svmmulticlass.html
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4.4 Empirical Results

4.4.1 RQ1: HAN vs. other Classification Models

An excellent underlying classifier is essential whether for the mining of association rules
or the optimization of cause classification. In our approach, we used the HAN model as the
underlying classifier to perform classification for new bugs and historical bugs. We applied
five classifiers to classify the same dataset to investigate the performance of HAN model.

For traditional machine learning classifiers, we tested NB and SVM model with word-
level TF-IDF vectors. In addition, we also compared the HANmodel with two deep learning
classifiers (i.e., CNN and LSTM), applying the same word embeddings pre-trained on bugsets.
To maintain consistency, all models were trained using the 5-fold cross-validation method.

The comparative results among different classification models are shown in Tables 4
and 5. We notice that the HAN for bug classification outperforms all other models on both
Mozilla and Eclipse. On one hand, when HAN is used for historical bugs on Mozilla, com-
pared with the other four models, the micro-F score of symptom classification (i.e., whath)
increases by 9.7% and the macro-F score increases by 10.8%, the micro-F score of cause
classification (i.e., whyh) increased by 7%, and the macro-F score increases by 15.1%. When
HAN is used for historical bugs on Eclipse, the micro-F score of symptom classification
(i.e., whath) increases by 14.8% and the macro-F score increases by 14%, the micro-F score
of cause classification (i.e., whyh) increased by 15.4%, and the macro-F score increases
by 7.4%. We improve the accuracy of historical bug classification as much as possible, to
stabilize the cornerstone of causal link mining between symptom and cause categories.

On the other hand, when HAN is used for new bugs, we can also see significant improve-
ments over the other four models, the micro-F score of symptom classification (i.e., whatn)
on Mozilla increases by 8.5% and the macro-F score increases by 9.5%, the micro-F score
of symptom classification (i.e., whatn) on Eclipse increases by 9.4% and the macro-F score
increases by 6.1%. However, compared withwhatn, when HAN is directly used for new bug
cause classification (i.e., whyn) , we see moderately significant improvements. The micro-
F score of whyn on Mozilla increases by 1.6% and the macro-F score increases by 9.6%,
the micro-F score of whatn on Eclipse increases by 6.4% and the macro-F score increases
by 3.4%.

We further compared the symptom classification performance with the cause perfor-
mance, and find that there is a same trend in all models. With respect to symptom, the
micro-F score and macro-F score of HAN model decreases slightly when the classification

Table 4 Performance of different classification models on Mozilla

Classifier
whath whyh whatn whyn

a

micro F macro F micro F macro F micro F macro F micro F macro F

NB 0.516 0.337 0.465 0.249 0.521 0.321 0.395 0.210

SVM 0.553 0.264 0.439 0.216 0.567 0.313 0.367 0.242

CNN 0.672 0.486 0.657 0.328 0.681 0.469 0.592 0.359

LSTM 0.683 0.440 0.631 0.374 0.674 0.479 0.567 0.341

HAN 0.780 0.594 0.727 0.525 0.766 0.574 0.608 0.455

aIn RQ1, the cause category of a new bug is obtained by classifiers without optimization of association rules

Values in bold denote the highest values
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Table 5 Performance of different classification models on Eclipse

Classifier whath whyh whatn whyn

micro F macro F micro F macro F micro F macro F micro F macro F

NB 0.525 0.350 0.483 0.267 0.536 0.383 0.380 0.222

SVM 0.536 0.355 0.516 0.382 0.529 0.425 0.384 0.286

CNN 0.629 0.448 0.617 0.417 0.616 0.450 0.518 0.363

LSTM 0.649 0.441 0.622 0.458 0.635 0.496 0.521 0.349

HAN 0.797 0.588 0.776 0.532 0.729 0.557 0.585 0.397

Values in bold denote the highest values

objects changed from historical bugs to new bugs. The other four models even show a small
improvement. However, with respect to cause, the micro-F score and macro-F score of all
models show a significant decline when varying from historical bugs to new bugs. How-
ever, with respect to cause, from historical bugs to new bugs, the micro-F score and macro-F
score of each model show a significant decline.

So from the above experimental results, we can conclude that HAN is more effective to
classify the symptom and cause for bug data than other state-of-the-art classification models.
At the same time, the experimental results also confirm the needs of our work. Only based
on the limited information of the new bug report, it is more difficult to analyze the cause of
the new bug than the symptom.

