
Empirical Software Engineering (2021) 26: 93
https://doi.org/10.1007/s10664-021-09976-2

Topic recommendation for software repositories using
multi-label classification algorithms

Maliheh Izadi1 ·Abbas Heydarnoori1 ·Georgios Gousios2

Accepted: 4 May 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Many platforms exploit collaborative tagging to provide their users with faster and more
accurate results while searching or navigating. Tags can communicate different concepts
such as the main features, technologies, functionality, and the goal of a software repos-
itory. Recently, GitHub has enabled users to annotate repositories with topic tags. It has
also provided a set of featured topics, and their possible aliases, carefully curated with
the help of the community. This creates the opportunity to use this initial seed of topics
to automatically annotate all remaining repositories, by training models that recommend
high-quality topic tags to developers. In this work, we study the application of multi-label
classification techniques to predict software repositories’ topics. First, we map the large-
space of user-defined topics to those featured by GitHub. The core idea is to derive more
information from projects’ available documentation. Our data contains about 152K GitHub
repositories and 228 featured topics. Then, we apply supervised models on repositories’
textual information such as descriptions, README files, wiki pages, and file names. We
assess the performance of our approach both quantitatively and qualitatively. Our proposed
model achieves Recall@5 and LRAP scores of 0.890 and 0.805, respectively. Moreover,
based on users’ assessment, our approach is highly capable of recommending correct
and complete set of topics. Finally, we use our models to develop an online tool named
Repository Catalogue, that automatically predicts topics for GitHub repositories
and is publicly available1.

Keywords Topic tag recommendation · Multi-label classification ·
Recommender systems · Mining software repositories · GitHub

Communicated by: Ali Ouni, David Lo, Xin Xia, Alexander Serebrenik and Christoph Treude

This article belongs to the Topical Collection: Recommendation Systems for Software Engineering

This work was carried out before the author, Georgios Gousios, joined Facebook.

https://www.repologue.com/

� Abbas Heydarnoori
heydarnoori@sharif.edu

Extended author information available on the last page of the article.

/ Published online: 8 July 2021

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-021-09976-2&domain=pdf
http://orcid.org/0000-0001-9785-2880
https://www.repologue.com/
mailto: heydarnoori@sharif.edu

Empir Software Eng (2021) 26: 93

1 Introduction

Open-source software (OSS) communities provide a wide range of functional and techni-
cal features for software teams and developers to collaborate, share, and explore software
repositories. Many of these repositories are similar to each other, i.e., they have similar
objectives, employ common technologies or implement similar functionality. Users explore
these repositories to search for interesting software components tailored to their needs.
However, as the community grows, it becomes harder to effectively organize repositories so
that users can efficiently retrieve and reuse them.

Collaborative tagging has significantly impacted the information retrieval field for the
better, and it can be a promising solution to the above problem (Wang et al. 2018). Tags
are a form of metadata used to annotate various entities based on their main concepts. They
are often more useful compared to textual descriptions as they capture the salient aspects
of an entity in a simple token. In fact, through encapsulating human knowledge, tags help
bridge the gap between technical and social aspects of software development (Treude and
Storey 2009). Thus, tags can be used for organizing and searching for software repositories
as well. Software tags describe categories a repository may belong to, its main programming
language, the intended audience, the type of user interface, and its other key characteristics.
Furthermore, tagging can link topic-related repositories to each other and provide a soft
categorization of the content (Wang et al. 2018). Software repositories and QA platforms
rely on users to generate and assign tags to software entities. Moreover, several studies
have exploited tags to build recommender systems for software QA platforms such as Stack
Overflow (Xia et al. 2013; Wang et al. 2014, 2018; Liu et al. 2018).

In 2017, GitHub enabled its users to assign topic tags to repositories. We believe topic
tags, which we will refer to as “topics” in this paper, are a useful resource for train-
ing models to predict high-level specifications of software repositories. However, as of
February 2020, only 5% of public repositories in GitHub had at least one topic assigned
to them1. We discovered over 118K unique user-defined topics in our data. According
to our calculations, the majority of tagged repositories only have a limited number of
high-quality topics. Unfortunately, as users keep creating and assigning new topics based
on their personalized terminology and style, the number of defined topics explodes, and
their quality degrades (Golder and Huberman 2006). This is because tagging is a dis-
tributed process, with no centralized coordination. Thus, similar entities can be tagged
differently (Xia et al. 2013). This results in an increasing number of redundant topics
which consequently makes it hard to retrieve similar entities based on differently-written
synonym topics. For example, the same topic can be written in full or abbreviated, plural
or singular formats, with/without special characters such as ‘-’, or may contain human-
language-related errors, such as typos. Take repositories working on a deep learning
model named Convolutional Neural Network as an example. We identified 16 differently-
written topics or a combination of separate topics for this concept including cnn,
CNN, convolutional-neural-networks, convolutionalneuralnetwork,
convolutional-deep-learning, ccn-model, cnn-architecture, and
convolutional + neural + network. The different forms of the same concept
are called aliases. This high level of redundancy and customization can adversely affect
information retrieval tasks. That is, the quality of topics (e.g., their conciseness, complete-
ness, and consistency), impacts the efficacy of operations that rely on topics to perform.

1Information retrieved using GitHub API.

93 Page 2 of 33

Empir Software Eng (2021) 26: 93

Fortunately, GitHub has recently provided a set of refined topics called featured topics.
This allows us to use this set as an initial seed to train supervised models to automatically
tag software repositories and consequently, create an inventory of them.

We treat the problem of assigning existing topics to new repositories as a multi-label
classification problem. We use the set of featured topics as labels for supervising our mod-
els. Each software repository can be labeled with multiple topics. More specifically, in the
first task, we map the large space of user-defined topics to their corresponding featured
topics and then evaluate this data component. In the second task, we use both traditional
machine learning techniques and advanced deep neural networks, to train different models
for automatically predicting these topics. The input to our model consists of various types
of information namely, a repository’s name, description, README files, wiki pages, and
finally its file names. Recommender systems return ranked lists of suggestions. Thus, our
model outputs a fixed number of topics with the highest predicted probabilities for a given
repository.

We aim at answering the following research questions to address different aspects of both
our data component and the classifier models:

– RQ1: How well can we map user-defined topics to their corresponding featured topics?
– RQ2: How accurately can we recommend topics for repositories?
– RQ3: How accurate and complete are the set of recommended topics from users’

perspective?
– RQ4: Does the combination of input types improve the accuracy of the models?

We first define a set of heuristic rules to automatically clean and transform user-defined
topics through several text processing steps. After each step, we manually check the results
and update the rules if necessary. Following obtaining the mapped dataset of user-defined
and featured topics, we perform a human evaluation to assess the quality and accuracy of
these mappings in RQ1. The results indicate that we can accurately map these topics with
98.6% success rate. In answering RQ2, we evaluate the performance of our models for the
topic recommendation task based on various metrics including R@n, P @n, F1@n, S@n,
and Label Ranking Average Precision (LRAP) scores of the recommended lists. The results
indicate that our approach can achieve high Recall, Success Rate, and LRAP scores (0.890,
0.971, and 0.805 respectively). We also improve upon the baseline approach by 59%, 65%,
63%, 29% and 46% regarding R@5, P @5, F1@5, S@5 and LRAP metrics, respectively.

To answer RQ3, we compare the recommendations of our model with those of the base-
line approach from users’ perspectives. Participants evaluated the recommendations based
on two measure of correctness and completeness. Our model on average recommends 4.48
correct topics out of 5 topics for sample repositories, while the baseline only suggests 3
correct topics on average. Moreover, developers indicated our model also provides a more
complete set of recommendations compared to those of the baselines. Finally, with RQ4,
we aim at investigating the necessity of different parts of our input data. We feed the mod-
els with different combinations of input types and evaluate the performance of the two
best models. The results show adding each type of information boosts the performance of
the model.

Finally, our main contributions are as follows:

– We perform rigorous text processing techniques on user-defined topics and map 29K of
them to GitHub’s initial set of 355 featured topics; We also assess the quality of these
mappings using human evaluation.

Page 3 of 33 93

Empir Software Eng (2021) 26: 93

Fig. 1 A sample repository and its topics

– We train several multi-label classification models to automatically recommend topics
for repositories. Then, we evaluate our proposed approach both quantitatively and qual-
itatively. The results indicate that we outperform the baseline in both cases by large
margins.

– We make our models and datasets publicly available for use by others.2

– Finally, we develop an online tool, Repository Catalogue, to automatically
predict topics for GitHub repositories. Our tool is publicly available at https://www.
repologue.com/.

2 ProblemDefinition

An OSS community such as GitHub hosts a set of repositories S = {r1, r2, .., rn}, where
ri denotes a single software repository. Each software repository may contain various types
of textual information such as a description, README files, and wiki pages describing the
repository’s goal, and features in detail. It also contains an arbitrary number of files includ-
ing its source code. Figure 1 provides a sample repository from GitHub which is tagged
with six topics such as rust and tui. We preprocess and combine the textual informa-
tion of these repositories, such as their name, description, README files, and wiki pages
with the list of their file names as the input of our approach. Furthermore, we preprocess
their set of user-defined topics, map them to their corresponding featured topic and then use
them as the labels for our supervised machine learning techniques. Topics are transformed
according to the initial candidate set of topics T = {t1, t2, ..., tm}, where m is the number of
featured topics. For each repository, ti is either 0 or 1, and indicates whether the i-th topic
is assigned to the target repository. Our goal is to recommend several topics from the candi-
date set of topics T to each repository ri through learning the relationship between existing
repositories’ textual information and their corresponding set of topics.

