
Vol:.(1234567890)

Data Mining and Knowledge Discovery (2024) 38:1222–1257
https://doi.org/10.1007/s10618-023-00995-9

1 3

Random walk with restart on hypergraphs: fast
computation and an application to anomaly detection

Jaewan Chun1 · Geon Lee1 · Kijung Shin1  · Jinhong Jung2

Received: 10 February 2023 / Accepted: 23 November 2023 / Published online: 21 December 2023
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2023

Abstract
Random walk with restart (RWR) is a widely-used measure of node similarity in
graphs, and it has proved useful for ranking, community detection, link prediction,
anomaly detection, etc. Since RWR is typically required to be computed separately
for a larger number of query nodes or even for all nodes, fast computation of it is
indispensable. However, for hypergraphs, the fast computation of RWR has been
unexplored, despite its great potential. In this paper, we propose ARCHER, a fast
computation framework for RWR on hypergraphs. Specifically, we first formally
define RWR on hypergraphs, and then we propose two computation methods that
compose ARCHER. Since the two methods are complementary (i.e., offering rela-
tive advantages on different hypergraphs), we also develop a method for automatic
selection between them, which takes a very short time compared to the total running
time. Through our extensive experiments on 18 real-world hypergraphs, we demon-
strate (a) the speed and space efficiency of ARCHER, (b) the complementary nature
of the two computation methods composing ARCHER, (c) the accuracy of its auto-
matic selection method, and (d) its successful application to anomaly detection on
hypergraphs.

Keywords  Hypergraph · Random walk with restart · Fast computation · Anomaly
detection

Responsible editor: Charalampos Tsourakakis.

 *	 Kijung Shin
	 kijungs@kaist.ac.kr

 *	 Jinhong Jung
	 jinhong@ssu.ac.kr

	 Jaewan Chun
	 jjwpalace@kaist.ac.kr

	 Geon Lee
	 geonlee0325@kaist.ac.kr

1	 Kim Jaechul Graduate School of AI, KAIST, Seoul, South Korea
2	 School of Software, Soongsil University, Seoul, South Korea

http://orcid.org/0000-0002-2872-1526
http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-023-00995-9&domain=pdf

1223

1 3

Random walk with restart...

1  Introduction

Given a pair of nodes on a large-scale hypergraph, how can we rapidly and effi-
ciently calculate their proximity based on random walk with restart? How useful
are such proximities for data-mining applications?

A hypergraph is a data structure consisting of a set of nodes and a set of hyper-
edges, and each hyperedge is a set composed of any number of nodes. Note that
a hypergraph where each hyperedge joins any number of nodes is a generaliza-
tion of a (pairwise) graph where each edge always joins two nodes. Due to this
increased expressiveness, hypergraphs are widely used to model real-world group
relations, including (two or more) researchers who co-author a paper, items pur-
chased together, and tags co-appearing in a post (Benson et al. 2018; Do et al.
2020; Lee et al. 2023; Comrie and Kleinberg 2021).

Random walk, a concept widely used for graphs, naturally applies to hyper-
graphs. Random walk is a stochastic process that assumes an imaginary surfer
moving randomly between nodes in a graph; and for instance, PageRank (Brin and
Page 1998) utilizes this concept to model a random surfer navigating a web graph
(i.e., a network of hyperlinks between web pages) and quantifies the importance
of web pages based on the stationary distribution of the surfer’s visits. A simple
hypergraph extension (Zhou et al. 2006) assumes a random surfer that repeats (a)
choosing an incident hyperedge with probability proportional to edge weights and
(b) choosing an incident node uniformly at random. However, its expressiveness
is limited in that such random walk can always be reduced to random walk on an
undirected graph, with some choice of weights (Chitra and Raphael 2019). Chitra
and Raphael (2019) proposed a more expressive one that may not be reduced to
random walk on any undirected graph. It assumes a random surfer who uses edge-
dependent node weights (EDNW) when choosing incident nodes, and due to its
expressiveness, it has been employed for clustering (Hayashi et al. 2020), prod-
uct-return prediction (Li et al. 2018), object classification (Zhang et al. 2018b),
anomaly detection (Lee et al. 2022), etc.

On graphs, the concept of random walk with restart (RWR) (Tong et al. 2007b)
has also been widely used. RWR measures the stationary probability distribution
of random walk when we assume a random surfer who restarts at a query node
with a certain probability, and the distribution is naturally interpreted as the rel-
evance of each node with respect to the query node. Due to its ability to consider
multi-faceted relationships between nodes, RWR has been extensively utilized
in graph mining applications including personalized ranking (Tong et al. 2007b;
Jung et al. 2016), anomaly detection (Sun et al. 2005), subgraph mining (Tong
et al. 2007a), graph neural networks (Gasteiger et al. 2019a), and graph aug-
mentation (Gasteiger et al. 2019b; Lee and Jung 2023). Since RWR is typically
required to be computed separately for a larger number of query nodes or even for
all nodes, fast computation of it is indispensable. Therefore, many computation
methods have been developed (Wang et al. 2019a; Hou et al. 2021), and many
of them rely on preprocessing the input graph (Tong et al. 2007a; Fujiwara et al.
2012; Shin et al. 2015; Jung et al. 2017).

1224	 J. Chun et al.

1 3

However, RWR on hypergraphs has been underexplored, while an extension
of RWR to hypergraphs is straightforward with many potential applications. One
potential reason is the lack of fast and scalable computation methods of it. For
example, the previous work (Chitra and Raphael 2019) has relied on naive power
iteration, which becomes impractical when dealing with a large number of query
nodes on large-scale hypergraphs. Since random walk on a hypergraph consists of
two-step transitions (i.e., from node to hyperedge, and from hyperedge to node), we
cannot directly employ existing fast and scalable computation methods for RWR on
a graph whose transition is just from node to node. Similar to graphs, RWR scores
on hypergraphs vary across different query nodes, and computing RWR scores for a
large number of query nodes is necessary for applications. Thus, dedicated efforts
are necessary to develop fast computation methods can offer low costs per query
node, even if it involves incurring a one-time preprocessing cost.

In this work, we propose ARCHER (Adaptive RWR Computation on Hypergraphs),
a fast and space-efficient framework for computing RWR on real-world hypergraphs.
After formally defining RWR on hypergraphs, we develop two computation methods for
it based on two different (simplified) representations of hypergraphs. These two compu-
tation methods are complementary, and they offer relative advantages on different hyper-
graphs. Thus, we further propose an automatic selection method that chooses one com-
putation method based on a simple but effective goodness criterion whose computation
takes a very short time compared to the total running time.

Through extensive experiments on 18 real-world hypergraphs, we substantiate
the speed and space efficiency of ARCHER and its two key driving factors: (a) the
complementarity between the two computation methods composing ARCHER and
(b) the accuracy of its automatic selection method. In addition, we demonstrate a
successful application of RWR on hypergraphs and ARCHER to anomaly detection.

Reproducibility The source code and datasets used in this paper are available at
https://​github.​com/​jaewa​n01/​ARCHER.

The rest of the paper is organized as follows. In Sect. 2, we introduce preliminar-
ies and related work. In Sect. 3, we describe our approaches for computing RWR on
hypergraphs. In Sect. 4, we introduce an application of RWR on hypergraphs for the
purpose of anomaly detection. After sharing experimental results in Sect. 5, we pre-
sent conclusions and future directions in Sect. 6.

2 � Preliminaries and related work

In this section, we introduce some preliminaries and related studies on random
walks on (hyper-)graphs and their applications.

2.1 � Notations

We describe basic notations frequently used in this paper where related symbols are
summarized in Table 1.

https://github.com/jaewan01/ARCHER

1225

1 3

Random walk with restart...

(Hyper)graph A hypergraph GH = (V, E,�, �) consists of a set V of nodes,
a set E of hyperedges, the weight �(e) of hyperedge e, and the weight �e(v) of
node v depending on hyperedge e. Each hyperedge e ∈ E is represented by a non-
empty subset of an arbitrary number of nodes, i.e., e ∈ 2V . We let n = |V| and
m = |E| be the numbers of nodes and hyperedges, respectively. Similarly, a graph
G = (V ,E,w) consists of a set V of nodes, a set E of edges, and edge weights w.

Matrix representation Consider a one-to-one mapping f between V and
{1,⋯ , n} and a one-to-one mapping g between E and {1,⋯ ,m} . For any matrix
X ∈ ℝ

n×m , we denote its (f(v), g(e))-th entry Xf (v)g(e) simply by Xve . Similarly, for
any matrix Y ∈ ℝ

m×n , we let Yev denote Yg(e)f (v) , and for any Z ∈ ℝ
n×n , we let Zvv

denote Zf (v)f (v) . The matrix W ∈ ℝ
n×m is the hyperedge-weight matrix whose entry

Wve = �(e) if v ∈ e , and 0 otherwise. The matrix R ∈ ℝ
m×n is the node-weight

matrix whose entry Rev = �e(v) if v ∈ e , and 0 otherwise. In the adjacency matrix
A ∈ ℝ

|V|×|V| of any graph G, Auv = w(e) if there is an edge between nodes u ∈ V
and v ∈ V  ; otherwise, Auv = 0.

Table 1   Symbols

Symbol Definition

G
H
= (V, E,�, �) Hypergraph where V and E are sets of nodes and hyperedges,

�(e) is the weight of hyperedge e, and
�
e
(v) is the weight of node v depending on hyperedge e

n = |V| Number of nodes
m = |E| Number of hyperedges
W ∈ ℝ

n×m Hyperedge-weight matrix of G
H

 and W̃ is row-normalized
R ∈ ℝ

m×n Node-weight matrix of G
H

 and R̃ is row-normalized
G = (V ,E,w) Graph where V is the node set, E is the edge set, and

w(e) is the weight of edge e
GC Clique-expanded graph from G

H

G⋆ Star-expanded graph from G
H

E(v) Hyperedges incident to node v, i.e., E(v) = {e ∈ E ∶ v ∈ e}

d̄(v) Unweighted degree of node v, i.e., d̄(v) = |E(v)|
|e| Size of hyperedge e
�(v) Degree of hyperedge e, i.e., �(v) =

∑
v∈e �e(v)

s Query node for RWR​
c Restart probability of RWR where 0 < c < 1

c⋆ Modified restart probability, i.e, c⋆ = 1 −
√
1 − c

q ∈ ℝ
n RWR query vector w.r.t query node s

r ∈ ℝ
n RWR score vector w.r.t. query node s

HC ∈ ℝ
n×n

HC = I
n
− (1 − c)P̃

⊤ where P̃ = W̃R̃

H⋆ ∈ ℝ
N×N

H⋆ = I
N
− (1 − c⋆)S̃

⊤ where S̃ =
(0 W̃

R̃ 0

)
 and N = n + m

1226	 J. Chun et al.

1 3

Hypergraph expansions A hypergraph can be converted into graphs using
clique- and star-expansion. Clique expansion (Sun et al. 2008) constructs a graph
GC = (V,EC) from GH by replacing each original hyperedge with a clique composed
of the nodes in the hyperedge, i.e., EC = {(u, v)|u, v ∈ e, e ∈ E} . Notably, the adja-
cency matrix of GC has the same sparsity pattern as P = WR , as illustrated in Fig. 1.