4.4.2 RQ2: HAN vs. HAN with Association Rules

According to the discussion of RQ1, there are some obstacles in using traditional approaches
to classify the causes of new bugs. We propose a modified HAN classifier to analyze the
cause category (i.e., whyn) based on the known symptom category (i.e., whatn) and the
association rules mining among the above two attributes from historical bugs. We set up
a pair of contrast experiments on the two cause classification approaches (HAN with or
without association rules) to see whether the causal link is valid.

For the Apriori algorithm applied in this article, there are two parameters (i.e., minsupp
and minconf ) defined in Section 3.2.2 need to be adjusted when mining association rules.
Some experiments show that when the minsupp is greater than 0.1, the number of associ-
ation rules obtained without reducing minconf is too small. Considering that there are 18
category labels in the corpus, and the label cardinality (average number of related category
labels per bug in our work) is only 2, we reduce the values of minsupp (ranging from 0.05
to 0.1) and minconf (ranging from 0.5 to 0.8). When minsupp is set to 0.06 and minconf is
set to about 0.6, the number of rules selected is relatively large (23 rules on Mozilla and 20
rules on Eclipse). We evaluate the classification performance applying these two values as
shown in Table 6. When HAN-AR is used on Mozilla, the micro-F score of cause classifi-
cation increases by 6.4% and the macro-F score increases by 5.2%. When HAN-AR is used
on Eclipse, the micro-F score increased by 4.9%, and the macro-F score increases by 5.4%.
Comparing the two datasets, we can see that the HAN-AR approach is better than HAN in
two evaluation metrics.
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Table 6 Comparison results of HAN and HAN with association rules (HAN-AR) for new bug cause
classification (whyn )

Classifier Mozilla Eclipse

micro F macro F micro F macro F

HAN 0.608 0.455 0.585 0.397

HAN-AR 0.672 0.507 0.634 0.451

Values in bold denote the highest values

In our approach, we combine the confidence of association rules with the pre-trained
symptom category probabilities to optimize the cause classification. However, the quality
of bug reports is uneven. The length of bug reports with different states varies greatly, from
a few words to a few pages. Therefore, we must consider the influence of the content length
of bug report on the performance of symptom classification. As shown in Table 3, in the
historical bug corpus, on average, there are about 50 sentences and 800 words in each doc-
ument, which are long texts. In the new bug corpus, on average, there are about 5 sentences
and 50 words in each document, which are short texts. HAN reads only one sentence at a
time instead of the entire document. In order not to break the integrity of the sentence, we
selected the first n sentences of each document to form a series of test sets to observe the
trend under different volume of information. Figure 7 shows the classification curve of two
classifiers (i.e., HAN and HAN-AR) on two datasets. When we reduce the number of input
sentences, the classification performance of HAN decreases significantly. The classification
performance of HAN-AR is relatively smooth, especially when the number of sentences is
about 10, that is, when it is equivalent to the content of new bug reports, it is far beyond the
performance of HAN.

So from our study, we can conclude that there is indeed a measurable causal link
between the cause and symptom categories of bugs, which is useful to improve the cause
classification for new bugs.

Fig. 7 Performance of HAN-AR for different lengths of bug reports
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4.4.3 RQ3: Bugclass with Association Rules Mining from Different Amount
of Historical Bugs

For RQ2, in order to be more comprehensive and objective, we mine association rules from
larger bugsets rather than corpora to optimize cause classification. In order to further explore
the impact of attribute database size on the approach, we collect attribute sub-databases of
different scales from the bugset by stratified sampling according to components. Bugs on
the same component tend to belong to the same or several fixed symptom categories. We
use stratified sampling instead of random sampling to ensure an experimental condition of
association rules mining as far as possible, that is, the distribution of attribute categories
will not change with the varying amount of attribute database. At the same time, all the sub-
databases do not contain the bug reports in the corpus. The corpus is used as training set and

(a)

(b)

Fig. 8 Number of association rules mined in different scale databases in Mozilla
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Fig. 9 Performance of HAN-AR with association rules from varying amount of attribute databases (0%
means HAN without association rules. 10%-90% represent 9 sub-databases sampled from the bugset with
different proportions. 100% represents the complete bugset)

test set, if the intersection of test set and attribute sub-database is too large, the accuracy of
test will be affected.

