
Vol.:(0123456789)

Data Mining and Knowledge Discovery (2024) 38:173–205
https://doi.org/10.1007/s10618-023-00965-1

1 3

Improving neural network’s robustness on tabular data
with D‑layers

Haiyang Xia1 · Nayyar Zaidi2 · Yishuo Zhang2 · Gang Li2

Received: 16 January 2023 / Accepted: 12 July 2023 / Published online: 31 August 2023
© The Author(s) 2023

Abstract
Artificial neural networks ( ��� ) are widely used machine learning models. Their
widespread use has attracted a lot of interest in their robustness. Many studies show
that ANN’s performance can be highly vulnerable to input manipulation such as
adversarial attacks and covariate drift. Therefore, various techniques that focus on
improving ��� ’s robustness have been proposed in the last few years. However, most
of these works have mostly focused on image data. In this paper, we investigate the
role of discretization in improving ��� ’s robustness on tabular datasets. Two custom
��� layers– D1-Layer and D2-Layer (collectively called D-Layers) are pro-
posed. The two layers integrate discretization during the training phase to improve
��� ’s ability to defend against adversarial attacks. Additionally, D2-Layer inte-
grates dynamic discretization during testing phase as well, to provide a unified strat-
egy to handle adversarial attacks and covariate drift. The experimental results on 24
publicly available datasets show that our proposed D-Layers add much-needed
robustness to ��� for tabular datasets.

Keywords  Robustness · Covariate drift · Adversarial attack · Tabular data ·
Discretization

1  Introduction

The widespread use of ��� models has attracted a lot of interest in their robust-
ness (Goodfellow et al. 2014; Kurakin et al. 2017). Typically, one measure of ANN’s
robustness is to see whether it can maintain performance with the changes in input
data. These changes can be driven by either malicious or benign intent. An example
of malicious intent change is adversarial attacks that manipulate input data to sway
the model output towards a desirable outcome (Akhtar and Mian 2018). An example

Responsible editor: Charalampos Tsourakakis.

Haiyang Xia and Nayyar Zaidi have contributed equally to this work.

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-023-00965-1&domain=pdf

174	 H. Xia et al.

1 3

of benign intent change is data variation over time due to covariate drift. With the
ever-changing facet of adversarial attack methods and datasets drifting over time,
how to add robustness to ��� on tabular datasets remains an open, yet fundamental
question. This work is motivated to address the issue of robustness in ��� models by
proposing new novel layers in standard ��� architecture.

Traditionally, adversarial attacks constitute imperceptible perturbations on the
input image to control ��� ’s output. Many studies have demonstrated that the per-
turbed images that fail one model can also fail other models trained on different
datasets with different architectures (Goodfellow et al. 2014), highlighting the sever-
ity of the problem. In the past few years, plenty of research efforts have been exerted
in designing appropriate defence mechanisms for ANNmodels on image datasets
(Kurakin et al. 2017; Shafahi et al. 2019). However, image datasets are not the only
datasets susceptible to adversarial attacks. Tabular datasets that are commonly used
in various ��� applications domains such as finance and medicine are as vulnerable
to adversarial attacks as image datasets (Cartella et al. 2021). Tabular datasets have
one trait, i.e., the presence of categorical features that can serve as a natural defence
against adversarial attacks, as the adversarial perturbations on categorical features
can be easily observed. For instance, in a loan approval scenario, the level-of-
education is bachelor, master, and doctorate (normally represented as
integers like 1, 2, and 3), it is easy for bank managers to find the fraudulent modi-
fication when a customer modifies her education level from 2 to 2.5 or from 3 to 4,
to obtain a loan. However, numeric features in tabular datasets are as vulnerable to
adversarial attacks as pixel values in images (Cartella et al. 2021). Considering the
natural defence capability of categorical features, recently, various discretization-
based defence methods have been proposed (Buckman et al. 2018).

Covariate drift which informally refers to the situation where testing distribution
is different from training distribution can also adversely affect ��� models’ perfor-
mance (Nado et al. 2020). Several studies in domain adaptation and causal inference
aim to tackle the covariate drift issue by taking advantage of the information on
testing distribution (Magliacane et al. 2017). Discretization can serve as a natural
defence against some forms of covariate drifts as well. For example, if the Salary
feature (at the training time) is discretized with equal frequency discretization into
three bins {A, B, C}—even with covariate drift resulting in the monotonic trans-
formation of the testing data—discretization on the transformed Salary feature (at
the testing time) can result in a similar allocation of the bins.

Given the pivotal role that discretization can play as a defence mechanism against
adversarial attacks and covariate drift, there is a need to integrate discretization
into ��� ’s models for increasing their robustness. In this work, we propose two cus-
tomized new layers for ��� – named D1-Layer ‘Discretization’) and D2-Layer
(‘Dynamic Discretization’)—collectively called D-Layers, to address this need.
The main motivations of these two layers are:

•	 Existing discretization-based adversarial attack defence methods (Buckman et al.
2018; Zhou et al. 2022) normally discretize data prior to training the model.
Despite their effectiveness, if some part of the training data is changed (e.g., as
part of adversarial training), the discretization results will be incorrect, as the

175

1 3

Improving neural network’s robustness on...

discretization boundaries are learned beforehand. Furthermore, any time the
model is to be re-trained requires re-discretizing the dataset. The seamless inte-
gration of discretization in ANN(during model training) and exploiting its ben-
efits is the main motivation for our proposed D-Layers.

•	 Once the model is trained, there is no way to update the discretization bounda-
ries. However, if the distribution of testing data is changed due to covariate drift
or adversarial attack, there is a strong need to update discretization boundaries
to accommodate this distribution change. In other words, we need dynamic dis-
cretization at the testing phase to resist potential distribution changes caused by
covariate drift or adversarial attack. The seamless integration of such dynamic
discretization in ANN(during model testing) is the main motivation for our pro-
posed D2-Layer.

The main contributions of this paper are:

•	 We have proposed two new layers for adding robustness to ��� models. Specifi-
cally, D1-Layer integrates discretization during the training phase to improve
��� ’s ability to defend against adversarial attacks. Whereas, D2-Layer inte-
grates discretization during the training phase, as well as during the testing phase
to provide a unified strategy for ��� to handle covariate drift and adversarial
attacks.

•	 We demonstrate that our proposed D1-Layer lead to the state-of-the-art
(SOTA) defence mechanism against a range of standard attacks on various pub-
licly available tabular datasets.

•	 We demonstrate that our proposed D2-Layer offers an effective unified strat-
egy to address adversarial attacks and covariate drift at the same time.

The rest of this paper is organized as follows. In Sect. 2, we review the related
works. In Sect. 3, we present our proposed formulations namely D-Layers. Sec-
tion 4 provides an empirical evaluation of our proposed formulations. In Sect. 5, we
conclude the paper with pointers to future works.

2 � Related work

2.1 � Adversarial attack methods

To highlight the robustness of ��� models, a large number of adversarial attack
models have been proposed in the literature in the past few years. Broadly, these
existing adversarial attack models can be divided into white-box attack models and
black-box attack models (Kumová and Pilát 2021). Attack models that require access
to information of the original ��� model such as parameters, gradient, or structure
to conduct attacks are referred to as white-box attack models, otherwise black-box
attack models (Huang et al. 2020). Our study focuses on white-box attack models
and hence we will mainly review popular white-box attack models. A more compre-
hensive literature review can be found in (Kong et al. 2021; Huang et al. 2020).

176	 H. Xia et al.

1 3

FGSM (Fast Gradient Sign Method) (Goodfellow et al. 2014) is the most clas-
sic white-box attack model for both image and tabular data. It creates adversarial
samples by adding gradients to the original instance. FGSM is easy to implement but
normally has a relatively low success rate, as the adversarial samples created by add-
ing gradient may be insufficient to cross the decision boundary (Shafahi et al. 2019).
A direct extension of FGSM is BIM (Basic Iterative Method) which iteratively con-
duct FGSM multiple times with a small step size to achieve better attack performance
(Kurakin et al. 2016). PGD (Projected Gradient Descent) is also a popular white-box
attack model built on top of FGSM (Madry et al. 2017). Different from BIM that
directly iteratively conducts FGSM from the original sample, PGD initializes the start
of the adversarial attack from a random distribution to add variations to the attack to
further improve the attack’s success rate.

Another popular white-box attack model is DeepFool (Moosavi-Dezfooli
et al. 2016). It works by iteratively linearizing the model to generate unperceivable
adversarial examples. Compared with other gradient-based white-box attack mod-
els, DeepFool is more efficient as it can always generate adversarial examples
that are close to the decision boundary. LowProFool is the state-of-the-art white-
box attack model on tabular data (Ballet et al. 2019). It induces parameter updates
toward the targeted class by utilizing the gradient of adversarial noise. The impor-
tance weights of features are evaluated to ensure large perturbations only exist on
irrelevant or less important features, such that the generated examples are impercep-
tible to expert scrutiny.

