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Abstract
Transformers are widely used in natural language processing, where they consist-
ently achieve state-of-the-art performance. This is mainly due to their attention-
based architecture, which allows them to model rich linguistic relations between 
(sub)words. However, transformers are difficult to interpret. Being able to provide 
reasoning for its decisions is an important property for a model in domains where 
human lives are affected. With transformers finding wide use in such fields, the need 
for interpretability techniques tailored to them arises. We propose a new technique 
that selects the most faithful attention-based interpretation among the several ones 
that can be obtained by combining different head, layer and matrix operations. In 
addition, two variations are introduced towards (i) reducing the computational com-
plexity, thus being faster and friendlier to the environment, and (ii) enhancing the 
performance in multi-label data. We further propose a new faithfulness metric that 
is more suitable for transformer models and exhibits high correlation with the area 
under the precision-recall curve based on ground truth rationales. We validate the 
utility of our contributions with a series of quantitative and qualitative experiments 
on seven datasets.
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1  Introduction

Transformers have become the dominant approach for tackling Natural Lan-
guage Processing (NLP) tasks, surpassing previous convolutional and recurrent 
neural network architectures (Vaswani et al. 2017; Wolf et al. 2020). Transform-
ers are considered black boxes. The large number of their parameters and their 
complex architecture makes it difficult to understand how they reach their deci-
sions (Schwenke and Atzmueller 2021). Interpretability is important in high-risk 
applications, where decision-making systems can have a significant impact on 
human lives (EU 2021). The importance of interpretability in such applications, 
along with the high performance that transformers can achieve in them, raises the 
need for techniques that can explain the decisions of these models.

The most popular transformer-specific interpretability approach is the use of 
self-attention scores. Since these scores are computed during inference, obtain-
ing interpretations from them adds no computational overhead. However, the 
use of attention to produce explanations has been met with skepticism by some 
researchers  (Jain and Wallace 2019). Other transformer-specific interpretability 
approaches combine attention with gradient information  (Chefer et  al. 2021) or 
compute new attentions based on the network’s residual connections (Abnar and 
Zuidema 2020). Nevertheless, such techniques introduce new elements in the 
model’s architecture, necessitating the model’s pre-training from scratch.

While reviewing the literature on attention-based interpretation of transform-
ers, we ran across different ways of integrating attention information across heads 
and layers, as well as different ways of extracting an interpretation vector from a 
final attention matrix. This motivated us to study whether some particular ways 
perform better than the rest. The inconclusiveness of this study led us to pro-
pose a novel family of local interpretation techniques for transformers, dubbed 
Optimus. Given an input instance, Optimus Prime evaluates the faithfulness of the 
interpretations obtained by a number of different combinations of head, layer and 
matrix operations and selects the best one as the final interpretation. In multi-
label learning tasks, Optimus Label selects the most faithful combination sepa-
rately for each predicted label, leading to improved results. To reduce the compu-
tational complexity, at the cost of performance, Optimus Batch selects the most 
faithful combination across an initial set of instances, and then uses this fixed 
setup for subsequent instances. In addition, we propose a new faithfulness evalu-
ation metric, Ranked Faithful Truthfulness, that correlates highly with the area 
under the precision recall curve computed on top of ground truth rationales.

Our contributions are empirically assessed on seven datasets from four dif-
ferent domains: sentiment analysis, natural language understanding, hate speech 
detection, and biomedicine. Decision-making in the latter two can in some cases 
have significant impact on human lives. The first one by affecting freedom of 
speech or allowing the incitement of violence, and the second one by recom-
mending inappropriate treatments. Results show that attention-based interpreta-
tions can compete with state-of-the-art techniques, and even exceed them in cer-
tain cases, while being less computationally expensive in others.
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The remainder of this article is organized as follows. Section 2 examines related 
work on transformer interpretability and interpretability evaluation. Section 3 pre-
sents our attention-based interpretability technique alongside our new faithfulness 
metric. Section 4 introduces the setup of our experiments and presents quantitative 
and qualitative evaluation results. Finally, Sect. 5 discusses the conclusions of our 
work and points to future research directions.

