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Abstract
Random walk with restart (RWR) is a widely-used measure of node similarity in 
graphs, and it has proved useful for ranking, community detection, link prediction, 
anomaly detection, etc. Since RWR is typically required to be computed separately 
for a larger number of query nodes or even for all nodes, fast computation of it is 
indispensable. However, for hypergraphs, the fast computation of RWR has been 
unexplored, despite its great potential. In this paper, we propose ARCHER, a fast 
computation framework for RWR on hypergraphs. Specifically, we first formally 
define RWR on hypergraphs, and then we propose two computation methods that 
compose ARCHER. Since the two methods are complementary (i.e., offering rela-
tive advantages on different hypergraphs), we also develop a method for automatic 
selection between them, which takes a very short time compared to the total running 
time. Through our extensive experiments on 18 real-world hypergraphs, we demon-
strate (a) the speed and space efficiency of ARCHER, (b) the complementary nature 
of the two computation methods composing ARCHER, (c) the accuracy of its auto-
matic selection method, and (d) its successful application to anomaly detection on 
hypergraphs.
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1  Introduction

Given a pair of nodes on a large-scale hypergraph, how can we rapidly and effi-
ciently calculate their proximity based on random walk with restart? How useful 
are such proximities for data-mining applications?

A hypergraph is a data structure consisting of a set of nodes and a set of hyper-
edges, and each hyperedge is a set composed of any number of nodes. Note that 
a hypergraph where each hyperedge joins any number of nodes is a generaliza-
tion of a (pairwise) graph where each edge always joins two nodes. Due to this 
increased expressiveness, hypergraphs are widely used to model real-world group 
relations, including (two or more) researchers who co-author a paper, items pur-
chased together, and tags co-appearing in a post (Benson et  al. 2018; Do et  al. 
2020; Lee et al. 2023; Comrie and Kleinberg 2021).

Random walk, a concept widely used for graphs, naturally applies to hyper-
graphs. Random walk is a stochastic process that assumes an imaginary surfer 
moving randomly between nodes in a graph; and for instance, PageRank (Brin and 
Page 1998) utilizes this concept to model a random surfer navigating a web graph 
(i.e., a network of hyperlinks between web pages) and quantifies the importance 
of web pages based on the stationary distribution of the surfer’s visits. A simple 
hypergraph extension (Zhou et al. 2006) assumes a random surfer that repeats (a) 
choosing an incident hyperedge with probability proportional to edge weights and 
(b) choosing an incident node uniformly at random. However, its expressiveness 
is limited in that such random walk can always be reduced to random walk on an 
undirected graph, with some choice of weights (Chitra and Raphael 2019). Chitra 
and Raphael (2019) proposed a more expressive one that may not be reduced to 
random walk on any undirected graph. It assumes a random surfer who uses edge-
dependent node weights (EDNW) when choosing incident nodes, and due to its 
expressiveness, it has been employed for clustering (Hayashi et al. 2020), prod-
uct-return prediction  (Li et al. 2018), object classification  (Zhang et al. 2018b), 
anomaly detection (Lee et al. 2022), etc.

On graphs, the concept of random walk with restart (RWR) (Tong et al. 2007b) 
has also been widely used. RWR measures the stationary probability distribution 
of random walk when we assume a random surfer who restarts at a query node 
with a certain probability, and the distribution is naturally interpreted as the rel-
evance of each node with respect to the query node. Due to its ability to consider 
multi-faceted relationships between nodes, RWR has been extensively utilized 
in graph mining applications including personalized ranking (Tong et al. 2007b; 
Jung et  al. 2016), anomaly detection  (Sun et  al. 2005), subgraph mining  (Tong 
et  al. 2007a), graph neural networks  (Gasteiger et  al. 2019a), and graph aug-
mentation  (Gasteiger et al. 2019b; Lee and Jung 2023). Since RWR is typically 
required to be computed separately for a larger number of query nodes or even for 
all nodes, fast computation of it is indispensable. Therefore, many computation 
methods have been developed (Wang et  al. 2019a; Hou et  al. 2021), and many 
of them rely on preprocessing the input graph (Tong et al. 2007a; Fujiwara et al. 
2012; Shin et al. 2015; Jung et al. 2017).
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However, RWR on hypergraphs has been underexplored, while an extension 
of RWR to hypergraphs is straightforward with many potential applications. One 
potential reason is the lack of fast and scalable computation methods of it. For 
example, the previous work  (Chitra and Raphael 2019) has relied on naive power 
iteration, which becomes impractical when dealing with a large number of query 
nodes on large-scale hypergraphs. Since random walk on a hypergraph consists of 
two-step transitions (i.e., from node to hyperedge, and from hyperedge to node), we 
cannot directly employ existing fast and scalable computation methods for RWR on 
a graph whose transition is just from node to node. Similar to graphs, RWR scores 
on hypergraphs vary across different query nodes, and computing RWR scores for a 
large number of query nodes is necessary for applications. Thus, dedicated efforts 
are necessary to develop fast computation methods can offer low costs per query 
node, even if it involves incurring a one-time preprocessing cost.

In this work, we propose ARCHER (Adaptive RWR Computation on Hypergraphs), 
a fast and space-efficient framework for computing RWR on real-world hypergraphs. 
After formally defining RWR on hypergraphs, we develop two computation methods for 
it based on two different (simplified) representations of hypergraphs. These two compu-
tation methods are complementary, and they offer relative advantages on different hyper-
graphs. Thus, we further propose an automatic selection method that chooses one com-
putation method based on a simple but effective goodness criterion whose computation 
takes a very short time compared to the total running time.

Through extensive experiments on 18 real-world hypergraphs, we substantiate 
the speed and space efficiency of ARCHER and its two key driving factors: (a) the 
complementarity between the two computation methods composing ARCHER and 
(b) the accuracy of its automatic selection method. In addition, we demonstrate a 
successful application of RWR on hypergraphs and ARCHER to anomaly detection.

Reproducibility The source code and datasets used in this paper are available at 
https://​github.​com/​jaewa​n01/​ARCHER.

The rest of the paper is organized as follows. In Sect. 2, we introduce preliminar-
ies and related work. In Sect. 3, we describe our approaches for computing RWR on 
hypergraphs. In Sect. 4, we introduce an application of RWR on hypergraphs for the 
purpose of anomaly detection. After sharing experimental results in Sect. 5, we pre-
sent conclusions and future directions in Sect. 6.

2 � Preliminaries and related work

In this section, we introduce some preliminaries and related studies on random 
walks on (hyper-)graphs and their applications.

2.1 � Notations

We describe basic notations frequently used in this paper where related symbols are 
summarized in Table 1.

https://github.com/jaewan01/ARCHER
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(Hyper)graph A hypergraph GH = (V, E,�, �) consists of a set V of nodes, 
a set E of hyperedges, the weight �(e) of hyperedge e, and the weight �e(v) of 
node v depending on hyperedge e. Each hyperedge e ∈ E is represented by a non-
empty subset of an arbitrary number of nodes, i.e., e ∈ 2V . We let n = |V| and 
m = |E| be the numbers of nodes and hyperedges, respectively. Similarly, a graph 
G = (V ,E,w) consists of a set V of nodes, a set E of edges, and edge weights w.

Matrix representation Consider a one-to-one mapping f between V and 
{1,⋯ , n} and a one-to-one mapping g between E and {1,⋯ ,m} . For any matrix 
X ∈ ℝ

n×m , we denote its (f(v), g(e))-th entry Xf (v)g(e) simply by Xve . Similarly, for 
any matrix Y ∈ ℝ

m×n , we let Yev denote Yg(e)f (v) , and for any Z ∈ ℝ
n×n , we let Zvv 

denote Zf (v)f (v) . The matrix W ∈ ℝ
n×m is the hyperedge-weight matrix whose entry 

Wve = �(e) if v ∈ e , and 0 otherwise. The matrix R ∈ ℝ
m×n is the node-weight 

matrix whose entry Rev = �e(v) if v ∈ e , and 0 otherwise. In the adjacency matrix 
A ∈ ℝ

|V|×|V| of any graph G, Auv = w(e) if there is an edge between nodes u ∈ V  
and v ∈ V  ; otherwise, Auv = 0.

