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Abstract
In large-scale collaborative software development, building a team of software practition-
ers can be challenging, mainly due to overloading choices of candidate members to fill
in each role. Furthermore, having to understand all members’ diverse backgrounds, and
anticipate team compatibility could significantly complicate and attenuate such a team for-
mation process. Current solutions that aim to automatically suggest software practitioners
for a task merely target particular roles, such as developers, reviewers, and integrators.
While these existing approaches could alleviate issues presented by choice overloading,
they fail to address team compatibility while members collaborate. In this paper, we pro-
pose RECAST, an intelligent recommendation system that suggests team configurations that
satisfy not only the role requirements, but also the necessary technical skills and teamwork
compatibility, given task description and a task assignee. Specifically, RECAST uses Max-
Logit to intelligently enumerate and rank teams based on the team-fitness scores. Machine
learning algorithms are adapted to generate a scoring function that learns from heteroge-
nous features characterizing effective software teams in large-scale collaborative software
development. RECAST is evaluated against a state-of-the-art team recommendation algo-
rithm using three well-known open-source software project datasets. The evaluation results
are promising, illustrating that our proposed method outperforms the baselines in terms of
team recommendation with 646% improvement (MRR) using the exact-match evaluation
protocol.
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1 Introduction

Collaborative software development has become a new norm in the industry as software
systems become larger and more complex, requiring not only teams of software practition-
ers with various technical backgrounds, but also a systematic and managerial approach to
track progress and issues (Gharehyazie and Filkov 2017; Mistrı́k et al. 2010). To facilitate
such processes, online software tracking tools have been developed, such as Jira, Backlog,
and Bugzilla, that not only enable practical, systematic software development tracking, but
also develop and encourage growing communities of software engineers and developers.
Often, such communities of software practitioners can become so massive that it presents
challenges for task assignees needing to choose potential team members to work on a partic-
ular software development task (e.g., building new features, resolving bugs, and integrating
software).

Research has shown that ineffective software teams could lead to unsuccessful projects
that result in a delay. In particular, assigning software development tasks to ineffective team
members (e.g., developer, tester, and reviewer) may lead to low-quality outcomes and extra
costs are required to rework (i.e., issue reopening) (Assavakamhaenghan et al. 2019). In a
small community, assigning appropriate team members to complete software development
tasks is trivial, as task assignees tend to be familiar with each person’s technical background,
relevant experience, and potential compatibility with other team members. However, manu-
ally building up a team in a large community of software practitioners with diverse technical
backgrounds, experience, and social compatibility is challenging, calling for the ability to
intelligently form and automatically recommend suitable teams that not only have the right
skill set, but also are socially compatible with the other team members. This not only would
assist decision-makers (e.g., task assignees, project managers, etc.) in choosing the right
team members for the tasks, but also could be a key enabler in large-scale community-based
collaborative software development ecosystems.

Recently, several recommendation methods have been proposed that automatically sug-
gest software practitioners for a given task. However, such previous algorithms merely
focus on making recommendations for particular common roles such as developers (Surian
et al. 2011; Xia et al. 2015; Yang et al. 2016; Zhang et al. 2020b), peer reviewers (Zanjani
et al. 2015; Thongtanunam et al. 2015; Ouni et al. 2016; Yu et al. 2016), and integrators
(de Lima Júnior et al. 2018). An example of such single-role recommendation methods
includes DevRec (Xia et al. 2013), a system for recommending developers for bug resolu-
tion. DevRec computes the affinity of each developer to a given bug report based on the
characteristics of bug reports that have been previously fixed by the developer. While code
bugs represent an aspect of software development tasks that can be handled by developers,
a software task may involve diverse functional responsibilities such as gathering require-
ments, coding, reviewing, testing, integrating, and deploying, which require an ensemble of
software practitioners each of whom is tasked with a distinct role. While one could use a
set of different single-role recommenders to suggest potential members for each different
role, such improvisation of single-role recommenders could overlook certain limitations,
such as dynamic definitions and responsibility of roles, fine-grained skills, and anticipated
teamwork compatibility (Gharehyazie et al. 2015; Moe et al. 2010).

While the above single-role recommenders have been proposed for software engineer-
ing tasks, each of which tends to be accomplished by one software practitioner, there are
cases where a software task requires multiple experts with various technical backgrounds
working together to reach a successful solution. For example, a task that aims to implement
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a stock-price forecasting functionality in a financial management mobile application may
require a front-end Swift language developer, a machine learning engineer who can deploy
TensorFlow models as services, a computer network programmer to engineer the data com-
munication, and a code tester. This particular scenario would urge the task assignee to select
team members that satisfy not only the necessary skills (i.e. Swift, TensorFlow, Python, and
socket programming), but also the role requirements (i.e. three developers and one tester).
The problem can become more aggravated if there are many choices of team members
to choose from, which prevalently characterizes large open-source software systems, and
could hinder the ability of the task leader to form an effective team. Such an issue, there-
fore, behooves an automated system that is capable of narrowing down the set of candidate
software practitioners that also satisfy the skill and role requirements. In non-software engi-
neering domains, systems capable of generating and recommending team configurations
have been proposed in collaborative photography (Hupa et al. 2010), research collabora-
tion (Datta et al. 2011; Liu et al. 2014), spatial crowdsourcing (Gao et al. 2017), business
processes (Cabanillas et al. 2015), and collaborative learning (Ferreira et al. 2017), utiliz-
ing collaboration history, trust, and member skill information when deciding which teams
to recommend. However, these techniques were not specifically developed for collaborative
software development purposes, and hence cannot directly be applied to our problem.

A limited set of studies have investigated the ability to automatically recommend team
configurations for collaborative software development. To the best of our knowledge, we
are the first to explore this problem, and specifically investigate the following research
questions:

1. Is it possible to quantify the ability of a software team to successfully resolve a given
software development task?

2. Is it possible to recommend software teams that comply with the role requirements and
are suitable for a given software development task?

3. Can the proposed software team recommendation method be adopted for single-role
recommendation tasks?

Specifically, we propose RECAST (RECommendation Algorithm for Software Teams), a
software team recommendation method for large-scale collaborative software development.
The proposed method utilizes the Max-Logit algorithm to intelligently enumerate candidate
teams to approximately maximize the team-fitness score at a task level (i.e., issue) since
a resolving of an issue usually involves different roles and a number of team members,
without having to exhaustively generate all possible combinations of teams. We propose a
set of features that characterize effective software teams, given task requirements and task
assignee (i.e. team leader). In this work, we define an effective team as a team that success-
fully resolves a task (e.g., an issue) without changing team members or re-opening the task.
We also adopt features proposed by Liu et al. (2014) that capture the collaboration history
and experience of team members. A set of machine learning algorithms are validated and
used as the team-fitness scoring function. RECAST is validated on the ability to recommend
both whole teams and particular single-roles. A state-of-the-art team recommendation algo-
rithm proposed by Liu et al. (2014) along with a naive randomization-based baseline are
used to validate the efficacy of our method on three real-world collaborative software project
datasets: Apache, Atlassian, and Moodle, using the standard evaluation protocol for recom-
mendation systems. According to the Mean Reciprocal Rank (MRR), the proposed RECAST
achieves an improvement of 646% on average over the best baseline for the exact-match
evaluation protocol. With such promising evaluation results, it would be possible to extend
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RECAST to a real application that helps task assignees to find the right team configurations
for their software tasks. Concretely, this paper presents the following key contributions:

1. We establish the problem of automatic team recommendation in the software engi-
neering context. While automatic team formation has been studied in the past, its
applicability in collaborative software development has been limited.

2. We propose a learning-based method, RECAST, that recommends software teams, given
a task description and assignee. The algorithm utilizes the Max-Logit algorithm to
intelligently enumerate teams that approximately maximize the team-fitness score. A
machine learning algorithm is used as the scoring function, which learns the features
that characterize effective software teams. These features are derived from heteroge-
neous knowledge graphs that encode collaboration history, task similarity, and team
members’ skills, generated from real-world open source software project datasets.

3. We empirically validate our proposed team recommendation algorithm, RECAST,
against a state-of-the-art team recommendation algorithm and a randomization-based
baseline using the standard evaluation protocol for recommendation systems.

4. We make the datasets and source code available for research purposes at: https://github.
com/NoppadolAssava/RECAST.

The remainder of the paper is organized as follows. Section 2 provides the mathe-
matical definition and a real-world example of the problem. Section 3 explains relevant
background concepts utilized by our proposed method. Section 4 provides the detail of
our proposed method. Section 5 discusses datasets, experiment protocols, evaluation, and
results. Section 6 exposes potential threads to validity. Section 7 reviews previous studies
related to our problem. Section 8 concludes the paper.

2 ProblemDescription

Our goal is to develop an algorithm for recommending software teams for a given task
and its role requirements. An example issue presented in Fig. 1, taken from the Moodle
Tracker, is a software patch that introduces a new chart API and library to the current system.
The usernames are anonymized. Carefully investigating the issue’s comments and logs, we
have identified four main roles, involving five team members. Note that, though there were
more users involved in this issue, most of them were merely component watchers and non-
active members (no activities); therefore, we only identified the active ones based on their
comments and activities. Each of the team’s active members was responsible for a different
aspect of the task. For example, UserA was both the assignee and the main developer. UserB
integrated the solutions. UserC created test cases and tested the solutions. UserD surveyed
different chart plugins and found that Chart.js was the most suitable. UserE added a patch to
the donut charts. This particular example illustrates the need for teamwork with diversified
skills and responsibilities to accomplish a software task.

Mathematically, let I = {i1, i2, i3, ...} be the set of tasks (i.e. issues), U = {u1, u2, u3, ...}
the set of users (potential team members), R = {r1, r2, r3, ...} the set of roles, and S =
{s1, s2, s3, ...} the set of skills. Furthermore, we make a minimal assumption that each task,
i = 〈u0, T , d〉, is a triplet of a task assignee (i.e. u0 ∈ U), a team T , and a textual task
description (i.e. d). A team T = {〈r1, u1〉, 〈r2, u2〉, ...} is a set of pairs of a role and its
corresponding user. From the example Moodle issue in Fig. 1, the software team comprises
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Title Introduce a new chart API and library
... we want to introduce a new chart library (and API) which will:

 too specific)
Render client side
Support accessibility
Support large data sets
Support dynamic data changes
Support most commonly used graphs
Support i18n

 stable, well maintained, ...)
Be abstracted enough to support another library should we need to change
Be made easy to use by our developers (simple API, supports PHP and JS, ...)

Roles

Assignee: UserA
Integrator: UserB
Tester: UserC
Developers: UserA, UserD, UserE

Fig. 1 Example issue from the Moodle Tracker. Usernames are anonymized

one integrator: UserB, one tester: UserC, and three developers: UserA, UserD, and UserE.
In this case, this team would be represented as follows:

T = {〈INT ,UserB〉, 〈T EST , UserC〉, 〈DEV, UserA〉,
〈DEV, UserD〉, 〈DEV, UserE〉}

Given a task i∗ and assignee u0, the objective of RECAST is to return a ranked list of K

teams, T (i∗) = 〈T1, T2, ..., TK 〉 that best suite with the given task and role requirements,
while ensuring technical skills and teamwork compatibility.

3 Background

This section presents relevant background concepts and knowledge. Developing a recom-
mendation algorithm for software teams requires a presumption of collaborative software
development processes, which can be tracked by software development tracking platforms
such as Jira issue tracking system developed by Atlassian. Furthermore, since our proposed
method uses sentiment analysis to extract features related to the social aspects of team col-
laboration, and Latent Dirichlet Allocation (LDA) to quantify the similarity between two
tasks, we also provide an overview of such techniques.

3.1 Sentiment Analysis

Sentiment analysis refers to the use of natural language processing (NLP) and artificial
intelligence techniques to automatically quantify subjectivity in the information. Specifi-
cally, sentiment analysis techniques extract meaningful subjective information, opinions,
and emotions about the subject from written or spoken language. The primary function of
sentiment analysis is to identify the sentiment polarity of a given text, namely positive, neg-
ative, or neutral. Advanced sentiment analysis techniques can understand emotional states
such as happy, angry, and sad.

Typical sentiment analysis methodology includes five steps as shown in Fig. 2.
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Data Collec�on Text Processing Sen�ment Detec�on

Sen�ment Classifica�onOutput Representa�on

Fig. 2 Stages of the sentiment analysis process

1. Data Collection: Raw data (typically text) is collected from the sources. A unit of data,
referred to as a document, may contain not only meaningful textual content, but also
noises such as abbreviations, URL, slang, and meaningless, undefined words.

2. Text Preparation: Irrelevant information, non-text, and noises are eliminated. The raw
text can be prepared by removing web addresses and URLs, stop words, symbols, and
punctuation. This preparation step is different across data sources and target languages.

3. Sentiment Detection: The sentiment is detected from the input text. A document usu-
ally contains both objective statements describing facts and subjective statements that
imply the author’s sentiment. The sentiment detection algorithm then aims to identify
those subjective statements to be used in the next step.

4. Sentiment Classification: The identified subjective statement presented in the docu-
ment is classified into one of the sentiment classes (i.e. good/bad, positive/negative,
etc.). Various techniques have been proposed to classify sentiment levels such as
rule-based methods and machine learning based methods.

5. Output Representation: The last step is to present output in a meaningful way that fits
with the applications (e.g. quantifying sentiment score in user reviews) (Baj-Rogowska
2017).