Star expansion (Zien et al. 1999) constructs a graph G⋆ = (V⋆,E⋆) by aggregat-
ing nodes and hyperedges as a new set of nodes (i.e., V⋆ = V ∪ E ), and edges are
created between each pair of incident node and hyperedge (i.e.,
E⋆ = {(v, e)|v ∈ e, v ∈ V, e ∈ E} ). The sparsity pattern of the adjacency matrix of
G⋆ is the same as S =

(0 W

R 0

)
 , as illustrated in Fig. 1.

2.2 � Random walk with restart on graphs

We introduce the concept of random walk with restart (RWR) on a graph and exist-
ing methods for computing RWR scores.

Concept Given a graph G and a query node s, random walk with restart (RWR)
aims to obtain a vector r of proximities from s to each node on the graph (Tong et al.
2007b). Specifically, it assumes a random surfer that starts from node s and takes
one of the following actions at each step:

•	 Action (1) Random walk. The surfer randomly moves to one of the neighbors
from the current node with probability 1 − c . The probability of selecting each
neighbor is proportional to the edge weight between the current node and the
neighbor.

Fig. 1   Clique- and star-expansions of an example hypergraph and their sparsity patterns

1227

1 3

Random walk with restart...

•	 Action (2) Restart. The surfer jumps back to the query node s with restart prob-
ability c.

The stationary probability of the surfer visiting a node u is denoted by ru . That is, the
RWR score vector r of all nodes w.r.t. s (a.k.a. single-source RWR scores) is the unique
solution of the following equation:

where Ã is the row-normalized adjacency matrix of G, and c is called restart prob-
ability. An RWR query is denoted by q ∈ ℝ

n , which is a unit vector whose s-th entry
is 1. The resulting RWR score vector for the query q is denoted by r ∈ ℝ

n . The
choice of the query node s determines a specific RWR query q , leading to a distinct
RWR score vector r . Note that the surfer often goes back to the query node s with
probability c, and thus the proximities are spatially localized around s (Nassar et al.
2015), i.e., scores of nodes tightly connected to s are high, while those of distant
nodes are low.

In the following paragraphs, we introduce several existing methods for exact single-
source RWR calculation on graphs, with a focus on iterative methods and preprocess-
ing methods. Note that there also exist approximate methods (Tong et al. 2007b; Wu
et al. 2021; Lin et al. 2020; Wang et al. 2019b), and those for identifying only the top-k
nodes with the highest scores (Hou et al. 2021; Wei et al. 2018; Wang et al. 2017).

Iterative methods This approach repeatedly updates RWR scores from the initial
ones until convergence. Among various methods, power iteration has been widely uti-
lized due to its simplicity, which is described as follows:

•	 Power iteration: Page et al. (1999) utilized the power iteration method that repeats
updating r based on the following equation:

 where r(i) denotes r at the i-th iteration. It is repeated until r converges. If
0 < c < 1 , r is guaranteed to converge to a unique solution (Langville and Meyer
2006).

Although the iterative approach does not require any computational cost for preproc-
essing, it exhibits expensive query processing cost (i.e., computational cost per RWR
query q ) due to the repeated matrix–vector calculation for each query.

Preprocessing methods This approach aims to quickly calculate r for a given query
node s based on preprocessed results. From Eq. (1), we can represent the problem as
solving the following linear system:

where In is an identity matrix of size n, H = In − (1 − c)Ã
⊤
∈ ℝ

n×n is called the
random-walk normalized Laplacian matrix with probability 1 − c , and each column
of H−1 is the RWR scores w.r.t. each query node. Note that the inverse of H always
exists since its transpose is a strictly diagonally dominant matrix (Horn and Johnson

(1)r = (1 − c)Ã
⊤
r + cq,

(2)r
(i)
← (1 − c)Ã

⊤
r
(i−1) + cq,

(3)
(
In − (1 − c)Ã

⊤
)
r = cq ⇔ Hr = cq ⇔ r = cH−1

q,

1228	 J. Chun et al.

1 3

2012). However, preprocessing H−1 for large graphs is impractical due to its expen-
sive computational costs (spec., it requires O(n3) time and O(n2) space). To over-
come the issues, preprocessing approaches focus on precomputing intermediate sub-
matrices related to H−1 and computing RWR scores rapidly based on them. These
preprocessed matrices are computed only once and can be reused for multiple query
nodes while reducing the computational cost per query.

As described later, preprocessing approaches designed for graphs can also be uti-
lized to accelerate RWR computation on hypergraphs within our proposed frame-
work ARCHER. In this paper, we consider the following state-of-the-art methods
for computing RWR on graphs, while our framework can be used with any preproc-
essing-based approaches, such as (Tong et al. 2007a; Fujiwara et al. 2012):

•	 BEAR: Shin et al. (2015) developed BEAR, a block elimination approach that
efficiently preprocesses sub-matrices related to H−1 . For that, they utilized a node
reordering technique called SlashBurn1 (Kang and Faloutsos 2011) using the
hub-and-spoke structure to reorder and partition the matrix H . After that, they
applied the block elimination (Boyd et al. 2004) to the partitioned sub-matrices
for computing r.

•	 BePI: Jung et al. (2017) proposed BePI, a scalable and memory-efficient method
for computing r . Although BEAR achieves a fast speed for computing an RWR
query, its scalability for larger graphs is limited due to the high cost of the inver-
sion of a sub-matrix inside the block elimination. To resolve the issue, they
first utilized SlashBurn1 to reorder the matrix and then incorporated an iterative
approach into the block elimination by replacing the sub-matrix inversion with
an iterative linear solver.2

Note that these two methods have distinct advantages. BePI is more space-efficient
and thus can be applied to larger graphs, while BEAR processes each RWR query
faster on small datasets. Our experimental results show that the same distinct advan-
tages are observed also in RWR computation on hypergraphs (see Figs. 3 and 4).

Other methods to address the substantial cost of the computation of H−1
include employing graph sparsification (i.e., reducing non-zeros of H ). For exam-
ple, Zhang et al. (2018a) developed a spectral sparsification method for directed
graphs, demonstrating a strong correlation between the RWR scores computed
from the sparsified graph and those obtained from the original graph. Another
approach involves approximating H as an Eulerian Laplacian matrix, followed by

1  Let k and n denote the hub selection ratio and the number of nodes, respectively. SlashBurn removes
⌈kn⌉ high-degree nodes (called hubs) from a graph so that it is split into the giant connected component
(GCC) and remaining disconnected components (called spokes), and it recursively repeats this process
on the GCC. The hubs and spokes are then utilized to construct its reordering permutation (refer to its
paper for details). It is used in both BEAR and BePI.
2  As an iterative solver, BePI employs GMRES (Trefethen and Bau 2022), a Krylov subspace method,
with a preconditioner such as incomplete LU decomposition where the iterative solver converges if its
residual is less than error tolerance �.

1229

1 3

Random walk with restart...

the application of a directed Laplacian system-solving algorithm. From the obtained
values, approximated values of the original solution can be derived in nearly linear
time (Cohen et al. 2018, 2016). These methods differ from BEAR and BePI in that
they yield an approximate solution by transforming H into a computationally effi-
cient form. We plan to explore the incorporation of such approximate computation
algorithms into our framework as a part of our future research directions.

Applications RWR has been extensively utilized in diverse graph mining tasks
based on node-to-node similarities on graphs. Sun et al. (2005) designed normal-
ity scores based on RWR to detect abnormal nodes in a bipartite graph. Tong et al.
(2007a) used RWR to measure the goodness of a match between a query graph and
a subgraph. Zhu et al. (2013) employed RWR for measuring the relevance between a
query image and the data images. Jung et al. (2016, 2019) extended RWR to signed
RWR in order to calculate personalized ranking scores in a signed graph. Gasteiger
et al. (2019a) incorporated RWR into graph neural networks (GNNs) to prevent
aggregated embeddings from being over-smoothed. The RWR score matrix has been
used for augmenting static graphs (Gasteiger et al. 2019b) and dynamic graphs (Lee
and Jung 2023) to improve the performance of GNNs.

2.3 � Random walk on hypergraphs

In this section, we introduce several previous random walk models and other related
studies on hypergraphs.

Random walk models on hypergraphs A typical random walk on a hyper-
graph (Zhou et al. 2006) repeats (a) selecting an incident hyperedge with probability
proportional to edge weights and (b) selecting an incident node uniformly at ran-
dom. Chitra and Raphael (2019) extended the concept of random walk to hyper-
graphs with edge-dependent node (i.e., vertex) weights (EDNW). Given a hyper-
graph GH = (V, E,�, �) where �e(v) is the weight of node v depending on edge e, the
random walk on GH is defined as follows:

•	 Action (1-1) For the current node u, the surfer selects a hyperedge e containing
node u with probability proportional to �(e).

•	 Action (1-2) The surfer moves to node v selected from one of the nodes in the
hyperedge e with probability proportional to �e(v).

In the above model, we set �e(u) = 0 if u ∉ e . If each node has the same node weight
for all of its incident hyperedges (i.e., �e(v) = �e� (v) , ∀e ≠ e� ∈ E ), it is called a
hypergraph with edge-independent node weights (EINW). As described in (Chitra
and Raphael 2019), a random walk on a hypergraph with EINW is equivalent to that
on an undirected clique-expanded graph from the hypergraph with some choice of
weights; thus, its expressiveness is limited. On the other hand, a random walk on a
hypergraph with EDNW is more expressive in that it may not be equivalent to that
on any undirected clique-expanded graph.

1230	 J. Chun et al.

1 3

It should be noticed that even when random walk (with restart) on a hypergraph
can be reduced to that on a graph, it may not be computationally optimal to calculate
the equivalent random walk (with restart) on a graph. Thus, regardless of this (in)
equivalence, it can be useful to develop fast computation methods for random walk
(with restart) on hypergraphs.

Applications Hayashi et al. (2020) employed the random walk to devise a flex-
ible framework for clustering hypergraph data. Li et al. (2018) proposed a local
graph cut algorithm using the random walk for product-return prediction on a
hypergraph. Zhang et al. (2018b) utilized the random walk for dynamic hyper-
graph structure learning. Lee et al. (2022) proposed HashNWalk which exploits
the concept of random walk for detecting anomalous hyperedges in hyperedge
streams. Note that these works utilized the concept of random walks on hyper-
graphs with EDNW, but they did not incorporate the concept of restart. Chitra
and Raphael (2019) conducted a theoretical analysis of random walks on hyper-
graphs with EDNW. The authors briefly mentioned that extending this concept
to incorporate restart is straightforward, but they did not provide further details.
In their work, they utilized RWR for ranking problems on hypergraphs by using
naive power iteration, which becomes impractical when dealing with many query
nodes on large-scale hypergraphs.