2 � Related work

A model’s ability to provide insights for its decisions or inner working, whether 
intrinsically or not, is referred to as interpretability. Complex models, such as trans-
formers, cannot provide interpretations out of the box, and therefore post-hoc tech-
niques are typically applied. The representations of an interpretation include, among 
others, rules, heatmaps, and feature importance. This work focuses on feature impor-
tance, also known as attribution importance or saliency map, which quantifies the 
influence of a model’s input features on its output. The rest of this section presents 
related work on transformer interpretability, mainly in the context of text classifica-
tion, as well as on interpretability evaluation methods.

2.1 � Transformer interpretability

We first review model agnostic and neural-specific feature importance techniques 
that are applicable to transformers. Then, we present interpretability techniques that 
have been designed specifically for transformers. Finally, we discuss two studies 
that have discovered interesting patterns and properties of transformers’ attention 
module.

2.1.1 � Transformer‑applicable techniques

Local Interpretable Model-agnostic Explanations (LIME) (Ribeiro et al. 2016) and 
SHapley Additive exPlanations (SHAP)  (Lundberg and Lee 2017), two model-
agnostic, local interpretation approaches, can be easily applied to a transformer by 
just probing it for predictions. Backpropagation-based neural-specific techniques 
such as Layer-wise Relevance Propagation (LRP) (Bach et al. 2015) and Integrated 
Gradients (IG)  (Sundararajan et  al. 2017) can be modified to provide interpreta-
tions for transformer models. Such techniques that consider model architecture and 
employ back-propagated gradients are expected to yield more meaningful interpre-
tations. However, some studies have shown that model-agnostic methods achieve 
competitive performance in transformer explainability (Mathew et al. 2021).

Making use of techniques such as LIME, IG, and SHAP, Thermostat  (Feldhus 
et  al. 2021) provides a collection of ready-to-use interpretations in the form of 
feature importance scores for different transformer models and datasets. This can 
reduce the environmental impact and economic barriers associated with the repeti-
tive execution of common experiments in interpretable NLP. Ecco (Alammar 2021) 
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is an open-source library offering a variety of techniques for analyzing the inner 
workings of a transformer, such as how the model’s hidden states change from layer 
to layer, providing feature importance interpretations, as well as enabling the exami-
nation of activation vectors.

2.1.2 � Transformer‑specific techniques

Extracting information from the attention module of transformers has been a popu-
lar method for interpreting their decisions (Mullenbach et al. 2018; Wiegreffe and 
Pinter 2019), especially before its criticism  (Jain and Wallace 2019; Bastings and 
Filippova 2020). Recent work introduced an interpretation technique based on rein-
forcement learning that uses attention matrices in order to build a perturbation-
based game environment that provides explanations for transformer models  (Niu 
et al. 2022). An explainability method based on hierarchical transformer models was 
proposed in Bacco et  al. (2021). Two transformer-based model architectures were 
introduced to classify and extract explanations for sentiment analysis. Explanations 
were extracted based on attention weights and compared to ones provided by human 
users.

A recent method that does not solely rely on raw attention to provide explana-
tions, is combining relevance and gradient information (Chefer et al. 2021). Specifi-
cally, relevance scores are produced for each attention head in each layer, leverag-
ing the theory underpinning LRP. These results are then integrated with gradient 
information. The produced explanation is a matrix of size S × S , where S denotes 
sequence length. The final relevance map is derived from the row of the matrix cor-
responding to the [CLS] token, which is the special classification token that is added 
by certain transformers at the start of each sequence.

A process aimed at quantifying how attention information flows from layer to 
layer is introduced in Abnar and Zuidema (2020). Specifically, two methods based 
on Directed Acyclic Graphs are proposed, Attention Rollout and Attention Flow, that 
compute attentions for each input token. Both methods take into account the models’ 
residual connections to obtain token attentions. These attentions were found to retain 
more information and can serve as a visualization tool. A tool developed specifically 
for attention visualization, is BertViz Vig (2019), which provides insight about how 
tokens of a particular sentence affect each other, while also shedding light on what 
each attention head and layer focuses on.

The main advantage of Optimus compared to the discussed approaches is that 
the interpretations provided are solely based on attention allowing for fast response 
times. In addition, Optimus can be used in different tasks with minimal adjustments, 
as attention remains the same regardless of the downstream task of the transformer.

2.1.3 � Attention analysis in transformers

Five distinct patterns of self-attention that are used across attention heads were 
discovered in Kovaleva et al. (2019) by displaying attention score heatmaps for 
BERT. Additionally, it was shown that by disabling certain attention heads or 
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layers, the model does not necessarily display a decrease in performance and can 
even exhibit improvements in specific cases.