Teamwork collaboration often involves intra-communication among team members,
which can be used to infer the team’s coherence (Hogan and Thomas 2005). Studies have
shown that ineffective communication could be an early indication of a premature team
failure (Petkovic et al. 2014). Sentiment exhibited in communication can be signaling. For
example, praising messages (positive sentiment) could lift the collaboration willingness
among team members (Grigore and Rosenkranz 2011). Furthermore, messages that convey
criticism (often detected as negative sentiment due to negative keywords) can enable the
team to efficiently pinpoint the issues to be solved. The ability to mathematically extract
such sentiment from past communication among members could be useful when choosing
suitable teams for future tasks.

We conjecture that effective teamwork is characterized by not only the members’ skills
and experience but also a high-level of positive (e.g. praises and congratulations) and criti-
cizing (e.g. critiques on features and bug reports) communication. Hence, sentiment analysis
is used to identify the intent (as positive or criticizing) of the communication between two
users in the same team, that is later used to compute the interaction-based features. Note
that sentiment analysis is merely used to extract some “soft signal” in combination with
other features to train machine learning models to characterize effective teams, and is not
intended to be used as the absolute criteria to identify desirable software teams.

3.2 Latent Dirichlet Allocation (LDA)

Latent Dirichlet Allocation (LDA) is an unsupervised topic modeling algorithm proposed
and widely used in the information retrieval field (Blei et al. 2003). Specifically, LDA
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utilizes a probabilistic-based technique to model different topics from a set of documents,
where each topic is mathematically represented by a probability distribution of terms. The
inference algorithm allows a document to be represented with a probability distribution over
different topics. The basic intuition behind LDA is that the author has a set of topics in mind
while composing a document, which is represented as a mixture of topics. Mathematically,
the LDA model is described as follows:

P (ti |d) =
|Z|∑

j=1

P (ti |zi = j) · P(zi = j |d) (1)

Where, P(ti |d) is the probability of term ti appearing in document d, zi a latent (hidden)
topic, and |Z| the number of all topics. Note that |Z| needs to be predefined. P(ti |zi = j)

is the probability of the term ti being in topic j . P(zi = j |d) is the probability of choosing
a term from topic j in the document d.

After the topics are modeled, the distribution of topics can be computed for a given docu-
ment using statistical inference (Asuncion et al. 2009). A document can then be represented
with a vector of real numbers, each of which represents the probability of the document
belonging to the corresponding topic.

LDA has been used in software engineering tasks in various applications such as analyz-
ing the topical composition of repositories (Chen et al. 2016), logs (Li et al. 2018), and Stack
Overflow articles (Rosen and Shihab 2016). One application of LDA is to measure the sim-
ilarity between two documents, similar to the work by Al-Subaihin et al. (2019), who used
LDA to quantify the similarity between mobile apps’ textual descriptions. Particularly, two
documents can be represented with topical distribution vectors where cosine can be used to
measure the level of topical similarity between them. Note that, while simpler methods for
quantifying document similarity exist such as Jaccard similarity and TF-IDF cosine sim-
ilarity (Manning et al. 2008), studies have shown that LDA-based similarity yields better
results particularly due to its ability to capture deep semantics compared to bag-of-words
models such as TF-IDF and Jaccard based methods (Tuarob et al. 2015; Misra et al. 2008).
Furthermore, projecting a document into a lower-dimensional space enables LDA to han-
dle the polysemy, synonymy, and high-dimensionality problems that typically pose huge
challenges for the bag-of-words based approaches (Alharbi et al. 2017).

In this research, LDA is used to quantify the similarity between two tasks (i.e., issues).
Specifically, task descriptions are treated as textual documents from which LDA is first
applied to learn the topics. To quantify the similarity between two tasks, their topic distri-
bution vectors are then inferred from the learned topics. The cosine similarity between the
two vectors (ranged [0, 1]) is then used as the level of similarity between the two tasks.

As an illustrative example, Fig. 3 shows the topic distributions of three Moodle’s issues,
namely A, B, and C. The corresponding textual content (title + description) of the three
issues are displayed on the left-hand side, and the corresponding probability distributions of
the 300 topics, inferred from a learned LDA model, are on the right-hand side. Visually, the
distributions of Issue A and Issue B appear to be similar, with mutually high probabilities
on Topics 23, 50, 195, and 278. However, the distribution of Issue C is much different from
the other two. To interpret these results, even though Issues A and B are labeled as different
components (Administration for Issue A and Gradebook for Issue B), they are both related
to the user interface of the system that concerns the “course category” features (Issue A is
an improvement, while Issue B is a bug). On the other hand, Issue C is about the backup
mechanism of the system that is not quite related to Issues A and B. As a result, the cosine
similarity of the topic distributions of Issues A and B is 0.79 (topically similar), while that
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Title: "Manage courses" always takes me to top category
Description: While several levels down in course categories, I 
often see something that needs adjustment. E.g. a course should 

category should be sorted. The "Manage courses" button always 
takes me to the top level of the site categories and I have to 
re-navigate back down to the sub-category I wanted to adjust. I'd 
like the button to leave me in the current category and just 
switch me over to manage mode.

Issue A Issue A: Topic Distribution

Title: Display of movetarget in categories and items view incon-
sistent for nested categories
Description: Noticed an inconsistency in the way the relocation 
boxes are presented when looking to move a category folder that 
is contained in another category. Create two categories - Catego-
ry 'A' and 'B' with B contained inside A. Select move for category 
B. See that the movetarget show below category B is shown 
visually underneath the 1 level of the course. Currently it is shown 
directly underneath category B which doesn't correspond to the 
directory level it actually would get placed in.

Issue B
Issue B: Topic Distribution

restorelib.php) and the deleted dir (bb) aren't any more present under 
/backup. B) Perform the following operations and verify nothing fails about 

contents from a course from another. Duplicate an activity. Enable automated 
backups (admin->courses->backup->automated", setting it to manual and 
perform an execution of admin/cli/automated_backups.php with web server 
credentials). Verify that the "backup" admin report works without error. And 
show the results of the last execution. It doesn't matter if the status of any 

issue. Create a book activity and export it using the "Generate IMS CP" option 
(activity administration block). It should lead to the generation & download of 

it looks ok and does not contain any PHP error. All the old backup/restore libs, 
old /backup directory.

Issue C

Issue C: Topic Distribution

Fig. 3 Topic distributions inferred from the textual descriptions of three example Jira issues (i.e. Issues A,
B, and C) taken from Moodle

of Issues A and C is only 0.01 (topically different), signifying that Issue B is more similar
to Issue A than Issue C, which aligns with the interpretation from the textual content of the
three issues.

Furthermore, Table 1 lists the top 10 topics ranked by the corresponding probabilities of
Issues A, B, and C. The topic numbers with ∗ are those overlapped with the top 10 topics
of Issue A. From this particular example, Issue B has five overlapped topics with those of
Issue A, while Issue C has none. Generalizing from this particular example, if we could
construct the topic distribution for all the tasks’ textual description, then it would be possible
to quantify the topical similarity between each pair of tasks using cosine similarity. Such a
method for measuring document similarity has been used widely in the information retrieval
domain. For example, Tuarob et al. (2015) used LDA to find similar documents to retrieve
and recommend useful tags (keywords) in a document annotation task.

3.3 Potential Game Theory andMax-Logit algorithm

In the game theory literature, a potential game consists of a set of players and a set of pos-
sible actions for each player, with an assumption that there is one global potential function
that represents all the players’ incentive (Monderer and Shapley 1996). Each player then
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Table 1 Top 10 topics and the corresponding probabilities of the sample three issues (i.e. A, B, and C)

Rank Issue A Issue B Issue C

Topic Probability Topic Probability Topic Probability

1 278 0.26425 278* 0.28121 21 0.45862

2 2 0.14351 195* 0.08778 171 0.14394

3 23 0.12167 23* 0.06900 199 0.03620

4 195 0.10744 118 0.06285 141 0.02989

5 50 0.10004 84 0.06269 84 0.02954

6 76 0.07161 222* 0.06268 250 0.02870

7 126 0.03595 50* 0.06256 32 0.00709

8 139 0.02163 255 0.06254 90 0.00589

9 29 0.02150 276 0.06253 221 0.00554

10 222 0.01452 16 0.03241 16 0.00541

Topic numbers with ∗ are those that overlap with the top 10 topics of Issue A

chooses an action that increases the overall incentive. In every potential game, there exists
at least one Nash equilibrium (Osborne and Rubinstein 1994), where a player no longer
has an incentive to change the action. Such a concept can be applied to the team recom-
mendation problem where each player is a role, and each player’s action set is the set of
candidate members for each role (Liu et al. 2014). At each iteration, a role changes its can-
didate to minimize a global cost function (equivalent to maximizing the potential function).
This iterative process continues until the team reaches a Nash equilibrium.

Max-Logit (Song et al. 2011) is a Nash equilibrium finding algorithm, which can be used
to simulate potential games. Compared to other Nash equilibrium finding algorithms, Max-
Logit can not only escape from trivial local optima (using randomness), but also coverage to
the best Nash equilibrium fast (Liu et al. 2014). In this research, since enumerating all pos-
sible team combinations can be exhausting due to the large candidate sets, characterizing
large-scale software development communities, we use Max-Logit to enumerate teams that
iteratively decrease the global cost function. The Max-Logit algorithm for team recommen-
dation contains two major steps: constructing a new team and deciding whether to accept
it as the best team (Liu et al. 2014). We have modified Max-Logit to fit with our software
team recommendation which will be discussed in Section 4.

4 Methodology

Figure 4 illustrates the overview framework of RECAST. The data of software projects are
collected from Jira issue trackers (see Section 4.1). The collected data are then prepossessed
(e.g. removing incompleted issues). The common software issue-related (e.g. issue descrip-
tion) and software team-related (e.g. role) data are extracted from the preprocessed data (see
Section 4.2). In this work, we also use heterogeneous knowledge graphs to capture relation-
ship among users, tasks, and skills, which we discuss in Section 4.3. Several features are
then extracted from these networks. Such features capture different aspects of team mem-
bers’ history of collaboration and task characteristics which are commonly used in team
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Data Collec on Data Preprocessing 
and En ty Extrac on

Feature Extrac on

Scoring Func on 
Generation

Team 
Recommenda on

Candidate 
Database

  Task 
Descrip on

Task Assignee

Recommended 
Team

Knowledge Graph 
Indexing

Fig. 4 Proposed method for recommending teams for collaborative software development

formation, such as technical experience, skill diversity, past collaboration among candidates
(see Section 4.4).

We use machine learning techniques that learn the characteristics of “good” teams from
past tasks, which will be used to quantify the effectiveness of a given team (see Section 4.5).

In the last step, to recommend software teams, our modified version of the Max-Logit
algorithm is employed to enumerate candidate teams that maximize the team-fitness score.
The top K candidate teams that achieve the highest team-fitness scores are returned as the
recommended teams (see Section 4.6).

4.1 Data Collection

RECAST aims to recommend team combinations that are both tailored to the assigneees’
preferences and contributing to the task’s success. Hence, the knowledge graphs and the
team-fitness scoring function must be generated and trained from real-world project-based
software development data. Fortunately, most large-scale software projects are collabora-
tive, whose development information is recorded in software project tracking tools such
as Jira (issue tracking system),1 Backlog (task tracking system),2 and Bugzilla (bug track-
ing system).3 Such software development tracking systems are often used by software
practitioners to plan their projects, track progress, and to communicate among team mem-
bers. Some tools such as Jira allow projects and tasks to have a hierarchical structure and
dependency among them.

Real-world software project data is critical to train machine learning algorithms so that
they can accurately predict the team combination suitable for a given task in the project. In
this research, among different popular software tracking tools, Jira is chosen for our case
studies due to the following reasons:

1https://www.atlassian.com/software/jira
2https://backlog.com/
3https://www.bugzilla.org/
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1. Open-source projects hosted by Jira can be publicly accessible on the Internet. This
makes it possible to scrape public data using traditional web crawling techniques. Fur-
thermore, Jira also provides a REST API (e.g., Moodle’s API4) to facilitate information
retrieval.

2. Jira has been used as the main software tracking tool for many open-source large-
scale software systems such as Atlassian, Apache, and Moodle, which hosts several
collaborative projects suitable for our case studies.

3. Jira has Github integration, which allows us to investigate commit activity logs. Such
logs are crucial for identification of team members who are developers.

4.2 Data Preprocessing and Extraction

While Jira is chosen for our research, the raw data is preprocessed to retain only information
that is not platform-specific. While different software tracking platforms have their own
organizations of projects and tasks, here, we define a task to be a piece of collaborative
work that is part of a software development. For example, Jira provides different features
for different types of issues representing software development tasks, such as new features,
bugs, and implementation.

We assume that a task is composed of a task description, a task assignee, and a team.
Furthermore, additional information such as a task resolution and interaction among team
members is also collected.

4.2.1 Task Description

A task description is usually represented as a simple text document. Hence, any attributes
that describe a task are concatenated to produce a continuous chunk of text. For example,
Jira provides the following features to describe an issue: summary and description. The
textual contents corresponding to these attributes would be concatenated to produce the
task’s description.

4.2.2 Task Status Resolution

RECAST’s goal is to recommend teams that are not only tailored for the task assignee’s
preference, but also functionally effective. Hence, the training data used to train our models
must come from tasks that are deemed successful. In this research, a successful task is a task
(issue) that is resolved without being re-opened. In Jira, this means that a successful issue
must have status “Closed” and resolution “Resolved” without any history of reopening.
Furthermore, we track whether a task has been reopened from the issue changelog. Issues
that do not meet such a definition are discarded from the training set.

