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Abstract
Hyper-parameter tuning of machine learning models has become a crucial task 
in achieving optimal results in terms of performance. Several researchers have 
explored the optimisation task during the last decades to reach a state-of-the-art 
method. However, most of them focus on batch or offline learning, where data dis-
tributions do not change arbitrarily over time. On the other hand, dealing with data 
streams and online learning is a challenging problem. In fact, the higher the technol-
ogy goes, the greater the importance of sophisticated techniques to process these 
data streams. Thus, improving hyper-parameter self-tuning during online learn-
ing of these machine learning models is crucial. To this end, in this paper, we pre-
sent MESSPT, an evolutionary algorithm for self-hyper-parameter tuning for data 
streams. We apply Differential Evolution to dynamically-sized samples, requiring a 
single pass-over of data to train and evaluate models and choose the best configura-
tions. We take care of the number of configurations to be evaluated, which necessar-
ily has to be reduced, thus making this evolutionary approach a micro-evolutionary 
one. Furthermore, we control how our evolutionary algorithm deals with concept 
drift. Experiments on different learning tasks and over well-known datasets show 
that our proposed MESSPT outperforms the state-of-the-art on hyper-parameter tun-
ing for data streams.
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1 Introduction

The evolution of technology leads to increased data generation, enabling tasks 
such as predictive maintenance, healthcare monitoring or automation. Thus, 
learning and extracting knowledge from these data streams is highly interesting 
for the private and public sectors. On the other hand, the automation of machine 
learning (AutoML) has grown during the last two decades, focusing on automati-
cally adapting algorithms to specific problems. In this scope, hyper-parameter 
self-tuning has reached high interest due to improved results. Researchers used 
algorithms such as grid-search (Lerman 1980), random-search (Bergstra and Ben-
gio 2012), Bayesian Optimisation (Mockus et  al. 1978), or Evolutionary Algo-
rithms (EAs) (Bäck 1996) to optimise the hyper-parameters of their algorithms.

However, automation is usually adapted to offline processing, requiring train-
ing using offline data batches. These supervised models typically do not react to 
the appearance of concept drift (Gama et  al. 2014). In order to keep the model 
adjusted to the current data distribution, restarting the tuning process is neces-
sary every time the concept drift detector generates an alarm. Thus, online 
AutoML advances, particularly in hyper-parameter self-tuning, are highly inter-
esting. Although the number of works in this scope is very scarce, some remark-
able ideas exist. Some focus on analysing key aspects and challenges to be solved 
while working with evolving data streams (Bahri et al. 2021).

There are different options between the online tuning proposals to deal with 
concept drift. Some ideas use an approach based on traditional offline learn-
ing without attending to concept drift but adapting it to an incremental process 
(Bakhashwain and Sagheer 2020). Another option is related to restarting hyper-
parameter tuning after concept drift (Veloso et al. 2021). Finally, another interest-
ing approach uses meta-learning to update the tuning process when concept drift 
occurs. It employs previous knowledge to continue online training after this drift 
(Lacombe et al. 2021; Lobo et al. 2021).

Regarding evolution-based models for hyper-parameter optimisation, they are 
easy to adapt to online scenarios because they are not gradient-based algorithms. 
Furthermore, against other algorithms, they achieve a good trade-off between 
exploration and exploitation, which is crucial to this online training in which 
changes over data distributions could lead to high jumps into search space to 
achieve a local minimum. These evolution-based algorithms can change from one 
to another subspace by using offspring and mutations and, inside each of them, 
exploit to best solutions. Hence, some authors have adapted different evolution-
ary algorithms to online learning (Bakhashwain and Sagheer 2020; Kulbach et al. 
2022).

We propose adapting Differential Evolution (DE) to online learning, allowing 
hyper-parameter self-tuning and taking advantage of the evolutionary benefits 
stated above. We focus on some critical points inside this scope: single-pass-over 
data (instead of using offline batches), detection and reaction to concept drift, 
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and proper development of our DE algorithm to achieve fast convergence without 
losing exploration capacity. Finally, considering the importance of reducing the 
computational time and cost as much as possible, Micro-Evolutionary Single-pass 
Self-hyper-Parameter Tuning (MESSPT) could be considered a micro-evolution-
ary approach, following similar ideas to a micro-genetic algorithm which proved 
to have good results (Coello and Pulido 2001). The main advantage of adopting 
evolutionary algorithms against other optimisers which allow fast convergence, as 
Nelder-mead, is that they can lead better with the multi-local minimum problem.

The key contributions of our proposal are the following: 

1. A novel evolutionary algorithm to solve the hyper-parameter self-tuning task on 
online learning.

2. A solution to deal with concept drift when it occurs before the convergence of the 
tuning algorithm.

3. Extensive and robust evaluation of MESSPT on two different prediction tasks 
(regression and classification).

The document contains five sections. The related work (Sect. 2) focuses on hyper-
parameter optimisation algorithms. Section 3 describes the MESSPT optimisation 
algorithm. Section 4 presents the experiments and results. Finally, Sect. 5 will gather 
the significant conclusions.

2  Related work

Regarding the related work, we focus on state-of-the-art evolutionary algo-
rithms (especially DE), concept-drift detectors and online hyper-parameter tuning 
algorithms.