2.2 � Adversarial defence methods

Madry et al. (2017) is the most straightforward defence method—it takes advan-
tage of adversarial training to minimize models’ adversarial risk to defend against
adversarial attacks. Despite its effectiveness, one critical issue of this adversarial-
training-based defence model is overfitting to attacks that generate adversarial
samples (Kurakin et al. 2017). For example, the models that were adversarially
trained to resist FGSM frequently failed to resist L-BFGS and BIM attacks. Thereby,
recent studies have started to advocate input discretization as the defence mecha-
nism. Thermometer encoding (Buckman et al. 2018) is one of the most popu-
lar discretization-based defence models as it defends against adversarial attacks by
discretizing the numeric inputs to [0, 1] vectors. For example, discretizes 0.23 to
[0, 0, 1, 1, 1, 1, 1, 1, 1, 1], 0.34 to [0, 0, 0, 1, 1, 1, 1, 1, 1, 1], etc. Thermome-
ter’s formulation is very similar to one-hot encoding, but it can preserve the order
of input after discretization, thus having better performance than one-hot encoding.
In the context of deep ANN models implemented via Keras,1 one can utilize Keras
discretization layer.2 It offers another method to discretize neural network input. It is
important to note that unlike other discretization methods which are feature-based

1  https://​keras.​io/.
2  https://​keras.​io/​api/​layers/​prepr​ocess​ing_​layers/​categ​orical/​discr​etiza​tion/.

https://keras.io/
https://keras.io/api/layers/preprocessing_layers/categorical/discretization/

177

1 3

Improving neural network’s robustness on...

(i.e., different cut-points are learned for different features)—the discretization strat-
egy in this layer learns one set of cut-points for all the features—i.e., data across all
features is used to compute the quantiles—which are later used as the cut-points to
discretize. Little efforts have been made to investigate the effectiveness of keras
discretization layer in defending against adversarial attacks. We will explore this
direction together by proposing two discretization-inspired algorithms in this work.
D2A3 and D2A3N (Zhou et al. 2022) are state-of-the-art defence models on tabu-

lar data. D2A3 defends against adversarial attacks by exploiting both input discre-
tization and adversarial training. In D2A3, the numeric input features are discretized
to train a discretized model—this model is then improved by taking advantage of
adversarial training. The main limitation of D2A3 is the requirement for access-
ing input data and changing it from numeric to discrete, which may be impossible
in many application scenarios. In D2A3N, the numerical input features are discre-
tized by the cut-points directly learned from the training data—data close to cut-
points are considered adversarial samples and are replaced by the median of the bin
to defend against adversarial attacks. Although these existing studies demonstrated
the effectiveness of input discretization as a defence mechanism against tabular data
adversarial attacks, their performance can be further improved by integrating flex-
ible within model cut-points learning strategies as well as dynamic discretization—
strategies that we will study in this work. Note, D2A3 and D2A3N are state-of-the-
art adversarial defence approaches in the context of deep ANN. Therefore, we will
consider these approaches as the baseline when comparing the adversarial defence
capability of the proposed methods in this work. The main advantage of our pro-
posed D-Layers over D2A3 and its variant is that the defence mechanism does
not include adversarial training. Secondly, and importantly, our proposed method
integrates discretization in the learning of an ANN model, unlike a pre-discretization
strategy of D2A3. We will discuss in the following, that this trait is one of the rea-
sons for the superior performance of D-Layers. One limitation of our proposed
approach in handling covariate drift is its inability to handle non-monotonic trans-
formations (or drifts). This is because, as we will also discuss below, D-Layers
are based on equal frequency discretization, and hence assumes that order is pre-
served during the drift. However, if the order is not preserved, our proposed layers
will not be effective. We are working on how to handle non-monotonic drifts as well
as concept drift as an extension of this research.

2.3 � Covariate drift

Covariate drift also known as covariate shift represents a typical model drift sce-
nario that occurs when the distribution of the testing data is different from the train-
ing data (Sugiyama et al. 2007). In covariate drift, the distribution change only lies
in the input features, whilst the labels of testing data remain the same (Bickel et al.
2009). The case in which the labels of the testing data change as well is called con-
cept drift (Gama et al. 2014)—which is outside the scope of this work. Covariate
drift can significantly compromise the performance of a well-trained ��� , therefore,
a bunch of studies on domain adaptation (Chen et al. 2020) and transfer learning

178	 H. Xia et al.

1 3

(Wang et al. 2019) have been conducted to address the covariate drift problem
through the alignment of training and testing distributions (Wilson and Cook 2020).
For example, (Gretton et al. 2009) proposed a kernel mean matching-based method
to match the training and testing distributions by reweighting the training distribu-
tion in a reproducing kernel Hilbert space. Li et al. (2020) proposed an important
weighting method for addressing the covariate drift by reweighting the residuals of
kernel mean matching and non-parametric regression. Zhang et al. (2020) proposed
a strategy that learns the weights required to address covariate shifts in only one step.
Pathak et al. (2022) proposed a new measurement to measure the distribution mis-
match between training and testing data based on the integrated ratio of probabilities
of balls at a given radius, and demonstrated its effectiveness in addressing covariate
drift in non-parametric regression. The main limitation of these approaches is the
dependence on the prior knowledge of testing data that is not always available at the
training stage (Nair et al. 2019). Although some recent studies on causal inference
have tackled this issue by utilizing the stability of causal graphs (Yu et al. 2020), the
proposed models are complicated due to the difficulty of capturing causal relations
in the data. This paper will show that simple input discretization can be an effective
method to handle some forms of covariate drift, i.e., monotonic covariate drift.

Covariate and concept drift have been widely studied in machine learning, how-
ever, most of this work aims to develop models that have a built-in mechanism to
handle either concept or covariate drift, e.g., Pfahringer et al. (2007); Bifet and
Gavaldà (2009), Oza and Russell (2001). Our work, in this paper, is different from
various existing works, as we specifically are interested to address covariate drift in
deep ANN models. Therefore, we have not conducted a comparison with the exist-
ing concept or covariate drift method in this work, as it does not offer a meaningful
comparison. We, however, are interested to do this analysis as part of future works
for this research. Note, the baseline for measuring the effectiveness of our proposed
method in handling covariate drift is a vanilla deep ANN model.

3 � Methodology

In this section, we start by formulating the problem of robust ��� , followed by dis-
cussing the motivations for using discretization to improve ��� ’s robustness. Later,
we present in detail our proposed D1-Layer and D2-Layer.

3.1 � Problem formulation

Definition 1  (Adversarial Attack on Tabular Data) Let (�,�) = {(X1,Y1), (X2,

Y
2),… , (Xn,Yn)} be a dataset with n samples, where � is defined by a set of features
j ∈ � , � = [Y1, Y2,… , Yn] denotes the corresponding labels. Let f ∶ ℝ

D
→ 𝕐 be

the trained ��� model. For a given sample (Xi, Yi) ∈ (�,�) , the adversarial attack
aims to generate an adversarial sample Xi

adv
= (Xi + r∗) such that

179

1 3

Improving neural network’s robustness on...

where Yt is the target label, d(r) = ‖r‖p is the perceptibility value that indicates the
quantity of the changes in Xi after adding adversarial perturbation r. r∗ is perturba-
tion r that achieves minimum d(r).

Definition 2  (Covariate Drift) For a model f ∶ � → � covariate drift refers to the
case where Ptrain(Y ∣ X) = Ptest(Y ∣ X) , while Ptrain(X) ≠ Ptest(X).

Here, Ptrain(X) is the distribution of the training data (without labels), Ptest(X) is the
distribution of the testing data (without labels), Ptrain(Y ∣ X) is the conditional distri-
bution of training data, and Ptest(Y ∣ X) is the conditional distribution of testing data.

Given Definitions 1 and 2, we have the following definition for robust ���:

Definition 3  (Robust ��� ) For a model f ∶ � → � trained on the training dataset
Sdata-train = (�,�) , suppose its performance on the testing dataset Sdata-test is D% . For
a perturbed dataset S̃data-test (based on Definitions 1 and 2), f is robust if its perfor-
mance on S̃data-test is not less than D% − � , where � is a user-specified confidence
interval.

We will make use of this definition to evaluate (and compare) the effectiveness of
our proposed formulations.

3.2 � Rationales

Discretization is performed by sorting the data and separating the numeric features
into different bins according to the learned cut-points (also known as discretization
boundaries).3

Figure 1 demonstrates the rationale of discretization-based adversarial attack
defence methods. As shown in Fig. 1a, in the original numeric feature space, there
is no way to differentiate adversarial example xadv and other data. However, after
discretization, the numeric features will be separated into different bins according
to specific cut-points (see Fig. 1b). The bin number (e.g., 1, 2, 3, 4) or the median/
mean of bin values will be used to train the ��� models. It can be seen that after
discretization the adversarial example xadv has been scaled back to a value that is
expected by ��� (in our example, they are 1, 2, 3, 4). That means, whatever the
attacker’s intent was, discretization is able to convert adversarial samples back to
the values that have a consistent format with training samples. The efficacy of this
approach depends on the number of discretized values that cross the bin boundaries.
For example, if xadv in Fig. 1b moves to the right of �3—its discretized value will be

(1)
f (Xi

adv
) = Yt ≠ f (Xi) = Yi

s.t. Xi
adv

∈ ℝ
D and r∗ = argmin

r
d(r),

3  The cut-points are obtained based on different strategies, such as MDL, Equal Frequency (EF),
etc.

180	 H. Xia et al.

1 3

incorrect (see Fig. 2a), thereby leading to performance degradation. Furthermore, as
shown in Fig. 2b, a small drift of the data on the x-axis (covariate drift) will result
in many data points being assigned to the wrong bins or even invalid bins. Based on
this analysis, the following observations can be drawn:

1.	 Pre-discretizing the data is not an effective defence strategy,4 as the pre-learned
cut-points are learned on original data, and are static.