Note that, while this definition of a successful task given above can be subjective, a study
has shown that tasks that have been re-opened are likely to be caused by ineffective team
configurations (Assavakamhaenghan et al. 2019). Hence, to ensure that the models learn
from high-quality samples (i.e. teams that lead to resolving of issues), only tasks that can
be resolved without any major interruption that may have caused by flawed teams are used
as the training dataset. Such a definition of a successful task only has a direct effect on the
generation of the team-fitness scoring function. Hence, if future studies devise a different

4https://tracker.moodle.org/rest/api/2/issue/issueid
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definition of a “good team,” then the training data can be relabeled without affecting the
rest of the methodology pipeline.

4.2.3 Task Dependency

Most modern software tracking tools provide the capability for users to specify explicit
relations among tasks. For example, Jira provides the “Issue Link” mechanism so that the
relation between two issues can be explicitly and systematically specified. Examples of
such issue relations include Relates to, Duplicates, Blocks, and Clones. In this research, to
align with our generalized assumption about task hierarchical structure, such issue links are
collected to represent the dependency relations between two tasks.

4.2.4 TeamMembers

Besides the task assignee, we also collect the username, and role of each team member
working on the task. Jira focuses on the implementation aspect of the software, the following
roles related to issue resolving can be identified: Reporter, Assignee, Developer, Tester, Peer
Reviewer, and Integrator.

4.2.5 User Interaction

Social aspects are involved throughout the collaborative development of software, which can
be reflected by communication. In this research, we investigate features that characterize
team coherence (i.e., the ability for a team to productively work together). Many studies
have shown that communication and teamwork are among the key factors for successful
software projects (Sudhakar 2012; Lindsjørn et al. 2016).

In this research, communication information among team members is collected from the
comment on issue reports. Specifically, only direct comments from one member to others
are collected. An example of a direct comment from the Moodle project is shown in Fig. 5,
where User A, the peer reviewer, shows gratitude to User B, the assignee, after finishing
the code review. While this particular example alone may not be enough to conclude that
these two members exhibit a strong characteristic of good teamwork, but hundreds of such
direct messages between the two users from several previous issues could be revealing.

4.2.6 Sentiment Analysis

In every issue, team members communicate with each other using comments. For exam-
ple, they can use the comments to praise for milestones reached or criticize others’ work.
These comments are full of sentiment that could be signaling. Therefore, all comments are
analyzed to extract sentiment using SentiStrength, a python library for sentiment analysis

User A

User B

Fig. 5 Example of a direct comment from a Moodle issue (Usernames are anonymized)
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(Thelwall et al. 2010).5 Specifically, the following steps are taken to extract sentiment from
a comment:

1. Text Preprocessing: All comments are cleaned by removing stop-words, punctuation,
URLs, white-spaces, and numbers. Special symbols used to represent emoji are not
removed to preserve emotional expression. A textual comment is then tokenized using
the NLTK tokenization tool.

2. Sentiment Detection: SentiStrength library outputs two values representing positive
and negative sentiment. The reason for having the two sentiment scores instead of just
one (with –/+ sign representing negative/positive sentiment) is because research find-
ings have determined that positive and negative sentiments can coexist (Fox 2008).
Note that, from our observation, while positive comments are those related to praises
and thanks, the negative ones are not from hate-speech or ill-language as traditionally
interpreted from the negative scores. Often, negative comments tend to express criti-
cism on software functionalities or to explain bugs (which necessitate negative words),
rather than expressing the authors’ emotion.

3. Trust Propagation: According to Kale et al. (2007), trust and distrust can be prop-
agated from one person to another in the person-person network. In their work, they
quantified trust and distrust from the text surrounding each URL link in a blog, that
leads to another user’s blog. They computed the link sentiment polarity by quantifying
the sentiment of the text surrounding it. The positive sentiment represents trust and the
negative sentiment represents distrust. They spread trust links to increase the density of
the network so that they could detect trust communities in the network.

Similarly, in our work, interaction among users is not dense enough. Hence, we
adopt Kale’s idea to increase link pairs of interaction. However, we do not define pos-
itive sentiment as trust and criticism sentiment as distrust. This is because, in software
development, a comment containing negative words usually criticizes software features
so that developers could effectively understand the requirements. However, we could
use Kale’s trust propagation model to propagate positivity and criticism within the inter-
action network. Mathematically, link polarity can be propagated using this following
matrix operation:

C = α1B + α2B
T B + α3B

T + α4BBT (2)

Where C is an atomic propagation operator, B is the initial belief between user i and
j . For α vector, they reported that {0.4, 0.4, 0.1, 0.1} yields the most accurate result.
The belief B can be computed iteratively depending on the steps of propagation i + 1th,
Bi+1, using the following equation:

Bi+1 = Bi ∗ Ci (3)

4.3 Network Generation and Indexing

Effective software teams are typically characterized by having extensive experience of rel-
evant tasks, necessary skills, a good history of working together. Hence, the ability to
automatically quantify such characteristics could prove useful to a software team recom-
mendation system. Here, we conjecture that such team-related information can be extracted
from the heterogeneous networks that represent the relationship between past tasks, users,

5http://sentistrength.wlv.ac.uk/
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and skills. The following subsections define different types of information networks used in
this research, along with explaining how they are generated from the collected dataset.

4.3.1 Task Similarity Network

The task similarity network GT S = 〈I, ET S〉 is an undirected graph where a node i ∈ I

is a task, and each edge weight e ∈ ET S represents the similarity between the two tasks.
We assume that an issue description is represented with a textual document without any
available ontology; hence, the task similarity must be quantified using the textual content
derived from the issue descriptions.

In this research, task (i.e. issue) descriptions are represented with topical distribution
inferred from trained Latent Dirichlet Allocation (LDA) models. Both the traditional non-
labeled LDA and labeled LDA (Ramage et al. 2009) are validated for their ability to model
latent topics for each corpus of task descriptions. We use Mallet6 implementation of these
LDA algorithms. The number of topics is tuned to optimize the local pairwise mutual infor-
mation (PMI). The similarity between the two tasks can be calculated using the cosine
similarity between the two tasks’ topical distribution vectors. Hence, each edge weight falls
into the range [0,1] where 0 represents no similarity and 1 represents perfect similarity.

4.3.2 Task Dependency Network

The task dependency network GT D = 〈I, ET D〉 is a heterogeneous directed graph, where
each node i ∈ I is a task, and each direct edge e(ix, iy, r) represents that task ix depends on
task iy with type r , where the type of this edge can be either Relates, Blocks, or Clones. The
dependency relationship between two tasks is extracted from the “Issue Link(s)” attribute
in a Jira issue page.

4.3.3 User Collaboration Network

The user collaboration network GUC = 〈U, EUC〉 is an undirected network where each
node is a user u ∈ U and each edge weight represents the frequency of tasks on which
the two users have collaborated. In Jira, the collaboration relationship is directly extracted
from the issue information page where all the collaborators are listed. Specifically, two
users collaborate if they are identified as the team members of the same issue. This user
collaboration network allows us to understand the collaboration history of the members in
a given team, and also enables quantification of team coherence.

4.3.4 User Interaction Network

History of interaction among users can be signaling and helpful for understanding the
dynamics within a software team. Ideally, an interaction can be directly sending personal
messages to one or more other team members. However, since direct message mechanisms
are not available in Jira, we treat a direct comment posted in an issue page (See example in
Fig. 5) as an interaction between the message poster and the mentioned users.

6http://mallet.cs.umass.edu/topics.php
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Emotions play a big role in teamwork. We observe that effective teams are character-
ized not only by a high level of communication, but also by meaningful and constructive
interaction. Specifically, meaningful comments such as praises, encouragements, and con-
gratulations can raise ones’ motivation and morale. Also, constructive feedback about ones’
work can lead to efficient and productive improvement and resolution. For example, in
Fig. 6, User A made a direct comment to User B stating that his code still contains cer-
tain issues, with detailed explanation. As a result, User B knew exactly what to proceed
to address these comments, and was able to resolve and close this task. While these con-
structive feedback comments may sound professional and do not intend to offend the target
user, the sentiment quantified by traditional sentiment analysis tools is often negative. This
is due to the composition of negative keywords used to describe components in the code,
such as issues, serious, and scary. Note that, in fact, due to the professional and
mature community of software developers, we have only witnessed a few negative com-
ments (as reported by the sentiment analysis tool) that turn out to be offensive or showing
that the authors had negative sentiment when writing the comments. Hence, we assume that
positive comments are those intended to praise, encourage, or congratulate team members,
while negative ones are typically constructive feedback.

The user interaction network GUI = 〈U, EUI 〉 hence is a direct heterogeneous graph
where each node is a user u ∈ U, and each edge e(ui, uj , polarity) represents the direction
of communication (i.e. from ui to uj ), and the type of this edge polarity can be either
positive (+) or negative (-) sentiment. The weight of each edge is the sentiment level, ranging
from [0,1]. Note that, we keep both the positive and negative edges, instead of combining
the positive and negative weights into one single value, because our work interprets negative
sentiment differently from its original definition. Specifically, here we treat both positive
and negative comments to be good characteristics of effective teams.

4.3.5 User Expertise Network

Forming a team having not only necessary technical skills, but also diverse expertise is
crucial to the task’s success. The user expertise network captures the skill set that each user

User A

User B

Fig. 6 Example constructive feedback. Usernames and sensitive information are anonymized
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possesses based on his/her past task experience. Mathematically, the user expertise network
is a bipartite direct graph GUE = 〈U, S, EUE〉 where a node can be either a user u ∈ U

or a skill s ∈ S, and the weight of each edge e(u, s) represents the level of skill s that
user u possesses. In Jira, there is no direct way to retrieve explicit software skills (e.g. Java,
Python, Deep Learning, etc.) of a particular user. Hence, we use the system components (e.g.
Checklist, TurnItIn tool, Application Form) to represent the set of skills. The reason behind
this is that each software system already has a well-defined set of system components. A
user who has worked on particular components are said to have acquired the necessary skills
and experience on them. The weight of each edge e(u, s) is then quantified by the frequency
of the tasks related to component s whose teams comprise user u.

4.4 Feature Extraction

The proposed method relies on a machine learning based scoring function that outputs
the team-fitness score given task description, a task assignee, and a candidate team. To
build such a scoring function, machine learning based algorithms are trained with features
extracted from teams whose tasks are deemed successful. Specifically, these features are
designed to characterize teams that are suitable for a given task and task assignee. A major-
ity of the features are extracted from the heterogeneous knowledge networks discussed in
Section 4.3. We also incorporate features proposed by Liu et al. (2014), as they can be
additionally useful. Table 2 lists all the features.

Table 2 List of features used to
train the team-fitness scoring
functions

Network Feature

Task Similarity Task Familiarity

Task Dependency Task Proximity

User Collaboration Relatedness to Assignee

Team Coherence

User Interaction Team Positivity

Team Criticrism

Positivity towards Assignee

Criticrism towards Assignee

User Expertise Skill Competency

Skill Diversity

Component Experience

Other Team Contribution

Domain Experience

Co-Task Frequency

Liu et al. Experience

Role Experience

Closeness

Success Experience

Connection

Success Rate
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4.4.1 Features Adopted from (Liu et al. 2014)

Liu et al. (2014) proposed a recommendation algorithm for scientific collaboration. In this
work, we find that the features used in their work could be useful to our problem. These
previously proposed features include:

1. Experience reflects the team’s experience in handling overall tasks. We use the number
of tasks in which a member has involved to reflect experience. This feature is normal-
ized with Min-Max normalization. To calculate the overall team experience, the average
is used.

2. Role Experience captures the team’s experience in different roles. We use the number
of tasks in which a person participated in a particular role to compute this feature. This
feature is also normalized using Min-Max normalization. To calculate the overall role
experience of the team, the average is used.

3. Win Experience represents overall experience with successful tasks. This feature is
computed using the number of successfully resolved issues that a person participated in,
normalized with the Min-Max normalization. To calculate the overall win experience
of the team, the average is used.

4. WinRate is the ratio of Win Experience to Experience. To calculate the overall
experience of the team, the average is used.

5. Closeness quantifies the overall collaboration history among the members in a team T ,
and is calculated using the equation below (Liu et al. 2014).

Closeness = 2

|T | × (|T | − 1)

∑

ui ,uj ∈T ;i<j

1

ShortestP ath(ui, uj )
(4)

|T | is the cardinality of the team. The ShortestP ath is calculated from the graph
GUC = (U, EUC) where vertices U is the set of users. An edge ei ∈ EUC links ui ∈ U

and uj ∈ U with weight representing the number of tasks ui and uj have worked
together. If there is no path between ui and uj , |U| is used instead.

6. Connection represents overall level of the team’s communication activities, and is
described as follows:

Connection = 2

|T | × (|T | − 1)

∑

ui ,uj ∈T ;i<j

eij (5)

Liu et al. (2014) represents eij with the number of connections between ui and uj .
In our research, we use the number of interactions (tagged users in comments) between
ui and uj , derived from the user interaction graph GUI .

4.4.2 Proposed Features

While features proposed by Liu et al. (2014), described in the previous section, can be useful
for characterizing the team’s overall experience and collaboration. We find that they are not
sufficient to capture certain characteristics of teams that work in software projects, includ-
ing task requirements, skills, and collaborative compatibility; hence, we define additional
software development specific features as follows:

1. Task Familiarity indicates the team’s experience dealing with similar tasks in the
past, derived from the task similarity graph GT S , where each task is represented as
a vector of topic distribution inferred from a trained topic model using LDA. The

Page 17 of 53     64



Empir Software Eng (2021) 26:  64

similarity between two tasks is then computed using the cosine similarity of their topic
distribution vectors. Mathematically, the Task Familiarity is calculated as follows:

T ask Familiarity = 1

|T |
∑

u∈T

maxi∈Iu

(
cosinesim

(
i∗, i

))
(6)

Where T is the set of team members, u is a user, i∗ is the target task, Iu is the set
of tasks in which u was involved.