Table 1   Symbols

Symbol Definition

G
H
= (V, E,�, �) Hypergraph where V and E are sets of nodes and hyperedges,

�(e) is the weight of hyperedge e, and
�
e
(v) is the weight of node v depending on hyperedge e

n = |V| Number of nodes
m = |E| Number of hyperedges
W ∈ ℝ

n×m Hyperedge-weight matrix of G
H

 and W̃ is row-normalized
R ∈ ℝ

m×n Node-weight matrix of G
H

 and R̃ is row-normalized
G = (V ,E,w) Graph where V is the node set, E is the edge set, and

w(e) is the weight of edge e
GC Clique-expanded graph from G

H

G⋆ Star-expanded graph from G
H

E(v) Hyperedges incident to node v, i.e., E(v) = {e ∈ E ∶ v ∈ e}

d̄(v) Unweighted degree of node v, i.e., d̄(v) = |E(v)|
|e| Size of hyperedge e
�(v) Degree of hyperedge e, i.e., �(v) =

∑
v∈e �e(v)

s Query node for RWR​
c Restart probability of RWR where 0 < c < 1

c⋆ Modified restart probability, i.e, c⋆ = 1 −
√
1 − c

q ∈ ℝ
n RWR query vector w.r.t query node s

r ∈ ℝ
n RWR score vector w.r.t. query node s

HC ∈ ℝ
n×n

HC = I
n
− (1 − c)P̃

⊤ where P̃ = W̃R̃

H⋆ ∈ ℝ
N×N

H⋆ = I
N
− (1 − c⋆)S̃

⊤ where S̃ =
(0 W̃

R̃ 0

)
 and N = n + m
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Hypergraph expansions A hypergraph can be converted into graphs using 
clique- and star-expansion. Clique expansion (Sun et  al. 2008) constructs a graph 
GC = (V,EC) from GH by replacing each original hyperedge with a clique composed 
of the nodes in the hyperedge, i.e., EC = {(u, v)|u, v ∈ e, e ∈ E} . Notably, the adja-
cency matrix of GC has the same sparsity pattern as P = WR , as illustrated in Fig. 1.

Star expansion (Zien et al. 1999) constructs a graph G⋆ = (V⋆,E⋆) by aggregat-
ing nodes and hyperedges as a new set of nodes (i.e., V⋆ = V ∪ E ), and edges are 
created between each pair of incident node and hyperedge (i.e., 
E⋆ = {(v, e)|v ∈ e, v ∈ V, e ∈ E} ). The sparsity pattern of the adjacency matrix of 
G⋆ is the same as S =

(0 W

R 0

)
 , as illustrated in Fig. 1.

2.2 � Random walk with restart on graphs

We introduce the concept of random walk with restart (RWR) on a graph and exist-
ing methods for computing RWR scores.

Concept Given a graph G and a query node s, random walk with restart (RWR) 
aims to obtain a vector r of proximities from s to each node on the graph (Tong et al. 
2007b). Specifically, it assumes a random surfer that starts from node s and takes 
one of the following actions at each step:

•	 Action (1) Random walk. The surfer randomly moves to one of the neighbors 
from the current node with probability 1 − c . The probability of selecting each 
neighbor is proportional to the edge weight between the current node and the 
neighbor.

Fig. 1   Clique- and star-expansions of an example hypergraph and their sparsity patterns



1227

1 3

Random walk with restart...

•	 Action (2) Restart. The surfer jumps back to the query node s with restart prob-
ability c.

The stationary probability of the surfer visiting a node u is denoted by ru . That is, the 
RWR score vector r of all nodes w.r.t. s (a.k.a. single-source RWR scores) is the unique 
solution of the following equation:

where Ã is the row-normalized adjacency matrix of G, and c is called restart prob-
ability. An RWR query is denoted by q ∈ ℝ

n , which is a unit vector whose s-th entry 
is 1. The resulting RWR score vector for the query q is denoted by r ∈ ℝ

n . The 
choice of the query node s determines a specific RWR query q , leading to a distinct 
RWR score vector r . Note that the surfer often goes back to the query node s with 
probability c, and thus the proximities are spatially localized around s (Nassar et al. 
2015), i.e., scores of nodes tightly connected to s are high, while those of distant 
nodes are low.

In the following paragraphs, we introduce several existing methods for exact single-
source RWR calculation on graphs, with a focus on iterative methods and preprocess-
ing methods. Note that there also exist approximate methods (Tong et al. 2007b; Wu 
et al. 2021; Lin et al. 2020; Wang et al. 2019b), and those for identifying only the top-k 
nodes with the highest scores (Hou et al. 2021; Wei et al. 2018; Wang et al. 2017).

Iterative methods This approach repeatedly updates RWR scores from the initial 
ones until convergence. Among various methods, power iteration has been widely uti-
lized due to its simplicity, which is described as follows:

•	 Power iteration: Page et al. (1999) utilized the power iteration method that repeats 
updating r based on the following equation: 

 where r(i) denotes r at the i-th iteration. It is repeated until r converges. If 
0 < c < 1 , r is guaranteed to converge to a unique solution (Langville and Meyer 
2006).

Although the iterative approach does not require any computational cost for preproc-
essing, it exhibits expensive query processing cost (i.e., computational cost per RWR 
query q ) due to the repeated matrix–vector calculation for each query.

Preprocessing methods This approach aims to quickly calculate r for a given query 
node s based on preprocessed results. From Eq. (1), we can represent the problem as 
solving the following linear system:

where In is an identity matrix of size n, H = In − (1 − c)Ã
⊤
∈ ℝ

n×n is called the 
random-walk normalized Laplacian matrix with probability 1 − c , and each column 
of H−1 is the RWR scores w.r.t. each query node. Note that the inverse of H always 
exists since its transpose is a strictly diagonally dominant matrix (Horn and Johnson 

(1)r = (1 − c)Ã
⊤
r + cq,

(2)r
(i)
← (1 − c)Ã

⊤
r
(i−1) + cq,

(3)
(
In − (1 − c)Ã

⊤
)
r = cq ⇔ Hr = cq ⇔ r = cH−1

q,
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2012). However, preprocessing H−1 for large graphs is impractical due to its expen-
sive computational costs (spec., it requires O(n3) time and O(n2) space). To over-
come the issues, preprocessing approaches focus on precomputing intermediate sub-
matrices related to H−1 and computing RWR scores rapidly based on them. These 
preprocessed matrices are computed only once and can be reused for multiple query 
nodes while reducing the computational cost per query.

As described later, preprocessing approaches designed for graphs can also be uti-
lized to accelerate RWR computation on hypergraphs within our proposed frame-
work ARCHER. In this paper, we consider the following state-of-the-art methods 
for computing RWR on graphs, while our framework can be used with any preproc-
essing-based approaches, such as (Tong et al. 2007a; Fujiwara et al. 2012):

•	 BEAR: Shin et  al. (2015) developed BEAR, a block elimination approach that 
efficiently preprocesses sub-matrices related to H−1 . For that, they utilized a node 
reordering technique called SlashBurn1  (Kang and Faloutsos 2011) using the 
hub-and-spoke structure to reorder and partition the matrix H . After that, they 
applied the block elimination (Boyd et al. 2004) to the partitioned sub-matrices 
for computing r.

•	 BePI: Jung et al. (2017) proposed BePI, a scalable and memory-efficient method 
for computing r . Although BEAR achieves a fast speed for computing an RWR 
query, its scalability for larger graphs is limited due to the high cost of the inver-
sion of a sub-matrix inside the block elimination. To resolve the issue, they 
first utilized SlashBurn1 to reorder the matrix and then incorporated an iterative 
approach into the block elimination by replacing the sub-matrix inversion with 
an iterative linear solver.2

Note that these two methods have distinct advantages. BePI is more space-efficient 
and thus can be applied to larger graphs, while BEAR processes each RWR query 
faster on small datasets. Our experimental results show that the same distinct advan-
tages are observed also in RWR computation on hypergraphs (see Figs. 3 and 4).

Other methods to address the substantial cost of the computation of H−1 
include employing graph sparsification (i.e., reducing non-zeros of H ). For exam-
ple, Zhang et  al. (2018a) developed a spectral sparsification method for directed 
graphs, demonstrating a strong correlation between the RWR scores computed 
from the sparsified graph and those obtained from the original graph. Another 
approach involves approximating H as an Eulerian Laplacian matrix, followed by 

1  Let k and n denote the hub selection ratio and the number of nodes, respectively. SlashBurn removes 
⌈kn⌉ high-degree nodes (called hubs) from a graph so that it is split into the giant connected component 
(GCC) and remaining disconnected components (called spokes), and it recursively repeats this process 
on the GCC. The hubs and spokes are then utilized to construct its reordering permutation (refer to its 
paper for details). It is used in both BEAR and BePI.
2  As an iterative solver, BePI employs GMRES (Trefethen and Bau 2022), a Krylov subspace method, 
with a preconditioner such as incomplete LU decomposition where the iterative solver converges if its 
residual is less than error tolerance �.
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the application of a directed Laplacian system-solving algorithm. From the obtained 
values, approximated values of the original solution can be derived in nearly linear 
time (Cohen et al. 2018, 2016). These methods differ from BEAR and BePI in that 
they yield an approximate solution by transforming H into a computationally effi-
cient form. We plan to explore the incorporation of such approximate computation 
algorithms into our framework as a part of our future research directions.