	  Every time data is modified, we must re-compute the cut-points and re-train
the model (which can be expensive), to make discretization work as a defence
strategy. Note, we are assuming that we have access to some adversarial or drifted
data at the training time. There is a need for cut-points to be adjusted based on
updated data during the training—we will call this dynamic discretization.

	  Our proposed D-Layers are aimed at incorporating dynamic discretization
for adding robustness to the ��� model.

2.	 Cut-points should be dynamically updated from the data even during the testing
time. If the data distribution is changed during the testing time (i.e., covariate

Fig. 1   Rationale of discretization-based defence models

Fig. 2   Illustration of limitations of stationary cut-points in case of adversarial attack and covariate drift

4  Note, D2A3N adopts the strategy of pre-discretization.

181

1 3

Improving neural network’s robustness on...

drift), the cut-points should be changed accordingly to accommodate the changes
to maintain discretization accuracy. Similar to batch normalization (Ioffe and
Szegedy 2015), our proposed D2-Layer aims to address this issue by taking
advantage of the statistical information of testing data.

3.3 � D1‑Layer

Let us start by formulating our problem. Ideally, we are interested in discretizing an
input feature’s numeric value, in an ��� model, i.e., a value say 23.5 is transformed
into value say 3, based on some cut-points—�1,… , �k . Our problem constitutes
learning the cut-points in an end-to-end fashion, such that the whole process remains
differentiable. For this, we have proposed a novel layer named D1-Layer, that
does exactly that. The idea of D1-Layer is inspired by VQ-VAE (Vector Quantized
Variational Auto-Encoder) that discretizes the encoder’s output via a codebook to
improve the quality of image generation (Van Den Oord et al. 2017). In D1-Layer,
we aim to learn a cut-point space. We denote this space as—C , also known as the
codebook. This codebook will be used to discretize the input features. For example,
the simplest way to discretize a data point is by doing a nearest neighbour search in
the codebook, i.e., the input data is represented by the index of the nearest codebook
vector.

The salient feature of D1-Layer is that it actually aims to learn the codebook
space which is basically the representation of the cut-points, i.e., the cut-point �i is
actually represented by a D-dimensional vector. The number of cut-points has to
be specified in advance, e.g., if we have K cut-points, we have C ∈ ℝ

K×D . An issue
that originates from enforcing the dimensions of the cut-point to be 1 × D , is the
dimensionality mismatch between an input data feature (a scale) and the cut-point
representation (a vector of size D). This renders the comparison between input data
feature and codebook vector (or nearest neighbour search) invalid. D1-Layer uti-
lizes three strategies to address this dimensionality mismatch.5 Let us discuss these
strategies in the following.

3.3.1 � Duplicate expansion search (DES)

The first strategy that D1-Layer employs is to duplicate the scalar value D-times
to convert it into a D-dimensional vector. This is depicted in Fig. 3a. Let Z(⋅) indi-
cate an operator that takes a scalar value as input and returns a vector of size D. For-
mally, for the j-th feature of the data i, the duplicate expansion search can be defined
as:

Z(Xi
j
) = [Xi

j
,Xi

j
,… ,Xi

j
]

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
D

.

5  All three forms of representation assume that the input features are normalized by a min-max scaling.

182	 H. Xia et al.

1 3

3.3.2 � Taylor series expansion search (TSES)

Considering simple duplication may have less variation on the input representa-
tions, D1-Layer also employs a Taylor series expansion of 1

1−Xi
j

 to expand the sca-

lar value (as shown in Fig. 3b). Formally, the Taylor series expansion search can be
defined as:

Fig. 3   Illustration of the discretization in D1-Layer. The numeric input in each feature is discretized
by the codebook. The gradient of discretized feature representation will be directly copied to the numeric
feature representation in the backward pass (straight-through estimator)

183

1 3

Improving neural network’s robustness on...

For simplicity, we ignored the constant 1 in the Taylor series expansion.
For DES and TSES, after aligning the dimensionality of input features and code-

book, the nearest neighbor search can be defined as:

3.3.3 � Direct cut‑point search (DCS)

Other than expanding our input values to match the size of the cut-point space, one
can also reduce the dimensionality of the cut-point space to match the input size. As
shown in Fig. 3c, in DCS, we set the dimensionality of the cut-point space to 1 × K .
The discretized value q(Xi

j
) can then be determined as:

3.3.4 � Learning in D1‑Layer

The output of D1-Layer is the discretized data— q(Xi
j
) , that is passed through to

the next layer for further processing. The forward pass through D1-Layer can be
seen as the clustering of the input feature values—the index of each cluster center
served as the discretized value.

The main challenge in training D1-Layer is that Eq. (2) (or 3) is non-differen-
tiable due to the presence of the argmin operation. Similar to VQ-VAE, the simple
gradient estimator strategy is adopted to address this issue (Bengio et al. 2013). That
is, in the backward pass, gradients of the numeric representations are approximated
by directly copying the gradient of the discretized representations (see Fig. 3). The
loss function of our proposed D1-Layer-based ��� is:

where Lc(Y
i,Xi) represents the standard classification loss such as cross-

entropy, MSE, etc. ∣ � ∣ represents the number of features,
∑∣�∣

j=1
‖sg[q(Xi

j
)] − Ck‖22

represents the codebook learning loss of data Xi , which directs the codebook embed-
ding Ck toward the corresponding data value. Note, sg[⋅] is the stop gradient operator
that has zero partial derivatives.

We have summarized the learning process of D1-Layer-based ��� in Algo-
rithm 1. In the training phase, D1-Layer first discretizes the input data of each
mini-batch—we denote discretized data as q(X)b (Algorithm 1, lines 1–12). Note,
we provide algorithm for TSES representation. Discretized data q(X)b is then
used in subsequent layers to train the network with parameters Θ and codebook C
(Algorithm 1, lines 13–20). In the testing phase, the learned codebook C is used to

Z(Xi
j
) = [Xi

j
, (Xi

j
+ Xi

j

2
),…(Xi

j
+ Xi

j

2
+…+ Xi

j

D
)].

(2)q(Xi
j
) = argmink ‖Z(Xi

j
) − Ck‖2.

(3)q(Xi
j
) = argmink ‖Xi

j
− Ck‖2.

(4)L = Lc(Y
i,Xi) +

∣�∣�

j=1

‖sg[Z(Xi
j
)] − Ck‖22,

184	 H. Xia et al.

1 3

discretize the input data, which is then fed into the network parameterized by param-
eter Θ , for inference (Algorithm 1, lines 21–30).

185

1 3

Improving neural network’s robustness on...

3.4 � D2‑Layer

D1-Layer utilizes an objective function of the form of Eq. (4) to learn a represen-
tation of the cut-points. A simpler strategy could be to use the statistical information
present in each mini-batch of the data and adjust cut-points accordingly. Our pro-
posed D2-Layer does exactly that. It takes advantage of the statistical information
of each mini-batch to dynamically update the cut-points (which can be applied at
training as well as testing time).

186	 H. Xia et al.

1 3

Let B = [�1,… ,�B] represent a mini-batch of size B. D2-Layer sorts the data
in each mini-batch and calculates the cut-points using Equal Frequency (EF)
discretization. Other forms of discretization can be used, however, we argue that EF
discretization has desirable properties that can lead to some robustness in the model.

Let Φ
��
(�) represent a discretization function that returns a set of K cut-points

(based on EF discretization), learned on mini-batch �:

We have discretized value q(Xi
j
) = �(Φ̂(Xi

j
)) . Here, Φ̂(.) is the function that applies

the learned cut-points Φ
��
(�) to the data, and �(.) is the function that represents the

discretized value, e.g., one-hot-encoding, bin-number, etc. The discretized value
q(Xi

j
) is then used in subsequent layers of ��� to train the network. Let us discuss

some salient features of D2-Layer:

1.	 The mean and variance of the output of the D2-Layer are guaranteed to be
stationary and, therefore, the covariate drift can be largely eliminated (in cases
where drift is due to monotonic transformation).

2.	 The discretization operator used in D2-Layer is not differentiable, hence, the
gradient-based attacking for original input Xi will not be effective. Thus providing
a defence against many forms of adversarial attacks.

3.	 D2-Layer can be deployed at the testing time— i.e., the cut-points can be
adjusted based on testing data distribution—making it perfect to address covari-
ate drift even after the model is trained. Note, one can re-train a codebook in
�� − ����� at testing time, but this might not be effective, as learning a codebook
representation of size K × D requires much larger data and hence larger size of
the batch. On the contrary, D2-Layer makes use of simpler statistics from the
data, which can be obtained from a few test data points.

We have summarized the learning of the D2-Layer-based ��� at Algorithm 2.
In the training phase of D2-Layer, equal frequency discretization is used to

learn the cut-points of each training batch (Algorithm 2, lines 1–12). The discre-
tized values resulting from the learned cut-points are used to train the entire net-
work (Algorithm 2, lines 13–20). The selection of feature-specific equal-frequency
discretization is critical to the working of D2-Layer’s algorithm—i.e., in han-
dling covariate drift, and in warding-off adversarial attack. As we mentioned ear-
lier, Keras discretization layer also learns cut-points but based on the quantiles of
the whole input data rather than separately for each feature. We will integrate this
quantiles-based discretization strategy in D2-Layer and compare it with other
forms of discretizations later in Sect. 4.