3 � Proposed framework

In this section, we propose ARCHER (Adaptive RWR Computation on Hyper-
graphs), a novel framework for rapid and space-efficient computation of random
walk with restart (RWR) scores on a hypergraph. As depicted in Fig. 2, ARCHER
consists of three components: (a) star-expansion-based computation methods, (b)
clique-expansion-based computation methods, and (c) automatic selection methods.
In ARCHER, for a given hypergraph GH , one between star-expansion-based and
clique-expansion-based computation methods is automatically selected based on the
number of non-zeros in their resulting matrices (Component 3 in Sect. 3.4). Then,
to leverage preprocessing techniques for fast RWR computation on graphs (e.g.,
BEAR and BePI), the RWR problem on the hypergraph is converted into that on

Fig. 2   Overview of ARCHER, which consists of (1) a star-expansion-based RWR computation method,
(2) a clique-expansion-based RWR computation method, and (3) a preprocessing (including automatic
selection) method

1231

1 3

Random walk with restart...

the star-expanded graph (Component 1 in Sect. 3.2) or that on the clique-expanded
graph (Component 2 in Sect. 3.3). After that, the RWR scores with respect to (poten-
tially a large number of) query nodes are computed rapidly by employing a preproc-
essing-based approach. Note that our framework, ARCHER, can be equipped with
any preprocessing-based approaches for RWR computation on graphs.

3.1 � Random walk with restart on hypergraphs

First of all, we formally describe the random walk with restart (RWR) model on
hypergraphs as follows:

Definition 1  (RWR on a hypergraph) Given a hypergraph GH = (V, E,�, �) and a
query node s, a random surfer starts from node s. Then, the surfer takes one of the
following actions at each step:

•	 Action (1) Random walk. The surfer performs the following random walk on GH
with probability 1 − c.

–	 Action (1-1) For the current node u, the random surfer selects a hyperedge e
containing node u with probability proportional to �(e).

–	 Action (1-2) The surfer moves to node v selected from one of the nodes in the
hyperedge e with probability proportional to �e(v).

•	 Action (2) Restart. The surfer jumps back to the query node s with restart prob-
ability c.

The stationary probability of the surfer visiting a node u is denoted by ru , and the
RWR score vector r ∈ ℝ

n×1 of all nodes w.r.t. s in GH is the unique solution of the
linear system:

where 0 < c < 1 is the restart probability of a random surfer, q is the RWR query
vector, which is the unit vector whose s-th element is 1, and (W̃R̃)⊤ is the transition
matrix of the random walk on GH where W̃ and R̃ are defined as follows:

•	 (Regarding Action 1-1) W̃ = D
−1
V
W ∈ ℝ

n×m is the row-normalized hyperedge-
weight matrix where W̃⊤ indicates the transition from a node to a hyperedge. W
is the hyperedge-weight matrix, and DV = ����(W1m) is the node degree diago-
nal matrix where 1m ∈ ℝ

m×1 is a column vector of ones.
•	 (Regarding Action 1-2) R̃ = D

−1
E
R ∈ ℝ

m×n is the row-normalized node-weight
matrix, where R̃⊤ indicates the transition from a hyperedge to a node. R is the
node-weight matrix, and DE = ����(R1n) is the hyperedge degree diagonal
matrix where 1n ∈ ℝ

n is a column vector of ones.

(4)
r = (1 − c)R̃

⊤
W̃

⊤
r

���������������
Random walk

+ cq,
���
Restart

1232	 J. Chun et al.

1 3

Although the RWR score vector r on GH can be obtained by repeatedly iterating
Eq. (4) based on the power iteration method, such an iterative approach is not satis-
factory due to its high computational cost per query node, as discussed in Sect. 2.2.
As quickly computing RWR scores for a large number of query nodes is necessary
for many applications, in the following sections, we propose two RWR computation
methods that provide low cost per query node by preprocessing an input hypergraph,
which incurs a one-time cost.
Algorithm 1   Star-expansion-based Method for RWR on Hypergraphs

1: function Preprocess(R, W, c)
� Input: node-weight matrix R, hyperedge-weight matrix W, restart probability c

� Output: set Θ� of preprocessed matrices

2: compute DV and DE
3: construct S̃ from W̃ and R̃ where R̃ = D−1

E R and W̃ = D−1
V W

4: compute H� = IN − (1− c�)S̃� where c� = 1−
√
1− c and N = n+m

5: compute a set Θ� of preprocessed matrices from H� using
a preprocessing method (e.g., BEAR or BePI)

6: return Θ�

7: function Query(s, Θ�)
� Input: query node s, set Θ� of preprocessed matrices

� Output: RWR score vector r w.r.t s in hypergraph GH

8: create q� whose s-th entry is 1 and the others are 0
9: compute r� by querying q� based on the preprocessed matrices in Θ�

10: decompose r� into rV and rE
11: compute r = c

c�
rV

12: return r

3.2 � Component 1: Star‑expansion‑based Method

We first propose a star-expansion-based method that computes the RWR scores on the
graph G⋆ star-expanded from the hypergraph GH . For this purpose, we construct a new
transition matrix S̃ as follows:

where S̃ ∈ ℝ
N×N is also row-normalized as W̃ and R̃ are row-normalized, and

N = n + m . Note that the sparsity pattern of S̃ is the same as that of S which is
the star-expanded graph G⋆ from GH as described in Sect. 2.1 (see the example in
Fig. 1).

Our star-expansion-based method aims to calculate RWR scores on the new transi-
tion matrix S̃ through the following equation:

(5)S̃ =

[
0 W̃

R̃ 0

]
,

1233

1 3

Random walk with restart...

where c⋆ is a modified restart probability from c (i.e., c⋆ = 1 −
√
1 − c ), r⋆ ∈ ℝ

N×1
is the RWR score vector on S̃ , and q⋆ is a modified query vector from q defined as
follows:

where rV and rE denote the RWR score vectors on nodes and hyperedges, respec-
tively. Once we obtain rV , the target RWR score vector r is easily converted from rV
according to the following theorem:

Theorem 1  (Star Expansion Equality) Suppose r is the RWR score vector on a hyper-
graph GH in Eq. (4), and rV is the sub-vector of r⋆ , which is the RWR score vector on
a star-expanded graph G⋆ of S̃ in Eq. (6). Then, the following equality holds:

where c⋆ = 1 −
√
1 − c is the modified restart probability, which ranges from 0 to 1

if 0 < c < 1.

Proof  We rewrite Eq. (6) using the definitions of S̃ , r⋆ and q⋆ as follows:

Then, rV and rE are represented as:

By plugging in Eq. (8) into Eq. (7), we obtain the following equation:

where P̃ = W̃R̃ . Note that c⋆ = 1 −
√
1 − c by its definition, satisfying

(1 − c⋆)
2 = (1 − c) . Then, Eq. (9) is represented as follows:

(6)r⋆ = (1 − c⋆)S̃
⊤
r⋆ + c⋆q⋆,

r⋆ =

[
rV

rE

]
and q⋆ =

[
q

0

]
,

r =
c

c⋆
rV,

[
rV

rE

]
= (1 − c⋆)

[
0 R̃

⊤

W̃
⊤

0

][
rV

rE

]
+ c⋆

[
q

0

]
.

(7)rV = (1 − c⋆)R̃
⊤
rE + c⋆q,

(8)rE = (1 − c⋆)W̃
⊤
rV.

(9)
rV = (1 − c⋆)

2
R̃

⊤
W̃

⊤
rV + c⋆q

⇔ rV = (1 − c⋆)
2
P̃
⊤
rV + c⋆q,

1234	 J. Chun et al.

1 3

where HC = IN − (1 − c)P̃
⊤ , and r = cH−1

C
q . This proves the claim r = c

c⋆
rV . 	� ◻

Theorem 1 indicates that the RWR score vector r of Eq. (4) can be obtained by solv-
ing the RWR problem on the star-expanded graph in Eq. (6). Since Eq. (6) has the same
mathematical form as Eq. (1), we can apply preprocessing-based approaches (e.g.,
BEAR and BePI), which are based on the following linear system:

where H⋆ = IN − (1 − c⋆)S̃
⊤
∈ ℝ

N×N , and IN is an identity matrix of size N. Note
that H⋆ is invertible, as shown below, and thus the linear system on H⋆ can be
solved using preprocessing methods.

Theorem 2  (Invertibility of H⊤
⋆
 ) If 0 < c < 1 , H⋆ is invertible.

Proof  We first show that H
⊤
⋆
 is strictly diagonally dominant. Note that

H
⊤
⋆
= IN − (1 − c⋆)S̃ by its definition, and each entry of S̃ is non-negative. For each

row i, |H⊤
⋆ii
| = 1 because S̃ii = 0 as shown in Eq. (5). For non-diagonal entries of the

i-th row of H⊤
⋆
 ,
∑

j≠i �H
⊤
⋆ij
� = 1 − c⋆ since S̃ is row-normalized. Thus, the following

inequality holds for every row i:

where 0 < c⋆ < 1 for a given c, indicating H⊤
⋆
 is strictly diagonally dominant.

The strict diagonal dominance of H⊤
⋆
 implies its invertibility (Horn and Johnson

2012), which, in turn, implies the invertibility of its transposed matrix, H⋆ . 	� ◻

Algorithm 1 summarizes the star-expansion-based method for computing the
RWR score vector r w.r.t. a query node s in GH . The algorithm involves preproc-
essing and query phases as it adopts a preprocessing-based approach (e.g., BEAR
or BePI). Note that the preprocessing phase is run once, while the query phase is
run for each query node. In the preprocessing phase, the method first constructs
the transition matrix S̃ (lines 2 and 3). Then, it computes H⋆ (line 4) and preproc-
esses it by applying a preprocessing-based approach (line 5), resulting in a set
�⋆ of preprocessed matrices. Whenever a user submits a specific query node s,
the query phase computes the RWR score vector r w.r.t. s. Initially, its creates q⋆
(line 8), followed by the computation of r⋆ (line 11) based on Eq. (6). This pro-
cess employs the query phase of the preprocessing method using the preprocessed

rV = (1 − c)P̃
⊤
rV + c⋆q

⇔ rV = c⋆

(
In − (1 − c)P̃

⊤
)−1

q

⇔ rV = c⋆H
−1
C
q =

c⋆

c
r,

H⋆r⋆ = c⋆q⋆,

∑

j≠i

|H⊤
⋆ij
| = 1 − c⋆ < 1 = |H⊤

⋆ii
|,

1235

1 3

Random walk with restart...

results �⋆ . Based on Theorem 1, the algorithm finally computes the target RWR
score vector r (lines 10 and 11).

3.3 � Component 2: Clique‑expansion‑based Method

We propose a clique-expansion-based method that computes the RWR scores on the
graph GC clique-expanded from the hypergraph GH . It explicitly construct the transi-
tion matrix P̃ = W̃R̃ by which Eq. (4) becomes

where the sparsity pattern of P̃ is the same as that of the adjacency matrix of the
clique-expanded graph GC from GH as described in Sect. 2.1 (see the example in
Fig. 1).

Based on Eq. (10), we apply a preprocessing approach to the graph of P̃ clique-
expanded from GH , which solves the following linear system:

where HC = In − (1 − c)P̃
⊤
∈ ℝ

n×n and In is the identity matrix of size n. Note that
HC is also invertible, which is proven in the following theorem:

Theorem 3  (Invertibility of HC ) If 0 < c < 1 , HC is invertible.