2. Task Proximity reflects the team’s overall experience working in closely related tasks
and is derived from the task dependency network GT D . It is calculated from the inverse
of the average of the minimum shortest path between each pair of tasks done between
the task assignee and other team members. Note that we only compute the task prox-
imity between the task assignee and each team member, instead of between every
possible pair of team members, because we would like this feature to capture team
members working in closely related tasks that could be beneficial to the target task
initiated by the task assignee. Furthermore, it is often that a person may be involved
in more than 1,000 tasks. Calculating the shortest path between all of this user’s
tasks to others’ makes it extremely computationally expensive. While one may argue
that this feature might be better captured between the target task i∗ (instead of the
assignee’s past tasks) and the team members’ tasks, in practice, the task dependency is
not always established during the task initiation, but during the task execution. Hence,
we do not assume that such task dependency information between the target task and
the previous tasks is available. Concretely, the task proximity feature is computed as
follows:

T ask P roximity = |T | × (|T | − 1)

α+∑
u∈T ,u¬u0

miniu0 ∈Iu0 ,iu∈Iu(ShortestP athN(iu0 , iu))
(7)

Where T is the set of team members, u is a member, u0 is the task assignee, i is a
task, Iu is the set of tasks that u was involved, ShortestP athN(iu0 , iu) is the shortest
path between the tasks involved by u0 and u with the maximum length of N , α is the
smoothing factor to prevent the zero-division error. In our research, we use α = 1 and
N = 1, 000.

3. Team Coherence reflects how the collaboration history of the team members, derived
from the user collaboration graph GUC . It is calculated using the inverse of the average
shortest path between each pair of members. A longer path implies less coherence.

T eam Coherence = |T | × (|T | − 1)

α + ∑
ui ,uj ∈T ;i<j (ShortestP athN(ui, uj ))

(8)

Where T is the set of team members, u is a user, ShortestP athN(ui, uj ) is the
shortest path from ui to uj with the maximum length of N , α is the smoothing factor
to prevent the zero-division error. In our research, we use α = 1 and N = 1, 000.

4. Relatedness to Task Assignee (Relatednessu0 ) is similar to team coherence. How-
ever, this feature focuses on the coherence between the task assignee and the rest of
the team.

Relatednessu0 = |T | × (|T | − 1)

α + ∑
u∈T (ShortestP athN(u0, u))

(9)

Where T is the set of team members, u is a member, ShortestP athN(u0, u) is the
shortest path from the task assignee u0 to each member u with the maximum of N ,
α is the smoothing factor to prevent the zero-division error. In our research, we use
α = 1 and N = 1, 000.
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5. Team Positivity reflects how team members interact with positivity in the past,
derived from the user interaction network GUI , considering only positive edges. We
adopt trust propagation method (Kale et al. 2007) to expand the relationship of pairs
as previously discussed in Section 4.2.6.

T eam Positivity = 1

|T | × (|T | − 1)

∑

ui ,uj ∈T ;i<j

I+(ui, uj ) (10)

Where T is the set of team members, ui and uj are a pair of team members,
I+(ui, uj ) is the average weight of the positive edges between ui and uj in the user
interaction graph GUI after applying the trust propagation model.

6. Team Criticism reflects how team members express constructive criticism towards
each other. It is derived the same way as the team positivity discussed previously, but
only uses the negative edges in the user interaction network.

T eam Criticism = 1

|T | × (|T | − 1)

∑

ui ,uj ∈T ;i<j

I−(ui, uj ) (11)

Where T is the set of team members, ui and uj are a pair of team members,
I+(ui, uj ) is the average weight of the negative edge weights between ui and uj after
applying the trust propagation.

7. Positivity towards Task Assignee is similar to Team Positivity, but only considers the
positivity (e.g., praises, gratitude, and congratulations) expressed by team members
towards the task assignees.

Positivity → T ask Assignee = 1

|T |
∑

u∈T

I+(u, u0) (12)

Where T is the set of team members, u is a team member, u0 is the task assignee,
I+(u, u0) is positive interaction score from u to u0.

8. Criticism towards Task Assignee is similar to Team Criticism, but only focuses on
the criticism made towards the task assignee.

Criticism → T ask Assignee = 1

|T |
∑

u∈T

I−(u, u0) (13)

Where T is the set of team members, u is a team member, u0 is the task assignee,
I−(u, u0) is negative interaction score from u to u0.

9. Skill Competency quantifies the team’s ability (skills) to satisfy the target task’s
requirements. Each member’s skills are derived from the user expertise network GUE .
Mathematically, this feature is computed using a set-overlap between the team’s skills
and the required skills.

Skill Competency = |ST ∩ Sr |
|Sr | (14)

Where ST is the set of team members’ skills, Sr is the set of required skills.
10. Skill Diversity reflects the diversity of the team members. Teams with high skill diver-

sity tend to comprise individuals who are experts in particular skills, rather than a
few persons who have abundant but shallow skills. Hence, this feature, when work-
ing together with the skill competency, can distinguish teams comprising experts with
necessary skills, and prevent the scoring function from giving high scores to teams
comprising only a few persons who can do a little of everything. Skill diversity is
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measured by the number of unique, required skills that a team can offer (no duplicate
skills), divided by the sum of required skills offered by each team member.

Skill Diversity = |ST ∩ Sr |∑
u∈T |Su ∩ Sr | (15)

Where T is the set of team members, ST is the set of team skills, Sr is the set of
required skills, Su is the skill set of u.

11. Skill Experience computes the experience of the team with respect to each required
skill. It considers each member’s past tasks that require the same set of skills as those
of the target task.

Skill Experience = 1

|T ||Sr |
∑

u∈T

∑

s∈Su∩Sr

|Pu(s)| (16)

Where T is the set of team members, u is a user, Sr is the set of required skills and
Su is the set of skills that u experienced, Pu(s) is the set of tasks that require skill s

and involve user u.
12. Team Contribution directly quantifies the team activeness, considering the collective

history of the team members’ activities in the past tasks. Activities include changing
issue status, making comments, and updating code to the repository, which can be
collected from each tasks’ log (i.e. a changelog of an issue report). The contribution of
a member is defined as the average ratio of the member’s activities in his/her previous
tasks.

T eam Contribution = 1

|T |
∑

u∈T

∑
i⊂Iu

cu,i

|Iu| (17)

Where T is the set of team members, u is a user, Iu is a set of tasks in which u

participated, cu,i is the contribution of member u in task i which can be calculated
using the following formula:

cu,i = |Activities of u in task i|
|All activities in task i| (18)

13. Domain Experience reflects team members’ experience on the tasks within the same
domain of the target task. This is different from the Experience feature discussed in
Section 4.4.1 which quantifies the team experience from all the past tasks. Domain
experience can be calculated if the software tracking platforms allow tasks to have a
hierarchical structure. In Jira, a software system is divided into different domains (i.e.
Jira projects), each of which is used to categorize tasks into groups.

Domain Experience = 1

|T |
∑

u∈T

|Dp∗(u)| (19)

Where T is the set of team members, u is a user, p∗ is the target task, Di∗(u) is the
set of tasks in the same domain as i∗ and involve u.

14. Co-Task Frequency reflects how often the team members work together, derived
from the average number of tasks co-worked by each pair of team members.

Co − T ask Frequency = 1

|T | × (|T | − 1)

∑

ux,uy∈T ;x<y

|Iux,uy | (20)

Where T is the set of team members, u is a user, Iux,uy is the set of tasks that ux

and uy work together.
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4.5 Scoring Function Generation

This section describes the method for choosing the best machine learning algorithms to
use as the team-fitness scoring function. The function is used to compute scores for candi-
date teams, allowing them to be ranked. Mathematically, the team-fitness scoring function
Ff itness(d, u0, t) ∈ [0, 1] quantifies the chance that a given team t would be a suitable team
for a task described by d and led by user u0.

We frame the team-fitness quantification into a binary classification problem, where a
classifier predicts a given team whether it is effective or non-effective. An effective team
is defined as a team that leads to task success. Therefore, for a given task, if the corre-
sponding team completes the task with success (the definition of a successful task is defined
in Section 4.2.2), such a team is considered effective. The probability output from such a
classifier is then used as the team-fitness score. To train the scoring function, teams from
successful tasks (See Section 5.1) are treated as positive samples. For each positive sample, 100
negative samples are synthesized by filling a random (role-compatible) user in each role.
Such a data labeling method would allow the classifier to better recognize the characteristics
of teams that lead to task success. For each task, the task description, task assignee, and the
team members are extracted and used to compute team features discussed in Section 4.4.2.

A number of machine learning classification models drawn from diverse families of
classification algorithms are considered, including Logistic Regression (LR), Decision Tree
(DT), Random Forest (RF), Naive Bayes (NB), Quadratic Discriminant Analysis (QDA), k-
Nearest Neighbors (kNN), and Artificial Neural Network (ANN). These traditional machine
learning classification models have been widely used to validate the predictability of many
classification tasks in many reputable papers (Tuarob et al. 2020; Tantithamthavorn et al.
2018; Jiarpakdee et al. 2020; McIntosh et al. 2019; Choetkiertikul et al. 2017). Regardless,
the proposed framework is highly configurable in the sense that other classifiers could be
tested without much change to the existing code.

5-Fold cross-validation is used to validate each model using ROC as the main criteria.
The best model for each dataset is then chosen to be the team-fitness scoring function and
will be used together with the Max-Logit algorithm to recommend teams.

4.6 Team Recommendation

To recommend software teams, RECAST takes a task description, task assignee, and the
required roles as inputs, and output a list of K recommended teams, ranked by the team-
fitness scores. Here, the variable K is configurable. A naive method would be to enumerate
all the possible candidate teams from the given roles, compute the team-fitness score for
each candidate team, and then rank all the teams based on the assigned scores. However,
the size of all the possible team combinations can become exponentially large, especially
for large-scale software communities that house thousands of software practitioners. To
intelligently select a subset of all the possible combinations of teams to compute the team-
fitness scores, we adopt the Max-Logit algorithm (Dai et al. 2015). Such a Nash-equilibrium
finding algorithm narrows down the subset of candidate teams by iteratively finding a better
team after each iteration. Max-Logit has also been used by Liu et al. (2014) to prune the
search space for team recommendation. However, according to Liu et al. (2014) the original
Max-Logit implementation was designed to output only one approximately best team after
the algorithm terminates.

In this work, since we would like to recommend more than one candidate team, the
original Max-Logit algorithm is modified to also keep track of enumerated teams and their
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corresponding scores, so that these teams can be part of the recommendation, as outlined
in Algorithm 1. In Line 8, the newly enumerated teams and their costs are retained in
RecT eams, so that they can be sorted, selected, and returned in Lines 15 and 16. The cost
function Cost (T ) is used to compute the cost of a given candidate team T , and is defined
as the inverse of the team-fitness score. Interested readers are encouraged to consult the
original definition of the Max-Logit algorithm by Monderer and Shapley (1996).

4.7 EvaluationMetrics for Team Recommendation

Precision@K, Mean Average Precision (MAP), Mean Reciprocal Rank (MRR), Mean Rank
(MR), and Mean Rank of Hits (Hit MR) are used as the evaluation metrics. These metrics,
when used in combination, have been shown effective for evaluation of recommendation
systems (Zhang et al. 2020b; Ragkhitwetsagul and Krinke 2019; Tuarob et al. 2015). Let
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Q be the set of test tasks, i.e. the query set, T (p ∈ Q) = 〈T1, T2, ..., TK 〉 be the ranked
list of recommended K teams for task p, T0 be the actual team, and H(T0, Ti) be a binary
function that returns 1 if Ti is a match with T0 (i.e. a hit), and 0 (i.e. a miss) otherwise. In
this research, two definitions of H(T0, Ti) is used:

1. Exact-Match (HEXACT (T0, Ti)): Ti is said to be an exact-match with T0 if the set of
team members in Ti is the same as T0.

2. Half-Match (HHALF (T0, Ti)): Ti is said to be a half-match with T0 if at least half of
the team members of Ti overlap with those of T0.

The evaluation metrics are then defined as:

4.7.1 Precision@K andMean Average Precision (MAP)

Precision is a well-known metric in the information retrieval literature, traditionally used to
quantify how precise the predicted answers are. Traditional precision does not take ordering
of correct answers into account. Hence, for the recommendation task, precision is com-
puted at every top K recommendations to justify the optimal K that maximizes the tradeoff
between preciseness and variety of the recommended results.

Precision@K =
∑K

i=1 H(t0, ti )

K
(21)

The reported precision@K is the average of the individual precision values from all the
test samples in Q.

Mean average precision (MAP) is the average of the precision@K, where K = 1, ..., 10.

MAP =
∑10

i=1 Precision@i

10
(22)

4.7.2 Mean Reciprocal Rank (MRR)

MRR takes the order of the first correct answers into account and is a reliable accuracy-
based metric for the exact-match protocol. The reciprocal rank of a query is the multiplica-
tive inverse of the rank of the first correct recommended team. The mean reciprocal rank is
then the average of the reciprocal ranks of the results of the query set Q. Formally, given
testing set Q, let rankp be the rank of the first correct answer of the query p ∈ Q, then
MRR of the query set Q is defined as:

MRR = 1

|Q|
∑

p∈Q

1

rankp

(23)

If the set of recommended teams does not contain a match, then 1
rankP

is defined to be 0.