Evolutionary algorithms appeared in the 1960  s when some new techniques 
adapted the principles of natural selection to solve global optimisation problems. 
The number of problems they solved and the strategies included inside this scope 
make possible the existence of many surveys on evolutionary algorithms. For 
instance, Guliashki et al. (2009) review the use of EAs for multi-objective optimi-
sation; Hruschka et al. (2009) cover the EAs employment for clustering; and a last 
example, Barros et  al. (2012) made a survey of EAs for decision-tree induction. 
The first proposals (Zhan et al. 2022) inside EAs were related to Evolutionary Pro-
gramming, Evolutionary Strategies, Genetic Programming and Genetic Algorithms 
(Koza 1995; Galletly 1998). Other algorithms could be highlighted, such as Dif-
ferential Evolution (Das and Suganthan 2011), or Estimation Distribution of Algo-
rithm (Hauschild and Pelikan 2011). Nonetheless, within the high applicability of 
this type of optimisation algorithms, we can found two literature gaps that we want 
to mention: i) the scalability and efficiency problem; in this work, we are trying to 
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explore the adoption of micro-evolutionary algorithms to improve the scalability; 
and ii) dynamic and uncertain environments: in this work, we developed a solution 
to optimise a stream-base model, where the optimal solution may change over time 
or where the problem parameters are not precisely known.

Concept drift refers to the phenomenon where the statistical properties of a 
target variable change over time. In other words, it occurs when the relationships 
between the input features and the target variable evolve, leading to a degradation 
in the performance or accuracy of a predictive model. There are different types of 
concept drifts: gradual, incremental, recurrent and abrupt concept drifts. Detecting 
and adapting to concept drift is crucial for maintaining the effectiveness of machine 
learning models in dynamic and evolving scenarios.

There are several existing solutions in the literature for drift detection. One widely 
known method is the Drift Detection Method (DDM) proposed by Gama et  al. 
(2004), which monitors the learner’s error rate. It assumes that the error rate should 
decrease as more examples are observed, indicating a stationary data distribution. 
An alarm is triggered if the error rate surpasses a specific threshold calculated based 
on the error rate and standard deviation at a particular moment. Baena-Garcıa et al. 
(2006) introduced the Early Drift Detection Method (EDDM) to improve detection 
performance under gradual concept drifts. This variant utilizes running average dis-
tance and running standard deviations instead of fixed-time calculations.

Another approach is the Hoeffding Drift Detection Method (HDDM) proposed 
by Frias-Blanco et al. (2014). HDDM employs Hoeffding’s inequality and a mov-
ing average test to identify concept drifts. Sebastião and Fernandes (2017) intro-
duced the Page-Hinkley method, which employs the CUSUM control chart to detect 
changes. It calculates observed values and their mean until the current moment and 
triggers an alarm if a change in mean (either increase or decrease) surpasses a prede-
fined threshold.

Additionally, the Adaptive Windowing method (ADWIN) proposed by Bifet and 
Gavalda (2007) utilizes a dynamic-sized window that retains recent examples with 
the same data distribution. The window can be split into two sub-windows for com-
parison, and an alarm is raised if the data distribution deviates. Although this study 
focuses not on developing new drift detection methods, it aims to utilize these meth-
ods to identify data distribution changes and reinitiate the optimisation process.

On the other hand, the interest in online hyper-parameter tuning dealing with data 
streams is on the rise nowadays. Zhan et  al. (2018) and Lin et  al. (2019) adapted 
hyper-gradient-based optimisation to online learning. However, the authors do not 
consider concept drifts effects in both approaches. Imbrea (2021) applies state-of-
the-art AutoML tools to real streamed data and concludes how necessary adaptation 
to concept drift is to deal with these data. Veloso et al. (2018) proposed SPT, which 
applies Nelder-Mead (Nelder and Mead 1965) to dynamically sized windows during 
online training to detect the best configurations at each step. A refined version pro-
posed by Veloso et al. (2021), uses a single-pass algorithm (against a double-pass). 
In SSPT it is highlighted the availability of this algorithm to react to concept drifts 
in (near) real-time.
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Bahri et al. (2021) analysed foundations and challenges towards AutoML applied 
on data streams. Celik and Vanschoren (2021) studied how some AutoML methods 
(Bayesian Optimisation, random search and evolutionary computation) respond to 
different types of concept drift (abrupt, gradual, etc.). They propose six adaptation 
strategies to address the concept drift problem: two strategies based on detection and 
retraining (warm-start and from scratch); two based on detection and re-run of the 
AutoML technique (warm-start and from scratch); and finally, two strategies without 
drift detector, which are based on periodic restarting and training once. Regarding 
the hyper-parameters self-tuning, SOKNL (Sun et  al. 2022) introduces the exten-
sion of Adaptive Random Forest Regression for streaming regression problems. To 
outperform this algorithm, they consider dynamically and automatically tuning the 
k value of trees which will participate in the prediction step. To this end, k most rel-
evant leaves are selected, considering the centroids stored within each leaf.

Lacombe et  al. (2021) proposed a framework to recommend hyper-parameter 
values from previous knowledge obtained. They optimised the hyper-parameters of 
the Adaptive Random Forest (predictive classifier) and the drift detector. For this 
purpose, a multi-objective function considers the evaluation of inversely correlated 
metrics as performance vs resource consumption. Therefore, a meta-knowledge 
based model adapts the best hyper-parameters in the initialization and after each 
drift detected. Related to adapting hyper-parameters after drift detection, Lobo et al. 
(2021) made two proposals in this scope, which create a grid of possible suitable 
configurations from the current one (for instance, creating a neighbourhood) and 
evaluate them in sliding windows to select the best one to continue training.

Lastly, we will highlight two works that use evolution-based optimisation meth-
ods for online learning. Bakhashwain and Sagheer (2020) presented an online tun-
ing approach for the hyper-parameters of a deep long short-term memory model 
(LSTM) in a dynamic fashion. They applied a genetic algorithm to this hyper-
parameter optimisation problem. They focused on how their proposal outperformed 
the static approach, but they did not deal with concept drift. Kulbach et al. (2022) 
considered adapting the CASH problem to an online scenario. They used a genetic 
algorithm to adapt these hyper-parameters during training on evolving data streams. 
The difference in this work is that the learning model detects and adapts to the con-
cept drift. In our proposal, we use the drift detector to adjust the hyperparameters.