2https://github.com/MalihehIzadi/SoftwareTagRecommender

93 Page 4 of 33

https://www.repologue.com/.
https://www.repologue.com/.
https://github.com/MalihehIzadi/SoftwareTagRecommender

Empir Software Eng (2021) 26: 93

3 Data Collection

We collected the raw data of repositories with at least one user-defined topic using the
GitHub API which resulted in about two million repositories. This data contains repos-
itories’ various document files such as description, README files (crawled in different
formats, e.g., README.md, README, readme.txt, readme.rst, etc. in both upper
and lower case characters), wiki pages, a complete list of their file names, and finally the
project’s name. We also retrieved the set of user-defined topics for these repositories.

Initially, we remove repositories with no README and no description. We also exclude
repositories in which more than half of the README and description consist of non-English
characters. Then, we discard repositories that have less than ten stars (Kalliamvakou et al.
2016). This results in about 180K repositories and 118K unique user-defined topics. After
performing all the required preprocessing steps (Sections 4.1, 5.1.1 and 5.1.2), we remove
repositories that are left with no input data (either textual information or cleaned topics).
Therefore, about 152K repositories and 228 featured topics remain in the final data.

Considering the differences in our input sources, we treat textual information from these
resources differently. We review all the preprocessing steps in more detail in their respective
sections; preprocessing topics in Section 4.1, cleaning input textual information such as
descriptions, READMEs, and wiki pages in Section 5.1.1, and finally preprocessing project
and file names in Section 5.1.2.

4 Mapping User-defined Topics

GitHub provides a set of community-curated topics online.3 Each of these topics may have
several aliases as well. On February 2020, GitHub provided a total number of 355 featured
topics along with 777 aliases. Among our 180K repositories, about 136K repositories con-
tain at least one featured topic. However, our dataset also contains 118K unique user-defined
topics and the number of aliases for these featured topics is very limited.

The magnitude of the number of user-defined topics is due to the fact that topics are writ-
ten in free-format text. For instance, topics could be written as their abbreviation/acronym
or in their full form, in plural or singular, with or without numbers (denoting version, date,
etc.), and with numbers in digits or letters. Moreover, the same topic can take different forms
such as having “ing” or “ed” at its end. Some users include stop words in their topics, some
do not. Some have typos. Some include words such as plugin, app, application,
etc. in one topic (with or without a dash). Note that topics written in different lexicons
can represent the same concepts. Furthermore, a topic that has different parts, if split, can
represent completely different concepts compared to what it was originally intended to
represent. For example, single-page-application as a whole represents a website
design approach. However, if split, part of the topic such as single may lose its meaning
or worse, become misguiding.

To address the above issues, we preprocess user-defined topics and map them to their
respective featured topics. The goal is to (1) exploit the large space of user-defined topics
by mapping them to their corresponding GitHub’s featured set and (2) provide as many
properly labeled repositories as possible for the models to train and mitigate the sparsity
in the dataset. In doing so, we are able to map 29K of user-defined topics to one of the

3https://github.com/github/explore/tree/master/topics

Page 5 of 33 93

https://github.com/github/explore/tree/master/topics

Empir Software Eng (2021) 26: 93

355 featured topics of GitHub. To assess the accuracy of our mappings, we design a human
evaluation and evaluate the accuracy of our mappings. In the following, we provide more
details on the mapping of topics.

4.1 Preprocessing User-defined Topics

To clean and map the user-defined topics, we extract existing featured topics from the list of
user-defined topics (if any) as the first step. Then, we use a set of heuristics and perform the
following text processing steps on user-defined topics. After each step, two of the authors
manually inspect the results and update the rules if necessary.

– Remove versionings, e.g., v3 is removed from react-router-v3,
– Remove digits at the end of a topic, e.g., php7 is changed to php (note that we cannot

simply remove any digits since topics, such as 3d, and d2v will lose their meaning),
– Extract the most frequent topics such as api, tool, or package from the rest of

user-defined topics. For example, twitch-api is converted to two separate topics of
twitch and api,

– Convert plural forms to singular, e.g., components is converted to component.
Note that one cannot simply remove ‘s’ from the end of a topic because topics such as
js, css, kubernetes, iOS will become meaningless),

– Replace abbreviations, e.g., os is expanded to operating-system and d2v is
converted to doc2vec.

– Remove stop words such as of, and in,
– Lemmatize topics to preserve the correct word form: for instance reproducer is

converted to reproduce,
– Aggregate topics. For this step, two of the authors manually identified a set of topics that

when aggregated can represent a larger concept. For example, for repositories tagged
with both neural and network topics, we combine these two topics and merge them
into one main topic of neural-network. Other examples include bigrams such as
machine and learning, package and manager, or trigrams such as windows,
presentation, and foundation.4

After cleaning and transforming user-defined topics according to the above, we obtain a
set of mapped sub-topics to their corresponding featured topics. Next, we augment the set
of a repository’s featured topics (output of the first step) with our set of the mapped featured
topics (recovered from the rest of the above steps). Figure 2 depicts the process of mapping
the sub-topics with their featured versions. We discovered about 29K unique sub-topics
that can be mapped to their corresponding featured topics. Furthermore, we recover 16K
more repositories (from our 180K repositories) and increase the total number of featured
topics used in the dataset by 20%. In this stage, data contains about 152K repositories with
355 unique featured topics and a total of 307K tagged featured topics. To have a sufficient
number of sample repositories both in the training and testing sets, we remove the less-
represented feature topics (used in less than 100 repositories in the dataset). There remains
a set of 228 featured topics.

It is worth mentioning that while GitHub provides on average two aliases for each fea-
tured topic, we were able to identify on average 94 sub-topics for each featured topic.
Moreover, while Github does not provide any alias for 95 featured topics, we were able to

4The complete list is available in our repository.

93 Page 6 of 33

Empir Software Eng (2021) 26: 93

Fig. 2 Mapping user-defined topics to featured topics

recover at least one sub-topic for half of them (48 out of 95). Table 1 summarizes the statis-
tics information about GitHub’s aliases and our sub-topics per repository. Table 2 presents
a sample of GitHub repositories, their user-defined topics, the directly extracted featured
topics, and the additional mapped featured topics using our approach. In Section 4.3, we
perform a human evaluation on a statistically representative sample of this 29K sub-topics
dataset and assess the accuracy of mapped pairs of (sub-topic, featured topic).

In the final dataset, almost all repositories have less than six featured topics, with a few
outliers having up to 18 featured topics (Fig. 3). The distribution of topics among reposi-
tories has a long tail, i.e., a large number of them are used only in a small percent of all
repositories. The most frequent topics are javascript (14.3K repositories), python
(12.5K), android (8.7K), api, react, library, go, php, java, nodejs, ios, and
deep-learning. The least frequent topics in our dataset are purescript, racket,
and svelte. Each of them were used for at least 100 repositories. To provide a better pic-
ture on the distribution of featured topics over the data, we compute topic’s coverage rate.

Table 1 Statistics summary for aliases and sub-topics

Per featured topic

Source Unique Number Min Max Mean Median

Aliases by GitHub 777 0 102 2 1

Our sub-topics 29K 0 1860 94 26

Page 7 of 33 93

Empir Software Eng (2021) 26: 93

Ta
bl
e
2

M
ap

pi
ng

us
er

-d
ef

in
ed

to
pi

cs
to

pr
op

er
fe

at
ur

ed
to

pi
cs

(s
am

pl
es

)

R
ep

os
ito

ry
us

er
-d

ef
in

ed
to

pi
cs

E
xt

ra
ct

ed
fe

at
ur

ed
to

pi
cs

E
xt

ra
m

ap
pe

d
fe

at
ur

ed
to

pi
cs

ku
be

rn
et

es
-s

ig
s/

gc
p-

co
m

pu
te

-p
er

si
st

en
t-

di
sk

-c
si

-d
ri

ve
r

k8
s-

si
g-

gc
p,

gc
p

-
go

og
le

-c
lo

ud
,k

ub
er

ne
te

s

m
ic

ro
so

ft
/v

sc
od

e-
ja

va
-d

eb
ug

ja
va

,j
av

a-
de

bu
gg

er
,v

sc
od

e-
ja

va
ja

va
vi

su
al

-s
tu

di
o-

co
de

fa
nd

aL
/b

es
o

to
po

lo
gy

-o
pt

im
iz

at
io

n,
ca

lc
ul

ix
-f

em
-s

ol
ve

r,
fi

ni
te

-e
le

m
en

t-
an

al
ys

is
-

fi
ni

te
-e

le
m

en
t-

m
et

ho
d

m
dw

ha
tc

ot
t/p

ys
pe

cs
te

st
in

g-
to

ol
s,

td
d-

ut
ili

tie
s,

bd
d-

fr
am

ew
or

k,
py

th
on

2
-

py
th

on
,t

es
tin

g

93 Page 8 of 33

https://github.com/kubernetes-sigs/gcp-compute-persistent-disk-csi-driver
https://github.com/microsoft/vscode-java-debug
https://github.com/fandaL/beso
https://github.com/mdwhatcott/pyspecs

Empir Software Eng (2021) 26: 93

Fig. 3 Statistical information about the dataset

Equation (1) divides the sum of frequencies of top k topics (k most frequent topics) by the
sum of frequencies of all topics in the processed dataset. N denotes the total number of
topics and f requencyi is the frequency of the i-th topic.

Coveragek =

k∑

i=1
f requencyi

N∑

i=1
f requencyi

(1)

As displayed in Fig. 3, in our dataset, the top 20% number of topics cover more than 80%
of the topics’ cumulative frequencies over all repositories. In other words, cumulative fre-
quencies of top 45 topics cover 80% of cumulative frequencies of all topics. The distribution
of top 45 topics in the final dataset is shown in Fig. 3.