4.7.3 Mean Rank (MR) and Mean Rank of Hits (Hit MR)

MR quantifies the average rankings of the first matched teams of the query set Q. If the
ranking of the first matched team is larger than 100, its rank is set to 101 to avoid including
heavy outliers into the computation. Hit MR is similar to MR, but only considers recom-
mended lists that contain a matched team. Note that, since the Max-Logit algorithm does
not enumerate all the possible combinations of the teams, there may be cases where the
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algorithm terminates (i.e. reaches the maximum number of iterations) without discovering
a matched team.

MR = 1

|Q|
∑

p∈Q

rankp (24)

Hit MR =

∑
p∈Q

{
rankq if rankq is f ound

0 otherwise

| {p ∈ Q : rankp is f ound
} | (25)

5 Experiment, Results, and Discussion

This section presents the datasets used for model validation, evaluation protocols, experi-
mental results, and related discussion. The evaluation is conducted in two parts. The first
part is to identify the most suitable classification algorithm for the team-fitness scoring
function. The latter validates the efficacy of the proposed software team recommendation
mechanism. We focus on the following research questions:

• RQ1: Is it possible to quantify the ability of a software team to successfully resolve
a given software development task? Every ranking-based recommendation algorithm
relies on the ability to quantify the relevance of items, so they can be ranked and rec-
ommended (Zhang et al. 2020b). In the context of our research, such items are software
team configurations. Hence, the ability to accurately quantify such a relevance score
(i.e. the team-fitness score) for a given software team, that allows more suitable teams
to be ranked higher than less worthy ones, is crucial for the further development of the
software team recommendation algorithm.

• RQ2: Is it possible to recommend software teams that comply with the role
requirements and are suitable for a given software development task? Once RQ1
is satisfactorily answered, the next question would be how to integrate the team-fitness
scoring function with a recommendation framework, that takes the role requirements
and the task description from the task assignee, and suggests a ranked list of top
software teams for the task.

• RQ3: Can the proposed software team recommendation method be adopted for
single-role recommendation tasks?: A natural question would arise as to whether
the proposed software team recommendation algorithm could be modified such that it
recommends members only for particular roles, instead of the whole team. For example,
the task assignee may want to specifically choose a particular member for the Developer
role, and let the recommender suggests suitable members for the Reviewer role. This
research question explores the possibility of doing so.

5.1 Datasets

Three real-world software development datasets from three open-source well-known soft-
ware systems (i.e. Moodle, Apache, and Atlassian) hosted in the Jira platform are used to
validate our method. Table 3 summarizes the statistics of these datasets in terms of task
sizes, components, roles, and data collection periods. The definition of a successful task is
defined in Section 4.2.2. Note that, Atlassian has a significantly less proportion of success-
ful tasks (1.2%). This is because most of Atlassian tasks do not clearly specify the role of
each member. Hence, these are filtered out due to incompatibility with our assumption that a
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Table 3 Statistics of the selected datasets

Statistics \Datasets Moodle Apache Atlassian

# Issues 88,655 507,319 238,322

# Successful Issues 27,284 43,196 2,917

# Components 315 782 170

# Developers 450 2,265 39

# Testers 195 – 21

# Reviewers 133 41 127

# Integrators 16 – –

# Direct Messages 21,268 (4.18%) 339,694 (14.2%) 36,441 (6.14%)

# Non-direct Messages 487,599 2,053,346 556,893

Period 2002/09/05 - 2002/04/03 - 2004/11/20 -

2019/05/22 2019/07/23 2019/03/29

team member must have a role. On the other hand, most Moodle issues explicitly label each
member with a role, and therefore has the largest proportion of successful teams, compared
to the other two datasets. The successful issues of each dataset are separated chronologically
into 80% training and 20% testing sets. The training/testing data is split chronologically
to avoid the model to learn from future issues. The 80% training data is used to generate
the knowledge graphs and evaluate the team-fitness scoring functions using 5-fold cross
validation. The other 20% of the data is used to validate the team recommendation methods.

In the Moodle dataset, besides the assignee, the reviewer, tester, and integrator roles are
explicitly labeled. In the Apache dataset, only the reviewer roles are explicitly given. In
the Atlassian dataset, the developer, reviewer, and tester roles are explicitly annotated. Note
that the developer roles in some systems such as Moodle and Apache are not explicitly
labeled. To identify these developers, we make an assumption that a team member who has
committed the code to the corresponding GitHub repository is deemed as a developer. The
GitHub auto-generated commit logs can be easily extracted and parsed from a Jira issue.

Figure 7 illustrates the distribution of successful and non-successful tasks of the three
datasets over time. Note that, while there are more non-successful tasks than the successful
ones at a given time, it does not mean that these non-successful tasks are failed ones - they
simply do not match the definition of a successful task defined in Section 4.2.2. Further-
more, the numbers of successful tasks of Apache and Atlassian datasets start to emerge quite
late compared to the non-successful ones. This is because, before these periods, each task
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Fig. 7 Distribution of successful and non-successful tasks in terms of task initiation time (year)
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could be either small or did not have sufficient information to identify necessary members’
roles, hence is treated as a non-successful task.

Figure 8 illustrates the distributions of successful and non-successful teams in terms of
the team size (number of members including the task assignee) of the three datasets. A task
with zero team size means that it does not have a designated task assignee and members’
roles cannot be identified.

5.2 Evaluation of Scoring Function

This section report the empirical results of the proposed team-fitness scoring function that
answer RQ1: Is it possible to quantify the ability of a software team to successfully resolve
a given software development task?

The probability output by a binary classifier, which predicts whether a candidate team is
effective or not, is used as the team-fitness score. The score ranges in [0,1] where 1/0 indi-
cates that the candidate team is perfectly suitable/unsuitable for the given task description
and task assignee. Different machine learning classification algorithms are evaluated based
on their ability to fit the training data, where positive samples are generated from actual
successful teams, and the negative samples are synthesized by randomizing team members.

5-fold stratified cross-validation is performed on the training data. The area under the
receiver operating characteristic curve (i.e. ROC-AUC) is used as the main evaluation met-
ric, due to its ability to quantify the model fitness to the data, regardless of the cut-off
probability. Furthermore, traditional classification metrics such as precision, recall, F1 of
the positive class (successful teams), and MCC (Matthews Correlation Coefficient) are also
reported. The ROC-AUC value of 0.5 is equivalent to random guess, while the value of 1.0
indicates a perfect fit.

Table 4 summarizes the average ROC-AUC, precision, recall, F1, and MCC values of
each classification model on the three datasets. In terms of precision, RF is the top per-
former for the Moodle and Apache datasets, while ANN yields the highest precision for
the Atlassian dataset. It is worth noting that some classifiers have relatively poor precision
in general, namely LR, NB, and QDA. We suspect that this may be caused by the class
imbalance issues in the training data that bias the models towards the majority class (i.e.
non-successful). In terms of recall, LR gives the highest recall for the Moodle and Atlassian
datasets, while DT for the Apache dataset.

F1 represents the single metric that reflects both precision and recall. We found that
RF yields the highest F1 for both the Moodle and Atlassian datasets with F1 of 0.890
and 0.460 respectively, while DT for Apache with F1 of 0.991. Table 5 summarizes the p-
values from the Mann-Whitney U Test between RF and other classification algorithms in
terms of ROC, precision, recall, and F1. While DT yields the top F1 for the Apache dataset
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(i.e. F1 = 0.991), it is only higher than that of RF (i.e. F1 = 0.986) negligibly by 0.5%.
The statistical tests in Table 5 also confirm that the F1 values of RF and DT are not sig-
nificantly different since the corresponding p-values are greater than 0.05. Hence, it can
be inferred without loss of generality that RF is the best classifier for all the datasets in
terms of F1. It is worth noting that while DT, RF, kNN, and ANN yield reasonably high
F1 (i.e. > 0.8 for Moodle and Apache, and > 0.4 for Atlassian), the other classifiers have
noticeably poor F1. Most of these poor-F1 classifiers give high recall but very low preci-
sion. Such a phenomenon may be caused by the imbalance of the datasets that leads to a
bias towards the majority class, which could be mitigated using data balancing techniques
such as SMOTE and under-sampling of the majority classes (Tantithamthavorn et al. 2018).
However, from a preliminary investigation, we found that such data balancing techniques,
while marginally improving the performance of some classifiers, did not improve the best
classification results yielded by RF. Table 6 compares the classification results using differ-
ent data-balancing methods, including SMOTE, under-sampling of the majority class, and
over-sampling of the minority class, using RF as the classifier and 5-fold cross-validation
protocol. According to the results, not employing any data-balancing method on the training
data (i.e. None) yields the highest performance in almost all the metrics, except for recall
where the under-sampling method gives a better recall value. However, careful investiga-
tion of the impact of data imbalance is left for potential future work without affecting the
research objectives of this paper.

The area under the ROC curve (i.e. ROC) measures the overall fitness of the classification
model to the training data regardless of the cut-off probability. While precision, recall, and
F1 have been used as the main criteria for selecting classifiers, in our proposed method,
we do not utilize the final classification results (i.e. effective vs. non-effective teams), but
rather use the raw probability, which is the primary output of the classification algorithm,
for ranking purposes. In another word, changing the cut-off probability affects precision,
recall, and F1, but not the ROC. Therefore, ROC is used as the main evaluation metric
to select the classifier for the team-fitness scoring function. Note that, ROC has also been
used as the main criteria for many classification tasks to measure the overall discriminative
power of the model rather than its final classification results (Hassan et al. 2017; Tuarob
et al. 2020). Furthermore, if the model is used for ranking purposes, even with the presence
of imbalanced data, the ordering of what the model perceives as positive cases is preserved
and is unaffected by the different cut-off probability values (Jeni et al. 2013). From the
experimental results in Table 4, RF gives the best ROC for all three datasets with ROC
values of 0.993, 0.994, and 0.981 for Moodle, Apache, and Atlassian respectively. It is worth
noting that, ROC values appear to be high even for generally ineffective classifiers such as
LR, NB, and QDA. This is expected due to the highly imbalanced nature of the datasets.

Table 6 Comparison of classification performance yielded by different data balancing methods using
Random Forest as the classifier

Metric None SMOTE Under-Sampling Over-Sampling

ROC 0.993 0.966 0.991 0.947

Precision 0.955 0.853 0.448 0.927

Recall 0.833 0.866 0.926 0.827

F1 0.890 0.859 0.604 0.874

MCC 0.912 0.892 0.663 0.910
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Hence, other classification metrics such as precision, recall, and F1 are also used as the
second criteria for the model selection.

From the above experimental results, it is evidenced that RF yields the highest ROC
for all the datasets. Furthermore, in terms of classification performance, RF also achieves
relatively high F1 compared with other classifiers even with the presence of imbalanced
data. These could be due to the following reasons:

– RF is built with a multitude of decision trees, which is suitable for ruled extracted fea-
tures, each of which indicates a soft signal that represents the class attribute (Breiman
2001). Since all of our features are computed using a set of rules and mathematical
expressions, rather than using natural representations such as term-weights (for docu-
ments) or RBG values (for images), it is not surprising that tree-based classifiers such
as RF and DT would be suitable for the features characterizing our datasets.

– RF has the capability to avoid over-fitting issues due to the randomness mechanism (Yi
et al. 2019). This allows RF to achieve better recall while maintaining high precision.

– RF has a built-in automatic feature-selection mechanism (Zhang et al. 2020a). Specif-
ically, randomly selecting a subset of features to construct a decision tree enables
the algorithm to recognize important features, resulting in overall high classification
performance.

– RF has been reported to have the ability to tolerate class imbalance without having
to rely on data balancing techniques (Khoshgoftaar et al. 2007). Such capability is
especially crucial to handle our imbalanced datasets.

Such analysis also aligns with the previous studies that found RF to be suitable classi-
fiers for the tasks where features are rule-extracted and datasets are imbalanced (Tuarob
et al. 2018; Tuarob et al. 2020). Therefore, RF is used to generate the team-fitness scoring
functions for the subsequent team recommendation evaluation.

It is also worth noting that classification performance for the Atlassian dataset is much
lower than that of the other two datasets in terms of precision, recall, and F1. This could
be due to the insufficient training data of the Atlassian dataset with only 2,917 positive
samples (due to excessive removal of incomplete software teams), compared to Moodle and
Apache with 27,284 and 43,196 positive samples respectively. Therefore, as part of possible
future work, we could harvest more samples from such a software system, or investigate
semi-supervised techniques to make use of unlabelled samples (Zhang et al. 2017).

5.3 Evaluation of Team Recommendation

This section explains the evaluation protocol and discusses the empirical results of the
proposed software team recommendation algorithm, which answer RQ2: Is it possible to
recommend software teams that comply with the role requirements and are suitable for a
given software development task?

In the software team recommendation task, RECAST takes a task description, task
assignee, and required team roles as input, and recommends a ranked list of K teams based
on the team-fitness scores. To evaluate the efficacy of this task, standard evaluation proto-
cols for recommender systems are employed. Specifically, the method is validated based on
its ability to guess the team configurations of the future (successful) tasks in the testing set.
For each dataset (See Section 5.1), 20% most recent tasks are allocated for testing, while the
other 80% is used for generating required knowledge networks as discussed in Section 4.3
and training the scoring function (See Section 4.5).
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5.3.1 Baseline Algorithms

To the best of our knowledge, we are not aware of any previously proposed team recom-
mendation algorithms that are specifically designed for collaborative software development.
Hence, in terms of recommendation performance, we compare our proposed algorithm with
a state-of-the-art team recommendation algorithm proposed by Liu et al. (2014) (i.e. Liu),
and a baseline that randomly selects role-compatible users to fill in each required role (i.e.
Random).