Summarising, the available online optimisation solutions can be grouped into 
static and dynamic strategies. In the first case, the solutions are restricted to periodic 
or single optimisation, and in this case, all the common optimisation strategies can 
be applied to a batch of data. This raises several issues, like which is the proper size 
for this batch of data. Can this data well represent the data distribution over the data 
stream? Another problem is when is the right moment to re-optimise the learning 
model. Using a periodic re-optimisation can be problematic. What is the right time 
interval? The second group of online optimisation methods tried to solve at least 
when is the right moment to optimise. They achieved this goal using a drift detector 
to identify degradation in the learning process and then restart the optimisation pro-
cess. However, there are limited options, and they mainly suffer from performance 
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issues in the exploration phase. This performance issue is due to the data stream’s 
dynamic nature and multiple local minimum presences. Based on this gap, we face 
the adaptation of evolutionary algorithms to data streams to minimize the problem 
identified in the exploration phase. It allows better exploration of the search space 
and escape better from the fall to local minimums. It achieves this without losing 
the exploitation of the most promising areas. It usually requires high computational 
cost, but the way in which we will configure our MESSPT proposal will lead to 
faster convergence (we will show it in Sect. 4.2). Moreover, we propose a little solu-
tion to premature concept drift appearance. This solution is based on the addition 
of a random solution at each step and it will be explained during Sect. 3.2. It allows 
better behavior for premature concept drifts as will be demonstrated in  4.2.3. In 
short, we will follow a dynamic strategy which will adapt an evolutionary algorithm 
to solve some critical weaknesses of dynamic state-of-the-art proposals.

Thus, from the literature, we can conclude the following considerations:

• Hyper-parameter self-tuning for data streams is an increasing topic in which the 
related work is relatively scarce. Thus, a proposal to outperform its state-of-the-
art is of high interest.

• Dealing with concept drifts is crucial for working on data streams. Their detec-
tion, and decisions taken after it, are one of the key points to these types of pro-
posals.

• Evolutionary algorithms have shown good performance in many problems 
related to hyper-parameter optimisation. This point, joined with their capacity 
to keep a trade-off between exploration at each step (necessary in changing data 
distributions) and exploitation (necessary to access to best solutions), made them 
optimal to be used to hyper-parameter self-tuning for data streams.

• Time consumption is critical, too, in an online training scenario. That could dif-
ficult the use of evolutionary algorithms for this purpose. It is necessary a proper 
adjustment to achieve fast convergence and not to use too big populations.

3  Micro‑evolutionary self‑hyper‑parameter tuning

The problem of hyper-parameter tuning can be formulated by: A data stream s, a 
machine learning algorithm A with its hyper-parameters Ahp (hp of the hyper-param-
eters extracted from a set of possible hyper-parameters H) and L(_, _, _) a loss met-
ric. Considering a batch of n-dimensional elements xi ∈ ℝ

d with i = 1,… , n 
extracted at each step from stream s and the target value related to each element yi , 
our objective is to find the best A∗

hp
 which satisfies that: 

A∗
hp

= argmin
hp∈H

1

n

∑n

i=1
L(Ahp, xi, yi).
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3.1  Online differential evolution optimisation algorithm

We carefully adapt DE to online learning scenarios, keeping the trade-off between 
exploitation and exploration of the search space. To this end, firstly, mutation and 
crossover operators have to be defined. The algorithm initially explores the search 
space and, after some steps, converges to a good solution. For mutation, the algo-
rithm applies the rand-to-best mutation operator. Thus, the best solution will greatly 
influence the next generation. Therefore, given a number of individuals in our popu-
lation n, an individual xi with i ∈ {1,… , n} and a generation G, we define the muta-
tion of this individual as uG

i
= xG

best
+ F(xr1 − xr2) with F ∈ [0, 2],r1 ≠ r2 and both 

not equal to i. On the other hand, classical crossover operation is used. Thus, given 
an individual xi and its mutation ui , the new individual will follow the next equation:

being r a random number (from an uniform distribution) between 0 and 1; 
CR ∈ [0, 1] ; and l ∈ {1,… ,m} (m is the total number of gens inside each individual) 
the gen that for sure will be changed at this step.

Another critical point is the number of configurations in each population and 
the number of generations or stopping criteria. In real-time training, a fast con-
vergence becomes crucial. Therefore, the number of individuals and genera-
tions should be as low as possible. Some works show that a micro-evolutionary 
approach can achieve a good performance (Coello and Pulido 2001). Consider-
ing that we need a low computational cost, we will follow a micro-evolutionary 
approach. To this end, we will use four individuals per population. Regarding the 
number of generations and stopping criteria, we have to configure our algorithm 
to achieve a fast convergence while keeping the exploration availability. With this 
objective, we applied the following vital decisions:

(1)xG+1
ij

=

{

uG
ij
, if r ≤ CR or l = j

xG
ij

otherwise

Fig. 1  Case CR = 1 . Given the ij configurations in the current generation, new individuals will be in 
colored regions depending on how lower is F. The lower F is, the closer to current best that offsprings 
will be
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• F and CR values will be initialised to medium values (i.e. 0.5 both). It allows 
starting the process focusing on ensuring exploration.

• F and CR will be auto-adapted during learning process. We will make F lower 
and CR higher after each step, which makes offspring more similar to the cur-
rent best solution (see Fig. 1).

• Regarding hyper-parameters, a new generation will include one individual 
with the current best configuration (from the old population or current off-
spring) and three individuals with random configurations. Thus, when F is 
close to 0, and CR is close to 1, we will focus offspring on the current best one 
(little influence from these three random options), but we will keep the avail-
ability of exploration by taking into account these random configurations in 
the current population.

• We consider our algorithm converges to a good solution when, given a number 
k of algorithm iterations, the differences between best solutions at each itera-
tion are tiny.