We first observe the change of the number of association rules with the increasing size of
database. It can be seen from Fig. 8 that: when minsupp is fixed, the number of association
rules decreases with the increase of minconf; when minconf is fixed, the number of asso-
ciation rules decreases with the increase of minsup. Given the same minsupp and minconf,
the numbers of association rules mined in different scale databases are basically the same.

We continue to compare the cause classification performance with different association
rules. As shown in Fig. 9, for example, when minsupp takes 0.06 and minconf takes 0.6,
HAN-AR can get the maximum micro-F score (0.628) on the Mozilla 10% database. When
minsupp is 0.07 and minconf is 0.6, HAN-AR can get the maximum micro-F score (0.677)
on the Mozilla 30% database. When minsupp takes 0.06 and minconf takes 0.7, HAN-AR
can get the maximum micro-F score (0.669) on the Mozilla 50% database. Observing the
overall trend, although the curve grows a little fast when the database is relatively small
(less than 20%), it becomes stable and fluctuates slightly when the database exceeds 35%.
So from our study, we can conclude that the association between bug symptom and cause is
stable, and it is less affected by the size of database to be mined.

4.5 Use Case Discussion

In this section, We explore whether identifying the symptom and cause categories of new
bugs is beneficial to bug fixing work. Take duplicate bug reports detection task as an exam-
ple shown in Fig. 10, we combine two bug categories (i.e., whatn and whyn ) as additional
features with the state-of-the-art approach (i.e., DBR-CNN (Xie et al. 2018)) to study the
effectiveness of Bugclass. DBR-CNN can well modify the traditional CNN with some bug
domain-specific features (e.g., component, create time, and priority), especially for small
datasets.

BugRepo 11 maintains a collection of bug reports that are publicly available for
research purposes. Considering that the corpus for Bugclass is built in Mozilla, we

11https://github.com/LogPAI/bugrepo
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Fig. 10 Duplicate bug reports detection with cause category and symptom category as features

select three of the projects belonging to Mozilla as datasets from BugRepo, which
include Mozilla Core, Firefox, and Thunderbird. To verify whether the additional cate-
gory feature-enhanced model can improve the performance of original model, we conduct
the comparison on the three datasets, with results depicted in Fig. 11. We can notice
that introducing bug categories as features consistently outperform the original DBR-
CNN model on all the datasets. When we consider the two bug categories separately,
introducing the symptom category as a feature is slightly better than the cause cate-
gory. In addition, we observe that F1-measure presents largest when considering bug
category from both the two dimensions, achieves 0.91, 0.892, and 0.914 for Mozilla
Core, Firefox, and Thunderbird, respectively, increasing original DBR-CNN by 4.3%,
3.7%, and 4.4%. This shows that for new bugs, our approach Bugclass can not only
effectively identify the symptoms of bugs, but also effectively predict the causes of the
bugs.

Fig. 11 Performance comparison with or without bug categories as features (Why1 is the raw cause category,
and Why2 is the cause category optimized by association rules)
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5 Threats to Validity

We identified the following threats that would affect the results of our study:

Construct threats: In our work, our findings are based on the micro-F score metric and
the macro-F score metric, and other evaluation measures may yield different results.
However, these metrics are widely used to evaluate classification techniques (Pappas
2017).

Internal threats: (1) The problem of unbalanced samples in text categorization: in the
distribution of symptom and cause category samples, there are also categories with less
than 5%. Although we have added a small number of samples of the categories with
a small proportion, it is impossible to make major adjustments considering the actual
distribution characteristics of bugs; (2) Manual classification is subjective and there may
be a small number of labeling errors; (3) We only annotated 1,700 bugs, and the small
size of training set and validation set would affect the accuracy of the classification.

External threats: We examined the characteristics of bugs from open source projects,
including Eclipse and Mozilla. Both of them are application software, which can-
not represent the characteristics of other types of software such as operating system
software.

6 RelatedWork

In this article, deep learning and association rule mining technologies are combined to
optimize the bug cause classification with the aim of supporting and possibly accelerating
the bug comprehension activities. Therefore, in this section, we mainly discuss the related
research and application of bug classification technology and bug association rule mining
technology.