The method proposed by Liu et al. (2014) utilizes the Max-Logit algorithm to enumer-
ate potential team combinations, and a machine learning classifier (i.e. Logistic Regression)
as the scoring function. However, their scoring function is trained with the features defined
in Section 4.4.1. Hence, the Liu method recommends teams based primarily on collabo-
ration history and overall experience of the team members, without considering the task
requirements, skills, and sentiment aspects. Our proposed algorithm, RECAST, extends such
a previous method by also incorporating the task requirements and task assignee into the
prior criteria so that the recommended teams would be crafted to also be competent with the
task requirements and compatible with the task assignee. The scoring function of RECAST
is also trained with a set of heterogeneous features that reflect not only the collaboration
history and task experience, but also the team technical skills and social compatibility,
characterizing effective and practical software development teams.

5.3.2 Software Team Recommendation Results

This subsection reports the recommendation results of RECAST against the two baselines
on the three datasets. The evaluation is conducted using both the exact-match and the half-
match protocols.

Table 7 summarizes the recommendation evaluation results using the exact-match pro-
tocol. Such a protocol considers a team as a match if the members of that team are exactly
the same as those of the ground-truth team. It is apparent that RECAST outperforms the
two baselines in all aspects. In terms of MRR, RECAST outperforms the best baseline (Liu)
by 743.21%, 557.12%, and 639.03% for Moodle, Apache, and Atlassian datasets respec-
tively. The MR values show that, overall, all the three methods find the exact-matched teams
within the top 100 recommendations, while RECAST still outperforms the other two. It is
interesting to note that if the Max-Logit algorithm finds a matched team, it will be ranked in
the top three results for Moodle and Apache datasets, and top 20 for Alassian, compared to
the best baseline that finds the exact-matched teams in the ranks of 30th-40th (if a matched
team is found). This means that RECAST can perform well when Max-Logit can discover a
matched team before the algorithm reaches termination. Note that, solving the issue where
Max-Logit cannot find matched teams is trivial. To do so, one could increase the maximum
number of iterations, or simply exhaustively enumerating all possible teams (if the dataset
is small).

In terms of precision, Precision@10 of RECAST is better than the best baseline by
593.42%, 365.71%, and 305% for Moodle, Apache, and Atlassian, respectively. However,
the relative precision differences are smaller for Precision@100 (i.e. 239.88%, 46.88%, and
2.42%). This is because the baseline correctly guesses the matched teams in the ranks 10th
or higher on average, while RECAST performs better at guessing the correct teams within
the top 10 results. Figure 9 displays precision at each number of recommendations (K) for
all the three datasets, using the exact-match protocol. It is evident that RECAST can guess
the correct teams in the top few results, compared to the other two baselines. The precision
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Fig. 9 Precision@K plots of different software team recommendation algorithms (Random, Liu, and
RECAST) on datasets Moodle, Apache, and Atlassian, using the exact-match evaluation protocol

becomes decreasing as K increases because more non-matched teams are added to the top
K results. It is worth noting that, the precision of the Random method is better than the Liu
method for dataset Atlassian especially in the first 10 values of K . This is because the Atlas-
sian dataset is much smaller compared to the other two datasets with only a small number of
candidate members for each role (i.e. 39 developers, 21 testers, and 127 reviewers). Hence,
it would be relatively easy for the Random method to randomly guess the correct answers,
compared to the Liu method.

The recommendation results using the half-match protocol are summarized in Table 8.
A recommended team is a half-match if at least half of the team members overlap with the
ground-truth team. Loosely speaking, a half-matched team is said to be similar to the correct
team. This evaluation protocol allows some flexibility in the evaluation, while still reflects
the quality of the recommended results. Hence, it is observed that the overall half-match
performance is better than that of the exact-match evaluation, regardless of the recom-
mendation methods and datasets, except for Hit MR. This is because, with the half-match
protocol, an enumerated team has a higher chance to be a match. Since Hit MR only consid-
ers the recommendation lists that contain a match, it is the case that more lists that contain
half-matched results in the lower ranks additionally contribute to the values, and as a result,
lower the overall Hit MR. This phenomenon also holds for the Liu method which also uses
Max-Logit to enumerate teams.

Figure 10 illustrates the precision at each number of recommended teams (K) of the three
algorithms on the three datasets. The analysis is similar to the exact-match evaluation. It is
worth noting that, the precision of RECAST on some datasets (i.e. Moodle and Atlassian)
remains high and does not decline as quickly, compared to the exact-match analysis in
Fig. 9. This is because RECAST can find and recommend different variants of teams similar
to the correct team in the top results.

From both the exact-match and half-match evaluation results, it is evident that the pro-
posed RECAST algorithm can produce more accurate recommended teams than the two
baselines. Statistical analyses using Mann-Whitney U Test (α = 0.05), shown in Table 9,
confirm that the performance in terms of MRR of RECAST is significantly different from
that of the baselines in both the exact-match and half-match evaluation protocols. In terms
of implementation, since an elbow points are observed around K = 5 from Figs. 9 and 10,
it is our suggestion that the system produces only five recommended teams to prevent the
choice overloading issue, while still maintaining the quality of the recommendation.
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Fig. 10 Precision@K plots of different software team recommendation algorithms (Random, Liu, and
RECAST) on datasets Moodle, Apache, and Atlassian, using the half-match evaluation protocol

Figure 11 shows examples of recommended teams for a software task by our proposed
RECAST and the two baseline algorithms using a real-world task description and assignee.
The system name and all usernames are anonymized. This task (i.e. issue) is a bug-fix task
where the error stems from the miscommunication between the main system ABC and the
plugin application flashcards. The ABC system is supposed to not convert the primitive
type of the data files (i.e. fdk) to a zip format that prevents flashcards from directly opening
them. The task assignee (i.e. U100) requires a team of three members to work on this issue,
including an integrator, a tester, and a reviewer. The actual assignments of these roles are
U101, U102, and U103 respectively.

The three software team recommendation algorithms, namely Random, Liu, and our
RECAST, are used to suggest appropriate 10 teams for this task. The teams with ∗ and
+ symbols are those that are exact-matched and half-matched respectively with the actual
team. The bold-italic usernames are those that are also in the actual team (regardless of
the roles). It is evident that from this particular example, RECAST is able to recognize the
actual team in the first rank, and six more similar (half-matched) teams within the top 10
results. The Liu method is not able to capture any exact-matched or half-matched teams in
the top 10 ranked results. Furthermore, the Random method cannot guess any correct team
members in the first 10 ranked results.

5.4 Single-Role Recommendation

This section reports the adaptation of RECAST to recommend members for a particular role
instead of the whole team with various role requirements. The empirical results also fortify
the answers for RQ3: Can the proposed software team recommendation method be adopted
for single-role recommendation tasks?

Table 9 Statistical tests using Mann-Whitney U Test on MRR between RECAST and the other baselines for
the team recommendation task

Evaluation Protocol Moodle Apache Atlassian

Random Liu Random Liu Random Liu

Exact-Match <0.05 <0.05 <0.05 <0.05 <0.05 <0.05

Half-Match <0.05 <0.05 <0.05 <0.05 <0.05 <0.05
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Issue Summary Treat the fdk extension or avoid extension renaming for unknown types

Issue
Descrip

In our school, students use the app flashcards: It generates an fdk file.
When I upload an fdk file in a course, and ask students to download it , the
ABC app let it to be opened by the app flashcards, but a #er that, they get
an error. Apparently, the file is converted to a zip file and thus, it cannot be
recognized by the flashcards app.
Can this error be fixed?

Assignee U100

 Actual Team Integrator: U101, Tester: U102, Reviewer: U103

Rank Random Liu RECAST

1 U104, U105, U106 U137, U146, U147 U101 ,U102 ,U103
2 U104, U105, U107 U101, U146, U147 + U101 ,U103, U105

3 U108, U109, U106 U101, U148, U147 + U101, U104,U103
4 U104, U110, U106 U113, U148, U147 + U101, U112,U103
5 U104, U105, U111 U118, U148, U147 + U101, U161,U103
6 U104, U105, U112 U118, U148, U149 U108,U103, U105

7 U113, U105, U106 U150, U148, U149 U125,U103, U105

8 U108, U105, U106 U150, U151, U149 U101, U137, U105

9 U104, U105, U114 U150, U152, U149 + U101 ,U103, U127

10 U104, U105, U115 U143, U152, U149 + U101 ,U103, U162

Fig. 11 Example recommended teams using the Random, Liu, and RECAST methods for a real-world
software development task and assignee. Usernames are anonymized

While RECAST has shown to perform well in recommending effective software teams,
compared to the state-of-the-art team recommendation algorithm, it is only natural that one
might be curious if the algorithm could be applied to the situation where the task assignee
only wants suggestions for a particular role (i.e. not the whole team). To investigate this
possibility, we modify the Max-Logit algorithm to only enumerate possible members for
a particular role, while using actual team members for the other roles. This modification
to the Max-Logit algorithm allows us to compare RECAST with the state-of-the-art Liu
method, due to using the same Max-Logit algorithm as the candidate team enumerator. We
also compare the results with a randomization-based method that randomly selects role-
compatible members to fill in the target role. The set of roles identified in the datasets
include Developer, Reviewer, Tester, and Integrator. The exact-match evaluation protocol
is used to validate the three algorithms.

Table 10 summarizes the single-role evaluation of the Random, Liu, and RECAST algo-
rithms on each role of the three datasets. The table also reports the weighted average
results. RECAST outperforms the state-of-the-art baseline (Liu) on all aspects, except for
the Hit@100 of the Reviewer and Tester roles of the Moodle dataset. However, such per-
formance differences in Hit@100 are only marginal (i.e. worse by 0.6% and 2.05% for
the Reviewer and Tester roles respectively). RECAST performs exceptionally well for the
Atlassian dataset with perfect evaluation performance on the Developer role. This may be
because there are only a handful of developers in the Atlassian dataset (i.e. 39 users). Note
that, not all the roles are available in all datasets; hence, the statistics for these unavailable
roles (Tester and Integrator of Apache, and Integrator of Atlassian) are not reported. Sta-
tistical analyses using Mann-Whitney U Test (α = 0.05), shown in Table 11, confirm that
the performance in terms of MRR of RECAST is significantly different from that of the
baselines.

64    Page 36 of 53



Empir Software Eng (2021) 26:  64

Ta
bl
e
10

Si
ng

le
-r

ol
e

ev
al

ua
tio

n
re

su
lts

of
di

ff
er

en
ts

of
tw

ar
e

te
am

re
co

m
m

en
da

tio
n

al
go

ri
th

m
s

(R
an

do
m

,L
iu

,a
nd

R
E

C
A

ST
)

on
da

ta
se

ts
M

oo
dl

e,
A

pa
ch

e,
an

d
A

tl
as

si
an

R
ol

e
M

et
ri

c
M

oo
dl

e
A

pa
ch

e
A

tla
ss

ia
n

R
an

do
m

L
iu

R
E

C
A

ST
D

if
f

(%
)

R
an

do
m

L
iu

R
E

C
A

ST
D

if
f

(%
)

R
an

do
m

L
iu

R
E

C
A

ST
D

if
f

(%
)

D
ev

el
op

er
M

R
R

0.
02

0.
08

0.
20

16
0.

49
0.

00
0.

01
0.
04

37
1.

30
0.

08
0.

10
1.
00

89
8.

88

M
R

80
.4

3
76

.5
3

62
.7
8

17
.9

6
98

.6
8

98
.3

4
96
.6
0

1.
77

13
.7

6
21

.5
9

1.
00

95
.3

7

H
it

M
R

47
.5

8
38

.2
7

6.
15

83
.9

3
51

.9
8

38
.2

5
3.
55

90
.7

1
13

.7
6

21
.5

9
1.
00

95
.3

7

Pr
ec

is
io

n@
10

0.
04

0.
12

0.
41

22
9.

48
0.

00
0.

01
0.
04

22
5.

84
0.

28
0.

21
1.
00

38
3.

33

Pr
ec

is
io

n@
10

0
0.

44
0.

45
0.
46

2.
24

0.
05

0.
04

0.
05

6.
29

1.
00

1.
00

1.
00

0.
00

M
A

P
0.

01
0.

07
0.
20

18
4.

41
0.

00
0.

01
0.
04

41
9.

10
0.

03
0.

07
1.
00

14
24

.0
9

R
ev

ie
w

er
M

R
R

0.
04

0.
07

0.
21

20
8.

76
0.

16
0.

24
0.
41

70
.3

9
0.

04
0.

05
0.
33

53
4.

33

M
R

60
.4

1
57

.4
4

36
.3
9

36
.6

4
16

.6
0

17
.8

7
5.
73

67
.9

1
53

.5
2

60
.1

3
36
.3
9

39
.4

8

H
it

M
R

47
.6

0
42

.9
0

14
.3
2

66
.6

3
16

.6
0

17
.8

7
5.
73

67
.9

1
43

.9
5

49
.2

8
24
.6
4

49
.9

9

Pr
ec

is
io

n@
10

0.
10

0.
14

0.
43

20
6.

48
0.

57
0.

35
0.
87

14
7.

62
0.

10
0.

12
0.
50

32
3.

53

Pr
ec

is
io

n@
10

0
0.

76
0.

75
0.
75

-0
.6

0
1.

00
1.