3.2  MESSPT algorithm

Our MESSPT algorithm1 consists of two operation phases, as it occurs in SSPT: the 
exploration and deployment phases. During exploration, the optimisation algorithm 
(DE) tunes the hyper-parameters trying to seek convergence to a local minimum; 
regarding the deployment phase, it involves only training the best model (found in 
the exploration phase) with new data until the detection of concept drift (Fig. 2).

Specifically, inside these two phases we can indicate some steps: 

1. Given new data from any data stream, we follow the evaluation scheme of these 
data with no extra checks or operations until a grace period is reached. During this 
evaluation phase, two types of individuals are evaluated: those that belong to the 
current population; and those that belong to the offspring population generated 

Fig. 2  Two operation phases (Veloso et al. 2021)

1 Code available: https:// gitfr ont. io/r/ user- 95159 96/ T1tZ5 eH3W9 49/ MESSPT/.

https://gitfront.io/r/user-9515996/T1tZ5eH3W949/MESSPT/
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in the previous grace period. The following steps will clarify how we generate 
these population by transitioning from one generation to another (from one grace 
period to the next). We have to remark that we look for fast convergence and a 
micro-evolutionary scheme, so as we stated above, current and offspring popula-
tions have four individuals.

2. When we reach the grace period (we have evaluated enough data), a new popu-
lation is created. Given the best individual at this step, we check whether the 
algorithm has converged. If not, a new offspring population is generated from 
this current population. In order to accelerate convergence but pay attention to 
the exploration of the search space, the creation of these two populations is based 
on mixing the best individual until the last grace period with random individuals 
from the search space. Before giving more details about how these populations 
are generated, it is essential to point out that each individual represents a wrapper, 
in which we include the ML algorithm, its configuration and its metric. Having 
indicated this, we can explain the creation of the new current and offspring popu-
lations in more detail.

• To create the new current population, we keep the best individual with no 
modifications and generate new ones. To generate these new individuals, 
each wrapper consists of the ML model of the best individual, a new ran-
dom configuration, and the metric of the best individual. Thus, we can 
keep the best model but try new configurations while saving the best one. 
The use of the best individual metric is just for consistency throughout 
the evaluations so that in each new evaluation period, all individuals start 
from the same metric. Algorithm 2 supports what we have explained in 
this paragraph.

• We cross and mutate individuals from this new population to generate the 
offspring population. Mutation and cross operators have been presented 
in the subsection before (Sect. 3.1). To create a new child, we must clar-
ify that its wrapper consists of the ML model of the best individual, the 
configuration obtained from mutation and cross operators, and the metric 
of the best individual. We have to clarify that F and CR values stated 
in subsection before (Sect. 3.1) are updated in each grace period (before 
creating the offspring) to control the faster or slower convergence of the 
algorithm. Algorithm  3 supports all the stated about how to create the 
offspring population.

3. We check if the algorithm has converged during each grace period before 
creating the offspring population. If yes, we will finish the exploration phase 
and move on to deployment. For this purpose, we keep the best individual 
(model+configuration) after convergence.

4. We continue on the deployment phase until concept drift is detected. If it occurs, 
we restart the algorithm. To this end, we create a new population by adding three 
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random individuals to this best model. Now, the wrapper of these three new indi-
viduals consists of the ML from scratch (not the fit model of the best individual 
as it was in previous steps), a random configuration, and the metric of the best 
individual to keep consistency during the evaluation. Moreover, F and CR values 
are restarted too. Thus, the deployment phase finishes and the exploration phase 
starts again. We now repeat the previous steps. Algorithm 1 summarises all the 
steps stated above.

Algorithm 1  Learning process of MESSPT
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Algorithm 2  Generate next population

Algorithm 3  Generate offspring population

Regarding the occurrence of concept drift, MESSPT, on the exploration phase, 
ignores the drift detector and continues training. It is because, during the explora-
tion phase, there are lots of oscillations until convergence, provoking a false posi-
tive on the drift detector, which could generate difficulties in finding a good con-
figuration. Related to the deployment phase, given new data instances, among all 
existing detectors indicated (see Sect. 2) we have considered the use of the ADWIN 
drift detector (Bifet and Gavaldà 2007) to analyse the model prediction and detect 
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concept drifts. If concept drift occurs, MESSPT restarts the exploration phase. Fig-
ure 3 shows the MESSPT wrapper model.

As stated, using a drift detector during the exploration phase could lead to a 
non-optimised solution or difficulties in the convergence. However, we propose to 
smooth the effect of possible concept drifts during this phase by adding a random 
individual (from scratch) at each step in our population. It means, its wrapper con-
sists of: the model from scratch; a random configuration; and the metric of the best 
individual to keep consistency. MESSPT will not consider this random individual 
for mutation and crossover. This individual will be restarted from scratch at each 
grace period (instead of keeping the current best model, as all other individuals in 
the population do). If this individual is the best at the end of the grace period, it 
could be due to two options: the first one is that our current population is full of 
weak solutions; the second one is due to a drastic change in the data distribution 
(in relation to the target), and thus, the best model is the one that has no previous 
knowledge. In either cases, if this random individual is the best after this period, a 
restart of our algorithm is necessary. We will observe the effects of this idea after 
premature concept drift (see Sect. 4.2.3) and how it has no drastic effects on non-
premature concept drifts scenarios. Algorithm 4 clarifies how the modified learning 
process (Algorithm 1) works.

Fig. 3  MESSPT - Wrapper model
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Algorithm 4  Learning process of MESSPT with little solution to premature con-
cept drift



1302 A. R. Moya et al.

1 3

4  Experiments and discussion

All algorithms used are available/implemented in river (Montiel et al. 2021) frame-
work for our experiments. The experimental setup aims to show the impact on the 
performance of our solution when compared with other proposals. Thus, addressing 
online hyper-parameter optimisation, random search (Bergstra and Bengio 2012) is 
adapted to online learning and added to our experiments; SSPT (Veloso et al. 2021) 
is included in our experiments too.