4.2 Human Evaluation of theMapping

To answer RQ1, we assessed the quality of the sub-topic dataset with the help of soft-
ware engineering experts. As mentioned in Section 4.1, through cleaning 118K user-defined

Page 9 of 33 93

Empir Software Eng (2021) 26: 93

topics, we built a dataset of about 29K unique sub-topics which can be mapped to the set of
GitHub’s 355 featured topics.

Fourteen software engineers participated in our evaluation, five females and nine males.
All our participants either have an MSc or a PhD in Software Engineering or Computer
Science. Moreover, they have a minimum of 5.0, and an average of 9.4 years of experience
in software engineering and programming.

As the number of sub-topics is too large for the set of topics to be manually examined
in its entirety, we randomly selected a statistically representative sample of 7215 sub-topics
from the dataset and generated their corresponding pairs as (sub-topic, featured topic). This
sample size should allow us to generalize the conclusion about the success rate of the map-
pings to all our pairs with a confidence level of 95% and a confidence interval of 1%. We
tried to retrieve at least 25 sub-topics corresponding to each featured topic. However, 47
featured topics had less number of sub-topics.

We developed a Telegram bot and provided participants with a simple question: “Con-
sidering the pair (featured topic f t , sub-topic st), Does the sub-topic st convey all or part
of the concept conveyed by the featured topic f t?” to which the participants could answer
‘Yes’, ‘No’, or ‘I am not sure!’. To better provide context for the participants, we also
included the definition of the featured topics and some sample repositories tagged with the
sub-topic. This would help them get a good understanding of definition and usage of that
particular topic among GitHub’s repositories. We asked our participants to take their time
and carefully consider each pair and answer with options Yes/No. In case that they could
not decide, they were instructed to use the ‘I am not sure!’ button. These cases were later
analyzed and were labeled either as ‘Yes’ or ‘No’ in the final round. For this experiment,
we collected a minimum of two answers per pair of (featured topic, sub-topic). We con-
sider pairs with at least one ’No’ label as failure and pairs with unanimous ‘Yes’ labels as
success. Figure 4 shows a screenshot of this Telegram bot.

4.3 RQ1: EvaluatingMappings

According to the results of the human evaluation, our success rate is 98.6%, i.e., the
participants confirmed that for 98.6% of pairs of the sample set, the sub-topic was cor-
rectly mapped to its corresponding featured topic. Only 101 pairs were identified as failed
matches. Two of the authors discussed all the cases for which at least one participant
had stated they believed the sub-topic and the featured topic should not be mapped. After
a careful round of analysis, incorrectly mapped topics were identified as related to a
limited number of featured topics, namely unity, less, 3d, aurelia, composer,
quality, c, electron, V, code-review, and fish. For instance, we had wrongfully
mapped data-quality-monitoring to code-quality, lesscode to less or
nycopportunity to unity. Moreover, there were also some cases where a common
abbreviation such as SLM was used for two different concepts. After performing this eval-
uation, we updated our sub-topic dataset accordingly. In other words, we removed all the
instances of wrong matches from the dataset.5

To answer RQ1, we conclude that our approach successfully maps sub-topics to their
corresponding featured topic. Our participants confirmed that these sub-topics indeed

5The updated dataset is available in our repository for public use.

93 Page 10 of 33

Empir Software Eng (2021) 26: 93

Fig. 4 A screenshot of our Telegram bot used for evaluation

convey a part or all of the concept conveyed by the corresponding featured topic in almost
all instances of the sample set. In the next section, we train our recommender models and
evaluate the results.

5 Topic Recommendation

In this section, we first review the data preparation steps to clean the input information of the
models. Then, we present a brief background on the machine learning models and the high-
level architecture of our approach. Next, we discuss the main components of the approach
in more detail.

5.1 Data preparation

Here, we preprocess our two types of input information for the models including reposito-
ries’ description text, READMEs, wiki pages, and the file names.

5.1.1 Preprocessing Descriptions, READMEs, andWiki Pages

We perform the following preprocessing steps on these types of data.

– Remove punctuation, digits, non-English and non-ASCII characters,

Page 11 of 33 93

Empir Software Eng (2021) 26: 93

– Replace popular SE- and CS-related abbreviations and acronyms such as lib, app,
config, DB, doc, and env with their formal form in the dataset,6

– Remove abstract concepts such as emails, URLs, usernames, markdown symbols, code
snippets, dates, and times to normalize the text using regular expressions,

– Split tokens based on several naming conventions including SnakeCase, camelCase,
and underscores using an identifier splitting tool called Spiral,7

– Convert tokens to lower case,
– Omit stop words, then tokenize and lemmatize documents to retain their correct word

formats, We do not perform stemming since some of our methods (e.g., DistilBERT)
have their own preprocessing techniques,

– Remove tokens with a frequency of less than 50 to limit the vocabulary size for tradi-
tional classifiers. Less-frequent words are typically special names or typos. According
to our experiments, using these tokens has little to no impact on the accuracy.

5.1.2 Preprocessing Project’s and Source File Name

The reason for incorporating this type of information in our approach is that names are
usually a good indicator of the main functionality of an entity. Therefore, we crawled a
list of all the file names available inside each repository. As this information cannot be
obtained using the GitHub API, we cloned every project and then parsed all their directories.
Before cleaning file names, our dataset had an average of 488 and a median of 50 files per
repository. We perform the following steps on the names:

– Split the project name into the owner and the repository name.
– Drop special (e.g., ‘-’ and ‘.’) or non-English characters from all names,
– Split names according to the naming conventions, including SnakeCase, camelCase,

and underscores (using Spiral).
– Identify a list of most frequent and informative tokens such as lib and api from the

list of all names and split tokens based on them. For instance, svmlib is split to two
tokens of svm and lib,

– Omit stop words, and apply tokenization and lemmatization on the names,
– For the source file names, remove the most frequent but not useful name tokens that

are common in various types of repositories regardless of their topic and functionality.
These include names such as license, readme, body, run, new, gitignore,
and frequent file formats such as txt. These tokens are frequently used but do not con-
vey much information about the topic. For instance, if a token such as manager or
style is repeatedly used in the description or README of a repository, it implies that
the repository’s functionality is related to these tokens. However, an arbitrary reposi-
tory can contain several files named style or manager, while the repository’s main
functionality varies from these topics. Since we concatenate all the processed tokens
from each repository into a single document and feed this document as the input to our
models, we removed these domain-specific tokens from the list of file names to avoid
any misinterpretation by the models.

6The complete list of these tokens is available in our repository.
7https://github.com/casics/spiral.

93 Page 12 of 33

https://github.com/casics/spiral.

Empir Software Eng (2021) 26: 93

– Remove tokens with a frequency of less than 20. This omits uninformative personal
tokens such as usernames.

5.1.3 Statistics of Input Information

Based on the distribution of input data types, we truncate a fixed number of tokens and con-
catenate them to make a list of single input documents. To be exact, we extract a maximum
of 10, 50, 400, 100, and 100 tokens from project names, descriptions, READMEs, wiki
pages, and file names, respectively. Some of the models can accept a limited number of input
tokens, hence truncating the input helps us have a fair comparison. By common assumption,
the main idea is usually expressed in the opening sentences, thus we truncate based on the
order of the tokens available in the text of descriptions, READMEs, and wiki pages. For the
file names, we start from files in the root directory and then go one level deeper in each step.
In our dataset, most of the data for each repository comes from its README files. Figure 5
presents a histogram of the prevalence of the number of input tokens among the repositories
in our dataset. Table 3 summarizes some statistics about our input data. The average number
of input tokens per repository is 235. After employing all the preprocessing steps described
in previous sections, we concatenate all the data of each repository into a single document
file and generate the representations for feeding to classifiers.

5.2 Background

In this section, we provide preliminary information on the methods we have used in our
proposed approach, covering both traditional classifiers and deep models.

Naive Bayes: Multinomial Naive Bayes (MNB) is a variant of Naive Bayes frequently used
in text classification. MNB is a probabilistic classifier used for multi-nomially distributed
data. On the other hand, the second Naive Bayes variation, Gaussian NB (GNB), is used
when the continuous values associated with each class are distributed according to Gaussian
distribution.

Logistic Regression: This classifier uses a logistic function to model the probabilities
describing the possible outcomes of a single trial.

FastText Developed by Facebook, FastText is a library for learning word representations
and sentence classification especially in the case of rare words by exploiting character

Fig. 5 The histogram of input documents size based on the number of tokens

Page 13 of 33 93

Empir Software Eng (2021) 26: 93

Table 3 Input size information
(on 152K repositories) Token number

Source Min Max Mean Median

Project name 1 10 3 2

Description 1 50 7 6

README 1 400 175 140

Wiki 1 100 10 1

File names 1 100 36 22

All 10 651 235 200

level information (Joulin et al. 2017). We have used FastText to train a supervised text
classifier.

DistilBERT: Transformers are the state-of-the-art models which exploit the attention mecha-
nism and disregard the recurrent component of Recurrent Neural Networks (RNN) (Vaswani
et al. 2017). Transformers are showed to generate higher quality results for several NLP
tasks, they are more parallelizable, and require significantly less time to train compared to
RNNs. Using the transformer concept, Bidirectional Encoder Representations from Trans-
formers (BERT) was proposed to pre-train deep bidirectional representations from an
unlabeled text by jointly conditioning on both left and right context (Devlin et al. 2018).
BERT employs two tasks of Masked Language Modeling and Next Sentence Prediction
on a large corpus constructed from the Toronto Book Corpus and Wikipedia. DistilBERT
developed by HuggingFace (Sanh et al. 2019), was proposed to pre-train a smaller general-
purpose language model compared to BERT. DistilBERT combines language modeling,
distillation and cosine-distance losses to leverage the inductive biases learned by pre-trained
larger models. The authors have shown DistilBERT can be fine-tuned with good perfor-
mances on a variety of tasks. They claim compared to BERT, DistilBERT decreases the
model size by 40%, while retaining 97% of its language understanding capabilities and
being 60% faster.