00
1.
00

0.
00

0.
92

0.
87

0.
92

4.
80

M
A

P
0.

02
0.

05
0.
20

28
1.

45
0.

14
0.

21
0.
41

90
.4

4
0.

02
0.

04
0.
32

78
7.

33

Te
st

er
M

R
R

0.
03

0.
05

0.
16

19
1.

25

N
o

Te
st

er
R

ol
es

0.
12

0.
20

0.
86

33
2.

67

M
R

75
.3

4
70

.6
2

55
.0
6

22
.0

3
10

.9
6

10
.4

0
2.
27

78
.1

9

H
it

M
R

50
.0

6
42

.8
2

11
.1
8

73
.9

0
10

.9
6

10
.4

0
2.
27

78
.1

9

Pr
ec

is
io

n@
10

0.
07

0.
12

0.
35

19
2.

27
0.

56
0.

50
0.
98

96
.1

5

Pr
ec

is
io

n@
10

0
0.

50
0.
52

0.
51

-2
.0

5
1.

00
1.

00
1.
00

0.
00

M
A

P
0.

02
0.

04
0.
15

24
1.

75
0.

09
0.

16
0.
85

42
2.

45

Page 37 of 53     64



Empir Software Eng (2021) 26:  64

Ta
bl
e
10

(c
on

tin
ue

d)

R
ol

e
M

et
ri

c
M

oo
dl

e
A

pa
ch

e
A

tla
ss

ia
n

R
an

do
m

L
iu

R
E

C
A

ST
D

if
f

(%
)

R
an

do
m

L
iu

R
E

C
A

ST
D

if
f

(%
)

R
an

do
m

L
iu

R
E

C
A

ST
D

if
f

(%
)

In
te

gr
at

or
M

R
R

0.
21

0.
27

0.
54

10
1.

57

N
o

In
te

gr
at

or
R

ol
es

N
o

In
te

gr
at

or
R

ol
es

M
R

8.
61

7.
62

3.
99

47
.6

1

H
it

M
R

8.
61

7.
62

3.
99

47
.6

1

Pr
ec

is
io

n@
10

0.
61

0.
68

0.
94

38
.4

9

Pr
ec

is
io

n@
10

0
1.

00
1.

00
1.
00

0.
00

M
A

P
0.

18
0.

24
0.
53

11
9.

82

A
ve

ra
ge

M
R

R
0.

07
0.

12
0.
28

13
7.

65
0.

00
0.

01
0.
04

31
2.

06
0.

06
0.

09
0.
54

48
5.

20

M
R

55
.6

5
52

.5
2

38
.9
9

25
.7

6
97

.9
5

97
.6

3
95
.8
0

1.
88

38
.5

0
43

.6
0

23
.8
9

45
.2

1

H
it

M
R

33
.2

4
28

.9
1

8.
66

70
.0

4
46

.3
8

34
.7

0
3.
91

88
.7

3
31

.0
0

34
.7

2
15
.4
9

55
.3

9

Pr
ec

is
io

n@
10

0.
21

0.
27

0.
53

99
.3

0
0.

01
0.

02
0.
05

21
0.

91
0.

23
0.

22
0.
68

21
0.

20

Pr
ec

is
io

n@
10

0
0.

68
0.
69

0.
68

-0
.2

3
0.

06
0.

05
0.
05

5.
20

0.
95

0.
92

0.
95

2.
91

M
A

P
0.

06
0.

10
0.
27

16
4.

77
0.

00
0.

01
0.
04

35
5.

88
0.

04
0.

07
0.
53

66
5.

37

64    Page 38 of 53



Empir Software Eng (2021) 26:  64

Table 11 Statistical tests using Mann-Whitney U Test on MRR between RECAST and the other baselines
for the single-role recommendation task

Role Moodle Apache Atlassian

Random Liu Random Liu Random Liu

Developer <0.05 <0.05 <0.05 <0.05 <0.05 <0.05

Reviewer <0.05 <0.05 <0.05 <0.05 <0.05 <0.05

Tester <0.05 <0.05 – – <0.05 <0.05

Integrator <0.05 <0.05 – – – –

It is also interesting to note that, the average single-role performance is overall better than
the exact-match team recommendation performance reported in Table 7, with MRR of 28%,
4%, and 54% compared to exact-team MRR of 8.4%, 6.7%, and 30.6% for Moodle, Apache,
and Atlassian datasets respectively. Note that recommending developers for Apache has a
noticeably lower accuracy than the other datasets. This is because the Apache dataset has
the largest pool of 2,265 developers. Hence, predicting the correct developers for Apache
could be relatively difficult due to the larger candidate pool, compared to the other datasets.
Regardless, RECAST remains the top performer with 371.30% improvement, in terms of
MRR, over the best baseline on average.

Figure 12 plots average precision at each number of recommended candidates (K) of the
three algorithms for datasets Moodle, Apache, and Atlassian. Overall, RECAST performs
better than the other two baselines at every K . The prevalent difference is observed during
the first few results, meaning that RECAST is able to correctly predict the correct team
members at the very top-ranked results, compared to the Random and Liu methods.

5.5 Parameter Sensitivity

While RECAST has shown to be effective at recommending software teams with promising
results compared to the baselines, this section discusses how varying certain parameters
could affect the recommendation performance.
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RECAST) on datasets Moodle, Apache, and Atlassian
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5.5.1 Optimal Numbers of Topics

The similarity between two tasks in the task similarity network (Section 4.3) is quantified
using topical similarity between the topic distribution vectors of the two tasks. Each task’s
topic distribution is derived using the Latent Dirichlet Allocation (LDA) algorithm that
generates a topical model for each dataset. Here, we try both the regular (non-labeled) LDA
(Blei et al. 2003) and labeled LDA (Ramage et al. 2009) using issue components as prior
labels.

One of the hyperparameters that govern the creation of topical models is the number of
topics. Too few topics would result in general topics that do not distinguish documents well;
while too many topics can lead to random, meaningless topics that comprise idiosyncratic
word combinations (Steyvers and Griffiths 2007). Hence, choosing a suitable number of
topics is key to achieve optimal topic models.

Multiple studies that utilized topic modeling in various applications have shown that the
effectiveness of the learned topics correlates with the coherence of the term distribution
in each topic (Deerwester et al. 1990; Hofmann 2001; Tuarob et al. 2015). Newman et al.
defined the coherence of a topic as the ability to be interpreted as a meaningful topic by
examining the term composition (Newman et al. 2010). They also proposed a set of methods
for automatic evaluation of topic coherence, namely WordNet, Wikipedia, and Google based
methods. In our experiment, we adopt a similar scheme as their Wikipedia-based method,
using pair-wise mutual information (PMI), since this scheme was reported the most accurate
in their work.

Since we aim to find the optimal number of topics that results in the highest topic coher-
ence, the average topic coherence score is calculated for each topic set. Mathematically, let
ZT = {z1, z2, ..., zT } be the set of T learned topics. We aim to calculate the average topic
coherence (ATC) score for the topic set ZT by taking the arithmetic mean of the coherence
scores of all the topics in ZT , as follows:

AT C (ZT ) = 1

|T |
∑

z∈ZT

C(z) (26)

C(z) is the coherence score of the topic z, and is calculated as follows:
Let W10 be the set of top 10 words in z. C(z) is then the average of pair-wise

mutual information (PMI) scores of all possible unique pairs of the words in W10 =
{w1, w2, ..., w10}.

C(z) = 1

45

∑

i,j∈{1,...,10},i<j

PMI (wi, wj ) (27)

PMI (wi, wj ) = log

(
p(wi,wj )

p(wi)· (wj )

)
(28)

Where p(wi) and p(wj ) are the probability of wi and wj , estimated by the proportion
of the documents that contain at least one occurrence of wi and wj respectively. Similarly,
p(wi, wj ) is the proportion of the documents that contain both wi and wj .

Instead of using Wikipedia articles as the external knowledge source as used by Newman
et al. (2010), we use the task descriptions in our datasets as the external knowledge. This
is because most of the task descriptions in our datasets are from very specific domains that
concern only software specification and requirement, which Wikipedia does not well cover.
Furthermore, these software task descriptions contain a number of technical terms, software
keywords, and component names, which are not normally used in general encyclopedias.
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For each dataset, we use all the task descriptions in the training set to model topics. The
numbers of topics T ∈ {100, 200, 300, 400, 500} are used. At each T , the non-labeled LDA
and labeled LDA are run with 3,000 iterations to learn a set of T topics, ZT . Then, the
average topic coherence scores are computed for each ZT .

Figure 13 plots the average topic coherence (ATC) from the non-labeled LDA and labeled
LDA of the three datasets, where a higher value of ATC represents a better quality of the
topic set. For Moodle, the peak ATC is achieved using non-labeled LDA with 300 topics.
The peak of ATC for the Apache dataset is observed at T = 400 using labeled LDA. Finally,
for the Atlassian dataset, the highest ATC is spotted when T = 200 using labeled LDA.
Hence, these configurations are used in RECAST to build topic models for task similarity
calculation as discussed in Section 4.3.

It is worth noting that, labeled LDA tends to perform better than its non-labeled version
due to being supervised and able to incorporate additional knowledge from labels (i.e. issue
components). This is the case for Apache and Atlasstian datasets. However, it is observed
that the non-labeled LDA achieves higher ATC at every T for the Moodle dataset. After
investigating this phenomenon carefully, we find that Moodle has relatively more spurious
components, with each component representing specific features in the Moodle system,
compared to the other two datasets. This conjecture is also supported by the average number
of tasks per component: 218 (Moodle), 649 (Apache), 1,402 (Atlassian). These numbers
represent the average number of documents for each class when training a topic model. It
follows that Moodle has the lowest documents/class which could lead the labeled LDA to
ineffectively learn the topics compared to allowing the non-labeled LDA to automatically
figure out topics on its own.

5.5.2 Feature Analysis

The team-fitness scoring function is trained with 20 features, a majority of which are
extracted from the knowledge networks discussed in Section 4.3. These features have dif-
ferent levels of impact on the scoring function’s ability to assign an accurate score to a
team. This section investigates the importance of these features using the feature importance
scores output as by-products from the Random Forest model.

Summarized in Table 12 are the lists of features used to train the team-fitness scor-
ing functions along with their Random Forest’s feature importance scores for the Moodle,
Apache, and Atlassian datasets. The bold-italic figures are the top five features. Different
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Fig. 13 Comparison of PMI values from various numbers of topics using both the labeled LDA and non-
labeled LDA on the three datasets
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Table 12 Feature importance scores calculated while training the scoring functions using Random Forest on
datasets Moodle, Apache, and Atlassian

Feature Moodle Apache Atlassian

Task Familiarity 0.1539 0.0147 0.0272

Task Proximity 0.1175 0.0472 0.1245

Relatedness to Assignee 0.0673 0.0458 0.0486

Team Coherence 0.1621 0.0524 0.0527

Team Positivity 0.0126 0.0036 0.0003

Team Criticrism 0.017 0.0046 0.0003

Positivity towards Assignee 0.002 0.002 0.0001

Criticrism towards Assignee 0.0031 0.0033 0.0001

Skill Competency 0.0028 0.0799 0.0047

Skill Diversity 0.0074 0.0064 0.0103

Component Experience 0.0345 0.1315 0.0078

Team Contribution 0.0192 0.0022 0.0227

Domain Experience 0.0315 0.2229 0.0516

Co-Task Frequency 0.0386 0.1091 0.2877

Experience 0.0355 0.062 0.0435

Role Experience 0.0916 0.0657 0.0852

Closeness 0.1678 0.0921 0.1759

Success Experience 0.0312 0.0526 0.0468

Connection 0.0017 0.0015 0.0004

Success Rate 0.0028 0.0005 0.0099

datasets have different natures and collaborative cultures as evident by different sets of top
features across the three datasets.

In Moodle, Closeness, Team Coherence, Task Familiarity, Task Proximity, and Role
Experience contribute as the top five features. Two of these features are related to experience
with similar tasks, two related to collaboration experience, and one related to experience
working on the required roles. It may be inferred that those task assignees in Moodle
typically select team members based primarily on personal familiarity with the chosen mem-
bers. It also appears that a software practitioner in Moodle tends to remain in the same roles
across several tasks.

In Apache, Domain Experience, Component Experience, Co-Task Frequency, Closeness,
and Skill Competency are ranked the top five features. Three of these features are indicators
of experience with relevant tasks, while the other two features characterize collaboration
history and required skills. Hence, it could be interpreted that task assignees in Apache
tend to select members with relevant task experience that also have the necessary skills as
required by the tasks.

In Atlassian, Co-Task Frequency, Closeness, Task Proximity, Role Experience, and Team
Coherence are the top five features. For this dataset, there is no single consensus towards
a single criterion to select team members. The top features represent the history of getting
involved in past Atlassian tasks, collaboration history, current relevant tasks, and experience
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working in the roles. The Co-Task Frequency feature, representing the task experience with
other team members, is prevalently important with the importance score of 0.2877, 475%
higher than the average feature importance score. This makes sense since the Atlassian
dataset only contains a handful of software practitioners. Hence, it may become obvious for
a task assignee in Atlassian to pick a member based on their history of collaboration in the
same tasks.

While the above feature analysis could shed light on common important features shared
across the three datasets, it would be useful to also explore the influence of correla-
tion/collinearity of features used to train the team-fitness scoring function (Jiarpakdee et al.
2019), which we plan to investigate as part of the potential future work.