In order to get robust conclusions, we evaluated MESSPT on two prediction 
tasks, classification and regression. In Sect. 4.1 we will describe the learning algo-
rithm, hyper-parameters to optimise and the metric used to evaluate for each learn-
ing task. In the appendix we describe the datasets included in our experiments (see 
Appendix.)

We follow the Prequential evaluation scheme for our experiments, which is typi-
cally used dealing with data streams and online learning. This scheme is based on: 
giving new data from a data stream, the are used first for testing the model (or mod-
els instead) and then for training it (or them). Because of not having static data, we 
need this scheme to measure the goodness of the models (instead of the classical 
train/test offline scheme). Moreover, it allows the restarting of the training process 
when the concept drift detector emits one alarm. We collect the results attending 
to each task and dataset. After discussing these results, we will compare how the 
different proposals react to concept drift in both cases before and after convergence 
(occurrence in exploration vs deployment phase).

4.1  Learning algorithms, hyper‑parameters to optimise and metrics to evaluate

Our proposal is applicable to any supervised stream-based algorithm. Thus, for 
our experiments, we consider algorithms from different families. Firstly, for both 
machine learning tasks (classification and regression), we apply a pre-processing 
method (adaptive standard scaler) on the data streams. This pre-processing method 
relies on exponentially weighted moving averages and variance. After this pre-pro-
cessing phase, we train on the one hand, Hoeffding Tree-based models [Hoeffding 
Tree Classifier (HTC) and Hoeffding Tree Regressor (HTR) (Hulten et al. 2001)] to 
predict the value for each new data instance. This algorithm requires the optimisa-
tion of three hyper-parameters: delta, which is the significance level to compute the 
Hoeffding bound; the grace period, which is related to the number of instances to 
observe before split attempts; and tau, which is a bound to control when to break 
ties and produce splits.

On the other hand, considering other families of algorithms, Logistic Regression 
(LR) (McCullagh and Nelder 1989) and AMRules (AMR) (Duarte et al. 2016) will 
also be used within the classification and regression task, respectively. For LR, we 
tune two hyper-parameters: the value of L2 regularization; and the learing rate used 
for updating the intercept. Just in case, we have to mention that we use a generali-
zation to multi-class of LR: Softmax Regression (SR), for these datasets in which 
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classification is not binary. In these cases, we optimise both L2 regularization and 
learning rate used in the sequential optimiser. In addition, for the AMR algorithm, 
we consider the optimisation of three hyper-parameters: delta, tau and n_min. The 
first two are similar to those stated before. The last one is related to the weight that a 
rule must observe between expansion attempts.

Table 1 presents the valid ranges for each hyper-parameter. Lastly, the metric to 
evaluate the performance is the accuracy for the classification task and RMSE for 
the regression task.

4.2  Results and discussion

In this subsection we present and discuss the results obtained in our experiments 
(see dataset description at Appendix). Firstly, we briefly focus on presenting the 
computational cost of our algorithm compared with the other two optimisation algo-
rithms (SSPT and random). To this end, we carried out hypothesis testing through 
non-parametric statistical tests to determine significant differences in overall cost 
in these algorithms. Thus, Friedman’s test will analyse general differences (with 
p-value= 0.05 ) between them, and the Nemenyi posthoc test will make pairwise 
comparisons (Garcia and Herrera 2008). Friedman’s test considers differences with 
p = 0.000042 . If we observe now the results of the Nemenyi’s test (see Fig. 4):

Table 1  Summary of learning algorithms, hyper-parameteres to optimise and metric used to evaluate for 
each task

Task Algorithm Parameter Range Metric

Classification HTC Delta (0.00001, 0.0001) Accuracy
Grace period (100, 500)
Tau (0.01, 0.09)

Classification LR/SR Learning rate (0.005, 0.025) Accuracy
L2 (0.0, 0.01)

Regression HTR Delta (0.00001, 0.0001) RMSE
Grace period (100, 500)
Tau (0.01, 0.09)

Regression AMR Delta (0.00000001, 0.0001) RMSE
n_min (100, 500)
Tau (0.01, 0.09)

Fig. 4  Results of statistical tests for computational cost
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This test shows that our algorithm is worse ranked than SSPT, but no signifi-
cant differences can be stated between them regarding computational cost. We have 
achieved a computational cost which has no significant differences with SSPT and 
has them with the random option. This fact is related to the design decisions, trying 
to obtain fast convergence and evaluating the same number of models at each step as 
SSPT during the exploration phase.

After briefly pointing out the above related to computational cost, we will focus 
on how our algorithm outperforms the other options regarding performance. Thus, a 
summary of results is presented in Tables 2 and 3.

4.2.1  Discussion related to performance in classification task

We will focus firstly on results obtained using the HRC classifier. It is possible to 
observe in Table 2 that MESSPT obtains the best results in 8 datasets (and shares 
the best position in the Bank dataset). Compared directly with SSPT, the perfor-
mance of MESSPT is better or equal in most cases (only for Tweet1000 it is differ-
ent). Synthetic datasets like Agra, Sine and SEA included on the benchmark ensure 
that we have datasets with concept drifts. MESSPT is the best option in all synthetic 
datasets (Sect. 4.2.3 presents further experiments).

In addition, we will analyse inferential information. Thus, once again, a Fried-
man’s test is performed. It considers differences with p = 0.00038 . After that, 
Nemenyi’s posthoc tests will make pairwise comparisons between algorithms 
included in this subsection (see Fig. 5).

This test allows us to extract key conclusions. MESSPT (against SSPT) achieve 
significant differences with the random search option for this classification task. We 
can not consider that there are significant differences between MESSPT and SSPT. 
However, considering all stated above and Fig. 5, we can indicate (dealing with no 
significant differences) that MESSPT is the best-ranked algorithm related to perfor-
mance. Thus, our algorithm is the most recommendable option in this case.