5.3 Approach Overview

Figure 6 presents the overall workflow of our proposed approach consisting of three main
phases; (1) data preparation, (2) training, and (3) prediction.

The first phase is composed of two parts; preparing the set of featured topics and prepar-
ing the textual data of repositories as labels and inputs of the multi-label classifiers. For each
repository, we extract its available user-defined topics, name, description, README files,
wiki pages, and finally a list of source file names (including their extensions). user-defined
topics assigned to the repositories go through several text-processing steps and then, are
compared to the set of featured topics. After applying the preprocessing steps, if the cleaned
version of a user-defined topic is found in the list of featured topics, it will be included, oth-
erwise, it will be discarded. Our classifier treats the list of topics for each repository as its
labels. We transform these featured topics’ lists per repository to multi-hot-encoded vectors
and use them in the multi-label classifiers. We also process and concatenate textual data

93 Page 14 of 33

Empir Software Eng (2021) 26: 93

Fig. 6 Overall workflow of the proposed approach

from the repositories along with their source file names to form our corpus. We feed the
concatenated list of a repository’s textual information (description, README, wiki, project
name, and file names) to the transformer-based and FastText classifier as is. On the other
hand, for traditional classifiers, we either use TF-IDF or Doc2vec embeddings to represent
the input textual information of repositories.

Next, in the training phase, the resulting representations are fed to the classifiers to cap-
ture the semantic regularities in the corpus. The classifiers detect the relationship between
the repositories’ textual information and the topics assigned to the repositories and learn to
predict the probability of each featured topic being assigned to the repositories.

Finally, in the prediction phase, the trained models predict topics for the repositories in
the test dataset. Our model output a vector containing probabilities of assigning each topic
to a sample repository. We sort the output probability vector and then retrieve the corre-
sponding topics for the top candidates (highest probabilities) based on the recommendation
list’s size.

5.4 Multi-label Classification

The classifiers we have reviewed in Section 5.2 are some of the most efficient and widely
used supervised machine learning models for text classification. We train the following
set of traditional classifiers with the preprocessed data acquired from the previous phase:
MNB, GNB, and LR. The input data in text classification for these classifiers is typically
represented as TF-IDF vectors, or Doc2Vec vectors. Usually, MNB variation is applied to
classification problems where the multiple occurrences of words are important. We use
MNB with TF-IDF vectors and GNB with Doc2Vec vectors. We also use LR with both TF-
IDF and Doc2Vec vectors. To be comprehensive, we employ a FastText classifier as well,
which can accept multi-label input data. As for the deep learning approaches, we fine-tune a
DistilBERT pre-trained model to predict the topics. We discuss our approach in more detail
in the following sections.

Page 15 of 33 93

Empir Software Eng (2021) 26: 93

5.4.1 Multi-hot Encoding

Multi-label classification is a classification problem where multiple target labels can be
assigned to each observation instead of only one label in the case of standard classification.
That is, each repository can have an arbitrary number of assigned topics. Since we have
multiple topics for repositories, we treat our problem as a multi-label classification problem
and encode the labels corresponding to each repository in a multi-hot encoded vector. That
is for each repository we have a vector of size 228, with each element corresponding to one
of our featured topics. The value of these elements are either 0 or 1, depending on whether
that repository has been assigned the target topic.

5.4.2 Problem Transformation

Problem transformation is an approach for transforming multi-label classification into
binary or multi-class classification problems. OneVsRest (OVR) strategy is a form of prob-
lem transformation for fitting exactly one classifier per class. For each classifier, the class
is fitted against all the other classes. Since each class is represented by only one classifier,
OVR is an efficient and interpretable technique and is the most commonly used strategy
when using traditional machine learning classifiers for a multi-label classification task. The
classifiers take an indicator matrix as an input, in which cell [i, j] indicates that repository
i is assigned the topic j . Using this approach of problem transformation, We converted our
multi-label problem to several simple binary classification problems, one for each topic.

5.4.3 Fine-tuning Transformers

Recently, Transformers and the BERT model have significantly impacted the NLP domain.
This is because the pre-trained BERT model can be fine-tuned with just one additional
output layer to create state-of-the-art models for a wide range of NLP tasks (in our case
multi-label classification), without major task-specific architecture modifications. There-
fore, we exploit DistilBERT, a successful variant of BERT in our approach. We add a
multi-label classification layer on top of this model and fine-tune it on our dataset. Figure 7
depicts the architecture of our model.

5.4.4 Handling Imbalanced Data

As shown in Section 4.1, the distribution of topics in our dataset is very unbalanced (long-
tailed distribution). That is, most of the repositories are assigned with very few numbers of
topics while many other topics are used less frequently (have less support). In such cases, the
classifier can be biased toward predicting more frequent topics more often, hence increasing
precision and decreasing recall of the least-frequent topics. Therefore, we need to assign
more importance to certain topics and define more penalties for their misclassification. To
this end, we define a vector containing the weights corresponding to our topics in the fit
method of our classifiers. It is a list of weights with the same length as the number of
topics. We populate this list with a dictionary of topic : weight . Weight for topic ti is equal
to the ratio of the total number of repositories denoted as N to the frequency of a topic
(f requencyti) as shown in (2). Thus, less-frequent topics will have higher weights while
calculating loss functions. Therefore, the model learns to better predict them.

weightti = N

f requencyti

(2)

93 Page 16 of 33

Empir Software Eng (2021) 26: 93

Fig. 7 Fine-tuning DistilBERT for multi-label classification

6 Experimental Design

In this section, we present our experimental setting.

6.1 Dataset andModels

We divided our preprocessed dataset of GitHub repositories (Section 3) to three subsets of
training, validation, and testing datasets. We first split the data into train and test sets with
ratios of 80%, and 20%, respectively. Then we split the train set into two subsets to have a
validation set as well (with ratios 90% to 10%). We have about 152K repositories, with 228
selected featured topics. Input data consists of projects’ names, descriptions, READMEs,
wiki pages, and file names concatenated together.

To train traditional classifiers, we use the Sci-kit Learn8 library. We exploit its OneVs-
RestClassifier feature for some of our traditional models such as NB and LR. Furthermore,
we use the HuggingFace9 and the SimpleTransformers10 libraries for the implementation of
our DistilBERT-based classifier. We set the learning rate to 3e − 5, the number of epochs

8https://scikit-learn.org
9https://huggingface.co
10https://gitbub.com/ThilinaRajapakse/simpletransformers

Page 17 of 33 93

https://scikit-learn.org
https://huggingface.co
https://gitbub.com/ThilinaRajapakse/simpletransformers

Empir Software Eng (2021) 26: 93

to 9, the maximum input length to 512 and the batch size to 4. We set the maximum num-
ber of features to 20K and 1K for TF-IDF and Doc2Vec embeddings. Higher numbers
would result in overfitted models and/or the training time would increase greatly. We also
set the minimum frequency count for Doc2Vec to 10 and the n-gram range to (1, 2) for
TF-IDF. As for the FastText, We first optimize it by setting the Automatic tuning duration
to 20 hours. The best parameters retrieved for our data are the learning rate of 1.08, the
minimum frequency count of 1, and the n-gram size of 3. We set the remaining parameters
to default values. Our experiments are conducted on a server equipped with two GeForce
RTX 2080 GPUs, an AMD Ryzen Threadripper 1920X CPU with 12 core processors,
and 64G RAM.

Baseline models are the the study by Di Sipio et al. (2020) and variations of the Naive
Bayes algorithm, namely MNB and GNB. We choose the latter two because the core algo-
rithm in the baseline (Di Sipio et al. 2020) is an MNB. Furthermore, these techniques lack
balancing while our proposed models use balancing techniques. Di Sipio et al. (2020), first
extracts a balanced subset of the training dataset, by taking only 100 sample repositories
for each of their selected featured topics. It then proceeds to train an MNB on this data. In
the prediction phase, the authors use a source code analysis tool, GuessLang, to predict the
programming language of each repository separately. In the end, they take n − 1 topics pre-
dicted by their classifier and concatenate it with the programming language topic extracted
from the GuessLang and generate their top − n recommendation list.

6.2 EvaluationMetrics

To evaluate our methods, we use standard evaluation metrics applied in both recommenda-
tion systems and multi-label classification scenarios such as Recall, Precision, F1 measure,
Success Rate, and LRAP to address different aspects of our model (Izadi et al. 2014;
Schapire and Singer 2000). The evaluation metrics used in our study are as follows.

– Recall, Precision, and F1 measure: These are the most commonly used metrics in
assessing a recommender system’s performance in the top-n suggested topics (Jalili
et al. 2018). Precision is the ratio tp

tp+fp
where tp is the number of true positives and fp

the number of false positives. Thus, P @n for a repository is the percentage of correctly
predicted topics among the top-n recommended topics for that repository. Similarly,
Recall is the ratio tp

tp+f n
where f n is the number of false negatives. Thus, R@n for

a repository is the percentage of correctly predicted topics among the topics that are
actually assigned to that repository. F1 measure, as expected, is the harmonic mean
of the previous two and is calculated as 2×P×R

P+R
. We report these metrics for top − n

recommendation lists. Moreover, we show how much these metrics are affected by
changing the size of the recommendation list.