Proof  We first show that H⊤
C
 is strictly diagonally dominant. H⊤

C
= In − (1 − c)P̃ by

its definition and each entry of P̃ is non-negative. For each row i,
|H⊤

Cii
| = 1 − (1 − c)P̃ii . Since P̃ is row-normalized,

∑
j≠i �P̃ij� = 1 − P̃ii . Then, the fol-

lowing inequality holds for every row i:

where 0 < c < 1 . This indicates that H⊤
C
 is strictly diagonally dominant.

The strict diagonal dominance of H⊤
C
 implies its invertibility (Horn and Johnson

2012), which, in turn, implies the invertibility of its transposed matrix, HC . 	� ◻

The clique-expansion-based method is summarized in Algorithm 2, which consists
of preprocessing and query phases. In the preprocessing phase, it first explicitly builds
the transition matrix P̃ ∈ ℝ

n×n (lines 2 and 3). Then, the algorithm computes the matrix
HC (line 4). By applying a preprocessing method, it processes HC and obtains the pre-
processed results �C (line 5). In the query phase, it creates the RWR query vector q
(line 8) and then computes the RWR score vector r by querying q using the preproc-
essed results �C (line 9). The query phase is initiated whenever a user submits a query
node.

(10)r = (1 − c)P̃
⊤
r + cq,

HCr = cq,

∑

j≠i

|H⊤
Cij
| = (1 − c)(1 − P̃ii) = (1 − (1 − c)P̃ii) − c < 1 − (1 − c)P̃ii = |H⊤

Cii
|,

1236	 J. Chun et al.

1 3

The time and space complexities of both clique- and star-expansion-based meth-
ods can be directly derived from the complexities of RWR computation methods (e.g.,
BEAR (Shin et al. 2015) and BePI (Jung et al. 2017)) and the definitions of clique- and
star-expansions. When employing BePI as the RWR computation method, although the
complexities involve many terms related to graph structures, empirically, processing
time, space cost, and query time are largely influenced by the number of edges after
expansion, specifically, ���(HC) and ���(H⋆) in clique- and star-expansion-based
computations, respectively. For detailed empirical results, refer to Appendix E. This
empirical tendency is utilized in the subsequent subsection for the automatic selection
between clique- and star-expansion-based methods.

Algorithm 2   Clique-expansion-based Method for RWR on Hypergraphs

1: function Preprocess(R, W, c)
� Input: node-weight matrix R, hyperedge-weight matrix W, restart probability c

� Output: set ΘC of preprocessed matrices

2: compute DV and DE
3: compute P̃ = W̃R̃ where W̃ = D−1

V W and R̃ = D−1
E R

4: compute HC = In − (1− c)P̃�

5: compute a set ΘC of preprocessed matrices from HC using
a preprocessing method (e.g., BEAR or BePI)

6: return ΘC

7: function Query(s, ΘC)
� Input: query node s, set ΘC of preprocessed matrices

� Output: RWR score vector r w.r.t s in hypergraph GH

8: create q whose s-th entry is 1 and the others are 0
9: compute r by querying q based on the preprocessed matrices in ΘC

10: return r

3.4 � Component 3: Automatic selection method

As described in Sects. 3.2 and 3.3, our clique- and star-expansion-based methods
allow for fast RWR computation on the hypergraph GH by leveraging a preprocess-
ing approach. Interestingly, the preprocessed matrices H⋆ and HC have very different
characteristics. For example, HC may have a large number of non-zeros because each
hyperedge e is replaced with a clique of all nodes in e, which can exert a bad effect
on scalability as preprocessed results are densified. On the other hand, H⋆ ∈ ℝ

N×N
can be relatively sparse, but it is of large dimension. Recall that N = n + m where n
and m are the numbers of nodes and edges, respectively. As a result, the relative time
and space required to preprocess H⋆ and HC heavily depends on datasets. For exam-
ple, if n ≪ m , preprocessing a small matrix such as HC ∈ ℝ

n×n can be computation-
ally advantageous even though it is dense.

1237

1 3

Random walk with restart...

Thus, we further develop an automatic selection method for choosing one
between clique- and star-expansion-based methods so that the chosen method brings
out the best performance of a preprocessing method. Various data statistics of a
hypergraph can be considered to design a criterion based on which one method is
chosen. Among them, our strategy is to utilize the number of non-zeros of a matrix
to be preprocessed under a hypothesis that the performance of a preprocessing
method is likely to be affected by non-zero entries as it exploits the sparsity of the
preprocessed matrix for efficiency. We empirically prove the effectiveness of our
strategy compared to various statistics in Sect. 5.5.

Based on the criterion, our framework selects the star-expansion-based method if
the following predicate satisfies:

where ���(⋅) returns the number of non-zeros of an input matrix. Otherwise, our
method selects the clique-expansion-based method. Note that counting ���(HC) and
���(H⋆) takes a very short time compared to the total running time mostly con-
sumed by non-trivial operations, such as reordering and matrix multiplications of
the preprocessing methods (Shin et al. 2015; Jung et al. 2017). While the empirical
computation time is already very small, further optimization allows us to calculate
Eq. (11) in O(

∑
e∈E �e�2) time with O(n) extra space, as explained in Appendix D.

Algorithm 3   ARCHER: Adaptive RWR Computation on Hypergraphs

1: function Preprocess(R, W, c)
� Input: node-weight matrix R, hyperedge-weight matrix W, restart probability c

� Output: set Θ of preprocessed matrices

2: set nnz(HC) to nnz(WR) by Equation (D1)
3: set nnz(H�) to n+m+ 2

∑
v∈V d̄(v) by Equation (D2)

4: if nnz(HC) > nnz(H�) then
5: Θ ← Preprocess(R, W, c) of Algorithm 1 � star expansion

6: else
7: Θ ← Preprocess(R, W, c) of Algorithm 2 � clique expansion

8: return Θ

9: function Query(s, Θ)
� Input: query node s, set Θ of preprocessed matrices

� Output: RWR score vector r w.r.t s in hypergraph GH

10: if Θ is from the star-expansion-based method then
11: r ← Query(s, Θ) of Algorithm 1 � star expansion

12: else
13: r ← Query(s, Θ) of Algorithm 2 � clique expansion

14: return r

(11)���(HC) > ���(H⋆)

1238	 J. Chun et al.

1 3

3.5 � Ultimate framework: ARCHER

By putting all of the components together, we develop ARCHER, our ultimate
framework for fast computation of RWR on hypergraphs, and the procedure in it is
summarized in Algorithm 3. In the preprocessing phase, ARCHER first computes
���(HC) and ���(H⋆) (lines 2 and 3), which are utilized to select either clique- or
star-expansion-based methods. Based on the criterion in Eq. (11), ARCHER chooses
one of the methods and executes the corresponding preprocessing step (lines 4-7) to
obtain a set � of preprocessed matrices. In the query phase, for each query node s,
ARCHER performs the query step depending on the selected method (lines 10-13),
using the preprocessed matrices � , to compute the RWR score vector r.

It is important to note that our framework ARCHER can be equipped with any
pre-processing-based RWR computation method (e.g., BEAR and BePI), which
is used inside Algorithms 1 and 2, and the total time and space complexity of
ARCHER depends on the chosen method. Different methods offer distinct advan-
tages, as demonstrated empirically in Sect. 5.

4 � Application to anomaly detection

In this section, we present an application of RWR scores on hypergraphs for the
purpose of anomaly detection. The empirical effectiveness of this approach is dem-
onstrated in Sect. 5.6.

Given a hypergraph, this application aims to detect anomalous hyperedges that
deviate from ordinary group interactions. Inspired from (Sun et al. 2005), which
uses RWR for anomaly detection on graphs, we measure a normality score of a
hyperedge based on relevance scores provided by hypergraph RWR. Our intuition is
that if a hyperedge e is normal, the relevance scores between any pair of nodes in e
should be high. Specifically, we define the normality score ns(e) as follows:

where ru→v is the RWR score of the node v w.r.t. the query node u. In other words,
it is the average pair-wise relevance scores between nodes in the hyperedge e. If the
normality score is low, then the hyperedge is considered anomalous. Note that we
need a fast computation method such as ARCHER for this task because it requires
RWR scores for many query nodes.

More applications We have conducted a study on another application focused on
the task of node retrieval, which is described in Appendix B.

ns(e) =
1

|e|(|e| − 1)

∑

u∈e

∑

v∈e�{u}

r
u→v

1239

1 3

Random walk with restart...

5 � Experiments

In this section, we evaluate the performance of ARCHER and compare it with other
baselines for computing RWR on hypergraphs. We aim to answer the following
questions from the experiments:

•	 Q1. Preprocessing Time (Sect. 5.2). How long do ARCHER and the two compu-
tation methods composing it take for preprocessing?

•	 Q2. Space Cost (Sect. 5.3). How much memory space do they require for their
preprocessed results?

•	 Q3. Query Time (Sect. 5.4). How quickly do they process RWR queries?
•	 Q4. Automatic Selection Method (Sect. 5.5). How precisely does our automatic

selection strategy decide an appropriate computation method for a given hyper-
graph?

•	 Q5. Application to Anomaly Detection (Sect. 5.6). Can we achieve more accu-
rate anomaly detection on hypergraphs using RWR scores, compared to existing
approaches?

5.1 � Experimental settings

We describe our experimental settings, including machines, methods, datasets, and
parameters.

Machines All experiments are conducted on a workstation with AMD Ryzen 9
3900X and 128GB memory.

Methods For experiments evaluating the computational performance, we compare
ARCHER with using always one expansion method (star- or clique-expansion-based
method). ARCHER and the baselines are equipped with BEAR (Shin et al. 2015) or
BePI (Jung et al. 2017), state-of-the-art preprocessing methods for RWR on graphs.
We also compare ARCHER with the power iteration methods on star- and clique-
expanded graphs in Eqs. (6) and (10), respectively. We use our MATLAB imple-
mentation of the power iterations, and we use the source code of the authors for
BEAR3 and BePI,4 which are also implemented in MATLAB.