Table 2  Table of results for the classification task

Bold values highlight the best result per dataset for each classifier

Classifier HTC LR/SR
Alg/Model Random SSPT MESSPT Random SSPT MESSPT

Agra 64.74 ± 1.85 68.66 ± 1.16 70.11 ± 0.34 62.67 ± 0.18 62.60 ± 0.20 62.91 ± 0.24

Postures 56.18 ± 2.3 60.68 ± 3.54 63.77 ± 0.56 69.45 ± 2.3 69.18 ± 0.25 69.31 ± 0.16

Bank 88.27 ± 0.67 89.18 ± 0.03 89.18 ± 0.27 89.77 ± 0.06 89.41 ± 0.19 89.82 ± 0.05

Sine 63.41 ± 2.14 80.73 ± 0.85 82.08 ± 0.08 81.62 ± 0.13 82.23 ± 0.21 82.39 ± 0.6

Tweet500 81.33 ± 0.33 82.01 ± 0.31 82.08 ± 0.33 85.89 ± 0.04 85.94 ± 0.27 85.55 ± 0.2

Tweet1000 80.43 ± 0.38 81.38 ± 0.59 80.83 ± 0.44 85.38 ± 0.03 84.81 ± 0.36 85.1 ± 0.18

Cardio 59.22 ± 0.00 60.8 ± 3.51 67.59 ± 0.00 64.88 ± 0.10 60.54 ± 0.72 64.93 ± 0.52

Nomao 86.84 ± 0.41 87.9 ± 2.54 92.88 ± 0.24 91.25 ± 0.09 91.47 ± 0.74 92.52 ± 0.17

Enron 92.91 ± 1.66 91.74 ± 0.21 94.39 ± 0.55 94.29 ± 0.2 94.38 ± 0.08 93.99 ± 0.52

SEA 82.69 ± 1.51 88.31 ± 0.54 88.72 ± 0.16 88.91 ± 0.13 88.35 ± 0.31 88.95 ± 0.08
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Now, we can consider the discussion for the LR (or SR) classifier (see again 
Table 2). MESSPT outperforms the other options in 6 of 10 cases. As it occurred 
previously, MESSPT is the best for Agra, SEA and Sine, reinforcing that it is pretty 
good for datasets in which the appearance of concept drift is sure. Once again, we 
analyse inferential information. After conducting Friedman’s test, no significant dif-
ferences are considered ( p = 0.202 ). However, we can remark that our algorithm 
(MESSPT) is the best ranked with a rank of 1.6; following our proposal, Random 
obtains a value of 2.0; and finally, SSPT gets 2.4. Thus, our algorithm is once again 
the best ranked. Random obtains better results than SSPT, which further reinforces 
the improvement of our algorithm over SSPT.

Finally, we perform a Friedman’s test considering all the results obtained with 
both algorithms to obtain general conclusions inside the classification task. It con-
siders significant differences with p = 0.002 . We carry out now the Nemenyi’s post-
hoc test, and the results are shown in Fig. 6

If we consider all results together, MESSPT obtains significant differences 
against SSPT and Random for the classification task.

4.2.2  Discussion related to performance in regression task

Regarding regression task using HTR (see Table 3), MESSPT is the best option in 
6 of 10 cases (and sharing best in 2Dplanes with random). As we did for classifi-
cation, we perform a Friedman’s test. Friedman’s test indicates that there are dif-
ferences with p = 0.039 . After that, the Nemenyi posthoc test will make pairwise 

Fig. 5  Results of statistical tests for the classification task using HTC

Fig. 6  Results of statistical tests for the classification task (global results)

Fig. 7  Results of statistical tests for regression task using HTR
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comparisons (Fig. 7). Attending to this figure, unless no significant differences can 
be stated between MESSPT and SSPT, MESSPT is best ranked than SSPT.

Related to the regression task using AMRules (see Table 3 again), MESSPT is 
the best option in 5 of 10 cases. Comparing by pairs, MESSPT is better than Ran-
dom in 7 of 10 cases and better than SSPT in 7 of 10 cases.

Once again, we perform a Friedman’s test to compare these algorithms. As a 
result of this test, no differences are considered ( p = 0.202 ). However, it ranks the 
algorithms as follows: Random obtains a rank of 2.4; SSPT obtains a value of 2.0; 
MESSPT gets 1.6. Thus, MESSPT continues to be the best-ranked for AMR.

Finally, to extract a general conclusion for the regression task, we will compare 
the results of Random, SSPT and MESSPT generally for both HTR and AMR. In 
this scope, we carry out again a Friedman’s test. It considers differences between 
them with p = 0.019 . Thus, we analyse these differences with the Nemenyi test (see 
Fig. 8)

Related to this test, we could indicate that, for regression tasks, MESSPT 
achieves better performance than Random and better or equal to SSPT. Thus, we can 
reinforce that MESSPT’s behaviour is better than Random’s and SSPT algorithms.

To sum up, our algorithm is always the best choice regarding performance among 
all the self-tuning algorithms compared. Moreover, as stated above, its computa-
tional cost is better than the random’s cost and similar to the SSPT one.

4.2.3  How does our algorithm react to concept drift?

An interesting point dealing with online learning is related to a good reaction of 
the algorithms when concept drift appears. To make this analysis, we will show a 
graph performance obtained immediately after concept drift. To clarify the plot, 
performance at each point is the mean performance of a window, equivalent to 2 
grace periods. In all cases, we will show this window with 1000 points (grace period 
defined to 500 data instances). Finally, before showing each graphic, we will con-
sider datasets in which we can control the concept drift appearance. For this pur-
pose, we force drifting on all data. We focus firstly on the classification task. To this 
end, we consider Agrawal, SEA and Sine datasets. In all these datasets, we deal with 
the occurrence of abrupt concept drift, which allows to compare the behaviour of 
these three algorithms to this type of concept drift.