Applications RWR has been extensively utilized in diverse graph mining tasks 
based on node-to-node similarities on graphs. Sun et  al. (2005) designed normal-
ity scores based on RWR to detect abnormal nodes in a bipartite graph. Tong et al. 
(2007a) used RWR to measure the goodness of a match between a query graph and 
a subgraph. Zhu et al. (2013) employed RWR for measuring the relevance between a 
query image and the data images. Jung et al. (2016, 2019) extended RWR to signed 
RWR in order to calculate personalized ranking scores in a signed graph. Gasteiger 
et  al. (2019a) incorporated RWR into graph neural networks (GNNs) to prevent 
aggregated embeddings from being over-smoothed. The RWR score matrix has been 
used for augmenting static graphs (Gasteiger et al. 2019b) and dynamic graphs (Lee 
and Jung 2023) to improve the performance of GNNs.

2.3 � Random walk on hypergraphs

In this section, we introduce several previous random walk models and other related 
studies on hypergraphs.

Random walk models on hypergraphs A typical random walk on a hyper-
graph (Zhou et al. 2006) repeats (a) selecting an incident hyperedge with probability 
proportional to edge weights and (b) selecting an incident node uniformly at ran-
dom. Chitra and Raphael (2019) extended the concept of random walk to hyper-
graphs with edge-dependent node (i.e., vertex) weights (EDNW). Given a hyper-
graph GH = (V, E,�, �) where �e(v) is the weight of node v depending on edge e, the 
random walk on GH is defined as follows:

•	 Action (1-1) For the current node u, the surfer selects a hyperedge e containing 
node u with probability proportional to �(e).

•	 Action (1-2) The surfer moves to node v selected from one of the nodes in the 
hyperedge e with probability proportional to �e(v).

In the above model, we set �e(u) = 0 if u ∉ e . If each node has the same node weight 
for all of its incident hyperedges (i.e., �e(v) = �e� (v) , ∀e ≠ e� ∈ E ), it is called a 
hypergraph with edge-independent node weights (EINW). As described in  (Chitra 
and Raphael 2019), a random walk on a hypergraph with EINW is equivalent to that 
on an undirected clique-expanded graph from the hypergraph with some choice of 
weights; thus, its expressiveness is limited. On the other hand, a random walk on a 
hypergraph with EDNW is more expressive in that it may not be equivalent to that 
on any undirected clique-expanded graph.
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It should be noticed that even when random walk (with restart) on a hypergraph 
can be reduced to that on a graph, it may not be computationally optimal to calculate 
the equivalent random walk (with restart) on a graph. Thus, regardless of this (in)
equivalence, it can be useful to develop fast computation methods for random walk 
(with restart) on hypergraphs.

Applications Hayashi et al. (2020) employed the random walk to devise a flex-
ible framework for clustering hypergraph data. Li et al. (2018) proposed a local 
graph cut algorithm using the random walk for product-return prediction on a 
hypergraph. Zhang et  al. (2018b) utilized the random walk for dynamic hyper-
graph structure learning. Lee et al. (2022) proposed HashNWalk which exploits 
the concept of random walk for detecting anomalous hyperedges in hyperedge 
streams. Note that these works utilized the concept of random walks on hyper-
graphs with EDNW, but they did not incorporate the concept of restart. Chitra 
and Raphael (2019) conducted a theoretical analysis of random walks on hyper-
graphs with EDNW. The authors briefly mentioned that extending this concept 
to incorporate restart is straightforward, but they did not provide further details. 
In their work, they utilized RWR for ranking problems on hypergraphs by using 
naive power iteration, which becomes impractical when dealing with many query 
nodes on large-scale hypergraphs.

3 � Proposed framework

In this section, we propose ARCHER (Adaptive RWR Computation on Hyper-
graphs), a novel framework for rapid and space-efficient computation of random 
walk with restart (RWR) scores on a hypergraph. As depicted in Fig. 2, ARCHER 
consists of three components: (a) star-expansion-based computation methods, (b) 
clique-expansion-based computation methods, and (c) automatic selection methods. 
In ARCHER, for a given hypergraph GH , one between star-expansion-based and 
clique-expansion-based computation methods is automatically selected based on the 
number of non-zeros in their resulting matrices (Component 3 in Sect. 3.4). Then, 
to leverage preprocessing techniques for fast RWR computation on graphs (e.g., 
BEAR and BePI), the RWR problem on the hypergraph is converted into that on 

Fig. 2   Overview of ARCHER, which consists of (1) a star-expansion-based RWR computation method, 
(2) a clique-expansion-based RWR computation method, and (3) a preprocessing (including automatic 
selection) method
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the star-expanded graph (Component 1 in Sect. 3.2) or that on the clique-expanded 
graph (Component 2 in Sect. 3.3). After that, the RWR scores with respect to (poten-
tially a large number of) query nodes are computed rapidly by employing a preproc-
essing-based approach. Note that our framework, ARCHER, can be equipped with 
any preprocessing-based approaches for RWR computation on graphs.

3.1 � Random walk with restart on hypergraphs

First of all, we formally describe the random walk with restart (RWR) model on 
hypergraphs as follows:

Definition 1  (RWR on a hypergraph) Given a hypergraph GH = (V, E,�, �) and a 
query node s, a random surfer starts from node s. Then, the surfer takes one of the 
following actions at each step:

•	 Action (1) Random walk. The surfer performs the following random walk on GH 
with probability 1 − c.

–	 Action (1-1) For the current node u, the random surfer selects a hyperedge e 
containing node u with probability proportional to �(e).

–	 Action (1-2) The surfer moves to node v selected from one of the nodes in the 
hyperedge e with probability proportional to �e(v).

•	 Action (2) Restart. The surfer jumps back to the query node s with restart prob-
ability c.

The stationary probability of the surfer visiting a node u is denoted by ru , and the 
RWR score vector r ∈ ℝ

n×1 of all nodes w.r.t. s in GH is the unique solution of the 
linear system:

where 0 < c < 1 is the restart probability of a random surfer, q is the RWR query 
vector, which is the unit vector whose s-th element is 1, and (W̃R̃)⊤ is the transition 
matrix of the random walk on GH where W̃ and R̃ are defined as follows:

•	 (Regarding Action 1-1) W̃ = D
−1
V
W ∈ ℝ

n×m is the row-normalized hyperedge-
weight matrix where W̃⊤ indicates the transition from a node to a hyperedge. W 
is the hyperedge-weight matrix, and DV = ����(W1m) is the node degree diago-
nal matrix where 1m ∈ ℝ

m×1 is a column vector of ones.
•	 (Regarding Action 1-2) R̃ = D

−1
E
R ∈ ℝ

m×n is the row-normalized node-weight 
matrix, where R̃⊤ indicates the transition from a hyperedge to a node. R is the 
node-weight matrix, and DE = ����(R1n) is the hyperedge degree diagonal 
matrix where 1n ∈ ℝ

n is a column vector of ones.

(4)
r = (1 − c)R̃

⊤
W̃

⊤
r

���������������
Random walk

+ cq,
���
Restart
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Although the RWR score vector r on GH can be obtained by repeatedly iterating 
Eq. (4) based on the power iteration method, such an iterative approach is not satis-
factory due to its high computational cost per query node, as discussed in Sect. 2.2. 
As quickly computing RWR scores for a large number of query nodes is necessary 
for many applications, in the following sections, we propose two RWR computation 
methods that provide low cost per query node by preprocessing an input hypergraph, 
which incurs a one-time cost.
Algorithm 1   Star-expansion-based Method for RWR on Hypergraphs

1: function Preprocess(R, W, c)
� Input: node-weight matrix R, hyperedge-weight matrix W, restart probability c

� Output: set Θ� of preprocessed matrices

2: compute DV and DE
3: construct S̃ from W̃ and R̃ where R̃ = D−1

E R and W̃ = D−1
V W

4: compute H� = IN − (1− c�)S̃� where c� = 1−
√
1− c and N = n+m

5: compute a set Θ� of preprocessed matrices from H� using
a preprocessing method (e.g., BEAR or BePI)

6: return Θ�

7: function Query(s, Θ�)
� Input: query node s, set Θ� of preprocessed matrices

� Output: RWR score vector r w.r.t s in hypergraph GH

8: create q� whose s-th entry is 1 and the others are 0
9: compute r� by querying q� based on the preprocessed matrices in Θ�

10: decompose r� into rV and rE
11: compute r = c

c�
rV

12: return r

3.2 � Component 1: Star‑expansion‑based Method

We first propose a star-expansion-based method that computes the RWR scores on the 
graph G⋆ star-expanded from the hypergraph GH . For this purpose, we construct a new 
transition matrix S̃ as follows:

where S̃ ∈ ℝ
N×N is also row-normalized as W̃ and R̃ are row-normalized, and 

N = n + m . Note that the sparsity pattern of S̃ is the same as that of S which is 
the star-expanded graph G⋆ from GH as described in Sect. 2.1 (see the example in 
Fig. 1).