For anomaly detection, we consider the following two hypergraph-based anom-
aly-detection methods as baseline approaches:

•	 LSH-A (Ranshous et al. 2017): For each incoming hyperedge, it computes the
approximate frequency, which represents the number of previous hyperedges that
are similar to the new one, in the aspect of common nodes shared. This is used
to measure the unexpectedness of the hyperedge; intuitively, the hyperedge can
be considered unexpected if it is novel and significantly different from previous
hyperedges (i.e., low frequency). The approximation scheme is efficiently imple-

3  https://​datal​ab.​snu.​ac.​kr/​bear
4  https://​datal​ab.​snu.​ac.​kr/​bepi

https://datalab.snu.ac.kr/bear
https://datalab.snu.ac.kr/bepi

1240	 J. Chun et al.

1 3

mented in hyperedge streams by using Locality Sensitive Hashing (LSH) (Raja-
raman and Ullman 2011). Specifically, it computes the MinHash signature with
kh hash functions and performs LSH with b bands. Then it scores the hyperedge
with the similarity between the signature of previous hyperedges. LSH-A takes
O(kh�e� + b + b⌈mb

B
⌉ + 1) time per hyperedge, and we use our Python implemen-

tation of LSH-A.
•	 HashNWalk (Lee et al. 2022): In HashNWalk, each hyperedge is hashed into M

buckets called supernodes using each of kh hash functions. Based on the transi-
tion probability (i.e., random walk of length 1), HashNWalk calculates the prox-
imity between supernodes. Whenever a new hyperedge emerges, HashNWalk
updates the proximity between the supernodes in it and compares it with the
previous proximity to compute the anomaly score of the hyperedge. In scoring,
HashNWalk incorporates the hyperparameter � to control the degree of emphasis
placed on recent hyperedges. HashNWalk takes O(kh|e| + kh min(M, |e|)2) time
per hyperedge, and we use the official implementation of HashNWalk in C++.5

Table 2   Data statistics of real-world hypergraphs

n and m are the numbers of nodes and hyperedges, respectively. The average and maximum sizes of
hyperedges are denoted by avg

e∈E|e| and max
e∈E|e| , respectively. The density is defined by m/n, and the

overlapness (Lee et al. 2021) is defined by Σ
e∈E|e|∕n

Dataset n m avg
e∈E|e| max

e∈E|e| Density Overlapness

EEN 143 10,883 2.47 37 76.12 188.21
EEU 998 234,760 2.39 40 234.09 559.80
SB 294 29,157 7.96 99 99.17 789.62
HB 1,494 60,987 20.47 399 40.82 835.79
WAL 88,860 69,906 6.59 25 0.79 5.81
TRI 172,738 233,202 3.12 85 1.35 4.21
AM 55,700 105,655 8.12 555 1.90 15.41
YP 25,252 25,656 18.2 649 1.02 18.50
TW 81,305 70,097 25.2 1,205 0.86 21.75
COH 1,014,734 1,812,511 1.32 925 1.75 2.32
COG 1,256,385 1,590,335 2.80 284 1.26 3.53
COD 1,924,991 3,700,067 2.79 280 1.92 5.35
THU 125,602 192,947 1.80 14 1.54 2.76
THM 176,445 719,792 2.24 21 4.08 9.13
THS 2,675,955 11,305,343 2.23 67 4.22 9.56
ML1 3,533 6,038 95.3 1,435 1.71 162.83
ML10 10,472 69,816 84.3 3,375 6.67 562.02
ML20 22,884 138,362 88.1 4,168 6.05 532.93

5  https://​github.​com/​geon0​325/​HashN​Walk

https://github.com/geon0325/HashNWalk

1241

1 3

Random walk with restart...

Datasets We conduct extensive experiments on eighteen real-world hypergraphs
(Benson et al. 2018; Sinha et al. 2015; Yin et al. 2017; Leskovec et al. 2007;
Amburg et al. 2020; Chodrow et al. 2021; Fowler 2006a, b; Ni et al. 2019; McAuley
and Leskovec 2013; Harper and Konstan 2015), whose statistics are summarized
in Table 2. We provide details of each dataset in Appendix A. The source code and
datasets used in this paper are available at https://​github.​com/​jaewa​n01/​ARCHER.

Parameters. For the experiments of preprocessing and query costs, we set the
restart probability c to 0.05, which has been widely used in previous work (Tong
et al. 2007b; Shin et al. 2015; Jung et al. 2017). For BEAR, we set the hub selec-
tion ratio k of the reordering method to 0.001 as in (Shin et al. 2015). For BePI, we
set the hub selection ratio k of the reordering method to 0.2, which is used for large
graphs in (Jung et al. 2017) (see Footnote 1 for the usage of k). The error tolerance

Fig. 3   Preprocessing costs for various calculation methods of RWR on hypergraphs in terms of (a) pre-
processing time and (b) space usage. For preprocessing times, the error bars indicate ±1 standard devia-
tion. However, in many datasets, the error bars are so small that they are practically invisible. As shown
in the figures, using ARCHER requires up to 137.6× less preprocessing time and 16.2× less space than
using always one expansion method. Results are omitted if the corresponding methods ran out of time
( > 12 hours) or out of memory ( > 128 GB) during preprocessing

https://github.com/jaewan01/ARCHER

1242	 J. Chun et al.

1 3

� for the power iteration and BePI is set to 10−9 . We set the time and memory limits
for preprocessing to 12 hours and 128 GB, respectively.

We also perform careful hyperparameter tuning for the aforementioned anom-
aly detection methods. For LSH-A, we measure performance with different num-
bers of bands in LSH signatures ( b ∈ {2, 4, 8} ) and the length of LSH signatures
( l ∈ {2, 4, 8}) and report the best result obtained. For HashNWalk, we adopt a simi-
lar setting as described in (Lee et al. 2022). Specifically, we set the hyperparameter
� in the kernel function to 0.98. Additionally, we conduct a search for the optimal
values of the number of hash functions kh and the number of buckets M in the fol-
lowing ranges: (a) kh ∈ {10, 15, 20} and M ∈ {10, 20, 30} for the email-Enron data-
set (b) kh ∈ {8, 10, 12} and M ∈ {60, 80, 100} for the senate-bills dataset, and (c)
kh ∈ {8, 10, 12} and M ∈ {100, 150, 200} for the house-bills dataset. We report the
best result achieved for each dataset.

5.2 � Preprocessing time

We evaluate the performance of ARCHER in terms of preprocessing time. BEAR
and BePI are used as preprocessing techniques. For each method, we report the
average preprocessing time of 10 experiments. Note that the iterative methods are
excluded in this experiment because they do not require preprocessing. Figure 3a
shows the preprocessing time of all tested methods on 18 real-world hypergraphs.

We first compare ARCHER with BEAR and each expansion-based method with
BEAR. ARCHER with BEAR preprocesses hypergraphs up to 4.2× faster than
applying BEAR to the star-expanded graph (see the results on the SB dataset) and up
to 2.4× faster than applying BEAR to the clique-expanded graph (see the results on
the ML20 dataset). Note that the clique-expansion-based method with BEAR cannot
preprocess medium-sized datasets such as WAL and AM because clique expansion
produces a too-dense matrix that BEAR cannot handle. For larger datasets such as
TW, COG, COD, and THS, all methods with BEAR fail due to their limited scal-
ability. On the other hand, ARCHER with BePI provides better scalability for pre-
processing, and it successfully preprocesses all the datasets, showing up to 137.6×
faster than applying BePI to the clique-expanded graph (see the results on the TW
dataset) and up to 4.5× faster than applying BePI to the star-expanded graph (see the
results on the EEU dataset).

These results imply the complementary nature of the clique-expansion-based
methods and the star-expansion-based methods. Specifically, they exhibit relative
advantages on different hypergraphs, and these advantages are significant. This
underscores the importance of making careful choices between the two methods,
as ARCHER does. Our results regarding space cost and query time in the following
subsections further reinforce the importance of this selection, although we do not
repeat the same discussion within those subsections.

1243

1 3

Random walk with restart...

5.3 � Space cost

We analyze the space cost of ARCHER with each preprocessing technique com-
pared to that of other methods. The iterative methods are excluded from the com-
parison because they do not produce preprocessed results beyond the size of the
original data. We measure the memory size for storing preprocessed results in MB.
Figure 3b shows the space cost of each method. ARCHER with BEAR uses up to
16.2× less memory than applying BEAR to the clique-expanded graph (see the
results on the ML20 dataset) and up to 9.6× less memory than applying BEAR to
the star-expanded graph (see the results on the SB dataset). Furthermore, the space
cost of ARCHER with BePI is up to 12.3× less than applying BePI to the clique-
expanded graph (see the results on the TW dataset) and up to 9.0× less than apply-
ing BePI to the clique-expanded graph (see the results on the SB dataset).

5.4 � Query time

We examine the computational efficiency of ARCHER in processing RWR queries,
compared to other baselines, including power-iteration methods. For every method,
we measure the average query processing time for the same 30 query nodes. Figure 4
shows the results on 18 real-world hypergraphs. ARCHER with BEAR answers the
RWR queries up to 16.3× faster than applying BEAR to the star-expanded graph
(see the results on the EEU dataset) and up to 1.3× faster than applying BEAR to
the clique-expanded graph (see the results on the ML20 dataset) For ARCHER with
BePI, its query time is up to 218.8× less than applying BePI to the star-expanded
graph (see the results on the EEU dataset) and up to 4.0× faster than applying BePI
to the clique-expanded graph (see the results on the AM dataset). Note that regard-
less of the preprocessing techniques used, ARCHER significantly outperforms both
power-iteration methods.

Fig. 4   Query time for various calculation methods of RWR on hypergraphs. The error bars indicate ±1
standard deviation. Using ARCHER takes up to 218.8× less query time than using always one expansion
method. Results are omitted if the corresponding methods ran out of time ( > 12 hours) or out of memory
( > 128 GB) during preprocessing

1244	 J. Chun et al.

1 3

The experimental results regarding preprocessing and query costs imply that we
should consider different aspects of the preprocessing methods when choosing one
of them. If query cost matters more than preprocessing cost, BEAR is a good choice
because its query speed is faster than that of BePI, especially on small datasets, as
shown in Fig. 4. On the other hand, BePI is required for scalable RWR computation

(a) Proposed relative ratio nnz(HC)/nnz(H�) (17/18 correct)

(b) Density (13/18 correct)

(c) Overlapness (12/18 correct)

(d) Average hyperedge size (16/18 correct)

Fig. 5   Effectiveness of various data statistics in selection between the star- and clique-expansion-based
methods. BePI is used as the preprocessing approach. Each dashed line indicates the best threshold for
the corresponding criterion. Note that, when using our proposed criterion, we can choose the better
expansion method for 17 (out of 18) datasets, while the number of wrong choices increases when we use
the other criteria

1245

1 3

Random walk with restart...

on larger hypergraphs because BEAR fails to process such hypergraphs, as dis-
cussed in Sect. 5.2.

5.5 � Automatic selection method

We investigate the effectiveness of the proposed criterion in our automatic selection
method in ARCHER, compared to other potential criteria based on major statistics
of hypergraphs, including average hyperedge size, density, and overlapness (Lee
et al. 2021), which are summarized in Table 2.

To evaluate the effectiveness of each criterion, we set the ground-truth label
between star- and clique-expansion methods for each dataset depending on which
expansion method leads to a shorter preprocessing time of BePI. The reason for
labeling the datasets in this manner is that only BePI successfully preprocesses all
the datasets, and the preprocessing time of each method is distinctly different, as
shown in Fig. 3a. Our method selects the star method if ���(HC)∕���(H⋆) > 1 ; oth-
erwise, it picks the clique method, i.e., the threshold for our suggested method is 1
in Fig. 5a. For the other criteria, we selected the threshold values that maximize the
number of correct selections. Specifically, we set the threshold for density in Fig. 5b
to 1.26, the threshold for overlapness in Fig. 5c to 15.41, and the threshold for the
average size of hyperedges in Fig. 5d to 3.12.

Figure 5 demonstrates that, when using our proposed criterion, we can choose
the better expansion method for 17 (out of 18) datasets, while the number of wrong
choices increases when we use the other criteria. This result empirically confirms
our hypothesis that the performances of preprocessing methods heavily depend on
the number of non-zeros in the preprocessed matrix.