In the testing phase, different from D1-Layer and other existing defence meth-
ods that use cut-points learned from training data, D2-Layer uses equal frequency
discretization to learn new cut-points from each testing batch to ensure the cut-
points are suitable for testing data (Algorithm 2, lines 21–32). This dynamic discre-
tization strategy makes sure that D2-Layer can handle distribution drifts during
the testing phase.

(5)Φ
��
(�) ∼ [�1,… , �K].

187

1 3

Improving neural network’s robustness on...

4 � Experiments

In this section, we start by presenting the details of our experimental settings fol-
lowed by the results and detailed analysis.

4.1 � Experimental settings

4.1.1 � Datasets

We have used 24 classification datasets from UCI machine learning dataset reposi-
tory.6 All of these datasets have more than 1000 samples. Of the considered datasets,
there are 5 datasets with more than 100,000 samples and are denoted as Large, 9
datasets with between 10,000 and 100,000 samples and are denoted as Medium, 10
datasets with between 1000 and 10,000 samples and are denoted as Small. The sta-
tistics information of these datasets is shown in Table 1, where n, mn , and mc repre-
sent the number of samples, numeric features, and categorical features individually.

4.1.2 � Baseline methods and evaluation metric

In terms of adversarial attacks, three of the most commonly used white-box attack
models, namely, FGSM, DeepFool (DPF), and LowProFool (LPF) have been
adopted in our experiments. The parameters of these models are set as the values
suggested in the respective original papers, e.g., the step size of FGSM is set to 0.1,
the maximum iteration of LowProFool and DeepFool is set to 50, the trade-off
factor of LowProFool is set to 10.

For defence, the state-of-the-art tabular data adversarial attack defence model
D2A3N and Madry are selected as the baselines to test D-Layers embedded ��� ’s

6  https://​archi​ve.​ics.​uci.​edu/​ml/​datas​ets.

Table 1   Statistic information of datasets

Dataset n m
n

m
c

Dataset n m
n

m
c

covtype 581,012 10 44 sign 12,546 9 3
census-income 299,285 35 5 occupancy 10,129 14 2
skin-segmentation 245,057 4 2 satellite 6435 37 6
localization 164,860 2 3 page-blocks 5473 11 5
accelerometer 153,001 4 0 wall-following 5456 25 4
higgs 98,050 28 0 waveform-5000 5000 21 0
ipums.la.99 88,443 23 38 spambase 4601 58 2
connect-4 67,557 43 3 kr-vs-kp 3196 0 36
adult 48,842 6 8 sick 3772 6 21
letter-recog 20,000 17 26 hypothyroid 3163 6 19
magic 19,020 11 2 cmc 1473 2 7
gassensor 13,790 128 0 german 1000 3 17

https://archive.ics.uci.edu/ml/datasets

188	 H. Xia et al.

1 3

robustness. The ��� model without any defence method (denoted as Clean) is used
as the baseline to demonstrate the severity of the robustness problem. The standard
evaluation metric Robust Accuracy is used to evaluate our proposed D-Lay-
ers’ performance in defending against adversarial attacks. Similar to Standard
Accuracy that measures the ratio of correct predictions and total data points,
Robust Accuracy measures model’s accuracy under unsettled conditions such
as attack and covariate drift (Zhou et al. 2022)—the higher the Robust Accu-
racy, the more robust the model, and vice-versa.

4.1.3 � Implementations

D-Layers and all baselines are implemented with PyTorch. D1-Layer and
D2-Layer are integrated into the first layer of an ��� that has 5 hidden layers with
ReLu activation function and Softmax as the output layer. Each of the hidden lay-
ers has 100 neurons. The training epochs, batch size, and learning
rate is set to 500, 100, and 0.0001 respectively. The number of bins K is set to 5 for
both D1-Layer and D2-Layer. Embedding dimensions – D, in D1-Layer is set
to 10. For the implementation of adversarial attack models, we use the code released
in the original papers, which is available on GitHub.7 For D2A3N, we implement the
Equal Frequency discretization-based version without adversarial training for
fair comparison (i.e., denoted as D2A3N-EF in the original paper). The parameters
of D2A3N and referred attack models are set to the default values as provided in the
paper. All the experiments were conducted on an i7 − 10750 desktop PC with 16 GB
RAM and single NVIDIA GeForce GTX 1660 Ti GPU.

4.1.4 � Evaluation scenario

To evaluate the effectiveness of our proposed D-Layers in improving ��� ’s
robustness, we split the data into training set and testing set. The testing data is
attacked via three attack methods as presented in Sect. 4.1.2 or modified with covar-
iate drift. We will discuss the details of concept drift in the later section. Nonethe-
less, we call the data modified testing data. The proposed D-Layers formulation
and other baselines are trained with training data. The performance of the trained
model is evaluated on the modified testing data. The two-fold cross-validation is
adopted for the train-test split, and the average robust accuracy results over five
rounds are reported. The evaluation framework is illustrated in Fig. 4.

4.2 � Experimental results

4.2.1 � Comparison of D1‑Layer search strategies

Before comparing the defence performance (robust accuracy) against adver-
sarial attacks of our proposed D-Layers with baselines, we need to determine

7  https://​github.​com/​axa-​rev-​resea​rch/​LowPr​oFool.

https://github.com/axa-rev-research/LowProFool

189

1 3

Improving neural network’s robustness on...

the best search strategy for D1-Layer. For this, we compared the performance
of D1-Layer embedded ��� with three different search strategies, i.e., DES, TSES,
and DCS. The average robust accuracies are presented in Fig. 5, where the results
are broken across all, large, medium and small categories of datasets. Three attack
methods of FGSM, LPF and DPF are used. It can be seen that in most cases TSES
has higher robust accuracy than DES and DCS in defending all baseline attack meth-
ods (especially, in face of LPF attack). The pattern is consistent across Large
and Medium datasets. On Small datasets, DCS performs better than other search
strategies. For sake of simplicity, in the remainder of this paper, we only pre-
sent D1-Layer results with TSES as representative of the three search techniques.
The potential of ��� models is best-achieved with Large datasets. This is because
on Medium and Small datasets, they can overfit the data. Our selection of TSES
as representative is motivated by its extremely good performance of itself on Large
collection of datasets.

4.2.2 � Defence against adversarial attacks

Let us now compare the performance of our proposed D-Layers with other base-
lines in terms of defending against adversarial attacks. The average robust accura-
cies of these methods are shown in Fig. 6.

From Fig. 6a, we can see that both D1-Layer and D2-Layer demon-
strate higher robust accuracies than baselines on all datasets. This demonstrates
the effectiveness of our proposed D-Layers in defending against adversarial
attacks. The average robust accuracies of Clean ��� on all 24 datasets under
FGSM, LPF, and DPF attacks are merely 0.37, 0.24, and 0.26 respectively. These
alarming lower robust accuracies demonstrate that white-box adversarial attacks
are quite effective in degrading the performance of ��� models. The higher aver-
age robust accuracy of D2A3N and Madry compared to Clean ANN demon-
strates their effectiveness in defending against adversarial attacks. It is important
to note that D2A3N is the state-of-the-art defence model. Let us compare the per-
formance of D-Layers with D2A3N and Clean ANN in the following.

Fig. 4   The evaluation framework of the experiments

190	 H. Xia et al.

1 3

It is encouraging to see that D2-Layer leads to a performance improvement
of 12, 9, and 14% on FGSM, LPF, and DPF attacks respectively over D3A3N.
Compared with Clean ��� , the average robust accuracy improvement of
D2-Layer on these three attacks reaches 34, 48, and 42% respectively.

It can be seen that D1-Layer achieves the highest average robust accuracy
when compared with all other baselines. The average robust accuracy improve-
ment of D1-Layer defence against FGSM, LPF, and DPF attacks compared to
D2A3N reaches 18, 17, and 17% respectively; and that robust accuracy improve-
ment compared to Clean ANN reaches 34, 48, and 42% respectively.

From Fig. 6b–d, we can see that D1-Layer wins against all baselines on almost
all categories of datasets, the exception is Large with DPF attack. D2-Layer
also shows superior performance on almost all categories of datasets, exceptions
are Medium with FGSM and LPF attacks. Generally, we can conclude that in most
cases D1-Layer and D2-Layer show significant performance improvement than

Fig. 5   Robust accuracy comparison of different search strategies for D1-Layer, under adversarial
attacks

191

1 3

Improving neural network’s robustness on...

all other baselines on Large, Medium, and Small datasets. Also, D1-Layer has
better performance in defending against adversarial attacks than D2-Layer and of
cause other baselines.

Let us now demonstrate the effectiveness of our proposed D-Layers’ robustness
by utilizing the robustness definition from Definition 3. In particular, we summarize
the number of times a method’s robust accuracy wins against the standard accu-
racy of an ��� by a certain margin— denoted as � , under LPF attack in Table 2.8
The results are reported for varying values of � . It can be seen that D1-Layer and
D2-Layer outperform all other baselines on all values of � , with D1-Layer (as
we found earlier) is more robust than D2-Layer.

Fig. 6   Robust Accuracy of D1-layer, D2-layer and baselines under adversarial attacks

8  Note, we only present results under LPF attack as a representative attack and also as it is the most pow-
erful form of attack.