Our star-expansion-based method aims to calculate RWR scores on the new transi-
tion matrix S̃ through the following equation:

(5)S̃ =

[
0 W̃

R̃ 0

]
,
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where c⋆ is a modified restart probability from c (i.e., c⋆ = 1 −
√
1 − c ), r⋆ ∈ ℝ

N×1 
is the RWR score vector on S̃ , and q⋆ is a modified query vector from q defined as 
follows:

where rV and rE denote the RWR score vectors on nodes and hyperedges, respec-
tively. Once we obtain rV , the target RWR score vector r is easily converted from rV 
according to the following theorem:

Theorem 1  (Star Expansion Equality) Suppose r is the RWR score vector on a hyper-
graph GH in Eq. (4), and rV is the sub-vector of r⋆ , which is the RWR score vector on 
a star-expanded graph G⋆ of S̃ in Eq. (6). Then, the following equality holds:

where c⋆ = 1 −
√
1 − c is the modified restart probability, which ranges from 0 to 1 

if 0 < c < 1.

Proof  We rewrite Eq. (6) using the definitions of S̃ , r⋆ and q⋆ as follows:

Then, rV and rE are represented as:

By plugging in Eq. (8) into Eq. (7), we obtain the following equation:

where P̃ = W̃R̃ . Note that c⋆ = 1 −
√
1 − c by its definition, satisfying 

(1 − c⋆)
2 = (1 − c) . Then, Eq. (9) is represented as follows:

(6)r⋆ = (1 − c⋆)S̃
⊤
r⋆ + c⋆q⋆,

r⋆ =

[
rV

rE

]
and q⋆ =

[
q

0

]
,

r =
c

c⋆
rV,

[
rV

rE

]
= (1 − c⋆)

[
0 R̃

⊤

W̃
⊤

0

][
rV

rE

]
+ c⋆

[
q

0

]
.

(7)rV = (1 − c⋆)R̃
⊤
rE + c⋆q,

(8)rE = (1 − c⋆)W̃
⊤
rV.

(9)
rV = (1 − c⋆)

2
R̃

⊤
W̃

⊤
rV + c⋆q

⇔ rV = (1 − c⋆)
2
P̃
⊤
rV + c⋆q,
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where HC = IN − (1 − c)P̃
⊤ , and r = cH−1

C
q . This proves the claim r = c

c⋆
rV . 	�  ◻

Theorem 1 indicates that the RWR score vector r of Eq. (4) can be obtained by solv-
ing the RWR problem on the star-expanded graph in Eq. (6). Since Eq. (6) has the same 
mathematical form as Eq.  (1), we can apply preprocessing-based approaches (e.g., 
BEAR and BePI), which are based on the following linear system:

where H⋆ = IN − (1 − c⋆)S̃
⊤
∈ ℝ

N×N , and IN is an identity matrix of size N. Note 
that H⋆ is invertible, as shown below, and thus the linear system on H⋆ can be 
solved using preprocessing methods.

Theorem 2  (Invertibility of H⊤
⋆
 ) If 0 < c < 1 , H⋆ is invertible.

Proof  We first show that H
⊤
⋆
 is strictly diagonally dominant. Note that 

H
⊤
⋆
= IN − (1 − c⋆)S̃ by its definition, and each entry of S̃ is non-negative. For each 

row i, |H⊤
⋆ii
| = 1 because S̃ii = 0 as shown in Eq. (5). For non-diagonal entries of the 

i-th row of H⊤
⋆
 , 
∑

j≠i �H
⊤
⋆ij
� = 1 − c⋆ since S̃ is row-normalized. Thus, the following 

inequality holds for every row i:

where 0 < c⋆ < 1 for a given c, indicating H⊤
⋆
 is strictly diagonally dominant.

The strict diagonal dominance of H⊤
⋆
 implies its invertibility (Horn and Johnson 

2012), which, in turn, implies the invertibility of its transposed matrix, H⋆ . 	�  ◻

Algorithm 1 summarizes the star-expansion-based method for computing the 
RWR score vector r w.r.t. a query node s in GH . The algorithm involves preproc-
essing and query phases as it adopts a preprocessing-based approach (e.g., BEAR 
or BePI). Note that the preprocessing phase is run once, while the query phase is 
run for each query node. In the preprocessing phase, the method first constructs 
the transition matrix S̃ (lines 2 and 3). Then, it computes H⋆ (line 4) and preproc-
esses it by applying a preprocessing-based approach (line  5), resulting in a set 
�⋆ of preprocessed matrices. Whenever a user submits a specific query node s, 
the query phase computes the RWR score vector r w.r.t. s. Initially, its creates q⋆ 
(line 8), followed by the computation of r⋆ (line 11) based on Eq. (6). This pro-
cess employs the query phase of the preprocessing method using the preprocessed 

rV = (1 − c)P̃
⊤
rV + c⋆q

⇔ rV = c⋆

(
In − (1 − c)P̃

⊤
)−1

q

⇔ rV = c⋆H
−1
C
q =

c⋆

c
r,

H⋆r⋆ = c⋆q⋆,

∑

j≠i

|H⊤
⋆ij
| = 1 − c⋆ < 1 = |H⊤

⋆ii
|,
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results �⋆ . Based on Theorem 1, the algorithm finally computes the target RWR 
score vector r (lines 10 and 11).

3.3 � Component 2: Clique‑expansion‑based Method

We propose a clique-expansion-based method that computes the RWR scores on the 
graph GC clique-expanded from the hypergraph GH . It explicitly construct the transi-
tion matrix P̃ = W̃R̃ by which Eq. (4) becomes

where the sparsity pattern of P̃ is the same as that of the adjacency matrix of the 
clique-expanded graph GC from GH as described in Sect.  2.1 (see the example in 
Fig. 1).

Based on Eq.  (10), we apply a preprocessing approach to the graph of P̃ clique-
expanded from GH , which solves the following linear system:

where HC = In − (1 − c)P̃
⊤
∈ ℝ

n×n and In is the identity matrix of size n. Note that 
HC is also invertible, which is proven in the following theorem:

Theorem 3  (Invertibility of HC ) If 0 < c < 1 , HC is invertible.

Proof  We first show that H⊤
C
 is strictly diagonally dominant. H⊤

C
= In − (1 − c)P̃ by 

its definition and each entry of P̃ is non-negative. For each row i, 
|H⊤

Cii
| = 1 − (1 − c)P̃ii . Since P̃ is row-normalized, 

∑
j≠i �P̃ij� = 1 − P̃ii . Then, the fol-

lowing inequality holds for every row i:

where 0 < c < 1 . This indicates that H⊤
C
 is strictly diagonally dominant.

The strict diagonal dominance of H⊤
C
 implies its invertibility (Horn and Johnson 

2012), which, in turn, implies the invertibility of its transposed matrix, HC . 	�  ◻

The clique-expansion-based method is summarized in Algorithm 2, which consists 
of preprocessing and query phases. In the preprocessing phase, it first explicitly builds 
the transition matrix P̃ ∈ ℝ

n×n (lines 2 and 3). Then, the algorithm computes the matrix 
HC (line 4). By applying a preprocessing method, it processes HC and obtains the pre-
processed results �C (line 5). In the query phase, it creates the RWR query vector q 
(line 8) and then computes the RWR score vector r by querying q using the preproc-
essed results �C (line 9). The query phase is initiated whenever a user submits a query 
node.

(10)r = (1 − c)P̃
⊤
r + cq,

HCr = cq,

∑

j≠i

|H⊤
Cij
| = (1 − c)(1 − P̃ii) = (1 − (1 − c)P̃ii) − c < 1 − (1 − c)P̃ii = |H⊤

Cii
|,
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The time and space complexities of both clique- and star-expansion-based meth-
ods can be directly derived from the complexities of RWR computation methods (e.g., 
BEAR (Shin et al. 2015) and BePI (Jung et al. 2017)) and the definitions of clique- and 
star-expansions. When employing BePI as the RWR computation method, although the 
complexities involve many terms related to graph structures, empirically, processing 
time, space cost, and query time are largely influenced by the number of edges after 
expansion, specifically, ���(HC) and ���(H⋆) in clique- and star-expansion-based 
computations, respectively. For detailed empirical results, refer to Appendix E. This 
empirical tendency is utilized in the subsequent subsection for the automatic selection 
between clique- and star-expansion-based methods.