We further analyze the correlation between two ratios: (1) the ratio of ���(HC)
and ���(H⋆) , and (2) the ratio of (preprocessing, space, and query) costs of the
clique- and star-expansion-based methods, across various datasets when BePI is
used. In Fig. 6, we observe a strong positive correlation between the non-zero-count

Fig. 6   Correlation between two ratios on a natural logarithmic scale: (1) the ratio of ���(HC) and
���(H⋆) , and (2) the ratio of the costs of the clique- and star-expansion-based methods in terms of a pre-
processing time, b space cost, and c query time. BePI is used as the preprocessing technique. We report
the Pearson correlation coefficient for each scatter plot

1246	 J. Chun et al.

1 3

ratio and the cost ratio for each aspect of computation. This indicates that the cost in
each aspect is closely related to the number of non-zero entries in the matrix being
processed. Additionally, the positioning of data points in each plot demonstrates the
effectiveness of our suggested method selection. Data points located in the lower
left area indicate the correct selection of the clique method, while those in the upper
right area indicate the correct selection of the star method. This demonstrates that
our suggested selection approach is effective for most of the tested datasets.

5.6 � Application to anomaly detection

In this section, we evaluate the effectiveness of RWR scores in detecting anomalies
on hypergraphs. Refer to Sect. 4 for a detailed procedure on how we utilize RWR
scores for anomaly detection.

Settings We conduct this experiment on the EEN (email-Enron), SB (senate-
bills), and HB (house-bills) datasets, which are small enough for all compared meth-
ods to terminate. As the original datasets do not contain anomalous hyperedges, we
synthetically generate them by injecting unexpected hyperedges following (Lee et al.
2022). Specifically, we randomly select a hyperedge e ∈ E , and then create a hyper-
edge by replacing half nodes in e with random nodes. We repeat this process until t
hyperedges are generated.

(a) AUROC on EEN (b) AUROC on SB (c) AUROC on HB

(d) MAP on EEN (e) MAP on SB (f) MAP on HB

Fig. 7   Anomaly detection performance on hypergraphs in terms of AUROC and MAP. RWRs using
weights, especially EDNW, are more accurate than the other methods, including RWR on unweighted
clique-expanded graphs

1247

1 3

Random walk with restart...

We consider three models of RWR on hypergraphs: 1) RWR using EDNW, 2)
RWR using EINW, and 3) naive RWR. Note that the datasets used in the experi-
ment do not contain explicit weights. For EDNW, we make the weights to be edge-
dependent by setting 𝛾e(v) = d̄(v)−𝛽 , where d̄(v) denotes the unweighted degree of
node v. That is, we adopt the principle that, since high-degree nodes are present in
multiple hyperedges, they are likely to have a reduced impact within each hyper-
edge. We then set � = 0.5 and �(e) = 1 (refer to Appendix C for the selection of
� = 0.5 ). In the case of EINW (edge-independent node weights), we set �e(v) = 1
and �(e) = 1 . To check the effect of those weights, we further compare naive RWR
that computes RWR scores on the unweighted clique-expanded graph from the input
hypergraph. We vary the restart probability c from 0.1 to 0.9 by 0.1.

We compare those RWR models with LSH-A and HashNWalk, anomaly detec-
tion methods on hypergraphs. While they are originally designed for hypergraphs
with timestamps, the used datasets are static, and thus we assign a random times-
tamp to each hyperedge (spec., we randomly order the hyperedges and use their
orders as timestamps) when testing them.

Results Fig. 7 demonstrates the performance of each model for detecting the
anomalous (unexpected) hyperedges in terms of AUROC and MAP. As shown in the
figure, RWR using EDNW performs best, implying that it is beneficial to utilize the
edge-dependent node weights. Even RWR using EINW outperforms HashNWalk
and LSH-A. Naive RWR performs worst as the weights of nodes and hyperedges are
all disregarded.

6 � Conclusion and future directions

In this work, we consider random walk with restart (RWR) on hypergraphs after
formally defining it (Definition 1). Then, we propose ARCHER (Algorithm 3) for
its rapid and space-efficient computation. ARCHER is composed of two RWR com-
putation methods (Algorithms 1 and 2) that are based on clique- and star-expanded
graphs, respectively, of the input hypergraph. Since their relative performance heav-
ily depends on datasets, ARCHER is equipped with a lightweight automatic method
for selecting one between them. Using 18 real-world hypergraphs, we substantiate
the speed and space efficiency of ARCHER (Figs. 3 and 4), revealing that these
qualities are attributed to the complementary nature of the two RWR computation
methods and the accuracy of the automatic selection method (Fig. 5). In addition,
we introduce anomaly detection as an application of RWR on hypergraphs and show
the empirical effectiveness of RWR on it (Fig. 7).

As potential directions for future work, we intend to extend our framework to
incorporate approximate RWR computation algorithms, as discussed in Sect. 2.2.
Furthermore, the present automatic selection algorithm in Sect. 3.4 is grounded in
empirical observations, in which we plan to develop theoretically grounded yet effi-
cient selection algorithms.

1248	 J. Chun et al.

1 3

Appendix A: Experimental datasets

We provide a brief description of the datasets used in this paper.

•	 EEN and EEU.6 These hypergraphs represent sets of email addresses on emails
in Enron (EEN) and a European research institution (EEU) where users are
nodes and the group of the sender and all receivers of each email is a hyperedge.

•	 HB and SB.6 These represent co-sponsorships of bills in the House of Repre-
sentatives (HB) and the Senate (SB) where US Congresspersons are nodes, and
groups of sponsors and co-sponsors of bills are hyperedges.

•	 WAL.6 This is a hypergraph where products are nodes and hyperedges are sets of
co-purchased products at Walmart.

•	 TRI.6 This is a hypergraph where nodes are accommodations (mostly hotels) and
hyperedges are sets of accommodations that a user performed “click-out” during
the same browsing session at Trivago.

•	 COD, COG, and COH.6 These are co-authorship hypergraphs where authors are
nodes and each hyperedge represents the authors of a publication recorded on
DBLP (COD), Geology (COG), and History (COH).

•	 THS, THM, and THU).6 These are hypergraphs where users are nodes and each
hyperedge represents the group of users associated with a thread at StackOver-
flow (THS), MathStackOverflow (THM), and AskUbuntu (THU).

•	 AM.7 This is a hypergraph of Amazon (AM) product reviews (spec., those
categorized as Movies & TV) where users are nodes and a group of products
reviewed by the same user is a hyperedge. Each user has at least 5 reviews.

•	 YP.8 This is a hypergraph of user ratings on locations (e.g., hotels and restau-
rants) at Yelp (YP) where users are nodes and a group of locations a user rated is
a hyperedge. Ratings higher than 3 are considered.

•	 TW.9 This is a hypergraph of social relationships on Twitter (TW) where users
are nodes and each hyperedge represents a group of users that compose a ‘circle’
(or ‘list’) together on Twitter.

•	 ML1, ML10, and ML20.10 These hypergraphs represent interactions of movies at
MovieLens with different sizes of 1 M (ML1), 10 M (ML10), and 20 M (ML20)
movie ratings where nodes are movies and a group of movies a user rated is a
hyperedge. Ratings higher than 3 are considered.

6  https://​www.​cs.​corne​ll.​edu/​~arb/​data/
7  https://​cseweb.​ucsd.​edu/​~jmcau​ley/​datas​ets/​amazon_​v2
8  https://​www.​yelp.​com/​datas​et
9  https://​snap.​stanf​ord.​edu/​data/​ego-​Twitt​er.​html
10  https://​group​lens.​org/​datas​ets/​movie​lens/

https://www.cs.cornell.edu/%7earb/data/
https://cseweb.ucsd.edu/%7ejmcauley/datasets/amazon_v2
https://www.yelp.com/dataset
https://snap.stanford.edu/data/ego-Twitter.html
https://grouplens.org/datasets/movielens/

1249

1 3

Random walk with restart...

Appendix B: Application to node retrieval

In this section, we introduce an application of RWR scores on hypergraphs for the
task of node retrieval. Additionally, we evaluate the empirical effectiveness of this
approach.

Similar node retrieval Given a hypergraph and a query node s, this task is
to search for nodes structurally similar to the query node. Specifically, we meas-
ure node-to-node proximities for s and use them as ranking scores to sort all nodes
except s in the order of the scores. If nodes with the same class of the query node
are ranked high, structurally similar nodes are successfully retrieved, which can be
evaluated by ranking metrics such as AUROC and MAP. For this task, we compute
the hypergraph RWR scores r w.r.t. query node s through ARCHER, and utilize the
scores for ranking.

Settings We conduct this experiment on the SB (senate-bills) and HB (house-
bills) datasets, which contain binary node labels. The RWR models used in Sect. 5.6
are also used for this task. To introduce edge-dependent node weights (EDNW),
we set 𝛾e(v) = d̄(v)−𝛽 , where d̄(v) represents the unweighted degree of node v. We
then set � = 1.0 and �(e) = 1 (refer to Appendix C for the selection of � = 1.0 ). For

Fig. 8   Similar-node-retrieval performance on hypergraphs in terms of AUROC and MAP. The hyper-
graph RWR using EDNW provides the best accuracy among all the baselines in the SB and HB datasets

1250	 J. Chun et al.

1 3

(a) AUROC on EEN (b) AUROC on SB (c) AUROC on HB

(d) MAP on EEN (e) MAP on SB (f) MAP on HB

Fig. 9   Anomaly detection performance on hypergraphs in terms of AUROC and MAP with different
edge-dependent node weights, i.e., 𝛾

e
(v) = d̄(v)−𝛽 . When � = 0.5 , it provides the best accuracy

Fig. 10   Similar-node-retrieval performance in terms of AUROC and MAP with different edge-dependent
node weights, i.e., 𝛾

e
(v) = d̄(v)−𝛽 . When � = 1.0 , it provides better performance in most of the cases

1251

1 3

Random walk with restart...

EINW, we set �e(v) = 1 and �(e) = 1 . We vary the restart probability c from 0.1 to
0.9 by 0.1.

Results Fig. 8 shows the experimental results on the node retrieval task in terms
of AUROC and MAP. As shown in the figure, the RWR using EDNW shows the best
performance, especially with high values of restart probability c, among all tested
methods. Note that the RWR using EDNW outperforms that using EINW and naive
RWR, indicating the edge-dependent node weights are useful also for this task.

Appendix C: Experiments on edge‑dependent node weights
for applications

In this section, we provide the experimental results regarding the effectiveness of
the edge-dependent node weights for applications.

Anomaly detection For anomaly detection in Sect. 5.6, we set edge-dependent
node weights 𝛾e(v) = d̄(v)−𝛽 for hypergraph RWR. For the experiment, we assess
the performance of RWR by varying two parameters: � and the restart probability
c. Specifically, we explore different values of � within the range of {0.5, 1.0, 2.0} ,
and we also vary c between 0.1 and 0.9 in increments of 0.1. Figure 9 shows the
results, � = 0.5 generally yields the best performance across the tested datasets.

Similar node retrieval For node retrieval in Appendix B, we also set
𝛾e(v) = d̄(v)−𝛽 for hypergraph RWR. We test the node-retrieval performance of
RWR by varying the values of � and c. Specifically, the list of values tested for �
is {0.5, 1.0, 2.0} , while the range for c spans from 0.1 to 0.9. Figure 10 shows the
results, and � = 1.0 leads to the best performance in most cases.