192	 H. Xia et al.

1 3

4.2.3 � Handling covariate drift

The typical way of evaluating the covariate drift handling ability of models is to
simulate the drift artificially in the data, then test the models’ performance on the
drifted data (Nair et al. 2019). For doing this, we followed the following procedures:

•	 We split each dataset into training set and testing set (as described in Sect. 4.1.4).
We will refer to these sets as training data and original test data respectively, in
the following discussions.

•	 We apply a non-linear transformation to all features ( Xi
j
= �Xi5

j
+ �Xi

j
+ � ) on the

testing set. The values of �, � , and � are set to 1, 1, 300 for the transformation.
We call this dataset as drifted test data in the following.

•	 The D1-Layer, D2-Layer, D2A3N, and Clean ��� are trained on the train-
ing set and tested on the drifted test data.

The average robustness of our proposed D2-Layer and baselines under mono-
tonic covariate drift are presented in Fig. 7.9 We can see that D2-Layer
achieves the highest average robust accuracy (0.89) and wins against all baselines
on Large, Medium, and Small datasets. The average performance improvement

Table 2   Number of wins
of D1-Layer, D2-layer,
D2A3N, and Madry with
varying the value of �

Best results are given in bold

� D1-layer
wins

D2-layer
wins

D2A3N wins Madry wins

� = 25% 17 12 8 10
� = 30% 18 13 11 10
� = 35% 19 15 12 10

Fig. 7   Robust accuracy of
D1-Layer, D2-Layer,
D2A3N and ANNunder covariate
drift

9  The detailed performance of D-Layers and baselines in handling monotonic covariate drift on each
dataset are provided in Table 3 of the appendix.

193

1 3

Improving neural network’s robustness on...

of D2-Layer compared to Clean ��� is 29% (which is quite impressive). This
demonstrates the superiority of D2-Layer in handling monotonic covariate drift.
It can be seen that D1-Layer and D2A3N can not address monotonic covariate
drift at all.

To further demonstrate the effectiveness of D2-Layer in handling monotonic
covariate drift, we visualize the accuracies of clean ��� and D2-Layer with and
without drift on various datasets in Fig. 8. In particular, we plot the accuracies
on modified testing data and testing data. For the sake of completeness, we also
plot the model’s performance during the training as well. From Fig. 8, we can see
that during the covariate drift phase, there is a significant performance degradation
of clean ��� (green line). However, the performance of the D2-Layer-based ���
model (red line) is maintained, which clearly demonstrates D2-Layer’s ability in
handling covariate drift. The inclusion of training accuracies in the results reveals
that D2-Layer has a different convergence profile as compared to clean ���.

Fig. 8   Illustration of accuracy (with and without covariate drift) on various datasets. Plots show accu-
racy on the training data (during the training process), followed by accuracy of the trained model on
the drifted testing data, followed by the accuracy of the trained model on original testing data 

194	 H. Xia et al.

1 3

4.2.4 � Selection of discretization strategies in D2‑Layer

As we discussed in Sect. 3, D2-Layer can accommodate various discretization
strategies. So far, in this work, we have constrained D2-Layer with equal fre-
quency discretization. In this section, we will study the performance of D2-Layer
with two other discretization techniques namely—Equal Width discretization
(denoted as EW) and Quantile-based discretization technique based on Keras
discretization layer (denoted as Quan). Note, Equal Frequency discretization
is denoted as EF in the results. We have not tested the performance of D2-Layer
with supervised methods such as MDL discretization, because, it is not possible to fix
the number of bins with MDL discretization. That is, different batches in the data will
lead to different numbers of bins. The inclusion of MDL discretization in D2-Layer
has been left as a future work.

The average robust accuracy of D2-Layer with the three discretization meth-
ods (namely EF—default option in D2-Layer, EW, and Quan) under adversarial
attacks and covariate drift is shown in Fig. 9.10 We can see that D2-Layer with EF
discretization (D2-EF) achieves better performance than that with EW discretization
(D2-EW) and quantile-based discretization (D2-Quan).

4.2.5 � One strategy for two problems

Based on the experimental results in Sects. 4.2.2 and 4.2.3, we can establish that
D2-Layer is efficient in terms of providing a defence against adversarial attacks
as well as handling covariate drift. To clearly demonstrate this property, we plot
the performance of D2-Layer under covariate drift and adversarial attack simul-
taneously, on two datasets, in Fig. 10. It can be seen that D2-Layer-based ���
has a consistent performance under the three attack methods and covariate shift. Its
performance is consistently maintained within the ±25% degradation boundaries
(shown by orange lines in the figure). In contrast, there is significant performance
degradation in the performance of the clean ��� model (green line).

5 � Conclusions

In this paper, we proposed two ANNlayers - D1-Layer and D2-Layer (collec-
tively referred to as D-Layers) to improve the robustness of typical ANNmodels
on tabular datasets. This is an extension of research focusing on the use of discre-
tization in improving ANN’s robustness (Zhou et al. 2022, 2023). The two layers
are motivated by the need of adding discretization within the training of ANNmod-
els and, therefore, learn cut-point for discretizing the input data during the train-
ing phase. Furthermore, D2-Layer is motivated by the need for dynamic cut-point
adjustment at the testing time. Through empirical evaluations, we demonstrated that

10  The detailed robust accuracy of D2-Layer with the three discretization strategies on each dataset is
provided in Table 4 of the appendix.

195

1 3

Improving neural network’s robustness on...

Fig. 9   Robust accuracy of D2-Layer under different discretization strategies (EF, EW and Quan)

D1-Layer and D2-Layer can be easily integrated into existing ��� models and
provides an excellent mechanism for defending against adversarial attacks and for
addressing some forms of covariate drift. Our experimental results revealed that:

1.	 D1-Layer leads to state-of-the-art (SOTA) defence performance against major
forms of adversarial attacks on various tabular datasets.

2.	 D2-Layer leads to an effective strategy to address covariate drift and adversarial
attacks at the same time.

Our future work entails:

•	 Studying the application of D-Layers to the hidden layers of the network: This
will result in obtaining a discrete ANN and can lead to a network that is more robust
to attacks and covariate drift. However, it can result in significant performance deg-
radation. How to maintain a good performance while maintaining robustness is a
question of great value, and we are currently investigating this.

196	 H. Xia et al.

1 3

•	 Studying the impact of the nature of input data: That is, how the number of features,
the number of categorial/numerical features, data size, etc. influence the perfor-
mance of D-Layers in defending against adversarial attacks and addressing co-
variate shifts.

•	 Studying the efficacy of D2-Layer for other forms of drift: Currently, the pro-
posed D2-Layer can only be effective against the monotonic drift in the data.
We are currently exploring the effectiveness of D2-Layer against non-monotonic
transformations as well as concept drifts.

Appendix A: Code

The code of D-Layers, as well as the data used in this paper, along with experimen-
tal scripts, is available to be used at: https://​github.​com/​allwe​nau/​DLaye​rs.

Appendix B: Detailed results

The detailed results of all the experiments done in this paper can be found in
Tables 3, 4, 5, 6.

Fig. 10   Illustration of the robustness of D2-Layer to adversarial attacks and covariate drift by demon-
strating its performance under various forms of attacks as well as covariate drift. Horizontal orange lines
depict � = 25% . The two models are applied on testing data, followed by drifted testing data, followed
by modified testing data (due to FGSM, DPF and LPF attacks)

https://github.com/allwenau/DLayers

197

1 3

Improving neural network’s robustness on...

Table 3   Robust accuracy comparison of different search strategies for D1-Layer 

The best results across each attack method (for each search strategy) are given in bold

Datasets DES TSES DCS

FGSM LPF DPF FGSM LPF DPF FGSM LPF DPF

covtype 0.57 0.58 0.56 0.74 0.65 0.75 0.54 0.52 0.66
census-income 0.97 0.97 0.97 0.96 0.97 0.97 0.95 0.91 0.93
skin-segmentation 0.79 0.79 0.03 0.88 0.81 0.14 0.85 0.84 0.10
localization 0.89 0.89 0.89 0.89 0.89 0.89 0.52 0.39 0.36
accelerometer 0.48 0.48 0.49 0.53 0.48 0.49 0.49 0.53 0.46
higgs 0.54 0.54 0.54 0.51 0.50 0.51 0.53 0.55 0.48
ipums.la.99 0.58 0.58 0.57 0.66 0.92 0.65 0.89 0.95 0.65
connect-4 0.73 0.73 0.73 0.72 0.73 0.70 0.53 0.70 0.82
adult 0.76 0.76 0.76 0.77 0.79 0.79 0.69 0.76 0.66
letter-recog 0.49 0.49 0.49 0.55 0.60 0.50 0.17 0.36 0.33
magic 0.63 0.63 0.63 0.67 0.57 0.75 0.58 0.71 0.78
gassensor 0.52 0.52 0.52 0.72 0.75 0.84 0.78 0.86 0.88
sign 0.57 0.57 0.57 0.39 0.49 0.61 0.38 0.56 0.29
occupancy 0.94 0.94 0.94 0.98 0.95 0.95 1.00 0.89 0.89
satellite 0.57 0.57 0.57 0.84 0.81 0.97 0.67 0.63 0.92
page-blocks 0.91 0.91 0.91 0.92 0.92 0.92 0.91 0.90 0.91
wall-following 0.75 0.75 0.75 0.77 0.70 0.78 0.74 0.70 0.82
spambase 0.48 0.54 0.53 0.56 0.72 0.47 0.44 0.66 0.46
waveform-5000 0.56 0.56 0.56 0.56 0.56 0.56 0.61 0.32 0.60
kr-vs-kp 0.49 0.49 0.49 0.22 0.31 0.15 0.97 0.49 0.90
sick 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96
hypothyroid 0.95 0.95 0.94 0.95 0.95 0.94 0.95 0.95 0.94
cmc 0.63 0.63 0.63 0.63 0.63 0.61 0.63 0.63 0.63
german 0.68 0.68 0.68 0.56 0.62 0.44 0.68 0.69 0.63
Average (All) 0.68 0.69 0.65 0.71 0.72 0.68 0.69 0.69 0.67
Average (Large) 0.74 0.74 0.59 0.80 0.76 0.65 0.67 0.64 0.50
Average (Medium) 0.64 0.64 0.64 0.66 0.70 0.70 0.62 0.71 0.64
Average (Small) 0.70 0.70 0.70 0.70 0.72 0.68 0.76 0.69 0.78