– Success Rate: We denote the success rate for different top-n recommendation lists as
S@n and report S@1 and S@5. S@1 measures whether the most probable predicted
topic for each repository is correctly predicted. S@5 measures whether there is at least
one correct suggestion among the top-five recommendations.

– LRAP: This metric is used for multi-label classification problems, where the aim is
to assign better ranks to the topics truly associated with each repository (Schapire and
Singer 2000). That is for each ground truth topic, LRAP evaluates what fraction of
higher-ranked topics were true topics. LRAP is a threshold-independent metric that
scores between 0 and 1, with 1 being the best value. Equation 3, calculates LRAP. Given

93 Page 18 of 33

Empir Software Eng (2021) 26: 93

a binary indicator matrix of the ground truth topics and the score associated with each
topic, the average precision is defined as

LRAP(y, f̂) = 1

nrepositories

nrepositories−1∑

i=0

1

||yi ||0
∑

j :yij =1

|Lij |
rankij

(3)

where Lij =
{
k : yik = 1, f̂ik ≥ f̂ij

}
, rankij =

∣
∣
∣
{
k : f̂ik ≥ f̂ij

}∣
∣
∣, | · | computes the

cardinality of the set that is the number of elements in the set, and ||·||0 is the �0 “norm”.

6.3 User Study to Evaluate Recommendation Lists

We designed a questionnaire to assess the quality of our recommended topics from users’
perspectives. We randomly selected 100 repositories and included recommended topics (1)
by our approach (LR with TF-IDF embeddings), (2) by the baseline approach (Di Sipio et al.
2020) and (3) the set of the original featured topics. We present these sets of recommended
topics to the participants as outputs of three anonymous methods to prevent biasing them.
We asked the participants to rate the three recommendation lists for each repository based
on their correctness and completeness. That is for each repository they answer the following
questions:

Correctness: how many correct topics are included in each recommendation list,

Completeness: compare and rank the methods for each repository based on the complete-
ness of the correct recommendations.

As this would require a long questionnaire and assessing all samples could jeopardize the
accuracy of evaluations, we randomly assigned the sample repositories to the participants
and made sure to cover each of the 100 repositories at least by 5 participants. To provide
better context, we also include the content of the README file of repositories for the users.

7 Results

In this section, we present the results of our experiments and discuss them. We first review
the results of the proposed multi-label classification models and compare them with the
baselines. Then, we present the results of the user study to assess the results from the
participants’ perspective. Next, we analyze the results per topic and assess the quality
of recommendations. Finally, using the data ablation study, we address our last research
question.

7.1 RQ2: Recommendation Accuracy

To answer RQ2, we present the results of both the baselines and the proposed models based
on our evaluation metrics. We set n = (1, 5), and report the results for S@n, R@n, P @n,
and F@n in Table 4. As shown by the results, we outperform the baselines by large mar-
gins regarding all evaluation metrics. In other words, we improve the baseline (Di Sipio
et al. 2020) by 29%, 59%, 65%, 63% and 46% in terms of S@5, R@5, P @5, F1@5 and
LRAP , respectively. Among our proposed models, the LR classifier with TF-IDF embed-
dings and the DistilBERT-based classifier achieve similar results and both outperform all
other models.

Page 19 of 33 93

Empir Software Eng (2021) 26: 93

Ta
bl
e
4

E
va

lu
at

io
n

re
su

lts

E
va

lu
at

io
n

m
et

ri
cs

B
as

el
in

e
m

od
el

s
S@

1
S@

5
R

@
5

P@
5

F1
@

5
L

R
A

P
T

(t
)

T
(p

)

D
iS

ip
io

et
al

.(
20

20
)

0.
46

5
0.

75
0

0.
56

1
0.

21
0

0.
28

9
0.

55
3

20
s

93
s

M
N

B
,T

F-
ID

F
0.

58
1

0.
83

3
0.

65
9

0.
25

3
0.

34
6

0.
56

9
3m

0.
5m

s

G
N

B
,D

2V
0.

60
4

0.
90

1
0.

75
3

0.
28

7
0.

39
3

0.
61

9
30

m
0.

6m
s

Pr
op

os
ed

m
od

el
s

S@
1

S@
5

R
@

5
P@

5
F1

@
5

L
R

A
P

T
(t

)
T

(p
)

Fa
st

Te
xt

0.
78

3
0.

95
8

0.
85

5
0.

33
0

0.
45

0
0.

77
2

25
m

0.
4m

s

L
R

,D
2V

0.
62

4
0.

93
1

0.
79

5
0.

30
2

0.
41

5
0.

66
2

29
h

0.
3m

s

L
R

,T
F-

ID
F

0.
80
6

0.
97
1

0.
89
0

0.
34
6

0.
47
0

0.
80
5

30
m

0.
4m

s

D
is

til
B

E
R

T
0.
79
2

0.
96
9

0.
88
4

0.
34
3

0.
46
9

0.
79
6

10
.5

h
5m

s

93 Page 20 of 33

Empir Software Eng (2021) 26: 93

Another aspect of these models’ performance is the time it takes to train them and pre-
dict topics. Table 4 presents the training time for each model as T (t) and the prediction time
of a complete set of topics for a repository as T (p). To predict the prediction time, we cal-
culate the prediction time of 1000 sample recommendation lists for each model and report
the average time per list. The values are in milliseconds, minutes, and hours. Note that pre-
diction time of the baseline (Di Sipio et al. 2020) is significantly larger than our models.
This unnecessary delay is caused due to using the GuessLang tool for predicting program-
ming language topics for repositories. Although the training time is a one-time expense,
prediction time can be a key factor when choosing the best models.

Moreover, we vary the size of recommendation lists and analyze their impact on the
results. We set the parameter n (size) equal to 1, 3, 5, 8, and 10, respectively, and report the
outcome in Fig. 8. As expected, as the size of the recommendation list increases, so does
the S@n. However, while R@n goes up, P @n goes down, and thus the F1@n decreases.
Note that both LR and DistilBERT-based classifiers perform very closely regarding all
recommendation sizes and metrics.

To investigate whether there is a significant difference between the results of our pro-
posed approach and the baseline, we followed the guideline and the tool provided by
Herbold (2020). We conducted statistical analysis for three approaches of Di Sipio et al.
(2020), LR and DistilBERT-based classifiers and used 30280 paired samples. We reject the
null hypothesis that the population is normal for the three populations generated by these
approaches. Because we have more than two populations and because they are not normal,
we use the non-parametric Friedman test to investigate the differences between the median
values of the populations (Friedman 1940). We employed the post-hoc Nemenyi test to deter-
mine which of the aforementioned differences are statistically significant (Nemenyi 1962).
The Nemenyi test uses critical distance (CD) to evaluate which one is significant. If the dif-
ference is greater than CD, then the two approaches are statistically significantly different.
We reject the null hypothesis of the Friedman test that there is no difference in the central

Fig. 8 Comparing results for different recommendation sizes

Page 21 of 33 93

Empir Software Eng (2021) 26: 93

tendency of the populations. Therefore, we assume that there is a statistically significant
difference between the median values of the populations. Based on the post-hoc Nemenyi
test, we assume that there are no significant differences within the following groups: LR
and DistilBERT-based classifier. All other differences are significant.

Figure 9 depicts the results of hypothesis testing for F1@5 measure. The Friedman
test rejects the null hypothesis that there is no difference between median values of the
approaches. Consequently, we accept the alternative hypothesis that there is a difference
between the approaches. Based on the Fig. 9 and the post-hoc Nemenyi test, we cannot say
that there are significant differences within the following approaches: (LR and DistilBERT).
All of the other differences are statistically significant.

7.2 RQ3: Results of the User Study

Figure 10 shows two groups of BoxPlots comparing the correctness and completeness of
the recommended topics by our three methods included in the user study. Concerning the
correctness of the suggestions, the median and average correct topics of our model are
5 and 4.48 out of 5 recommended topics. While the median and average of the baseline
approach, Di Sipio et al. (2020), are 3 and 3.07 correct topics out of 5 recommended topics.
Regarding the completeness of the suggestions, the median and average rank assigned by
the participants to our approach are 1 and 1.2, respectively. This means almost in all cases,
our approach recommends the most complete set of correct topics. Although there are a
couple of outlier cases in which our proposed approach is ranked second or third (Fig. 10b).
The median and average of the assigned rank for the baseline method are 3 and 2.4 correct
topics. That is in most cases, participants ranked the baseline as the last approach in terms
of completeness.

Note that we did not ask the participants to score the recommendations based on the
usefulness of individual topics. This is because, to the best of our knowledge, there is no
agreement on what is a useful topic in the related work yet. However, we asked an open
question on what is a useful set of topics. Specifically, we asked “What do you consider
a useful set of recommended topics”? In our study, participants mostly emphasized the
completeness of the sets. For instance, one participant stated:

“More complete sets of topics make it easier to select suitable topics for my repositories
because they can point out different aspects such as the goal, the platform it can be used on,
its category, the languages, etc. So for me, the higher number of correct topics equals the
usefulness of the recommended set.”

According to the results, we can conclude that our recommendations are also deemed
useful by developers. Moreover, our approach can recommend missing topics as well. Users
indicated that our recommended topics often were more complete than featured topics of
the repositories. This is probably because repository owners sometimes forget to tag their

Fig. 9 The results of hypothesis testing for F1@5 measure

93 Page 22 of 33

Empir Software Eng (2021) 26: 93

Fig. 10 User study’s results

repositories with a complete set of topics. Thus, some correct topics will be missing from
the repository (missing topics). However, our ML-based model has learned from the dataset
and is able to predict more correct topics. This also can be the reason for the low Precision
score of the ML-based models because the ground truth is lacking some useful and correct
topics. As will be shown in the Data Ablation Study next section, by mapping user-defined
topics to featured topics we are able to extract more valuable information from the data and
indeed increase scores of Precision and F1 measures.