We will analyse two different situations: the behaviour of algorithms when this 
concept drift occurs in earlier stages (SSPT and MESSPT have not converged at 
this stage); and when this concept drift occurs in later stages (both have converged). 

Fig. 8  Results of statistical tests for regression task
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Regarding behaviour when concept drift occurs earlier, Fig. 9 shows performance 
since the concept drift occurrence until the equivalent of 5 grace periods.

All these figures are related to the classification task by using the HTC classi-
fier. In all of them, we can observe how MESSPT is the one which better reacts to 
this abrupt concept drift. Considering that this case is an early concept drift and 
the algorithm has not converged, the main reason for this advantage is the proper 
exploring of the search space and the restart step proposed in our algorithm.

Now, we will focus on convergence in a later stage (SSPT and MESSPT have 
already converged). Figure 10 shows the performance close to the abrupt concept 
drift appearance at this stage.

We can observe how dealing with abrupt concept drift at this stage, SSPT and 
MESSPT are the most prominent options. They both deal properly with concept 
drift appearance. MESSPT showed a good performance in earlier stages, and now, 
it presents good behaviour again. Compared to SSPT, MESSPT reacts better in this 
late stage (the MESSPT accuracy curve is above SSPT one). Thus, we have pro-
posed a more robust algorithm for the classification task to deal with abrupt concept 
drift appearance.

Regarding regression (by using the HTR regressor), we have included Friedman 
as the only dataset in which we can control the appearance of concept drift. Once 
again, we will analyse behaviour in both earlier and later stages. We have two criti-
cal points for the Friedman dataset in which concept drift appears. We will show the 
reaction to concept drift when both appear before convergence (see Fig. 11). Against 

Fig. 9  Behavior when concept drift occurs early
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the abrupt concept drift stated before, we observe now how the different proposals 
react to another type of concept drift: the recurrent concept drift:

Related to recurrent concept drift appearance, after the first critical point, our 
proposal does not perform better than others (in fact, taking into account small 

Fig. 10  Behavior when concept drift occurs later

Fig. 11  Behavior when both concept drifts occurs early in Friedman
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differences, we can consider it the worst). However, after the second, ours is the 
algorithm which better reacts to concept drift.

Regarding concept drift occurrence after convergence of SSPT and MESSPT 
(late stage), we show performance in Fig. 12.

In both cases, MESSPT shows better behaviour. Thus, MESSPT reacts better 
for this dataset than all other proposals for late recurrent concept drift. MESSPT 
reacts well to recurrent concept drift after MESSPT convergence.

We can conclude from this discussion related to the regression task (and recurrent 
concept drift) that, generally, MESSPT reacts well to recurrent concept drift, being 
this reaction remarkable when recurrent concept drift appears after convergence.

To sum up this block, we have proved the better reaction of our algorithm to two 
different types of concept drift (in both cases of study, early and late concept drifts) 
than other approaches included in our experimental section (random and SSPT), 
which is crucial in online learning.

5  Conclusions and future research directions

We have presented MESSPT, an online solution based on DE for the automated opti-
misation of hyper-parameters. We have properly adapted DE to online learning, pro-
posing a micro-evolutionary option which allows feasible computational cost during 
this online learning process. Strong conclusions related to the Prequential evaluation 
are obtained from our experimental section, pointing out our proposal as a better 
option than others such as SSPT or random search: is the best option regarding per-
formance, and no significant differences exist with SSPT related to computational 
cost. Moreover, firm conclusions are obtained regarding how our algorithm reacts to 
concept drift, proving (empirically) that it offers a good reaction to its occurrence. 
Thus, we have proposed a robust online solution for self-hyper-parameter tuning for 
data streams.

Our evolutionary algorithm counts with the strength of allowing better search 
space exploration than other algorithms (on account of how evolutionary algorithms 
work). However, there is a limitation since our proposal is a micro-evolutionary 
algorithm. It has a faster convergence, but the exploration is lower than in non-
micro-evolutionary approaches. Moreover, our algorithm, by definition, may have 

Fig. 12  Behavior when concept drift occurs later in Friedman dataset



1311

1 3

Improving hyper-parameter self-tuning...

difficulties treating categorical hyperparameters. We can adapt it to do it properly, 
but other evolutionary algorithms could deal better with these parameters. Taking 
both limitations into account, the immediate future research direction (considering 
as the basis that we have proved the good behaviour of an evolutionary algorithm 
to this end) is the adaptation of other evolutionary algorithms that solve these prob-
lems (as non-micro genetic algorithms) to allow fast convergence and not too high 
computational cost as we have achieved. There are not too many proposals for this 
hyper-parameter self-tuning for data streams task. Therefore, adapting another opti-
misation algorithm for this problem may also be interesting.

Appendix: Datasets

For the classification task, we used the following benchmark datasets:

• Agra (Agrawal et al. 1993): Offers a stream generator in which its possible to 
change the concept drift by changing a classification function with ten possible 
values. It contains nine features, and 60000 inputs are generated, with a concept 
drift in position 30000 and a binary target variable.2

• Bank (Moro et al. 2014): It includes data from marketing campaigns of a Por-
tuguese banking institution. They try to discover if a term deposit will be sub-
scribed to by the clients or not (binary target variable). It contains 17 attributes 
and 45211 instances.3

• Sine (Gama et  al. 2004): It is a sine generator. It generates four relevant fea-
tures (between 0-1), with two relevant for classification and two optionally added 
as noise. It offers four classification functions to label the output. Changing 
these classification functions allows the creation of abrupt concept drift. 50000 
instances are generated, with abrupt concept drift positioned since position 
25000. Again, it is a dataset with two labels (binary target variable).