198	 H. Xia et al.

1 3

Ta
bl

e 
4  

R
ob

us
t a

cc
ur

ac
y

of
 D
1
-
l
a
y
e
r

, D
2
-
l
a
y
e
r

 a
nd

 b
as

el
in

es
 u

nd
er

 a
dv

er
sa

ria
l a

tta
ck

s

D
a
t
a
s
e
t
s

D
1
-
l
a
y
e
r

D
2
-
l
a
y
e
r

D
2
A
3
N

M
a
d
r
y

C
l
e
a
n

 �
�
�

A
N
N

F
G
S
M

L
P
F

D
P
F

F
G
S
M

L
P
F

D
P
F

F
G
S
M

L
P
F

D
P
F

F
G
S
M

L
P
F

D
P
F

F
G
S
M

L
P
F

D
P
F

S
t
d

A
c
c

c
o
v
t
y
p
e

0.
74

0.
65

0.
75

0.
46

0.
40

0.
58

0.
57

0.
64

0.
57

0.
58

0.
58

0.
42

0.
35

0.
37

0.
07

0.
93

c
e
n
s
u
s
-
i
n
c
o
m
e

0.
96

0.
97

0.
95

0.
95

0.
87

0.
97

0.
96

0.
97

0.
96

0.
96

0.
96

0.
96

0.
48

0.
20

0.
05

0.
97

s
k
i
n
-
s
e
g
m
e
n
t
a
t
i
o
n

0.
88

0.
81

0.
14

0.
90

0.
81

0.
79

0.
83

0.
90

0.
09

0.
83

0.
80

0.
04

0.
78

0.
78

0.
28

0.
99

l
o
c
a
l
i
z
a
t
i
o
n

0.
89

0.
89

0.
89

0.
87

0.
78

0.
84

0.
58

0.
41

0.
52

0.
64

0.
42

0.
50

0.
45

0.
49

0.
42

0.
86

a
c
c
e
l
e
r
o
m
e
t
e
r

0.
53

0.
48

0.
49

0.
51

0.
53

0.
50

0.
54

0.
52

0.
55

0.
54

0.
46

0.
48

0.
51

0.
46

0.
35

0.
64

h
i
g
g
s

0.
51

0.
50

0.
51

0.
44

0.
58

0.
49

0.
48

0.
47

0.
43

0.
53

0.
51

0.
54

0.
39

0.
34

0.
36

0.
68

i
p
u
m
s
.
l
a
.
9
9

0.
66

0.
92

0.
65

0.
98

0.
97

0.
58

0.
57

0.
78

0.
57

0.
92

0.
92

0.
54

0.
68

0.
12

0.
02

1.
00

c
o
n
n
e
c
t
-
4

0.
72

0.
73

0.
70

0.
52

0.
52

0.
54

0.
27

0.
46

0.
33

0.
38

0.
47

0.
61

0.
18

0.
15

0.
31

0.
83

a
d
u
l
t

0.
77

0.
79

0.
79

0.
66

0.
59

0.
59

0.
48

0.
39

0.
33

0.
69

0.
64

0.
66

0.
29

0.
34

0.
35

0.
80

l
e
t
t
e
r
-
r
e
c
o
g

0.
55

0.
60

0.
50

0.
51

0.
07

0.
53

0.
17

0.
01

0.
22

0.
16

0.
01

0.
38

0.
12

0.
01

0.
03

0.
99

m
a
g
i
c

0.
67

0.
57

0.
75

0.
49

0.
57

0.
57

0.
27

0.
21

0.
36

0.
39

0.
19

0.
61

0.
19

0.
12

0.
15

0.
85

g
a
s
s
e
n
s
o
r

0.
72

0.
75

0.
84

0.
62

0.
42

0.
78

0.
59

0.
48

0.
66

0.
33

0.
05

0.
34

0.
32

0.
00

0.
01

0.
99

s
i
g
n

0.
39

0.
49

0.
61

0.
31

0.
81

0.
45

0.
25

0.
32

0.
28

0.
25

0.
25

0.
25

0.
23

0.
23

0.
21

0.
82

o
c
c
u
p
a
n
c
y

0.
98

0.
95

0.
95

0.
92

0.
94

0.
83

0.
99

0.
90

0.
98

1.
00

1.
00

0.
98

0.
69

0.
13

0.
32

1.
00

s
a
t
e
l
l
i
t
e

0.
84

0.
81

0.
97

0.
75

0.
81

0.
94

0.
75

0.
26

0.
93

0.
73

0.
39

0.
97

0.
45

0.
08

0.
24

0.
98

p
a
g
e
-
b
l
o
c
k
s

0.
92

0.
92

0.
92

0.
62

0.
74

0.
61

0.
13

0.
68

0.
27

0.
04

0.
02

0.
37

0.
04

0.
02

0.
40

0.
98

w
a
l
l
-
f
o
l
l
o
w
i
n
g

0.
77

0.
70

0.
78

0.
60

0.
54

0.
75

0.
48

0.
61

0.
64

0.
35

0.
50

0.
45

0.
25

0.
16

0.
19

0.
98

w
a
v
e
f
o
r
m
-
5
0
0
0

0.
56

0.
72

0.
47

0.
54

0.
55

0.
44

0.
34

0.
51

0.
32

0.
29

0.
06

0.
21

0.
22

0.
06

0.
07

0.
91

s
p
a
m
b
a
s
e

0.
56

0.
56

0.
56

0.
24

0.
18

0.
56

0.
10

0.
48

0.
10

0.
10

0.
17

0.
12

0.
09

0.
09

0.
56

0.
94

k
r
-
v
s
-
k
p

0.
22

0.
31

0.
15

0.
51

0.
47

0.
51

0.
23

0.
25

0.
20

0.
74

0.
40

0.
47

0.
42

0.
03

0.
04

0.
95

s
i
c
k

0.
96

0.
96

0.
96

0.
94

0.
96

0.
96

0.
88

0.
90

0.
77

0.
45

0.
54

0.
30

0.
42

0.
38

0.
45

0.
92

h
y
p
o
t
h
y
r
o
i
d

0.
95

0.
95

0.
94

0.
93

0.
90

0.
92

0.
95

0.
84

0.
94

0.
95

0.
95

0.
94

0.
36

0.
55

0.
57

0.
98

c
m
c

0.
63

0.
63

0.
61

0.
53

0.
59

0.
53

0.
65

0.
67

0.
68

0.
64

0.
60

0.
61

0.
47

0.
39

0.
36

0.
70

199

1 3

Improving neural network’s robustness on...

Ta
bl

e 
4  

(c
on

tin
ue

d)

D
a
t
a
s
e
t
s

D
1
-
l
a
y
e
r

D
2
-
l
a
y
e
r

D
2
A
3
N

M
a
d
r
y

C
l
e
a
n

 �
�
�

A
N
N

F
G
S
M

L
P
F

D
P
F

F
G
S
M

L
P
F

D
P
F

F
G
S
M

L
P
F

D
P
F

F
G
S
M

L
P
F

D
P
F

F
G
S
M

L
P
F

D
P
F

S
t
d

A
c
c

g
e
r
m
a
n

0.
56

0.
62

0.
44

0.
69

0.
68

0.
69

0.
61

0.
64

0.
53

0.
69

0.
67

0.
41

0.
50

0.
29

0.
31

0.
71

A
v
e
r
a
g
e

(
A
l
l
)

0.
71

0.
72

0.
68

0.
65

0.
64

0.
66

0.
53

0.
55

0.
51

0.
55

0.
48

0.
51

0.
37

0.
24

0.
26

0.
89

A
v
e
r
a
g
e

(
L
a
r
g
e
)

0.
80

0.
76

0.
65

0.
74

0.
68

0.
74

0.
70

0.
69

0.
54

0.
71

0.
64

0.
48

0.
51

0.
46

0.
23

0.
88

A
v
e
r
a
g
e

(
M
e
d
i
u
m
)

0.
66

0.
70

0.
70

0.
61

0.
61

0.
60

0.
45

0.
45

0.
46

0.
70

0.
63

0.
50

0.
34

0.
16

0.
20

0.
88

A
v
e
r
a
g
e

(
S
m
a
l
l
)