6.1 Bug Classification

Classification aided bug repair has always been the focus of bug research. On the one hand,
researchers have conducted qualitative and quantitative analysis of historical bugs and sub-
mitted many empirical studies. Jr. et al. performed an empirical study of 502 bug reports
from 19 bug repositories, to understand the root causes and impact of client-side JavaScript
faults and how the results can impact JavaScript programmers, testers and tool developers
(Ocariza et al. 2017). Zhang et al. studied deep learning applications built on top of Ten-
sorFlow, examine the root causes and symptoms of these bugs, and also proposed a number
of challenges for their detection and localization (Zhang et al. 2018). Catolino et al. ana-
lyzed 1,280 bug reports of 119 popular projects to comprehend nine main root cause of
bugs in general, and argued that bugs should be assigned according to their root cause type
(Catolino et al.2019).

On the other hand, many studies keep on surveying new techniques to better perform
automatic bug classification to approximate the true bug classification with much less
human effort. Podgurski et al. used the cluster analysis algorithm to group failures together
automatically and confirmed that failures with the same cause tend to form fairly cohesive
clusters (Podgurski et al. 2003). Su et al. proposed to use the decision tree C4.5 algorithm
to classify the invalid bug types (Su et al. 2017). Patil et al. computed the semantic similar-
ity between the bug type labels, and proposed to use Explicit Semantic Analysis (ESA) to
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carry out concept-based classification of software bug reports (Patil 2017). Terdchanakul et
al. built classification models with logistic regression and random forest using features from
N-gram IDF and topic modeling to identify bugs and nonbugs (Terdchanakul et al. 2017).
Shu et al. further improved the accuracy of security bug report classification through param-
eter tuning of machine learning learners and data pre-processor (Shu et al. 2019). Zafar et al.
constructed a hand-labeled dataset from real GitHub commits according to the number of
fixed bugs per file and the number of fixed files per bug, and fine-tuned BERT (Bidirec-
tional Encoder Representations from Transformers) for classification (Zafar et al. 2019) .
Ni et al. studied the main cause types in commit files, and applied the TBCNN model to
realize automatically classification of diff ASTs (Ni et al. 2020) .

6.2 Bug Analysis with Association Rule Mining

Much effort has been devoted to study the correlation between bugs to help developers
detect and repair software bugs. Researchers leverage data mining algorithms to extract rela-
tional association rules from real large projects. Some work infers frequent patterns from
source code and regards such patterns as the implicit rules that developers should follow in
coding. Any violation of these rules will be detected as potential bugs. The inferred patterns
can be either positive or negative. For example, PR-Miner (Li and Zhou 2005) and AntMiner
(Liang et al. 2016) extract positive association rules that enforce paired appearances of
program behaviors. Instead, NAR-Miner (Bian et al. 2018) extract negative association
rules between program elements (i.e., function calls or condition checks) which are mostly
neglected.

Some work try to capture various kinds of relationships between bug attributes, so as to
improve bug analysis tasks. Song et al. used the Apriori algorithm to mine the association
rules between different cause classes of bugs (Song et al. 2006). Similarly, Wang et al. pro-
posed five rules to identify correlated crash types automatically to locate and rank buggy
files (Wang et al. 2016). Sharma et al. applied the association rules as features of clus-
tering method to predict bug assignee based on the bug’s attributes (i.e., severity, priority,
component and operating system) (Sharma et al. 2018). Shao et al. presented a novel soft-
ware defect prediction model based on correlation weighted class association rule mining
(CWCAR) which can better handle class imbalance (Shao et al. 2020). Tan et al. pro-
posed work closest to ours. They manually study bugs in three dimensions (i.e., root causes,
impacts and components), and further study the correlation between categories in different
dimensions, and the trend of different types of bugs (Tan et al. 2014).

7 Conclusion and FutureWork

Bug fixing is an important activity in software maintenance. Before fixing bugs, develop-
ers need to understand the bug, such as what happened to the software and why the bug
happened in the software. In this article, we first designed a new bug classification crite-
rion from two dimensions - symptom and cause. Then, we proposed an approach, BugClass,
which applies a deep neural network classification approach based on the HAN model
to automatically classify bugs into different symptom and cause categories. Finally, we
explored the causal links among categories to further improve the accuracy of the bug clas-
sification model. Experimental results demonstrate that BugClass outperform traditional
classification approaches for analyzing causes of new bugs.
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In future work, we plan to further improve the accuracy of cause classification in Bug-
Class by introducing fine-grained code diff features. We also plan to conduct a survey to
get feedback from real developers on the findings of this study. On this basis, we can extend
BugClass to dig deeper into the connection between the why, what and how information for
bugs to help developers better understand bugs and fix bugs efficiently.
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