Algorithm 2   Clique-expansion-based Method for RWR on Hypergraphs

1: function Preprocess(R, W, c)
� Input: node-weight matrix R, hyperedge-weight matrix W, restart probability c

� Output: set ΘC of preprocessed matrices

2: compute DV and DE
3: compute P̃ = W̃R̃ where W̃ = D−1

V W and R̃ = D−1
E R

4: compute HC = In − (1− c)P̃�

5: compute a set ΘC of preprocessed matrices from HC using
a preprocessing method (e.g., BEAR or BePI)

6: return ΘC

7: function Query(s, ΘC)
� Input: query node s, set ΘC of preprocessed matrices

� Output: RWR score vector r w.r.t s in hypergraph GH

8: create q whose s-th entry is 1 and the others are 0
9: compute r by querying q based on the preprocessed matrices in ΘC

10: return r

3.4 � Component 3: Automatic selection method

As described in Sects.  3.2  and 3.3, our clique- and star-expansion-based methods 
allow for fast RWR computation on the hypergraph GH by leveraging a preprocess-
ing approach. Interestingly, the preprocessed matrices H⋆ and HC have very different 
characteristics. For example, HC may have a large number of non-zeros because each 
hyperedge e is replaced with a clique of all nodes in e, which can exert a bad effect 
on scalability as preprocessed results are densified. On the other hand, H⋆ ∈ ℝ

N×N 
can be relatively sparse, but it is of large dimension. Recall that N = n + m where n 
and m are the numbers of nodes and edges, respectively. As a result, the relative time 
and space required to preprocess H⋆ and HC heavily depends on datasets. For exam-
ple, if n ≪ m , preprocessing a small matrix such as HC ∈ ℝ

n×n can be computation-
ally advantageous even though it is dense.
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Thus, we further develop an automatic selection method for choosing one 
between clique- and star-expansion-based methods so that the chosen method brings 
out the best performance of a preprocessing method. Various data statistics of a 
hypergraph can be considered to design a criterion based on which one method is 
chosen. Among them, our strategy is to utilize the number of non-zeros of a matrix 
to be preprocessed under a hypothesis that the performance of a preprocessing 
method is likely to be affected by non-zero entries as it exploits the sparsity of the 
preprocessed matrix for efficiency. We empirically prove the effectiveness of our 
strategy compared to various statistics in Sect. 5.5.

Based on the criterion, our framework selects the star-expansion-based method if 
the following predicate satisfies:

where ���(⋅) returns the number of non-zeros of an input matrix. Otherwise, our 
method selects the clique-expansion-based method. Note that counting ���(HC) and 
���(H⋆) takes a very short time compared to the total running time mostly con-
sumed by non-trivial operations, such as reordering and matrix multiplications of 
the preprocessing methods (Shin et al. 2015; Jung et al. 2017). While the empirical 
computation time is already very small, further optimization allows us to calculate 
Eq. (11) in O(

∑
e∈E �e�2) time with O(n) extra space, as explained in Appendix D.

Algorithm 3   ARCHER: Adaptive RWR Computation on Hypergraphs

1: function Preprocess(R, W, c)
� Input: node-weight matrix R, hyperedge-weight matrix W, restart probability c

� Output: set Θ of preprocessed matrices

2: set nnz(HC) to nnz(WR) by Equation (D1)
3: set nnz(H�) to n+m+ 2

∑
v∈V d̄(v) by Equation (D2)

4: if nnz(HC) > nnz(H�) then
5: Θ ← Preprocess(R, W, c) of Algorithm 1 � star expansion

6: else
7: Θ ← Preprocess(R, W, c) of Algorithm 2 � clique expansion

8: return Θ

9: function Query(s, Θ)
� Input: query node s, set Θ of preprocessed matrices

� Output: RWR score vector r w.r.t s in hypergraph GH

10: if Θ is from the star-expansion-based method then
11: r ← Query(s, Θ) of Algorithm 1 � star expansion

12: else
13: r ← Query(s, Θ) of Algorithm 2 � clique expansion

14: return r

(11)���(HC) > ���(H⋆)
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3.5 � Ultimate framework: ARCHER

By putting all of the components together, we develop ARCHER, our ultimate 
framework for fast computation of RWR on hypergraphs, and the procedure in it is 
summarized in Algorithm 3. In the preprocessing phase, ARCHER first computes 
���(HC) and ���(H⋆) (lines 2 and 3), which are utilized to select either clique- or 
star-expansion-based methods. Based on the criterion in Eq. (11), ARCHER chooses 
one of the methods and executes the corresponding preprocessing step (lines 4-7) to 
obtain a set � of preprocessed matrices. In the query phase, for each query node s, 
ARCHER performs the query step depending on the selected method (lines 10-13), 
using the preprocessed matrices � , to compute the RWR score vector r.

It is important to note that our framework ARCHER can be equipped with any 
pre-processing-based RWR computation method (e.g., BEAR and BePI), which 
is used inside Algorithms  1 and 2, and the total time and space complexity of 
ARCHER depends on the chosen method. Different methods offer distinct advan-
tages, as demonstrated empirically in Sect. 5.

4 � Application to anomaly detection

In this section, we present an application of RWR scores on hypergraphs for the 
purpose of anomaly detection. The empirical effectiveness of this approach is dem-
onstrated in Sect. 5.6.

Given a hypergraph, this application aims to detect anomalous hyperedges that 
deviate from ordinary group interactions. Inspired from (Sun et  al. 2005), which 
uses RWR for anomaly detection on graphs, we measure a normality score of a 
hyperedge based on relevance scores provided by hypergraph RWR. Our intuition is 
that if a hyperedge e is normal, the relevance scores between any pair of nodes in e 
should be high. Specifically, we define the normality score ns(e) as follows:

where ru→v is the RWR score of the node v w.r.t. the query node u. In other words, 
it is the average pair-wise relevance scores between nodes in the hyperedge e. If the 
normality score is low, then the hyperedge is considered anomalous. Note that we 
need a fast computation method such as ARCHER for this task because it requires 
RWR scores for many query nodes.

More applications We have conducted a study on another application focused on 
the task of node retrieval, which is described in Appendix B.

ns(e) =
1

|e|(|e| − 1)

∑

u∈e

∑

v∈e�{u}

r
u→v
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5 � Experiments

In this section, we evaluate the performance of ARCHER and compare it with other 
baselines for computing RWR on hypergraphs. We aim to answer the following 
questions from the experiments:

•	 Q1. Preprocessing Time (Sect. 5.2). How long do ARCHER and the two compu-
tation methods composing it take for preprocessing?

•	 Q2. Space Cost (Sect. 5.3). How much memory space do they require for their 
preprocessed results?

•	 Q3. Query Time (Sect. 5.4). How quickly do they process RWR queries?
•	 Q4. Automatic Selection Method (Sect. 5.5). How precisely does our automatic 

selection strategy decide an appropriate computation method for a given hyper-
graph?

•	 Q5. Application to Anomaly Detection (Sect. 5.6). Can we achieve more accu-
rate anomaly detection on hypergraphs using RWR scores, compared to existing 
approaches?

5.1 � Experimental settings

We describe our experimental settings, including machines, methods, datasets, and 
parameters.

Machines All experiments are conducted on a workstation with AMD Ryzen 9 
3900X and 128GB memory.

Methods For experiments evaluating the computational performance, we compare 
ARCHER with using always one expansion method (star- or clique-expansion-based 
method). ARCHER and the baselines are equipped with BEAR (Shin et al. 2015) or 
BePI (Jung et al. 2017), state-of-the-art preprocessing methods for RWR on graphs. 
We also compare ARCHER with the power iteration methods on star- and clique-
expanded graphs in Eqs.  (6)  and  (10), respectively. We use our MATLAB imple-
mentation of the power iterations, and we use the source code of the authors for 
BEAR3 and BePI,4 which are also implemented in MATLAB.

For anomaly detection, we consider the following two hypergraph-based anom-
aly-detection methods as baseline approaches:

•	 LSH-A  (Ranshous et  al. 2017): For each incoming hyperedge, it computes the 
approximate frequency, which represents the number of previous hyperedges that 
are similar to the new one, in the aspect of common nodes shared. This is used 
to measure the unexpectedness of the hyperedge; intuitively, the hyperedge can 
be considered unexpected if it is novel and significantly different from previous 
hyperedges (i.e., low frequency). The approximation scheme is efficiently imple-

3  https://​datal​ab.​snu.​ac.​kr/​bear
4  https://​datal​ab.​snu.​ac.​kr/​bepi

https://datalab.snu.ac.kr/bear
https://datalab.snu.ac.kr/bepi
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mented in hyperedge streams by using Locality Sensitive Hashing (LSH) (Raja-
raman and Ullman 2011). Specifically, it computes the MinHash signature with 
kh hash functions and performs LSH with b bands. Then it scores the hyperedge 
with the similarity between the signature of previous hyperedges. LSH-A takes 
O(kh�e� + b + b⌈mb

B
⌉ + 1) time per hyperedge, and we use our Python implemen-

tation of LSH-A.
•	 HashNWalk (Lee et al. 2022): In HashNWalk, each hyperedge is hashed into M 

buckets called supernodes using each of kh hash functions. Based on the transi-
tion probability (i.e., random walk of length 1), HashNWalk calculates the prox-
imity between supernodes. Whenever a new hyperedge emerges, HashNWalk 
updates the proximity between the supernodes in it and compares it with the 
previous proximity to compute the anomaly score of the hyperedge. In scoring, 
HashNWalk incorporates the hyperparameter � to control the degree of emphasis 
placed on recent hyperedges. HashNWalk takes O(kh|e| + kh min(M, |e|)2) time 
per hyperedge, and we use the official implementation of HashNWalk in C++.5