Therefore, to answer RQ3, we conclude that our approach can successfully recommend
accurate topics for repositories. Moreover, it is able to recommend more complete sets
comparing to both the baseline’s recommendations and the featured sets of topics.

7.3 Qualitative Analysis of Recommendations

Table 5 presents our model’s recommended topics for a few sample repositories. As con-
firmed by the user study, our proposed approach is not only capable of recommending
correct topics but also it can recommend missing topics. For instance, the sherbold/autorank
is a Python package for comparing paired populations. Currently, this repository does not
have any original topics, however, our model’s top five recommendations are all correct.
The recommendations show that our model not only can detect coarse-grained features
such as the programming language or the general category of a repository such as python,
machine-learning, and algorithm, but also it is able to recommended proper
functionality- or goal-related topics such as data-visualization and testing
which are more fine-grained and specific. Below, we present a list of such specific topics
(e.g., functionality-related) along their recall score as an indication of the performance
of our LR-based model on these topics: 3d (79%), bioinformatics (79%),
blockchain (90%), cli (77%), cms(84%), compiler (82%),
composer (73%), computer-vision (84%), cryptocurrency (88%),
data-structures (82%), data-visualization (76%), database
(77%), deep-learning (93%), docker (88%), emulator (87%),
game-engine (83%), google-cloud (81%), home-assistant (93%),
image-processing (78%), localization (70%), machine-learning
(84%), monitoring (78%), neural-network (92%), nlp (89%),
opencv (85%), package-manager (68%), robotics (74%),
security (77%), testing (74%), virtual-reality (83%),
web-components (82%), webextension (93%), webpack (81%), etc.

Page 23 of 33 93

Empir Software Eng (2021) 26: 93

Table 5 Recommendations for sample repositories

Repositories Featured topics Recommended topics (LR)

sherbold/autorank

A Python package to simplify
the comparison between (mul-
tiple) paired populations.

– python, machine-learning,
data-visualization, testing,
algorithm

parrt/dtreeviz

A python library for decision
tree visualization and model
interpretation.

– machine-learning, scikit-learn,
data-visualization, python, ai

iterative/dvc

Git for Data and Models. python, git, data-science,
machine-learning, ai

Python, git, yaml, terminal,
machine-learning

plotly/dash

Analytical Web Apps
for Python, R, Julia, and
Jupyter.

data-visualization, react,
data-science, python,
bioinformatics

data-visualization, react,
python, kubernetes, ai

pypa/pip

The Python package installer python, pip python, pip, package-manager,
dependency-management, yaml

In Table 6, we presents the results based on different topics. About 100 topics have
Recall and Precision scores higher than 80% and 50%, respectively. Furthermore, only six
topics out of 228 topics have Recall scores lower than 50%. Thus, in the following, we will
investigate cases for which the model reports low Precision. We divide these topics into
two groups: (1) topics assigned to a low number of repositories (weakly-supported topics),
and (2) topics assigned to a high number of repositories (strongly-supported topics). In the
first row, we report 36 topics of the first group, such as phpunit, code-review, less,
storybook, code-quality, and package-manager that are assigned to reposi-
tories less than 80 times in our data. Note that we employ used balancing techniques in
our models, which help recommend less-frequent and specific topics correctly as much as
possible. However, some of these topics seem to convey concepts used in general cases
such as operating-system, privacy, npm, mobile, and frontend. Therefore,
we believe augmenting the dataset with more sample repositories tagged by these topics can
boost the performance of our classifiers. Thus, when collecting new data points, both the
support number of weakly-supported topics with low precision (80) and the cutoff threshold
in our dataset (100) should be taken into account.

In the second row, we have 12 popular topics, namely javascript, library, api,
framework, nodejs, server,linux, html, c, windows, rest-api, and shell
for which the model achieves good recall scores (higher than 70%), but low recall preci-
sion scores (20% to 40%). The number of repositories tagged with these topics ranges from
300 to 2900. As the number of sample repositories seems to be sufficient, the low preci-
sion of the model can be due to several reasons. Upon investigation, we found out some
users often forget to assign general-purpose topics. That is the programming language of
a repository can be indeed JavaScript or the operating system can be Linux or Windows.
But users neglect tagging their repositories with these general-purpose topics, hence the

93 Page 24 of 33

Empir Software Eng (2021) 26: 93

Table 6 Performance based on topics

Featured Topics

Low precision, and weakly-supported operating-system, p2p, privacy, neovim,
eslint, yaml, hacktoberfest, aurelia,
csv, web-components, gulp, maven,
styled-components, homebrew, mongoose,
nuget, firefox-extension, threejs,
localization, wpf, scikit-learn, pip,
webextension, virtual-reality, github-api,
ajax, archlinux, nosql, vanilla-js,
package-manager, less, storybook,
code-quality, dependency-management,
code-review, phpunit

Low precision, but strongly-supported javascript, library, api, framework, nodejs,
server,linux, html, c, windows, rest-api, shell

ground truths will be missing these correct topics. Then, when the trained model predicts
these missing topics correctly, it will be penalized since they are missing from the ground
truth. Subsequently, this will result in low Precision scores for these topics. Second, some
of these topics such as api, framework and library have extensive broadness, popu-
larity, and subjectiveness. For instance, users often mix the above-mentioned topics and use
them interchangeably or subjectively. And any machine learning model is only as good as
the data it is provided with.

7.4 RQ4: Data Ablation Study

To answer RQ4, we train our proposed models using different types of repository infor-
mation (i.e., description, README, wiki pages, and file names) as the input. According
to the results (Table 7), as a single input, wiki pages have the least valuable information.
This is probably because only a small number of repositories (about 10%) contained wiki
pages and it appears these pages are often missing from repositories. On the other hand,
among single source inputs, READMEs provide better results. This is probably because
READMEs are the main source for providing information about a repositories’ goals and
characteristics. Thus, they have an advantage compared to other sources regarding both the
quality and quantity of tokens. Consequently, READMEs are enabled to contribute more
to training. While READMEs are essential for training models, Therefore, To answer RQ4,
adding more sources of information such as descriptions and file names indeed helps boost
the models’ performance. Furthermore, these types of information complement each other
in case a repository does not have a description, README or an adequate number of files
at the same time.

7.4.1 Different Number of Topics

We also investigate whether there is a relationship between the performance of different
models and the number of topics they are trained on. We train several models on the most
frequent 60, 120, 180, and 228 featured topics, respectively. Figure 11 depicts the results
of this experiment. The interesting insight here is that both our proposed models (LR and
DistilBERT-based classifier) start from the same score for each metric and are almost always

Page 25 of 33 93

Empir Software Eng (2021) 26: 93

Table 7 Evaluation results based on different types of input

Evaluation Metrics

LR, TFIDF R@5 P@5 F1@5 LRAP support

Wiki pages 45.6% 18.8% 25.1% 39.0% 3.5K

File names 71.4% 27.3% 37.4% 62.2% 30K

Description 72.2% 27.8% 38.0% 65.7% 30K

README 84.3% 32.6% 44.5% 75.2% 30K

All but file names 86.7% 33.6% 45.9% 78.1% 30K

ALL 89.0% 34.6% 47.0% 80.5% 30K

DistilBERT R@5 P@5 LRAP F1@5 support

Wiki pages 30.4% 12.6% 16.8% 26.2% 3.5K

File names 67.1% 25.4% 34.8% 58.8% 30K

Description 71.0% 27.2% 37.3% 64.2% 30K

README 84.2% 32.5% 44.4% 74.9% 30K

All but file names 86.6% 33.5% 45.8% 77.8% 30K

ALL 88.4% 34.3% 46.9% 79.6% 30K

overlapping for all number of topics. This is shown in our qualitative analysis of the results
as well (negligible difference between these two models). On the other hand, the MNB
classifier (baseline) both starts from much lower scores and decreases faster as well.

Fig. 11 Comparing results for different number of topics

93 Page 26 of 33

Empir Software Eng (2021) 26: 93

7.4.2 Training with Separate Inputs

Here we report the results of training the models with separate input data. Repositories’
description, README, and wiki pages consist of sentences, thus they are inherently sequen-
tial. On the other hand, file names do not have any order. Therefore, we separate (1)
descriptions, README files, and wiki pages from (2) project names and source file names
and feed them separately to the models. For TF-IDF embeddings, we set the maximum
number of features to 18K and 2K for textual data and file names, respectively. This is
because most of the input of our repositories consists of textual information (descriptions,
README files, and wiki pages). In the same manner, we set the maximum number of fea-
tures to 800 and 200 for Doc2Vec vectors. Then we concatenated these vectors and fed them
to the models. Table 8 shows the results of this experiment. Interestingly, baseline models
behave differently. For instance, MNB improves, while GNB under-performs the previous
case. However, our proposed model’s performance is not affected significantly. Therefore,
one should take into account these differences while choosing the models and their settings.

7.4.3 Training before and after Topic Mapping

Table 9 compares several models trained on only featured topics versus all mapped topics
(subtopics mapped to their corresponding featured topics). Our results indicate that adding
more featured topics through mapping sub-topics in all cases, improves the results in terms
of Precision and F1 measure. However, it is expected that there would be a slight decrease
in the Recall score due to the increase in the number of true topics in the dataset.