Appendix D: Counting of the number of non‑zero entries

In this section, we discuss how to compute ���(HC) and ���(H⋆) rapidly and
space-efficiently. They are used in Eq. (11) by ARCHER to select one between
clique- and star-expansion-based methods.

Calculation of ���(HC) While it is possible to naively count the number of
non-zeros in HC = In − (1 − c)P̃

⊤ , materializing HC typically requires more space
than the input data due to its relatively high density. Hence, we suggest a more
efficient way based on the following property regarding HC:

where P̃ = W̃R̃ . The equality is from the fact that the diagonal entries of P̃ are non-
zeros because P̃ involves the transition probability that moves from each node v to
one of its hyperedges, and goes back to v. Note the sparsity pattern of P̃ is the same
as that of the adjacency matrix of the clique-expanded graph GC (with additional
self-loops on every node) of the hypergraph GH . Thus, we can calculate ���(P̃)
without materializing P̃ , by directly counting the edges that are clique-expanded
from each hyperedge.

(D1)���(HC) = ���(P̃)

1252	 J. Chun et al.

1 3

Algorithm 4 summarizes the procedure for computing ���(HC) . For each node
v (line 2), we find every node u that appears together with v in at least one hyper-
edge (line 5). Whenever we find such u, it is equivalent to finding an edge (v, u),
and thus we increment the count accordingly (line 7). Note that we maintain a
set C of such nodes to prevent duplicated counting (lines 3 and 8). Regardless of
the input, Algorithm 4 requires O(|C|) = O(n) extra space to maintain the set C.
The time complexity is O(

∑
v∈V

∑
e∈E(v) �e�) = O(

∑
e∈E �e�2) because it requires |e|

operations for each node in e.
Algorithm 4   Counting the number of non-zeros of HC

Input: sets V and E of nodes and hyperedges in GH , resp.
Output: number of non-zeros of HC
1: set nnz ← 0
2: for v ∈ V do
3: C ← ∅ � C is a set of nodes that appear together in one or more hyperedges

4: for e ∈ E(v) do � E(v) is the set of hyperedges incident to node v

5: for u ∈ e do
6: if u /∈ C then
7: nnz ← nnz+ 1 � (v, u) is counted

8: C ← C ∪ {u}
9: return nnz

Calculation of ���(H⋆) Similarly, ���(H⋆) can also be efficiently calculated
based on the following equalities:

where H⋆ = IN − (1 − c)S̃
⊤ . Note that IN is the identity matrix of size N = n + m ,

occupying n + m non-zeros in H⋆ . The matrix S̃ consists of W̃ and R̃ as shown in
Eq. (5), and their sparsity patterns are the same as W and R . The time complexity
of this approach is dominated by that of counting the numbers of non-zero entries
in W and R . If W and R are in a sparse matrix format, the number of their non-zero
entries can be computed in O(���(W) + ���(R)) = O(

∑
v∈V d̄(v)) = O(

∑
e∈E �e�)

time and even in O(1) time in some formats (e.g., compressed sparse row). With the
exception of the inputs (i.e., W and R ), this approach requires a constant amount of
additional space.

(D2)
���(H⋆) = n + m + ���(S̃)

= n + m + ���(W̃) + ���(R̃)

= n + m + ���(W) + ���(R),

1253

1 3

Random walk with restart...

Fig. 11   Correlations between a basic data statistics and b the costs of RWR computation on hypergraphs
in terms of preprocessing time, space cost, and query time. BePI is used for RWR computation. We
report the Pearson correlation coefficient for each scatter plot. Note that there is a strong positive correla-
tion between ���(H) and the costs, whereas other statistics do not exhibit such a correlation

1254	 J. Chun et al.

1 3

Appendix E: Correlation between data statistics and costs of BePI

In this section, we empirically investigate the correlations between basic data statistics
and the costs of BePI, which ARCHER employs for RWR computation. As the data sta-
tistics, we use ���(H) (i.e., ���(HC) and ���(H⋆) in clique- and star-expansion-based
computations, respectively), density, overlapness, and average hyperedge size. As the
costs of the clique- and star-expansion-based computation of BePI, we consider preproc-
essing time, space cost, and query time. The results obtained across all the datasets (refer
to Appendix A) for both clique- and star-expansion-based computations are presented in
Fig. 11. As shown in Fig. 11a, there exists a strong positive correlation between ���(H)
and the costs for the calculation of RWR. For other statistics (see Figs. 11b, 11c, and 11d),
there is no noticeable correlation between the statistics and the costs.

Funding  This work was supported by National Research Foundation of Korea (NRF) grant funded by
the Korea government (MSIT) (No. NRF-2020R1C1C1008296) (No. NRF-2021R1C1C1008526) and
Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded
by the Korea government (MSIT) (No. 2019-0-00075, Artificial Intelligence Graduate School Program
(KAIST)) (No. 2021-0-02,068, Artificial Intelligence Innovation Hub).

Declarations 

Conflict of interest  The authors have no relevant financial or non-financial interests to disclose.

References

Amburg I, Veldt N, Benson A (2020) Clustering in graphs and hypergraphs with categorical edge labels.
In: Proceedings of the web conference 2020 (WWW), pp 706–717. https://​doi.​org/​10.​1145/​33664​
23.​33801​52

Benson AR, Abebe R, Schaub MT et al (2018) Simplicial closure and higher-order link prediction. Pro-
ceed Natl Academy Sci. https://​doi.​org/​10.​1073/​pnas.​18006​83115

Boyd S, Boyd SP, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cam-
bridge. https://​doi.​org/​10.​1017/​CBO97​80511​804441

Brin S, Page L (1998) The anatomy of a large-scale hypertextual web search engine. Comput Netw
ISDN Syst 30(1–7):107–117. https://​doi.​org/​10.​1016/​s0169-​7552(98)​00110-x

Chitra U, Raphael B (2019) Random walks on hypergraphs with edge-dependent vertex weights. In:
Proceedings of the 36th international conference on machine learning (ICML), pp 1172–1181,
arXiv:​1905.​08287

Chodrow PS, Veldt N, Benson AR (2021) Generative hypergraph clustering: from blockmodels to
modularity. Sci Adv 7(28):eabh1303. https://​doi.​org/​10.​1126/​sciadv.​abh13​03

Cohen MB, Kelner J, Peebles J, et al (2016) Faster algorithms for computing the stationary distribu-
tion, simulating random walks, and more. In: 2016 IEEE 57th annual symposium on foundations
of computer science (FOCS), pp 583–592. https://​doi.​org/​10.​1109/​FOCS.​2016.​69

Cohen MB, Kelner J, Kyng R, et al (2018) Solving directed laplacian systems in nearly-linear time
through sparse lu factorizations. In: 2018 IEEE 59th annual symposium on foundations of com-
puter science (FOCS), pp 898–909. https://​doi.​org/​10.​1109/​FOCS.​2018.​00089

Comrie C, Kleinberg J (2021) Hypergraph ego-networks and their temporal evolution. In: 2021 IEEE
international conference on data mining (ICDM), pp 91–100. https://​doi.​org/​10.​1109/​icdm5​
1629.​2021.​00019

Do MT, Yoon Se, Hooi B, et al (2020) Structural patterns and generative models of real-world hyper-
graphs. In: Proceedings of the 26th ACM SIGKDD international conference on knowledge dis-
covery & data mining (KDD). ACM, pp 176–186. https://​doi.​org/​10.​1145/​33944​86.​34030​60

https://doi.org/10.1145/3366423.3380152
https://doi.org/10.1145/3366423.3380152
https://doi.org/10.1073/pnas.1800683115
https://doi.org/10.1017/CBO9780511804441
https://doi.org/10.1016/s0169-7552(98)00110-x
http://arxiv.org/abs/1905.08287
https://doi.org/10.1126/sciadv.abh1303
https://doi.org/10.1109/FOCS.2016.69
https://doi.org/10.1109/FOCS.2018.00089
https://doi.org/10.1109/icdm51629.2021.00019
https://doi.org/10.1109/icdm51629.2021.00019
https://doi.org/10.1145/3394486.3403060

1255

1 3

Random walk with restart...

Fowler JH (2006) Connecting the congress: a study of cosponsorship networks. Polit Anal 14(4):456–
487. https://​doi.​org/​10.​1093/​pan/​mpl002

Fowler JH (2006) Legislative cosponsorship networks in the US house and senate. Soc Netw
28(4):454–465. https://​doi.​org/​10.​1016/j.​socnet.​2005.​11.​003

Fujiwara Y, Nakatsuji M, Onizuka M, et al (2012) Fast and exact top-k search for random walk with
restart. Proceed VLDB Endowment 5(5), 442–453.https://​doi.​org/​10.​14778/​21404​36.​21404​41

Gasteiger J, Bojchevski A, Günnemann S (2019a) Predict then propagate: Graph neural networks meet
personalized pagerank. In: International conference on learning representations (ICLR). arXiv:​
1810.​05997

Gasteiger J, Weißenberger S, Günnemann S (2019b) Diffusion improves graph learning. In: Advances
in neural information processing systems (NeurIPS). arXiv:​1911.​05485

Harper FM, Konstan JA (2015) The MovieLens datasets. ACM Trans Interact Intell Syst 5(4):1–19.
https://​doi.​org/​10.​1145/​28278​72

Hayashi K, Aksoy SG, Park CH, et al (2020) Hypergraph random walks, laplacians, and clustering.
In: Proceedings of the 29th ACM international conference on information & knowledge manage-
ment (CIKM), pp 495–504. https://​doi.​org/​10.​1145/​33405​31.​34120​34

Horn RA, Johnson CR (2012) Matrix analysis. Cambridge University Press. https://​doi.​org/​10.​1017/​
CBO97​80511​810817

Hou G, Chen X, Wang S, et al (2021) Massively parallel algorithms for personalized pagerank. Pro-
ceed VLDB Endow 14(9):1668–1680. https://​doi.​org/​10.​14778/​34615​35.​34615​54

Jung J, Jin W, Sael L, et al (2016) Personalized ranking in signed networks using signed random walk
with restart. In: 2016 IEEE 16th international conference on data mining (ICDM), pp 973–978.
https://​doi.​org/​10.​1109/​icdm.​2016.​0122

Jung J, Park N, Lee S, et al. (2017) BePI. In: Proceedings of the 2017 ACM international conference
on management of data (SIGMOD), pp 789–804. https://​doi.​org/​10.​1145/​30359​18.​30359​50

Jung J, Jin W, Kang U (2019) Random walk-based ranking in signed social networks: model and algo-
rithms. Knowl Inf Syst 62(2):571–610. https://​doi.​org/​10.​1007/​s10115-​019-​01364-z

Kang U, Faloutsos C (2011) Beyond ’caveman communities’: Hubs and spokes for graph compression
and mining. In: 2011 IEEE 11th international conference on data mining (ICDM), pp 300–309,
https://​doi.​org/​10.​1109/​ICDM.​2011.​26

Langville AN, Meyer CD (2006) Google’s PageRank and beyond: the science of search engine rank-
ings. Princeton University Press, Princeton. https://​doi.​org/​10.​1515/​97814​00830​329

Lee G, Choe M, Shin K (2021) How do hyperedges overlap in real-world hypergraphs?—patterns,
measures, and generators. In: Proceedings of the web conference 2021 (WWW), pp 3396–3407.
https://​doi.​org/​10.​1145/​34423​81.​34500​10