Table 2   Data statistics of real-world hypergraphs

n and m are the numbers of nodes and hyperedges, respectively.  The average and maximum sizes of 
hyperedges are denoted by avg

e∈E|e| and max
e∈E|e| , respectively. The density is defined by m/n, and the 

overlapness (Lee et al. 2021) is defined by Σ
e∈E|e|∕n

Dataset n m avg
e∈E|e| max

e∈E|e| Density Overlapness

EEN 143 10,883 2.47 37 76.12 188.21
EEU 998 234,760 2.39 40 234.09 559.80
SB 294 29,157 7.96 99 99.17 789.62
HB 1,494 60,987 20.47 399 40.82 835.79
WAL 88,860 69,906 6.59 25 0.79 5.81
TRI 172,738 233,202 3.12 85 1.35 4.21
AM 55,700 105,655 8.12 555 1.90 15.41
YP 25,252 25,656 18.2 649 1.02 18.50
TW 81,305 70,097 25.2 1,205 0.86 21.75
COH 1,014,734 1,812,511 1.32 925 1.75 2.32
COG 1,256,385 1,590,335 2.80 284 1.26 3.53
COD 1,924,991 3,700,067 2.79 280 1.92 5.35
THU 125,602 192,947 1.80 14 1.54 2.76
THM 176,445 719,792 2.24 21 4.08 9.13
THS 2,675,955 11,305,343 2.23 67 4.22 9.56
ML1 3,533 6,038 95.3 1,435 1.71 162.83
ML10 10,472 69,816 84.3 3,375 6.67 562.02
ML20 22,884 138,362 88.1 4,168 6.05 532.93

5  https://​github.​com/​geon0​325/​HashN​Walk

https://github.com/geon0325/HashNWalk
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Datasets We conduct extensive experiments on eighteen real-world hypergraphs   
(Benson et  al. 2018; Sinha et  al. 2015; Yin et  al. 2017; Leskovec et  al. 2007; 
Amburg et al. 2020; Chodrow et al. 2021; Fowler 2006a, b; Ni et al. 2019; McAuley 
and Leskovec 2013; Harper and Konstan 2015), whose statistics are summarized 
in Table 2. We provide details of each dataset in Appendix A. The source code and 
datasets used in this paper are available at https://​github.​com/​jaewa​n01/​ARCHER.

Parameters. For the experiments of preprocessing and query costs, we set the 
restart probability c to 0.05, which has been widely used in previous work  (Tong 
et al. 2007b; Shin et al. 2015; Jung et al. 2017). For BEAR, we set the hub selec-
tion ratio k of the reordering method to 0.001 as in (Shin et al. 2015). For BePI, we 
set the hub selection ratio k of the reordering method to 0.2, which is used for large 
graphs in (Jung et al. 2017) (see Footnote 1 for the usage of k). The error tolerance 

Fig. 3   Preprocessing costs for various calculation methods of RWR on hypergraphs in terms of (a) pre-
processing time and (b) space usage. For preprocessing times, the error bars indicate ±1 standard devia-
tion. However, in many datasets, the error bars are so small that they are practically invisible. As shown 
in the figures, using ARCHER requires up to 137.6× less preprocessing time and 16.2× less space than 
using always one expansion method. Results are omitted if the corresponding methods ran out of time 
( > 12 hours) or out of memory ( > 128 GB) during preprocessing

https://github.com/jaewan01/ARCHER
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� for the power iteration and BePI is set to 10−9 . We set the time and memory limits 
for preprocessing to 12 hours and 128 GB, respectively.

We also perform careful hyperparameter tuning for the aforementioned anom-
aly detection methods. For LSH-A, we measure performance with different num-
bers of bands in LSH signatures ( b ∈ {2, 4, 8} ) and the length of LSH signatures 
( l ∈ {2, 4, 8}) and report the best result obtained. For HashNWalk, we adopt a simi-
lar setting as described in (Lee et al. 2022). Specifically, we set the hyperparameter 
� in the kernel function to 0.98. Additionally, we conduct a search for the optimal 
values of the number of hash functions kh and the number of buckets M in the fol-
lowing ranges: (a) kh ∈ {10, 15, 20} and M ∈ {10, 20, 30} for the email-Enron data-
set (b) kh ∈ {8, 10, 12} and M ∈ {60, 80, 100} for the senate-bills dataset, and (c) 
kh ∈ {8, 10, 12} and M ∈ {100, 150, 200} for the house-bills dataset. We report the 
best result achieved for each dataset.

5.2 � Preprocessing time

We evaluate the performance of ARCHER in terms of preprocessing time. BEAR 
and BePI are used as preprocessing techniques. For each method, we report the 
average preprocessing time of 10 experiments. Note that the iterative methods are 
excluded in this experiment because they do not require preprocessing. Figure  3a 
shows the preprocessing time of all tested methods on 18 real-world hypergraphs.

We first compare ARCHER with BEAR and each expansion-based method with 
BEAR. ARCHER with BEAR preprocesses hypergraphs up to 4.2× faster than 
applying BEAR to the star-expanded graph (see the results on the SB dataset) and up 
to 2.4× faster than applying BEAR to the clique-expanded graph (see the results on 
the ML20 dataset). Note that the clique-expansion-based method with BEAR cannot 
preprocess medium-sized datasets such as WAL and AM because clique expansion 
produces a too-dense matrix that BEAR cannot handle. For larger datasets such as 
TW, COG, COD, and THS, all methods with BEAR fail due to their limited scal-
ability. On the other hand, ARCHER with BePI provides better scalability for pre-
processing, and it successfully preprocesses all the datasets, showing up to 137.6× 
faster than applying BePI to the clique-expanded graph (see the results on the TW 
dataset) and up to 4.5× faster than applying BePI to the star-expanded graph (see the 
results on the EEU dataset).

These results imply the complementary nature of the clique-expansion-based 
methods and the star-expansion-based methods. Specifically, they exhibit relative 
advantages on different hypergraphs, and these advantages are significant. This 
underscores the importance of making careful choices between the two methods, 
as ARCHER does. Our results regarding space cost and query time in the following 
subsections further reinforce the importance of this selection, although we do not 
repeat the same discussion within those subsections.
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5.3 � Space cost

We analyze the space cost of ARCHER with each preprocessing technique com-
pared to that of other methods. The iterative methods are excluded from the com-
parison because they do not produce preprocessed results beyond the size of the 
original data. We measure the memory size for storing preprocessed results in MB. 
Figure 3b shows the space cost of each method. ARCHER with BEAR uses up to 
16.2× less memory than applying BEAR to the clique-expanded graph (see the 
results on the ML20 dataset) and up to 9.6× less memory than applying BEAR to 
the star-expanded graph (see the results on the SB dataset). Furthermore, the space 
cost of ARCHER with BePI is up to 12.3× less than applying BePI to the clique-
expanded graph (see the results on the TW dataset) and up to 9.0× less than apply-
ing BePI to the clique-expanded graph (see the results on the SB dataset).

5.4 � Query time

We examine the computational efficiency of ARCHER in processing RWR queries, 
compared to other baselines, including power-iteration methods. For every method, 
we measure the average query processing time for the same 30 query nodes. Figure 4 
shows the results on 18 real-world hypergraphs. ARCHER with BEAR answers the 
RWR queries up to 16.3× faster than applying BEAR to the star-expanded graph 
(see the results on the EEU dataset) and up to 1.3× faster than applying BEAR to 
the clique-expanded graph (see the results on the ML20 dataset) For ARCHER with 
BePI, its query time is up to 218.8× less than applying BePI to the star-expanded 
graph (see the results on the EEU dataset) and up to 4.0× faster than applying BePI 
to the clique-expanded graph (see the results on the AM dataset). Note that regard-
less of the preprocessing techniques used, ARCHER significantly outperforms both 
power-iteration methods.

Fig. 4   Query time for various calculation methods of RWR on hypergraphs. The error bars indicate ±1 
standard deviation. Using ARCHER takes up to 218.8× less query time than using always one expansion 
method. Results are omitted if the corresponding methods ran out of time ( > 12 hours) or out of memory 
( > 128 GB) during preprocessing
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The experimental results regarding preprocessing and query costs imply that we 
should consider different aspects of the preprocessing methods when choosing one 
of them. If query cost matters more than preprocessing cost, BEAR is a good choice 
because its query speed is faster than that of BePI, especially on small datasets, as 
shown in Fig. 4. On the other hand, BePI is required for scalable RWR computation 

(a) Proposed relative ratio nnz(HC)/nnz(H�) (17/18 correct)

(b) Density (13/18 correct)

(c) Overlapness (12/18 correct)

(d) Average hyperedge size (16/18 correct)

Fig. 5   Effectiveness of various data statistics in selection between the star- and clique-expansion-based 
methods. BePI is used as the preprocessing approach. Each dashed line indicates the best threshold for 
the corresponding criterion. Note that, when using our proposed criterion, we can choose the better 
expansion method for 17 (out of 18) datasets, while the number of wrong choices increases when we use 
the other criteria
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on larger hypergraphs because BEAR fails to process such hypergraphs, as dis-
cussed in Sect. 5.2.