8 Practical Implications and FutureWork

One of the major challenges in the management of software repositories is to provide an
efficient organization of software projects such that users will be able to easily navigate
through the projects and search for their target repositories. Our research can be the ground-
ing step towards a solution for this problem. The direct value of topic recommenders is

Table 8 Evaluation results based on separate vs. single input data

Evaluation metrics

Models Options R@5 P@5 F1@5 LRAP

MNB, TF-IDF Separate inputs 71.0% 27.2% 37.2% 62.0%

Single inputs 65.9% 25.3% 34.6% 56.9%

GNB, D2V Separate inputs 58.0% 22.0% 30.2% 41.9%

Single inputs 75.3% 28.7% 39.3% 61.9%

LR, TF-IDF Separate inputs 88.0% 34.1% 46.6% 79.4%

Single inputs 89.0% 34.6% 47.0% 80.5%

LR D2V Separate inputs 79.7% 30.3% 41.6% 67.0%

Unit inputs 79.5% 30.2% 41.5% 66.2%

Page 27 of 33 93

Empir Software Eng (2021) 26: 93

Table 9 Evaluation results
before vs. after topic mapping Evaluation metrics

Models Options R@5 P@5 F1@5

MNB, TF-IDF Before 66.2% 21.7% 31.1%

After 65.9% 25.3% 34.6%

LR, TF-IDF Before 90.9% 30.2% 43.1%

After 89.0% 34.6% 47.0%

DistilBERT Before 89.8% 29.7% 42.5%

After 88.4% 34.3% 46.9%

to assign a various type of topics (both specific and generic) to repositories and maintain
the size and quality of the topics set. In this work, we have tried to tackle this problem.
Figure 12 presents a screenshot of our online tool, Repologue.11 Our tool recommends the
most related featured topics for any given public repository on GitHub. Users enter the
name of the target repository and ask for recommendations. Repologue will first retrieve
both textual information and file names of the queried repository. Then using our trained LR
model, it will recommend the top topics sorted based on their corresponding probabilities to
the user. Suppose a developer is coding using Django framework and Python programming
language. She is looking for a library on testing that can be easily installed using pip, her
package installer. A library such as django-nose is a suitable candidate. However, its owner
has not assigned any topic to this repository and users may not find it easily. Our tool rec-
ommends the following topics for this repository; python, django, testing, and pip.
Each of these topics addresses one aspect of this project. Using our tool, owners can easily
make their repositories more visible and users can find their target repositories faster.

In the next step, the set of tagged repositories can also be the input to a more coarse-
grained classification technique for software repositories. Such a classifier can facilitate the
navigation task for users. In other words, the next steps to our research could be to analyze
these topics, find the relationship between them, and build a taxonomy of topics. Then,
using this taxonomy, one can identify the major classes existing in software repositories and
build a classification model for categorizing repositories in their respective domain. Such
categorization can help organize these systems and users will be able to efficiently search
and navigate through software repositories. Another approach could be to utilize topics as
a complementary input in a search engine. Current search engines mainly operate based on
the similarity of textual data in the repositories. Feeding these topics as a weighted input to
the search engines can improve the search results.

9 RelatedWork

In this section, we review previous approaches to this research problem. We organize related
work in the following subgroups, including approaches on (i) predicting the topic of a
software repository, and (ii) recommending topics for other software entities.

11https://www.repologue.com/

93 Page 28 of 33

https://github.com/jazzband/django-nose
https://www.repologue.com/

Empir Software Eng (2021) 26: 93

Fig. 12 A screenshot of our online tool, Repologue

9.1 Topic Recommendation for GitHub Repositories

In 2015, Vargas-Baldrich et al. (2015), presented Sally, a tool to generate tags for Maven-
based software projects through analyzing their bytecode and the dependency relations
among them with. This tool is based on an unsupervised multi-label approach. Unlike this
approach, we have employed supervised machine-learning-based methods. Furthermore,
our approach does not require inspecting the bytecode of programs, and hence, can be used
for all types of repositories.

Cai et al. (2016) proposed a graph-based cross-community approach, GRETA, for assign-
ing topics to repositories. The authors built a tagging system for GitHub by constructing
an Entity-Tag Graph and taking a random walk on the graph to assign tags to repositories.
Note that this work was conducted in 2016, prior to the time that GitHub enabled users to
assign topics to repositories, thus the authors focused on building the tagging system from
scratch and use cross-community domain knowledge, i.e. question tags from Stack Over-
flow QA website. Contrary to this work, for training our model we used topics assigned by
GitHub developers who actually own these repositories and are well aware of their salient
characteristics and core functionality. Furthermore, the final set of topics, i.e. the featured
topics, are carefully selected by the SE community and the GitHub official team. Therefore,
apart from applying different methods, the domain knowledge, quality of topics, and their
relevance to the repositories in our work are more accurate and relevant.

Although both works have concentrated on building a tagging system for exploring
and finding similar software projects, they differ in the approach and the type of input
information.

Just recently, Di Sipio et al. (2020) proposed using an MNB algorithm for the classifica-
tion of about 134 topics from GitHub. In each top-k recommendation list for a repository,
authors would predict k − 1 topics using the MNB (text analysis) and one programming
language topic using a tool called GuessLang (source code analysis).

Similar to our work, they have used featured topics for training multi-label classifiers.
However, we perform rigorous preprocessing techniques on both user-defined topics and the

Page 29 of 33 93

Empir Software Eng (2021) 26: 93

input textual information. We provide and evaluate a dataset of 29K sub-topics for mapping
to 228 featured topics. Our human evaluation of this dataset has shown that we success-
fully map these topics and thus, we are able to extract more valuable information out of the
repositories’ documentation. Not only do we consider README files, but also we process
and use other sources of available textual information such as descriptions, projects and
repository names, wiki pages, and finally, file names in the repositories. The Data Ablation
Study confirms that each type of information we introduce to the model improves its perfor-
mance. Furthermore, we apply more suitable supervised models and balancing techniques.
As a result of our design choices, we outperform their model by a large margin (from 59%
to 65% improvement in terms of R@5 and P @5). We also perform a user study and assess
the quality of our recommendation from users’ perspectives. Our approach outperforms the
baseline in this regard as well. Finally, we have also developed an online tool that predicts
topics for given repositories.

Note that we believe since GitHub already provides the programming language of each
repository using a thorough code analysis approach on all its source code files, there is not
much need for predicting only the programming-language topics using code analysis. How-
ever, we believe code analysis can be used for more useful goals such as finding the relations
between topics through analyzing API calls, etc. For instance, while Linares-Vásquez et al.
(2014) exploits API calls for classifying applications, MUDABlue (Kawaguchi et al. 2006)
and LACT (Tian et al. 2009) use NLP techniques for this purpose. The result can also be
used for facilitating tasks such as repository navigation.

9.2 Tag Recommendation in Software Information Sites

There are several pieces of research on tag recommendation in software information web-
sites such as Stack Overflow, Ask Ubuntu, Ask Different, and Super User (Wang et al. 2018;
Wang et al. 2014; Zhou et al. 2017; Xia et al. 2013; Liu et al. 2018; Maity et al. 2019). Ques-
tion tags have been shown to help users get answers for their questions faster (Wang et al.
2018). They have helped in detecting and removing duplicate questions. Also, it has been
shown that more complete tags support developers learning (through easier browsing and
navigation) (Held et al. 2012). The discussion around these tags and their usability in the
SE community have been so fortified that the Stack Overflow platform has also developed
a tag recommendation system of its own.

These approaches mostly employ word similarity-based and semantic similarity-based
techniques. The first approach (Xia et al. 2013) focuses on calculating the similarity based
on the textual description. Xia et al. (2013) proposed, TagCombine, to predict tags for
questions using a multi-label ranking method based on OneVsRest Naive Bayes clas-
sifiers. It also uses a similarity-based ranking component and a tag-term-based ranking
component. However, the performance of this approach is limited by the semantic gap
between questions. Semantic similarity-based techniques (Wang et al., 2018, 2014; Liu
et al. 2018) consider text semantic information and perform significantly better than the for-
mer approach. Wang et al. (2014, 2018), proposed ENTAGREC and ENTAGREC++. These
two use a mixture model based on LLDA which considers all tags together. They contain
six processing components: Preprocessing Component (PC), Bayesian Inference Compo-
nent (BIC), Frequentist Inference Component (FIC), User Information Component (UIC),
Additional Tag Component (ATC), and Composer Component (CC). They link historical
software objects posted by the same user together. Liu et al. (2018), proposed FastTagRec,
for tag recommendation using a neural-network-based classification algorithm and bags of
n-grams (bag-of-words with word order).

93 Page 30 of 33

Empir Software Eng (2021) 26: 93

10 Threats to the Validity

In this section, we review threats to the validity of our research findings based on three
groups of internal, external, and construct validity (Feldt and Magazinius 2010).

Internal validity relates to the variables used in the approach and their effect on the out-
comes. The set of topics used in our study can affect the outcome of our approach. As
mentioned before a user can generate topics in the free-format text, thus we need an upper
bound on the number of topics used for training our models. To mitigate this problem,
we first carefully preprocessed all the topics available in the dataset. Then we used the
community-curated set of featured topics provided by the GitHub team. We mapped our
processed sub-topics to their corresponding featured topics, and finally extracted a set of
a polished, widely used set of 228 topics. To assess the accuracy of these mappings, we
performed a human evaluation on a randomly selected subset of the dataset. According to
the results, the Success Rate of our mapping was 98.6%. We then analyzed the failed cases
and update our dataset accordingly to avoid misleading the models while extracting more
information from the repositories’ documentation. Another factor can be errors in our code
or in the libraries that we have used. To reduce this threat, we have double-checked the
source code. But there still could be experimental errors in the setup that we did not notice.
Therefore, we have released our code and dataset publicly, to enable other researchers in the
community to replicate it.12

Compatibility We have evaluated the final recommended topics both quantitatively and
qualitatively. As shown in previous sections, their outcomes are compatible.