• Tweet 500 (Bahri et al. 2020a): It consists of 100000 tweets of 500 attributes and 
two possible classes.4

• Tweet 1000 (Bahri et al. 2020a): It consists of 100000 tweets of 1000 attributes 
and two possible classes.5

• Postures (Gardner et al. 2014): Decision-related to 5 hand postures (multiclass 
target variable). To this end, a motion capture camera system recollects informa-
tion from each posture.6 A ’0’ value replaces missing values.

2 https:// river ml. xyz/0. 14.0/ api/ datas ets/ synth/ Agraw al/.
3 http:// archi ve. ics. uci. edu/ ml/ datas ets/ Bank+ Marke ting.
4 https:// github. com/ marou abahri/ CS- ARF.
5 https:// github. com/ marou abahri/ CS- ARF.
6 https:// archi ve. ics. uci. edu/ ml/ datas ets/ MoCap+ Hand+ Postu res.

https://riverml.xyz/0.14.0/api/datasets/synth/Agrawal/
http://archive.ics.uci.edu/ml/datasets/Bank+Marketing
https://github.com/marouabahri/CS-ARF
https://github.com/marouabahri/CS-ARF
https://archive.ics.uci.edu/ml/datasets/MoCap+Hand+Postures
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• Nomao (Candillier and Lemaire 2012): It collects data about places (name, 
phone, location) from many sources. The classification consists of predicting if 
data belong to 2 spots.7

• Enron (Bahri et al. 2020b): A cleaned version of a large set of emails aimed to 
detect fraud. This version has 1702 instances and 1000 attributes.8

• SEA (Street and Kim 2001): Each instance consists of two integer attributes 
randomly chosen between 0 and 10. The result of adding them will suppose 
each instance to belong to one or another class. It allows abrupt concept drift 
by changing the conditions related to the threshold that separates both classes. 
We include 50000 instances and the appearance of concept drift after 25000 of 
them.9

• Cardio (Dua and Graff 2017): Fetal heart rate (FHR) and uterine contraction 
(UC) features measured on cardiotocograph classified by expert obstetricians. 
We try to predict the FHR pattern class code (1 to 10). It counts with 2126 
instances and 23 real attributes.10

For the regression task, we adopted the following benchmark datasets:

• 2DPlanes (Breiman et al. 1984): It is a synthetic dataset that contains 10 attrib-
utes. For our experiments, we generated 50000 synthetic data instances.

• Ailerons11: It contains 13750 instances and 41 attributes.
• Friedman (Ikonomovska et al. 2011): It is a synthetic dataset composed of 10 

features between 0 and 1 uniformly sampled. We use a river option to trigger two 
global Recurring Abrupt drift points. We generate 70000 instances and choose 
25000 and 50000 as these drift positions.12

• Sgemm (Ballester-Ripoll et al. 2019): It measures the running time of a matrix 
product, measuring the future output to predict new products. It contains 14 
attributes and 241600 instances.13

• Transcoding (Deneke et  al. 2014): Transcoding time prediction (related to 
online video). It contains 20 attributes regarding online video characteristics to 
this end.14

• Appliances (Candanedo et  al. 2017): It includes measurements from a low-
energy building obtained with 10 min periods and related to 4.5 months. Appli-
ances energy prediction is the target. It includes 19735 and 29 attributes.15

8 https:// github. com/ marou abahri/ CS- kNN/ tree/ master/ datas ets.
9 https:// river ml. xyz/0. 14.0/ api/ datas ets/ synth/ SEA/.
10 https:// archi ve. ics. uci. edu/ ml/ datas ets/ Cardi otoco graphy.
11 https:// github. com/ renat opp/ arff- datas ets/ blob/ master/ regre ssion/ 2dpla nes. arff.
12 https:// river ml. xyz/0. 14.0/ api/ datas ets/ synth/ Fried manDr ift/.
13 http:// archi ve. ics. uci. edu/ ml/ datas ets/ SGEMM+ GPU+ kernel+ perfo rmance.
14 https:// archi ve. ics. uci. edu/ ml/ datas ets/ Online+ Video+ Chara cteri stics+ and+ Trans coding+ Time+ 
Datas et.
15 https:// archi ve. ics. uci. edu/ ml/ datas ets/ Appli ances+ energy+ predi ction.

7 https:// github. com/ marou abahri/ CS- ARF/ tree/ master/ datas ets.

https://github.com/marouabahri/CS-kNN/tree/master/datasets
https://riverml.xyz/0.14.0/api/datasets/synth/SEA/
https://archive.ics.uci.edu/ml/datasets/Cardiotocography
https://github.com/renatopp/arff-datasets/blob/master/regression/2dplanes.arff
https://riverml.xyz/0.14.0/api/datasets/synth/FriedmanDrift/
http://archive.ics.uci.edu/ml/datasets/SGEMM+GPU+kernel+performance
https://archive.ics.uci.edu/ml/datasets/Online+Video+Characteristics+and+Transcoding+Time+Dataset
https://archive.ics.uci.edu/ml/datasets/Online+Video+Characteristics+and+Transcoding+Time+Dataset
https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction
https://github.com/marouabahri/CS-ARF/tree/master/datasets
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• Bias (Cho et  al. 2020): It contains meteorological forecast data and auxil-
iary geographical variables to make a temperature prediction. It presents 7750 
instances with 25 attributes collected in Seoul, South Korea, in the summer.16

• Metro17: It measures Metro Interstate Traffic Volume. It contains variables that 
impact the volume, like hourly weather features. It has 48204 and 9 numerical 
attributes.

• Tetuan (Salam and El Hibaoui 2018): It includes nine numerical attributes and 
52,417 instances in order to predict the power consumption of Tetouan city.18

• Garment (Rahim et  al. 2021): It is focused on productivity prediction of gar-
ment employees. It includes 1197 and 15 numerical attributes.19
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