5.5 � Automatic selection method

We investigate the effectiveness of the proposed criterion in our automatic selection 
method in ARCHER, compared to other potential criteria based on major statistics 
of hypergraphs, including average hyperedge size, density, and overlapness  (Lee 
et al. 2021), which are summarized in Table 2.

To evaluate the effectiveness of each criterion, we set the ground-truth label 
between star- and clique-expansion methods for each dataset depending on which 
expansion method leads to a shorter preprocessing time of BePI. The reason for 
labeling the datasets in this manner is that only BePI successfully preprocesses all 
the datasets, and the preprocessing time of each method is distinctly different, as 
shown in Fig. 3a. Our method selects the star method if ���(HC)∕���(H⋆) > 1 ; oth-
erwise, it picks the clique method, i.e., the threshold for our suggested method is 1 
in Fig. 5a. For the other criteria, we selected the threshold values that maximize the 
number of correct selections. Specifically, we set the threshold for density in Fig. 5b 
to 1.26, the threshold for overlapness in Fig. 5c to 15.41, and the threshold for the 
average size of hyperedges in Fig. 5d to 3.12.

Figure  5 demonstrates that, when using our proposed criterion, we can choose 
the better expansion method for 17 (out of 18) datasets, while the number of wrong 
choices increases when we use the other criteria. This result empirically confirms 
our hypothesis that the performances of preprocessing methods heavily depend on 
the number of non-zeros in the preprocessed matrix.

We further analyze the correlation between two ratios: (1) the ratio of ���(HC) 
and ���(H⋆) , and (2) the ratio of (preprocessing, space, and query) costs of the 
clique- and star-expansion-based methods, across various datasets when BePI is 
used. In Fig. 6, we observe a strong positive correlation between the non-zero-count 

Fig. 6   Correlation between two ratios on a natural logarithmic scale: (1) the ratio of ���(HC) and 
���(H⋆) , and (2) the ratio of the costs of the clique- and star-expansion-based methods in terms of a pre-
processing time, b space cost, and c query time. BePI is used as the preprocessing technique. We report 
the Pearson correlation coefficient for each scatter plot
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ratio and the cost ratio for each aspect of computation. This indicates that the cost in 
each aspect is closely related to the number of non-zero entries in the matrix being 
processed. Additionally, the positioning of data points in each plot demonstrates the 
effectiveness of our suggested method selection. Data points located in the lower 
left area indicate the correct selection of the clique method, while those in the upper 
right area indicate the correct selection of the star method. This demonstrates that 
our suggested selection approach is effective for most of the tested datasets.

5.6 � Application to anomaly detection

In this section, we evaluate the effectiveness of RWR scores in detecting anomalies 
on hypergraphs. Refer to Sect. 4 for a detailed procedure on how we utilize RWR 
scores for anomaly detection.

Settings We conduct this experiment on the EEN (email-Enron), SB (senate-
bills), and HB (house-bills) datasets, which are small enough for all compared meth-
ods to terminate. As the original datasets do not contain anomalous hyperedges, we 
synthetically generate them by injecting unexpected hyperedges following (Lee et al. 
2022). Specifically, we randomly select a hyperedge e ∈ E , and then create a hyper-
edge by replacing half nodes in e with random nodes. We repeat this process until t 
hyperedges are generated.

(a) AUROC on EEN (b) AUROC on SB (c) AUROC on HB

(d) MAP on EEN (e) MAP on SB (f) MAP on HB

Fig. 7   Anomaly detection performance on hypergraphs in terms of AUROC and MAP. RWRs using 
weights, especially EDNW, are more accurate than the other methods, including RWR on unweighted 
clique-expanded graphs
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We consider three models of RWR on hypergraphs: 1) RWR using EDNW, 2) 
RWR using EINW, and 3) naive RWR. Note that the datasets used in the experi-
ment do not contain explicit weights. For EDNW, we make the weights to be edge-
dependent by setting 𝛾e(v) = d̄(v)−𝛽 , where d̄(v) denotes the unweighted degree of 
node v. That is, we adopt the principle that, since high-degree nodes are present in 
multiple hyperedges, they are likely to have a reduced impact within each hyper-
edge. We then set � = 0.5 and �(e) = 1 (refer to Appendix  C for the selection of 
� = 0.5 ). In the case of EINW (edge-independent node weights), we set �e(v) = 1 
and �(e) = 1 . To check the effect of those weights, we further compare naive RWR 
that computes RWR scores on the unweighted clique-expanded graph from the input 
hypergraph. We vary the restart probability c from 0.1 to 0.9 by 0.1.

We compare those RWR models with LSH-A and HashNWalk, anomaly detec-
tion methods on hypergraphs. While they are originally designed for hypergraphs 
with timestamps, the used datasets are static, and thus we assign a random times-
tamp to each hyperedge (spec., we randomly order the hyperedges and use their 
orders as timestamps) when testing them.

Results Fig.  7 demonstrates the performance of each model for detecting the 
anomalous (unexpected) hyperedges in terms of AUROC and MAP. As shown in the 
figure, RWR using EDNW performs best, implying that it is beneficial to utilize the 
edge-dependent node weights. Even RWR using EINW outperforms HashNWalk 
and LSH-A. Naive RWR performs worst as the weights of nodes and hyperedges are 
all disregarded.

6 � Conclusion and future directions

In this work, we consider random walk with restart (RWR) on hypergraphs after 
formally defining it (Definition 1). Then, we propose ARCHER (Algorithm 3) for 
its rapid and space-efficient computation. ARCHER is composed of two RWR com-
putation methods (Algorithms 1 and 2) that are based on clique- and star-expanded 
graphs, respectively, of the input hypergraph. Since their relative performance heav-
ily depends on datasets, ARCHER is equipped with a lightweight automatic method 
for selecting one between them. Using 18 real-world hypergraphs, we substantiate 
the speed and space efficiency of ARCHER (Figs.  3 and 4), revealing that these 
qualities are attributed to the complementary nature of the two RWR computation 
methods and the accuracy of the automatic selection method (Fig. 5). In addition, 
we introduce anomaly detection as an application of RWR on hypergraphs and show 
the empirical effectiveness of RWR on it (Fig. 7).

As potential directions for future work, we intend to extend our framework to 
incorporate approximate RWR computation algorithms, as discussed in Sect.  2.2. 
Furthermore, the present automatic selection algorithm in Sect. 3.4 is grounded in 
empirical observations, in which we plan to develop theoretically grounded yet effi-
cient selection algorithms.
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Appendix A: Experimental datasets

We provide a brief description of the datasets used in this paper.

•	 EEN and EEU.6 These hypergraphs represent sets of email addresses on emails 
in Enron (EEN) and a European research institution (EEU) where users are 
nodes and the group of the sender and all receivers of each email is a hyperedge.

•	 HB and SB.6 These represent co-sponsorships of bills in the House of Repre-
sentatives (HB) and the Senate (SB) where US Congresspersons are nodes, and 
groups of sponsors and co-sponsors of bills are hyperedges.

•	 WAL.6 This is a hypergraph where products are nodes and hyperedges are sets of 
co-purchased products at Walmart.

•	 TRI.6 This is a hypergraph where nodes are accommodations (mostly hotels) and 
hyperedges are sets of accommodations that a user performed “click-out” during 
the same browsing session at Trivago.

•	 COD, COG, and COH.6 These are co-authorship hypergraphs where authors are 
nodes and each hyperedge represents the authors of a publication recorded on 
DBLP (COD), Geology (COG), and History (COH).

•	 THS, THM, and THU).6 These are hypergraphs where users are nodes and each 
hyperedge represents the group of users associated with a thread at StackOver-
flow (THS), MathStackOverflow (THM), and AskUbuntu (THU).

•	 AM.7 This is a hypergraph of Amazon (AM) product reviews (spec., those 
categorized as Movies & TV) where users are nodes and a group of products 
reviewed by the same user is a hyperedge. Each user has at least 5 reviews.

•	 YP.8 This is a hypergraph of user ratings on locations (e.g., hotels and restau-
rants) at Yelp (YP) where users are nodes and a group of locations a user rated is 
a hyperedge. Ratings higher than 3 are considered.

•	 TW.9 This is a hypergraph of social relationships on Twitter (TW) where users 
are nodes and each hyperedge represents a group of users that compose a ‘circle’ 
(or ‘list’) together on Twitter.