External validity refers to the generalizability of the results. To make our results as gener-
alizable as possible, we have collected a large number of repositories in our dataset. Hence,
we tried to make the approach extendable for automatic topic recommendation in other soft-
ware platforms as well. Also for training the models, datasets were randomly split to avoid
introducing bias.

Construct validity relates to theoretical concepts and use of appropriate evaluation met-
rics. We have used standard theoretical concepts that are already evaluated and proved
in academic society. Furthermore, we have carefully evaluated our results based on
various evaluation metrics both for assessing multi-label classification methods and recom-
mender systems. Our results indicate that the employed approach has been successful in
recommending topics for software entities.

11 Conclusion

Recommending topics for software repositories helps developers and software engineers
access, document, browse and navigate through repositories more efficiently. By giving
users the ability to tag repositories, GitHub made it possible for repository owners to define
the main features of their repositories with few simple textual topics. In this study, we
proposed several multi-label classifiers to automatically recommend topics for repositories

12https://github.com/MalihehIzadi/SoftwareTagRecommender

Page 31 of 33 93

https://github.com/MalihehIzadi/SoftwareTagRecommender

Empir Software Eng (2021) 26: 93

based on their textual information including their name, description, README files, wiki
pages, and their file names. We first employed rigorous text-processing steps on both topics
and the input textual information. We mapped 29K sub-topics to their corresponding fea-
tured topics provided by GitHub. Then we trained several multi-label classifiers including
LR and DistilBERT-based models for predicting 228 featured topics of GitHub reposito-
ries. We evaluated our models both quantitatively and qualitatively. Our experimental results
indicate that our models can suggest topics with high R@5 and LRAP scores of 0.890 and
0.805, respectively. According to users’ assessment, our approach can recommend on aver-
age 4.48 correct topics out of 5 topics and it outperforms the baseline. In the future, we plan
to take into account the correlation between the topics more properly. We also can exploit
code analysis approaches to boost our approach.

Furthermore, using the output of our approach, one can boost the techniques on possible
applications of this work such as finding missing topics or categorizing repositories using
the set of featured and mapped topics.

Acknowledgements The authors would like to thank the participants who assessed the quality of the pro-
posed approach. We also would like to thank Mahtab Nejati, Mahdi Keshani, and Alireza Aghamohammadi
for their comments and help.

References

Cai X, Zhu J, Shen B, Chen Y (2016) Greta: Graph-based tag assignment for github repositories.. In: 2016
IEEE 40th Annual Computer Software and Applications Conference (COMPSAC), vol 1. IEEE, pp 63–
72

Devlin J, Chang M-W, Lee K, Toutanova K (2018) Bert: Pre-training of deep bidirectional transformers for
language understanding. arXiv:1810.04805

Di Sipio C, Rubei R, Di Ruscio D, Nguyen PT (2020) A multinomial naı̈ve bayesian (mnb) network to auto-
matically recommend topics for github repositories. In: Proceedings of the Evaluation and Assessment
in Software Engineering, pp 71–80

Feldt R, Magazinius A (2010) Validity threats in empirical software engineering research-an initial survey.
In: Seke, pp 374–379

Friedman M (1940) A comparison of alternative tests of significance for the problem of m rankings. Ann
Math Stat 11(1):86–92

Golder SA, Huberman BA (2006) Usage patterns of collaborative tagging systems. J Inf Sci 32(2):198–208
Held C, Kimmerle J, Cress U (2012) Learning by foraging: The impact of individual knowledge and social

tags on web navigation processes. Comput Hum Behav 28(1):34–40
Herbold S (2020) Autorank: A python package for automated ranking of classifiers. J Open Source Softw

5(48):2173
Izadi M, Javari A, Jalilii M (2014) Unifying inconsistent evaluation metrics in recommender systems. In:

Proceedings RecSys Conference, REDD Workshop
Jalili M, Ahmadian S, Izadi M, Moradi P, Salehi M (2018) Evaluating collaborative filtering recommender

algorithms: a survey. IEEE Access 6:74003–74024
Joulin A, Grave E, Bojanowski P, Mikolov T (2017) Bag of tricks for efficient text classification. In: Proceed-

ings of the 15th Conference of the European Chapter of the Association for Computational Linguistics:
Volume 2, Short Papers. Association for Computational Linguistics, pp 427–431

Kalliamvakou E, Gousios G, Blincoe K, Singer L, German DM, Damian D (2016) An in-depth study of the
promises and perils of mining github. Empir Softw Eng 21(5):2035–2071

Kawaguchi S, Garg PK, Matsushita M, Inoue K (2006) Mudablue: An automatic categorization system for
open source repositories. J Syst Softw 79(7):939–953

Linares-Vásquez M, McMillan C, Poshyvanyk D, Grechanik M (2014) On using machine learning to
automatically classify software applications into domain categories. Empir Softw Eng 19(3):582–618

Liu J, Zhou P, Yang Z, Liu X, Grundy J (2018) Fasttagrec: fast tag recommendation for software information
sites. Autom Softw Eng 25(4):675–701

93 Page 32 of 33

http://arxiv.org/abs/1810.04805

Empir Software Eng (2021) 26: 93

Maity SK, Panigrahi A, Ghosh S, Banerjee A, Goyal P, Mukherjee A (2019) Deeptagrec: A content-cum-
user based tag recommendation framework for stack overflow. In: European Conference on Information
Retrieval. Springer, pp 125–131

Nemenyi P (1962) Distribution-free multiple comparisons. In: Biometrics, vol 18. International Biometric
Soc 1441 I ST, NW, SUITE 700, WASHINGTON, DC 20005-2210, pp 263

Sanh V, Debut L, Chaumond J, Wolf T (2019) Distilbert, a distilled version of bert: smaller, faster, cheaper
and lighter. arXiv:1910.01108

Schapire RE, Singer Y (2000) Boostexter: A boosting-based system for text categorization. Mach Learn
39(2-3):135–168

Tian K, Revelle M, Poshyvanyk D (2009) Using latent dirichlet allocation for automatic categorization of
software. In: 2009 6th IEEE International Working Conference on Mining Software Repositories. IEEE,
pp 163–166

Treude C, Storey M-A (2009) How tagging helps bridge the gap between social and technical aspects in
software development. In: 2009 IEEE 31st International Conference on Software Engineering. IEEE, pp
12–22

Vargas-Baldrich S, Linares-Vásquez M, Poshyvanyk D (2015) Automated tagging of software projects using
bytecode and dependencies (n). In: 2015 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, pp 289–294

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention
is all you need. In: Advances in neural information processing systems, pp 5998–6008

Wang T, Wang H, Yin G, Ling CX, Li X, Zou P (2014) Tag recommendation for open source software. Front
Comput Sci 8(1):69–82

Wang S, Lo D, Vasilescu B, Serebrenik A (2018) Entagrec++: An enhanced tag recommendation system for
software information sites. Empir Softw Eng 23(2):800–832

Xia X, Lo D, Wang X, Zhou B (2013) Tag recommendation in software information sites. In: 2013 10th
Working Conference on Mining Software Repositories (MSR). IEEE, pp 287–296

Zhou P, Liu J, Yang Z, Zhou G (2017) Scalable tag recommendation for software information sites. In: 2017
IEEE 24th International Conference on Software Analysis, Evolution and Reengineering (SANER).
IEEE, pp 272–282

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Maliheh Izadi1 ·Abbas Heydarnoori1 ·Georgios Gousios2

Maliheh Izadi
maliheh.izadi@sharif.edu

Georgios Gousios
gousiosg@fb.com

1 Sharif University of Technology, Tehran, Iran
2 Facebook Inc., Menlo Park, CA, USA

Page 33 of 33 93

http://arxiv.org/abs/1910.01108
http://orcid.org/0000-0001-9785-2880
mailto: maliheh.izadi@sharif.edu
mailto: gousiosg@fb.com

	Topic recommendation for software repositories using multi-label classification algorithms
	Abstract
	Introduction
	Problem Definition
	Data Collection
	Mapping User-defined Topics
	Preprocessing User-defined Topics
	Human Evaluation of the Mapping
	RQ1: Evaluating Mappings

	Topic Recommendation
	Data preparation
	Preprocessing Descriptions, READMEs, and Wiki Pages
	Preprocessing Project's and Source File Name
	Statistics of Input Information

	Background
	Naive Bayes:
	Logistic Regression:
	FastText
	DistilBERT:

	Approach Overview
	Multi-label Classification
	Multi-hot Encoding
	Problem Transformation
	Fine-tuning Transformers
	Handling Imbalanced Data

	Experimental Design
	Dataset and Models
	Evaluation Metrics
	User Study to Evaluate Recommendation Lists
	Correctness:
	Completeness:

	Results
	RQ2: Recommendation Accuracy
	RQ3: Results of the User Study
	Qualitative Analysis of Recommendations
	RQ4: Data Ablation Study
	Different Number of Topics
	Training with Separate Inputs
	Training before and after Topic Mapping

	Practical Implications and Future Work
	Related Work
	Topic Recommendation for GitHub Repositories
	Tag Recommendation in Software Information Sites

	Threats to the Validity
	Internal validity
	Compatibility
	External validity
	Construct validity

	Conclusion
	References
	Affiliations