0.
70

0.
72

0.
68

0.
64

0.
64

0.
69

0.
51

0.
58

0.
54

0.
50

0.
43

0.
48

0.
32

0.
21

0.
32

0.
91

Th
e

be
st

re
su

lts
 a

cr
os

s e
ac

h
at

ta
ck

 m
et

ho
d

(fo
r e

ac
h

se
ar

ch
 st

ra
te

gy
) a

re
 g

iv
en

 in
 b

ol
d

 T
he

 la
st

co
lu

m
n

of
 th

e
ta

bl
e

pr
es

en
ts

 �
�
�
 ’s

 a
cc

ur
ac

y
w

ith
ou

t a
tta

ck
s o

n
ea

ch
 d

at
as

et
, i

.e
.,

st
an

da
rd

 a
cc

ur
ac

y
of

 e
ac

h
da

ta
se

t

200	 H. Xia et al.

1 3

Table 5   Robust accuracy of D1-Layer, D2-Layer, D2A3N and clean ANN under covariate drift

The best results are given in bold

Datasets D1-Layer D2-Layer D2A3N Clean ANN

covtype 0.43 0.87 0.43 0.57
census-income 0.29 0.90 0.94 0.38
skin-segmentation 0.79 0.97 0.94 0.79
localization 0.81 0.96 0.50 0.81
accelerometer 0.31 0.86 0.21 0.39
higgs 0.72 0.89 0.92 0.72
ipums.la.99 0.70 0.91 0.47 0.70
connect-4 0.70 0.89 0.58 0.65
adult 0.66 0.89 0.73 0.61
letter-recog 0.66 0.89 0.24 0.61
magic 0.65 0.89 0.47 0.60
gassensor 0.65 0.89 0.65 0.60
sign 0.65 0.89 0.47 0.60
occupancy 0.29 0.90 0.50 0.38
satellite 0.65 0.89 0.48 0.60
page-blocks 0.65 0.89 0.93 0.60
wall-following 0.65 0.89 0.72 0.60
spambase 0.65 0.89 0.51 0.60
waveform-5000 0.65 0.89 0.59 0.60
kr-vs-kp 0.65 0.89 0.51 0.60
sick 0.65 0.89 0.06 0.60
hypothyroid 0.65 0.89 0.05 0.61
cmc 0.65 0.89 0.64 0.61
german 0.65 0.89 0.70 0.61
Average (ALL) 0.61 0.89 0.54 0.60
Average (Large) 0.62 0.91 0.55 0.64
Average (Medium) 0.62 0.89 0.56 0.61
Average (Small) 0.64 0.89 0.54 0.58

201

1 3

Improving neural network’s robustness on...

Ta
bl

e 
6  

R
ob

us
t a

cc
ur

ac
y

of
 D
2
-
l
a
y
e
r

 w
ith

 d
iff

er
en

t d
is

cr
et

iz
ta

io
n

str
at

eg
y

un
de

r a
dv

er
sa

ria
l a

tta
ck

s o
r c

ov
ar

ia
te

 sh
ift

D
a
t
a
s
e
t
s

D
2
-
E
F

D
2
-
E
W

D
2
-
Q
u
a
n

F
G
S
M

L
P
F

D
P
F

C
o
-
s
h
i
f
t

F
G
S
M

L
P
F

D
P
F

C
o
-
s
h
i
f
t

F
G
S
M

L
P
F

D
P
F

C
o
-
s
h
i
f
t

c
o
v
t
y
p
e

0.
46

0.
40

0.
58

0.
87

0.
37

0.
44

0.
58

0.
75

0.
55

0.
48

0.
55

0.
72

c
e
n
s
u
s
-
i
n
c
o
m
e

0.
95

0.
87

0.
97

0.
90

0.
87

0.
74

0.
03

0.
82

0.
93

0.
46

0.
87

0.
80

s
k
i
n
-
s
e
g
m
e
n
t
a
t
i
o
n

0.
90

0.
81

0.
79

0.
97

0.
89

0.
82

0.
79

0.
84

0.
83

0.
80

0.
79

0.
84

l
o
c
a
l
i
z
a
t
i
o
n

0.
87

0.
78

0.
84

0.
94

0.
88

0.
82

0.
89

0.
85

0.
64

0.
40

0.
53

0.
84

a
c
c
e
l
e
r
o
m
e
t
e
r

0.
51

0.
53

0.
50

0.
86

0.
55

0.
51

0.
48

0.
82

0.
50

0.
49

0.
49

0.
82

h
i
g
g
s

0.
44

0.
58

0.
49

0.
89

0.
47

0.
52

0.
49

0.
80

0.
43

0.
47

0.
44

0.
80

i
p
u
m
s
.
l
a
.
9
9

0.
98

0.
97

0.
58

0.
91

0.
95

0.
93

0.
42

0.
81

0.
90

0.
95

0.
58

0.
81

c
o
n
n
e
c
t
-
4

0.
52

0.
52

0.
54

0.
89

0.
76

0.
63

0.
74

0.
81

0.
53

0.
48

0.
50

0.
81

a
d
u
l
t

0.
66

0.
59

0.
59

0.
89

0.
76

0.
56

0.
62

0.
81

0.
73

0.
45

0.
45

0.
81

l
e
t
t
e
r
-
r
e
c
o
g

0.
51

0.
07

0.
53

0.
89

0.
39

0.
05

0.
48

0.
81

0.
13

0.
01

0.
25

0.
81

m
a
g
i
c

0.
49

0.
57

0.
57

0.
89

0.
49

0.
41

0.
59

0.
81

0.
32

0.
33

0.
48

0.
81

g
a
s
s
e
n
s
o
r

0.
62

0.
42

0.
78

0.
89

0.
30

0.
46

0.
52

0.
81

0.
41

0.
38

0.
63

0.
81

s
i
g
n

0.
31

0.
81

0.
45

0.
89

0.
41

0.
40

0.
51

0.
81

0.
28

0.
33

0.
49

0.
81

o
c
c
u
p
a
n
c
y

0.
92

0.
94

0.
83

0.
90

0.
99

0.
05

0.
28

0.
81

0.
88

0.
16

0.
04

0.
81

s
a
t
e
l
l
i
t
e

0.
75

0.
81

0.
94

0.
89

0.
69

0.
59

0.
95

0.
81

0.
53

0.
58

0.
94

0.
81

p
a
g
e
-
b
l
o
c
k
s

0.
62

0.
74

0.
61

0.
89

0.
41

0.
84

0.
55

0.
81

0.
12

0.
19

0.
07

0.
81

w
a
l
l
-
f
o
l
l
o
w
i
n
g

0.
60

0.
54

0.
75

0.
89

0.
75

0.
72

0.
75

0.
81

0.
53

0.
66

0.
66

0.
81

w
a
v
e
f
o
r
m
-
5
0
0
0

0.
54

0.
55

0.
44

0.
89

0.
42

0.
31

0.
48

0.
81

0.
34

0.
25

0.
36

0.
81

s
p
a
m
b
a
s
e

0.
24

0.
18

0.
56

0.
89

0.
10

0.
20

0.
56

0.
81

0.
10

0.
15

0.
08

0.
81

k
r
-
v
s
-
k
p

0.
51

0.
47

0.
51

0.
89

0.
95

0.
62

0.
67

0.
81

0.
11

0.
18

0.
02

0.
81

s
i
c
k

0.
94

0.
96

0.
96

0.
89

0.
93

0.
93

0.
78

0.
81

0.
70

0.
85

0.
62

0.
81

h
y
p
o
t
h
y
r
o
i
d

0.
93

0.
90

0.
92

0.
89

0.
87

0.
76

0.
95

0.
81

0.
42

0.
92

0.
21

0.
81

c
m
c

0.
53

0.
59

0.
53

0.
89

0.
64

0.
56

0.
58

0.
81

0.
62

0.
54

0.
58

0.
81

g
e
r
m
a
n

0.
69

0.
68

0.
69

0.
89

0.
68

0.
72

0.
56

0.
81

0.
63

0.
66

0.
46

0.
81

202	 H. Xia et al.

1 3

Th
e

be
st

va
lu

es
 a

cr
os

s e
ac

h
at

ta
ck

 m
et

ho
d

an
d

co
va

ria
te

 sh
ift

 a
re

 g
iv

en
 in

 b
ol

d

Ta
bl

e 
6  

(c
on

tin
ue

d)

D
a
t
a
s
e
t
s

D
2
-
E
F

D
2
-
E
W

D
2
-
Q
u
a
n

F
G
S
M

L
P
F

D
P
F

C
o
-
s
h
i
f
t

F
G
S
M

L
P
F

D
P
F

C
o
-
s
h
i
f
t

F
G
S
M

L
P
F

D
P
F

C
o
-
s
h
i
f
t

A
v
e
r
a
g
e

(
A
l
l
)

0.
65

0.
64

0.
66

0.
89

0.
65

0.
57

0.
59

0.
81

0.
51

0.
47

0.
46

0.
81

A
v
e
r
a
g
e

(
L
a
r
g
e
)

0.
74

0.
68

0.
74

0.
91

0.
71

0.
67

0.
55

0.
82

0.
69

0.
53

0.
65

0.
80

A
v
e
r
a
g
e

(
M
e
d
i
u
m
)

0.
61

0.
61

0.
60

0.
89

0.
61

0.
45

0.
52

0.
81

0.
51

0.
40

0.
43

0.
81

A
v
e
r
a
g
e

(
S
m
a
l
l
)

0.
64

0.
64

0.
69

0.
89

0.
64

0.
63

0.
68

0.
81

0.
41

0.
50

0.
40

0.
81

203

1 3

Improving neural network’s robustness on...