•	 ML1, ML10, and ML20.10 These hypergraphs represent interactions of movies at 
MovieLens with different sizes of 1 M (ML1), 10 M (ML10), and 20 M (ML20) 
movie ratings where nodes are movies and a group of movies a user rated is a 
hyperedge. Ratings higher than 3 are considered.

6  https://​www.​cs.​corne​ll.​edu/​~arb/​data/
7  https://​cseweb.​ucsd.​edu/​~jmcau​ley/​datas​ets/​amazon_​v2
8  https://​www.​yelp.​com/​datas​et
9  https://​snap.​stanf​ord.​edu/​data/​ego-​Twitt​er.​html
10  https://​group​lens.​org/​datas​ets/​movie​lens/

https://www.cs.cornell.edu/%7earb/data/
https://cseweb.ucsd.edu/%7ejmcauley/datasets/amazon_v2
https://www.yelp.com/dataset
https://snap.stanford.edu/data/ego-Twitter.html
https://grouplens.org/datasets/movielens/


1249

1 3

Random walk with restart...

Appendix B: Application to node retrieval

In this section, we introduce an application of RWR scores on hypergraphs for the 
task of node retrieval. Additionally, we evaluate the empirical effectiveness of this 
approach.

Similar node retrieval Given a hypergraph and a query node s, this task is 
to search for nodes structurally similar to the query node. Specifically, we meas-
ure node-to-node proximities for s and use them as ranking scores to sort all nodes 
except s in the order of the scores. If nodes with the same class of the query node 
are ranked high, structurally similar nodes are successfully retrieved, which can be 
evaluated by ranking metrics such as AUROC and MAP. For this task, we compute 
the hypergraph RWR scores r w.r.t. query node s through ARCHER, and utilize the 
scores for ranking.

Settings We conduct this experiment on the SB (senate-bills) and HB (house-
bills) datasets, which contain binary node labels. The RWR models used in Sect. 5.6 
are also used for this task. To introduce edge-dependent node weights (EDNW), 
we set 𝛾e(v) = d̄(v)−𝛽 , where d̄(v) represents the unweighted degree of node v. We 
then set � = 1.0 and �(e) = 1 (refer to Appendix C for the selection of � = 1.0 ). For 

Fig. 8   Similar-node-retrieval performance on hypergraphs in terms of AUROC and MAP. The hyper-
graph RWR using EDNW provides the best accuracy among all the baselines in the SB and HB datasets
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(a) AUROC on EEN (b) AUROC on SB (c) AUROC on HB

(d) MAP on EEN (e) MAP on SB (f) MAP on HB

Fig. 9   Anomaly detection performance on hypergraphs in terms of AUROC and MAP with different 
edge-dependent node weights, i.e., 𝛾

e
(v) = d̄(v)−𝛽 . When � = 0.5 , it provides the best accuracy

Fig. 10   Similar-node-retrieval performance in terms of AUROC and MAP with different edge-dependent 
node weights, i.e., 𝛾

e
(v) = d̄(v)−𝛽 . When � = 1.0 , it provides better performance in most of the cases
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EINW, we set �e(v) = 1 and �(e) = 1 . We vary the restart probability c from 0.1 to 
0.9 by 0.1.

Results Fig. 8 shows the experimental results on the node retrieval task in terms 
of AUROC and MAP. As shown in the figure, the RWR using EDNW shows the best 
performance, especially with high values of restart probability c, among all tested 
methods. Note that the RWR using EDNW outperforms that using EINW and naive 
RWR, indicating the edge-dependent node weights are useful also for this task.

Appendix C: Experiments on edge‑dependent node weights 
for applications

In this section, we provide the experimental results regarding the effectiveness of 
the edge-dependent node weights for applications.

Anomaly detection For anomaly detection in Sect. 5.6, we set edge-dependent 
node weights 𝛾e(v) = d̄(v)−𝛽 for hypergraph RWR. For the experiment, we assess 
the performance of RWR by varying two parameters: � and the restart probability 
c. Specifically, we explore different values of � within the range of {0.5, 1.0, 2.0} , 
and we also vary c between 0.1 and 0.9 in increments of 0.1. Figure 9 shows the 
results, � = 0.5 generally yields the best performance across the tested datasets.

Similar node retrieval For node retrieval in Appendix  B, we also set 
𝛾e(v) = d̄(v)−𝛽 for hypergraph RWR. We test the node-retrieval performance of 
RWR by varying the values of � and c. Specifically, the list of values tested for � 
is {0.5, 1.0, 2.0} , while the range for c spans from 0.1 to 0.9. Figure 10 shows the 
results, and � = 1.0 leads to the best performance in most cases.

Appendix D: Counting of the number of non‑zero entries

In this section, we discuss how to compute ���(HC) and ���(H⋆) rapidly and 
space-efficiently. They are used in Eq.  (11) by ARCHER to select one between 
clique- and star-expansion-based methods.

Calculation of ���(HC) While it is possible to naively count the number of 
non-zeros in HC = In − (1 − c)P̃

⊤ , materializing HC typically requires more space 
than the input data due to its relatively high density. Hence, we suggest a more 
efficient way based on the following property regarding HC:

where P̃ = W̃R̃ . The equality is from the fact that the diagonal entries of P̃ are non-
zeros because P̃ involves the transition probability that moves from each node v to 
one of its hyperedges, and goes back to v. Note the sparsity pattern of P̃ is the same 
as that of the adjacency matrix of the clique-expanded graph GC (with additional 
self-loops on every node) of the hypergraph GH . Thus, we can calculate ���(P̃) 
without materializing P̃ , by directly counting the edges that are clique-expanded 
from each hyperedge.

(D1)���(HC) = ���(P̃)
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Algorithm 4 summarizes the procedure for computing ���(HC) . For each node 
v (line 2), we find every node u that appears together with v in at least one hyper-
edge (line 5). Whenever we find such u, it is equivalent to finding an edge (v, u), 
and thus we increment the count accordingly (line  7). Note that we maintain a 
set C of such nodes to prevent duplicated counting (lines 3 and 8). Regardless of 
the input, Algorithm 4 requires O(|C|) = O(n) extra space to maintain the set C. 
The time complexity is O(

∑
v∈V

∑
e∈E(v) �e�) = O(

∑
e∈E �e�2) because it requires |e| 

operations for each node in e.
Algorithm 4   Counting the number of non-zeros of HC

Input: sets V and E of nodes and hyperedges in GH , resp.
Output: number of non-zeros of HC
1: set nnz ← 0
2: for v ∈ V do
3: C ← ∅ � C is a set of nodes that appear together in one or more hyperedges

4: for e ∈ E(v) do � E(v) is the set of hyperedges incident to node v

5: for u ∈ e do
6: if u /∈ C then
7: nnz ← nnz+ 1 � (v, u) is counted

8: C ← C ∪ {u}
9: return nnz

Calculation of ���(H⋆) Similarly, ���(H⋆) can also be efficiently calculated 
based on the following equalities:

where H⋆ = IN − (1 − c)S̃
⊤ . Note that IN is the identity matrix of size N = n + m , 

occupying n + m non-zeros in H⋆ . The matrix S̃ consists of W̃ and R̃ as shown in 
Eq. (5), and their sparsity patterns are the same as W and R . The time complexity 
of this approach is dominated by that of counting the numbers of non-zero entries 
in W and R . If W and R are in a sparse matrix format, the number of their non-zero 
entries can be computed in O(���(W) + ���(R)) = O(

∑
v∈V d̄(v)) = O(

∑
e∈E �e�) 

time and even in O(1) time in some formats (e.g., compressed sparse row). With the 
exception of the inputs (i.e., W and R ), this approach requires a constant amount of 
additional space.

(D2)
���(H⋆) = n + m + ���(S̃)

= n + m + ���(W̃) + ���(R̃)

= n + m + ���(W) + ���(R),
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Fig. 11   Correlations between a basic data statistics and b the costs of RWR computation on hypergraphs 
in terms of preprocessing time, space cost, and query time. BePI is used for RWR computation. We 
report the Pearson correlation coefficient for each scatter plot. Note that there is a strong positive correla-
tion between ���(H) and the costs, whereas other statistics do not exhibit such a correlation
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Appendix E: Correlation between data statistics and costs of BePI

In this section, we empirically investigate the correlations between basic data statistics 
and the costs of BePI, which ARCHER employs for RWR computation. As the data sta-
tistics, we use ���(H) (i.e., ���(HC) and ���(H⋆) in clique- and star-expansion-based 
computations, respectively), density, overlapness, and average hyperedge size. As the 
costs of the clique- and star-expansion-based computation of BePI, we consider preproc-
essing time, space cost, and query time. The results obtained across all the datasets (refer 
to Appendix A) for both clique- and star-expansion-based computations are presented in 
Fig. 11. As shown in Fig. 11a, there exists a strong positive correlation between ���(H) 
and the costs for the calculation of RWR. For other statistics (see Figs. 11b, 11c, and 11d), 
there is no noticeable correlation between the statistics and the costs.
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