5.6 Implications

We propose a set of novel features drawn from multiple knowledge graphs, constructed
from real-world software systems hosted by Jira, that characterize not only the team’s col-
lective technical skills and collaboration history, but also their compatibility when members
are working together. While every single feature serves as a soft signal that is not intended
for absolute interpretation of a team’s effectiveness, all the features in combination have
shown quite effective when used to train machine learning classifiers (i.e. Random Forest)
to recognize teams suitable for a given software development task (See Section 5.2). While
previous studies have explored features to represent teams, they only reflect team skills
and collaboration history without taking social aspects of teamwork into account. In this
research, we showed that social aspects such as team coherence also contribute as important
features for quantifying the effectiveness of software teams (See Section 5.5.2). We propose
a novel algorithm to recommend software team configurations for a given software task.
The algorithm utilizes Max-Logit to effectively prune the search space to avoid exhaustive
enumeration of all the possible team combinations, and ranks the candidate teams using the
team-fitness scoring function trained using a Random Forest classifier with the proposed
features. To the best of our knowledge, we are the first to explore such team recommen-
dation problems in the software engineering domain. The experimental results shown in
Sections 5.3 and 5.4 illustrate that the proposed method outperforms the baselines by large
margins in both team recommendation and single-role recommendation tasks. The minimal
assumptions of the team and task structure allow the proposed methodology to generalize
across multiple software platforms beyond Jira. The implications of this research are as
follows.

5.6.1 Implications for Open-Source Software Projects

Open-source software (OSS) projects are typically contributed by a wide variety of devel-
opers with diverse skills, experience, and commitment. Indeed, studies have shown that
causes of open-source project failure could stem from ineffective development teams that
are technological limited and have conflicts among team members (Coelho and Valente
2017). Our proposed method incorporates features that represent both necessary technical
skills and teamwork compatibility, which have been shown to contribute to project success
(See Section 5.5.2). Therefore, applying the findings in real-world OSS projects could help
to mitigate issues arising from ineffective team members and could result in an overall better
project success rate.
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5.6.2 Implications for Software Developers

The ability to automatically identify suitable team members to work on a software project
could advocate productive collaboration in the software development ecosystem. For exam-
ple, task assignees could easily find suitable replacements for team members who cease to
contribute to the projects (Iaffaldano et al. 2019) in a timely manner, without significant
delay or suspense on the progress. Furthermore, the proposed method can identify team
members that contribute to the higher chance of task success, which could provide an alter-
native quantitative measure to reflect developers’ performance and contribution, and help
them to improve on the aspects that they lack.

5.6.3 Implications for Researchers

This work is part of a bigger picture of research that aims to study the computational aspects
of collaboration dynamics in software projects. While we present the findings at the task
level, this research could be building blocks for larger analyses in the project or ecosystem
levels. Researchers could also extend this work in multiple directions such as recogniz-
ing influential developers or experts in OSS projects and identifying new roles and skills.
Furthermore, most of the features introduced in Section 4.4 are handcrafted by previous
researchers and us, and potentially are subject to controversy. Therefore, techniques that
are less dependent on handcrafted features such as deep learning ones could be explored to
mitigate the limitation of this work.

6 Threads to Validity

We identify the following threads to validity.

– Platform Selection: The case studies used to validate our proposed models were
scraped from the Jira platform, whose main purpose is to facilitate software progress
tracking. The platform is chosen due to the rich information of software team structures,
task requirements, developers’ skills, and interaction among team members. However,
such a platform does not cover the actual development activities such as source code
revision management and social interaction while writing code. While this limited
information available in the Jira platform is sufficient for the proposed model to make
a meaningful prediction, the model could be improved if information during the actual
development can be incorporated.

– Definition of Successful Tasks: In this research, we define successful tasks as tasks
that are resolved without reopening, and that the teams of such tasks are deemed good-
enough teams. RECAST is trained to recommend teams that are similar to these good-
enough teams, so to prevent task assignees from forming ineffective ones. However,
while this definition of successful tasks works well in general, tasks that are not (yet)
resolved or have been reopened are not necessarily unsuccessful. For example, a task
may be on-going (hence, not yet resolved) or reopened because the task assignee does
not want to create a new, similar task. However, without a clear definition of and a good
methodology to determine unsuccessful tasks, we had to disregard these non-successful
tasks, which account for the majority of the tasks in our datasets, resulting in a major
loss of valuable information from which the model could learn.
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– Scoring Function Selection: In this work, seven classification algorithms drawn from
different families of machine learning models were tested for their ability to fit the train-
ing data and used as the team-fitness scoring function. While Random Forest yielded
the best ROC for all the three datasets, there can be other algorithms that have not been
validated and may perform better. Hence, RECAST is developed such that this part can
be plugged in if better scoring functions are discovered in the future.

7 RelatedWork

Developing automatic systems that recommend software practitioners for a given software
task has recently gained attention from research communities. However, most of such rel-
evant systems aim to make a recommendation for particular single tasks, without taking
into account that a software team is typically composed of members with diverse techni-
cal backgrounds and roles. Hence, in this section, we first discuss such relevant single-role
recommendation algorithms for software development tasks. Since our goal is to develop a
recommendation algorithm for whole software teams, we also discuss work on the relevant
algorithms proposed in other domains of applications.

7.1 Single-Role Recommendation

Single-role recommendation mainly focuses on recommending one individual at a time for
a given task, with an assumption that the task can be resolved by one person. As a result,
a single-role recommendation lacks the ability to recommend a set of individuals with dif-
ferent skills and roles. In software engineering literature, previous studies have investigated
the possibility to develop automatic single-role recommendation algorithms for developers,
reviewers, integrators, etc.

Naguib et al. (2013) investigated the issues found in bug reports and proposed an algo-
rithm to recommend assignees to fix given bugs. They proposed the solution to address this
problem by creating the activity profiles for all users in the repository. An activity profile
contains two parts, namely roles and topic associations. For a given bug report, the proposed
system analyzes user activity profiles to indicate activities that each user has done in the
past regarding bug reports. The proposed algorithm was evaluated against the LDA-SVM
based assignee recommendation technique.

Thongtanunam et al. (2015) proposed RevFinder, a file location-based code-reviewer
recommendation approach. Their approach is based on the intuition that codes that are
stored in directories with similar file paths should be reviewed by the same person. Later, Yu
et al. (2016) proposed a reviewer recommendation algorithm for pull-requests in GitHub.
Their algorithms analyzed social relations between contributors and reviewers to gener-
ate the comment network. This comment network is combined with a traditional method
to improve the reviewer’s recommendation accuracy. Recently, Rahman et al. (2016) pre-
sented CoRReCT, a reviewer recommendation approach that considers not only the history
of the relevant cross-projects but also the experience of a developer in certain specialized
technologies associated with a pull request, to determine his/her ability to review code.

Liao et al. (2017) presented a topic-based code integrator recommendation algorithm for
pull requests. Their approach is based on the ability to capture textual content from pull
requests, which are used to train a topic model using LDA. The similarity between the two
pull requests is then quantified using the similarity between the topic distribution between
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the two requests. Integrators who used to integrate similar pull-requests are then recom-
mended. Recently, de Lima Júnior et al. (2018) also investigated different attributes that
characterize integrators for pull requests, and used machine learning classification tech-
niques to rank integrators to a given pull request. They evaluated the proposed algorithm
on 32 open-source projects and illustrated that their method outperforms the state-of-the-art
integrator recommendation method by 54%.

Besides software engineering, such a single-role recommendation methodology has been
applied in many real-world domains. In human resource recruitment, Malinowski et al.
(2008) presented a decision support system for selecting best fit team members using the
HR information system. They focused on recommending a person who not only fits the job
description but also fits the existing team. Different aspects of fitness were considered such
as fitness to the job (P-J), fitness to the team (P-T), fitness to the environment (P-E), fit-
ness to the organization (P-O), and person-vocation compatibility (P-V). As a result, they
presented a recommendation approach which focuses on two dimensions. The first dimen-
sion concerns unary attributes such as skills and personality. The second involves relation
attributes that determine how well a person fits the current team. We can adopt this approach
to our project by incorporating social network analysis to measure the interactions and
connectedness. Moreover, this research also provides a method to calculate the trust value
between the candidate and all members.

Recently, Gupta et al. (2014) proposed a system that recommends potential members for
a team based on user requests, including user specification of a specific job, and skills map-
ping to a job title. They created a user interface to provide a recommendation service to
users. They mainly considered the candidates’ profile data and activity data which reflects
their behaviors. This recommendation system contains three modules: skill mapping, candi-
date identification, and notification. For skill mapping, the system matches candidate skills
with the specification of the job titles. Each job title must specify the required skills and
their important values, e.g. Java, HTML, PHP, etc. For candidate identification, they inves-
tigated candidate profiles, each of which is consisted of skills and experience. Keywords
were used to distinguish expertise and skills from a job description or experience. Lastly, the
notification module notifies the specific candidate when he/she is asked to join the project.
We could adopt the use of the mapping technique that links between the ability of the candi-
date and the task description. However, to apply this technique to the software engineering
field, we have to consider the fact that anyone can create an issue or a task.

While single-role recommendation techniques cannot be directly applied to solve team
recommendation problems, they provide early insight into features that can be drawn from
each candidate, that can be adapted to compute the aggregate features for the whole team.
Especially in the software engineering domain, where collaborative software development
has become a norm, integrating individual expertise to compose an effective team could
prove crucial for large-scale software projects.

7.2 Team Recommendation

Different from single-role recommendation, team recommendation aims to generate con-
figurations of team members taking into account diverse skills, roles, and collaboration
history. Limited work has investigated techniques for team recommendation in collabora-
tive software engineering. Hence, we discuss relevant techniques applied in other fields and
applications.

Alberola et al. (2016) presented an artificial intelligence tool for heterogeneous team
formation in the classroom. They formed teams by using Belbin’s role theory and used
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artificial intelligence techniques to handle the uncertainty of the student roles. They also
considered the information that was collected before and after working on a team. Applying
this solution may not be suitable for the software development process since each developer
would have to shoulder the burden of evaluating the team every time that a task is finished.

Hupa et al. (2010) introduced a scoring function for a team based on its members’ social
context and suitability to a particular project. They proposed a three-dimensional social net-
work that was used to represent the social context of individuals. The network consists of a
knowledge network, a trusted network, and an acquaintance network. The knowledge net-
work is a bipartite graph with an edge connecting a person to his/her skill. The weight of
an edge represents the experience level of the corresponding skill. The trust network is a
directed graph with an edge connecting a person to another. The weight of an edge repre-
sents how much a person trusts another person. The acquaintance network is an undirected
graph with an edge connecting one person to another. The weight of an edge represents
the intensity of the interaction of two people. The graphs are used to quantify the follow-
ing features: Closeness Centrality, Average Interpersonal Trust Measure, Aggregated Skill
Difference, Maximum Skill Distribution. After defining criteria that will be used to score a
team on a project, they combine all criteria into one function and optimize it using the ref-
erence point method. The idea of a multidimensional graph can be applied to our problem
setting; however, their method requires enumerating all possible team configurations, which
is infeasible in large-scale collaboration communities.

Later, Datta et al. (2011) developed an expert recommendation system. This system
allows users to input a set of required skills, then the system will form teams that com-
prise the necessary skills. Besides, the user can also adjust the recommended team members
using several criteria, e.g. school, status, etc. Users can specify the importance of each
skill and recommendation parameters, e.g. number of members in the team, cohesiveness
importance, etc. To determine the quality of the team, the system considers two features:
competence coverage which describes team skills; and team cohesiveness which is derived
from the team social graph. The idea of customizable parameters such as the importance of
a skill can be applied to our problem to allow more flexible recommendations; however, this
work does not mention how candidate teams are enumerated, which is important for large
datasets.

Recently, Liu et al. (2014) proposed an approach to recommend teams that satisfy
role requirements. They considered both individual and aggregate strengths as features.
They developed a team strength function that was used to determine both compatibility
and strength of an input team. They divided features into two types which are individual
strengths and team features. Individual strength features are features that describe a person’s
strength without considering the team. The individual strength features comprise experi-
ence, win experience, win rate, and roles. On the other hand, the team features characterize
the compatibility of a team, consisting of team closeness and social connection. The weights
of features were optimized by a logistic regression model trained with historical project
outcomes. Because it is infeasible to compute all the combinations of teams, they used the
Max-Logit algorithm, a statistical learning-based algorithm studied in the potential game
theory, to find the approximately best team. Their findings also support the expandability
of their team formation algorithm. Our problem setting is similar to theirs; therefore, we
can apply their idea of using the Max-Logit algorithm to search for the approximately best
team. However, the scoring function and features would need to be revisited to make them
specific to the software engineering domain.
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8 Conclusions

Collaborative software development has emerged since the complexity of software systems
is increasing. Multiple roles and diverse skills of teams are required to handle those software
development tasks. In this work, we proposed a machine learning based recommendation
model called, RECAST, that can suggest software teams suitable for software development
tasks. Our approach outperforms the common baseline for a recommendation system and
the existing team recommendation approach in our empirical evaluation on three open-
source projects. The evaluation results also suggest that our approach also performs best in
both recommending whole team members with suitable roles and recommending an indi-
vidual team member for a specific role. In our future work, we aim to enhance our approach
by applying advanced techniques such as deep learning models to improve recommenda-
tion performance. We also aim to evaluate our approach to commercial setting projects and
conduct a user evaluation to study how our approach should be adopted by software devel-
opment teams. Furthermore, the impacts of software team recommendation at the ecosystem
level, in addition to the issue level, could be further investigated. Finally, geographical and
community types of software teams, along with types of connections among them could be
investigated for a possible extension of the current method.
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