Acknowledgements  The authors would like to thank Mark James Carman from Politecnico Di
Milano, Italy and Jiahui Zhou from the School of Computer Science, Xi’an ShiYou University, for
helpful discussions during the course of this research. The first author of the paper is supported by the
Australian Government Research Training Program (AGRTP) Scholarship.

Funding  Open Access funding enabled and organized by CAUL and its Member Institutions.

Declarations 

Conflict of interest  Authors do not have any funding information to report. Authors do have any actual,
perceived or potential conflict of interests (financial or non-financial) to disclose as well.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

Akhtar N, Mian A (2018) Threat of adversarial attacks on deep learning in computer vision: a survey.
IEEE Access 6:14410–14430

Ballet V, Renard X, Aigrain J, Laugel T, Frossard P, Detyniecki M (2019) Imperceptible adversarial
attacks on tabular data. arXiv preprint arXiv:​1911.​03274

Bengio Y, Léonard N, Courville A (2013) Estimating or propagating gradients through stochastic neurons
for conditional computation. arXiv preprint arXiv:​1308.​3432

Bickel S, Brückner M, Scheffer T (2009) Discriminative learning under covariate shift. J Mach Learn Res
10(9):2137–2155

Bifet A, Gavaldà R (2009) Adaptive learning from evolving data streams. Advances in intelligent data
analysis VIII. Springer, Berlin, pp 249–260

Buckman J, Roy A, Raffel C, Goodfellow I (2018) Thermometer encoding: One hot way to resist adver-
sarial examples. In: International Conference on Learning Representations

Cartella F, Anunciação O, Funabiki Y, Yamaguchi D, Akishita T, Elshocht O (2021) Adversarial attacks
for tabular data: application to fraud detection and imbalanced data. In: CEUR Workshop Proceed-
ings, vol 2808

Chen M, Zhao S, Liu H, Cai D (2020) Adversarial-learned loss for domain adaptation. In: Proceedings of
the AAAI Conference on Artificial Intelligence, vol 34, pp 3521–3528

Gama J, Žliobaitė I, Bifet A, Pechenizkiy M, Bouchachia A (2014) A survey on concept drift adaptation.
ACM Comput Surv 46(4):1–37

Goodfellow IJ, Shlens J, Szegedy C (2014) Explaining and harnessing adversarial examples. arXiv pre-
print arXiv:​1412.​6572

Gretton A, Smola A, Huang J, Schmittfull M, Borgwardt K, Schölkopf B (2009) Covariate shift by kernel
mean matching. Dataset Shift Mach Learn 3(4):5

Huang X, Kroening D, Ruan W, Sharp J, Sun Y, Thamo E, Wu M, Yi X (2020) A survey of safety and
trustworthiness of deep neural networks: verification, testing, adversarial attack and defence, and
interpretability. Comput Sci Rev 37:100270

Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep network training by reducing internal
covariate shift. In: International Conference on Machine Learning. PMLR

Kong Z, Xue J, Wang Y, Huang L, Niu Z, Li F (2021) A survey on adversarial attack in the age of artifi-
cial intelligence. Wirel Commun Mobile Comput. https://​doi.​org/​10.​1155/​2021/​49077​54

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1911.03274
http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1412.6572
https://doi.org/10.1155/2021/4907754

204	 H. Xia et al.

1 3

Kumová V, Pilát M (2021) Beating white-box defenses with black-box attacks. In: 2021 International
Joint Conference on Neural Networks (IJCNN). IEEE, pp 1–8

Kurakin A, Goodfellow IJ, Bengio S (2017) Adversarial machine learning at scale. In: 5th International
Conference on Learning Representations, ICLR 2017 - Conference Track Proceedings

Kurakin A, Goodfellow I, Bengio S (2016) Adversarial machine learning at scale. arXiv preprint arXiv:​
1611.​01236

Li F, Lam H, Prusty S (2020) Robust importance weighting for covariate shift. In: International Confer-
ence on Artificial Intelligence and Statistics. PMLR, pp 352–362

Madry A, Makelov A, Schmidt L, Tsipras D, Vladu A (2017) Towards deep learning models resistant to
adversarial attacks. arXiv preprint arXiv:​1706.​06083

Magliacane S, van Ommen T, Claassen T, Bongers S, Versteeg P, Mooij JM (2017) Domain adaptation
by using causal inference to predict invariant conditional distributions. arXiv preprint arXiv:​1707.​
06422

Moosavi-Dezfooli S-M, Fawzi A, Frossard P (2016) Deepfool: a simple and accurate method to fool deep
neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp 2574–2582

Nado Z, Padhy S, Sculley D, D’Amour A, Lakshminarayanan B, Snoek J (2020) Evaluating prediction-
time batch normalization for robustness under covariate shift. arXiv preprint arXiv:​2006.​10963

Nair NG, Satpathy P, Christopher J, et al (2019) Covariate shift: A review and analysis on classifiers. In:
2019 Global Conference for Advancement in Technology (GCAT). IEEE, pp 1–6

Oza N, Russell S (2001) Online bagging and boosting. Artificial intelligence and statistics. Morgan Kauf-
mann, San Francisco, pp 105–112

Pathak R, Ma C, Wainwright M (2022) A new similarity measure for covariate shift with applica-
tions to nonparametric regression. In: International Conference on Machine Learning. PMLR, pp
17517–17530

Pfahringer B, Holmes G, Kirkby R (2007) New options for Hoeffding trees. In: AI 2007: Advances in
Artificial Intelligence vol 4830. Springer, pp 90–99

Shafahi A, Najibi M, Ghiasi A, Xu Z, Dickerson J, Studer C, Davis LS, Taylor G, Goldstein T (2019)
Adversarial training for free! In: Advances in Neural Information Processing Systems, vol 32

Sugiyama M, Krauledat M, Müller K-R (2007) Covariate shift adaptation by importance weighted cross
validation. J Mach Learn Res 8(5):985–1005

Van Den Oord A, Vinyals O et al (2017) Neural discrete representation learning. Advances in neural
information processing systems 30

Wang B, Qiu M, Wang X, Li Y, Gong Y, Zeng X, Huang J, Zheng B, Cai D, Zhou J (2019) A minimax
game for instance based selective transfer learning. In: Proceedings of the 25th ACM SIGKDD

Wilson G, Cook DJ (2020) A survey of unsupervised deep domain adaptation. ACM Trans Intell Syst
Technol 11:1–46

Yu Z, Wang P, Xu J, Xie L, Jin Z, Huang J, He X, Cai D, Hua X-S (2020) Stable learning via causality-
based feature rectification. CoRR

Zhang T, Yamane I, Lu N, Sugiyama M (2020) A one-step approach to covariate shift adaptation. In:
Asian Conference on Machine Learning. PMLR, pp 65–80

Zhou J, Zaidi N, Zhang Y, Li G (2022) Discretization inspired defence algorithm against adversarial
attacks on tabular data. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining.
Springer, pp 367–379

Zhou J, Zaidi N, Zhang Y, Montague P, Kim J, Li G (2023) Leveraging generative models for combating
adversarial attacks on tabular datasets. In: Pacific-Asia Conference on Knowledge Discovery and
Data Mining. Springer, pp 147–158

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

http://arxiv.org/abs/1611.01236
http://arxiv.org/abs/1611.01236
http://arxiv.org/abs/1706.06083
http://arxiv.org/abs/1707.06422
http://arxiv.org/abs/1707.06422
http://arxiv.org/abs/2006.10963

205

1 3

Improving neural network’s robustness on...

Authors and Affiliations

Haiyang Xia1 · Nayyar Zaidi2 · Yishuo Zhang2 · Gang Li2

 *	 Nayyar Zaidi
	 nayyar.zaidi@deakin.edu.au

	 Haiyang Xia
	 haiyang.xia@anu.edu.au

	 Yishuo Zhang
	 chris.zhang@deakin.edu.au

	 Gang Li
	 gang.li@deakin.edu.au

1	 Research School of Management, Australian National University, Canberra, ACT​ 2601,
Australia

2	 Centre for Cyber Resilience and Trust (CREST), Deakin University, Geelong, VIC 3216,
Australia

	Improving neural network’s robustness on tabular data with D-layers
	Abstract
	1 Introduction
	2 Related work
	2.1 Adversarial attack methods
	2.2 Adversarial defence methods
	2.3 Covariate drift

	3 Methodology
	3.1 Problem formulation
	3.2 Rationales
	3.3 D1-Layer
	3.3.1 Duplicate expansion search (DES)
	3.3.2 Taylor series expansion search (TSES)
	3.3.3 Direct cut-point search (DCS)
	3.3.4 Learning in D1-Layer

	3.4 D2-Layer

	4 Experiments
	4.1 Experimental settings
	4.1.1 Datasets
	4.1.2 Baseline methods and evaluation metric
	4.1.3 Implementations
	4.1.4 Evaluation scenario

	4.2 Experimental results
	4.2.1 Comparison of D1-Layer search strategies
	4.2.2 Defence against adversarial attacks
	4.2.3 Handling covariate drift
	4.2.4 Selection of discretization strategies in D2-Layer
	4.2.5 One strategy for two problems

	5 Conclusions
	Appendix A: Code
	Appendix B: Detailed results
	Acknowledgements
	References