Lee G, Choe M, Shin K (2022) HashNWalk: Hash and random walk based anomaly detection in hyper-
edge streams. In: Proceedings of the thirty-first international joint conference on artificial intelli-
gence (IJCAI), pp 2129–2137. https://​doi.​org/​10.​24963/​ijcai.​2022/​296

Lee G, Yoo J, Shin K (2023) Mining of real-world hypergraphs: Patterns, tools, and generators. In: Pro-
ceedings of the 29th ACM SIGKDD international conference on knowledge discovery & data min-
ing (KDD). ACM, pp 5811–5812. https://​doi.​org/​10.​1145/​35803​05.​35995​67,

Lee J, Jung J (2023) Time-aware random walk diffusion to improve dynamic graph learning. In: Proceed-
ings of the AAAI conference on artificial intelligence (AAAI). https://​doi.​org/​10.​1609/​aaai.​v37i7.​
26021

Leskovec J, Kleinberg J, Faloutsos C (2007) Graph evolution. ACM Trans Knowl Discovery Data 1(1):2.
https://​doi.​org/​10.​1145/​12172​99.​12173​01

Li J, He J, Zhu Y (2018) E-tail product return prediction via hypergraph-based local graph cut. In: Pro-
ceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data min-
ing (KDD), pp 519–527. https://​doi.​org/​10.​1145/​32198​19.​32198​29

Lin D, Wong RCW, Xie M, et al (2020) Index-free approach with theoretical guarantee for efficient ran-
dom walk with restart query. In: IEEE 36th international conference on data engineering (ICDE), pp
913–924. https://​doi.​org/​10.​1109/​icde4​8307.​2020.​00084

McAuley J, Leskovec J (2013) Discovering social circles in ego networks. arXiv:​1210.​8182
Nassar H, Kloster K, Gleich DF (2015) Strong localization in personalized PageRank vectors. In: Algo-

rithms and models for the web graph (WAW), pp 190–202. https://​doi.​org/​10.​1007/​978-3-​319-​
26784-5_​15

Ni J, Li J, McAuley J (2019) Justifying recommendations using distantly-labeled reviews and fine-
grained aspects. In: Proceedings of the 2019 conference on empirical methods in natural language

https://doi.org/10.1093/pan/mpl002
https://doi.org/10.1016/j.socnet.2005.11.003
https://doi.org/10.14778/2140436.2140441
http://arxiv.org/abs/1810.05997
http://arxiv.org/abs/1810.05997
http://arxiv.org/abs/1911.05485
https://doi.org/10.1145/2827872
https://doi.org/10.1145/3340531.3412034
https://doi.org/10.1017/CBO9780511810817
https://doi.org/10.1017/CBO9780511810817
https://doi.org/10.14778/3461535.3461554
https://doi.org/10.1109/icdm.2016.0122
https://doi.org/10.1145/3035918.3035950
https://doi.org/10.1007/s10115-019-01364-z
https://doi.org/10.1109/ICDM.2011.26
https://doi.org/10.1515/9781400830329
https://doi.org/10.1145/3442381.3450010
https://doi.org/10.24963/ijcai.2022/296
https://doi.org/10.1145/3580305.3599567
https://doi.org/10.1609/aaai.v37i7.26021
https://doi.org/10.1609/aaai.v37i7.26021
https://doi.org/10.1145/1217299.1217301
https://doi.org/10.1145/3219819.3219829
https://doi.org/10.1109/icde48307.2020.00084
http://arxiv.org/abs/1210.8182
https://doi.org/10.1007/978-3-319-26784-5_15
https://doi.org/10.1007/978-3-319-26784-5_15

1256	 J. Chun et al.

1 3

processing and the 9th international joint conference on natural language processing (EMNLP-IJC-
NLP), pp 188–197. https://​doi.​org/​10.​18653/​v1/​d19-​1018

Page L, Brin S, Motwani R, et al (1999) The pagerank citation ranking: Bringing order to the web. Tech.
rep., Stanford InfoLab

Rajaraman A, Ullman JD (2011) Mining of massive datasets. Cambridge University Press. https://​doi.​
org/​10.​1017/​CBO97​81139​924801

Ranshous S, Chaudhary M, Samatova NF (2017) Efficient outlier detection in hyperedge streams using
MinHash and locality-sensitive hashing. In: Complex networks & their applications VI, pp 105–
116. https://​doi.​org/​10.​1007/​978-3-​319-​72150-7_9

Shin K, Jung J, Lee S, et al (2015) Bear: Block elimination approach for random walk with restart on
large graphs. In: Proceedings of the 2015 ACM SIGMOD international conference on management
of data (SIGMOD), pp 1571–1585. https://​doi.​org/​10.​1145/​27233​72.​27237​16

Sinha A, Shen Z, Song Y, et al (2015) An overview of microsoft academic service (MAS) and applica-
tions. In: Proceedings of the 24th international conference on world wide web (WWW), pp 519–
527. https://​doi.​org/​10.​1145/​27409​08.​27428​39

Sun J, Qu H, Chakrabarti D, et al (2005) Neighborhood formation and anomaly detection in bipartite
graphs. In: Proceedings of the fifth IEEE international conference on data mining (ICDM), pp 418–
425. https://​doi.​org/​10.​1109/​ICDM.​2005.​103

Sun L, Ji S, Ye J (2008) Hypergraph spectral learning for multi-label classification. In: Proceedings of the
14th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD), pp
668–676. https://​doi.​org/​10.​1145/​14018​90.​14019​71

Tong H, Faloutsos C, Gallagher B, et al (2007a) Fast best-effort pattern matching in large attributed
graphs. In: Proceedings of the 13th ACM SIGKDD international conference on Knowledge discov-
ery and data mining (KDD), pp 737–746. https://​doi.​org/​10.​1145/​12811​92.​12812​71

Tong H, Faloutsos C, Pan JY (2007) Random walk with restart: fast solutions and applications. Knowl Inf
Syst 14(3):327–346. https://​doi.​org/​10.​1007/​s10115-​007-​0094-2

Trefethen LN, Bau D (2022) Numerical linear algebra, vol 181. Siam, https://​doi.​org/​10.​1137/1.​97808​
98719​574

Wang R, Wang S, Zhou X (2019) Parallelizing approximate single-source personalized PageRank queries
on shared memory. VLDB J 28(6):923–940. https://​doi.​org/​10.​1007/​s00778-​019-​00576-7

Wang S, Yang R, Xiao X, et al (2017) Fora: simple and effective approximate single-source personalized
pagerank. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge dis-
covery and data mining (KDD), pp 505–514. https://​doi.​org/​10.​1145/​30979​83.​30980​72

Wang S, Yang R, Wang R et al (2019) Efficient algorithms for approximate single-source personalized
PageRank queries. ACM Trans Database Syst 44(4):1–37. https://​doi.​org/​10.​1145/​33609​02

Wei Z, He X, Xiao X, et al (2018) Topppr: Top-k personalized pagerank queries with precision guaran-
tees on large graphs. In: Proceedings of the 2018 international conference on management of data
(SIGMOD), pp 441–456. https://​doi.​org/​10.​1145/​31837​13.​31969​20

Wu H, Gan J, Wei Z, et al (2021) Unifying the global and local approaches: An efficient power iteration
with forward push. In: Proceedings of the 2021 international conference on management of data
(SIGMOD), pp 1996–2008. https://​doi.​org/​10.​1145/​34480​16.​34572​98

Yin H, Benson AR, Leskovec J, et al (2017) Local higher-order graph clustering. In: Proceedings of the
23rd ACM SIGKDD international conference on knowledge discovery and data mining (KDD), pp
555–564. https://​doi.​org/​10.​1145/​30979​83.​30980​69

Zhang Y, Zhao Z, Feng Z (2018a) A unified approach to scalable spectral sparsification of directed
graphs. arXiv:​1812.​04165

Zhang Z, Lin H, Gao Y (2018b) Dynamic hypergraph structure learning. In: Proceedings of the twenty-
seventh international joint conference on artificial intelligence (IJCAI), pp 3162–3169. https://​doi.​
org/​10.​24963/​ijcai.​2018/​439

Zhou D, Huang J, Schölkopf B (2006) Learning with hypergraphs: clustering, classification, and embed-
ding. In: Proceedings of the 19th international conference on neural information processing systems
(NIPS), pp 1601–1608. https://​doi.​org/​10.​7551/​mitpr​ess/​7503.​003.​0205

Zhu S, Zou L, Fang B (2013) Content based image retrieval via a transductive model. J Intell Inf Syst
42(1):95–109. https://​doi.​org/​10.​1007/​s10844-​013-​0257-4

Zien J, Schlag M, Chan P (1999) Multi-level spectral hypergraph partitioning with arbitrary vertex sizes.
ITCSDI 18(9):1389–1399. https://​doi.​org/​10.​1109/​iccad.​1996.​569592

https://doi.org/10.18653/v1/d19-1018
https://doi.org/10.1017/CBO9781139924801
https://doi.org/10.1017/CBO9781139924801
https://doi.org/10.1007/978-3-319-72150-7_9
https://doi.org/10.1145/2723372.2723716
https://doi.org/10.1145/2740908.2742839
https://doi.org/10.1109/ICDM.2005.103
https://doi.org/10.1145/1401890.1401971
https://doi.org/10.1145/1281192.1281271
https://doi.org/10.1007/s10115-007-0094-2
https://doi.org/10.1137/1.9780898719574
https://doi.org/10.1137/1.9780898719574
https://doi.org/10.1007/s00778-019-00576-7
https://doi.org/10.1145/3097983.3098072
https://doi.org/10.1145/3360902
https://doi.org/10.1145/3183713.3196920
https://doi.org/10.1145/3448016.3457298
https://doi.org/10.1145/3097983.3098069
http://arxiv.org/abs/1812.04165
https://doi.org/10.24963/ijcai.2018/439
https://doi.org/10.24963/ijcai.2018/439
https://doi.org/10.7551/mitpress/7503.003.0205
https://doi.org/10.1007/s10844-013-0257-4
https://doi.org/10.1109/iccad.1996.569592

1257

1 3

Random walk with restart...

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

	Random walk with restart on hypergraphs: fast computation and an application to anomaly detection
	Abstract
	1 Introduction
	2 Preliminaries and related work
	2.1 Notations
	2.2 Random walk with restart on graphs
	2.3 Random walk on hypergraphs

	3 Proposed framework
	3.1 Random walk with restart on hypergraphs
	3.2 Component 1: Star-expansion-based Method
	3.3 Component 2: Clique-expansion-based Method
	3.4 Component 3: Automatic selection method
	3.5 Ultimate framework: ARCHER

	4 Application to anomaly detection
	5 Experiments
	5.1 Experimental settings
	5.2 Preprocessing time
	5.3 Space cost
	5.4 Query time
	5.5 Automatic selection method
	5.6 Application to anomaly detection

	6 Conclusion and future directions
	Appendix A: Experimental datasets
	Appendix B: Application to node retrieval
	Appendix C: Experiments on edge-dependent node weights for applications
	Appendix D: Counting of the number of non-zero entries
	Appendix E: Correlation between data statistics and costs of BePI
	References