The topic of transformer identifiability was explored in Brunner et al. (2020). 
Attention weights are defined as identifiable if they can be uniquely determined 
from the transformer’s output. It was discovered that if the sequence length used 
is higher than the attention head dimension, then attention weights are not iden-
tifiable. This is because certain rows of the attention matrix can be linear com-
binations of others. Using attention as an explanation may be unwarranted, since 
different combinations of weights may produce the same output.

2.2 � Interpretability evaluation

The most appropriate way to evaluate an interpretability technique is via a user 
study, where end users compare interpretations  (Lertvittayakumjorn and Toni 
2019). However, this kind of experimental procedure is not always feasible, 
due to its costly and time-consuming nature. Furthermore, human evaluation is 
prone to bias (Herman 2017).

Ground truth interpretations provided by human annotators are called ration-
ales (DeYoung et al. 2020). In text classification, these rationales can be words, 
sentences or spans of text that strongly associate each instance with its label. 
When rationales are available, we can evaluate interpretations using standard 
metrics, such as F1 , or the Area Under the Precision-Recall Curve (AUPRC). 
Unfortunately, datasets accompanied by rationales are scarce. Moreover, since 
rationales are provided by humans, erroneous, noisy, and biased annotations 
may occur, as in human evaluation.

There are also metrics that can do without human input, by evaluating cer-
tain properties of the produced interpretations. Robustness (Melis and Jaakkola 
2018) concerns the stability of a technique. By slightly modifying the examined 
instances, robustness measures the degree of change between the interpretations 
for the initial and modified instances. The smaller this change is, the higher the 
robustness of the technique. Comprehensibility  (Robnik-Sikonja and Bohanec 
2018) calculates the percentage of non-zero weights in an interpretation. The 
lower this number, the easier for end users to comprehend the interpretation.

A frequently used family of metrics are those emulating the behavior of a user 
that interacts with the model to explore the validity of a given interpretation, 
known as faithfulness evaluation metrics. Faithfulness score (Du et al. 2019), the 
most popular one, eliminates the token with the highest importance score from 
the examined instance and measures how much the prediction changes. Higher 
changes signify better interpretations. Truthfulness (Mollas et al. 2022) removes 
all tokens of an instance, one at a time, and awards or penalizes the technique 
based on the model’s behavior. Other metrics of this family include Comprehen-
siveness, Sufficiency, Monotonicity and Faithfulness Violation Test (Chan et al. 
2022; Liu et al. 2022).
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3 � Our approach

Given a transformer model f, and an input sequence x = [t1,… , tS] , consisting of 
S tokens ti, i = 1… S , our goal is to extract a local interpretation z = [w1,… ,wS] , 
where wi ∈ ℝ signifies the influence of token ti on the model f(x), based on the 
model’s self-attention scores. We first present the Optimus family of techniques for 
selecting the most faithful interpretation among several different ones. Then, we dis-
cuss a novel faithfulness metric that exhibits high correlation with AUPRC com-
puted on top of ground truth rationales.

3.1 � The Optimus family of techniques

We first review the self-attention layer of transformers, where attention scores are 
computed, and introduce a variation for obtaining feature importance scores that 
include negative values. Then, we present the different ways that are commonly used 
to turn attention scores into an interpretation in the form of feature importance, as 
well as introduce some new ones. Finally, we present three techniques for selecting 
the most faithful among these interpretations.

3.1.1 � Attention scores

The input to each self-attention layer is a matrix of dimensions S × E , where S 
denotes sequence length, and E refers to embedding size. At first, this matrix is 
passed through three linear layers, namely Query, Key, and Value, to produce matri-
ces Q, K, V of the same dimension as the input. Next, the dot product of Q and K is 
calculated, and divided by the square root of the embedding size. Subsequently, the 
attention mask is added. The product of those operations is a matrix of dimensions 
S × S which contains both negative and positive values. This matrix is then passed 
through a softmax function, which outputs a matrix, A, of the same dimensions con-
taining only positive values which correspond to the attention from each token of 
the sequence to the rest:

In fact, transformers employ a multi-head attention architecture, where the input to 
each self-attention layer is logically split to R attention heads. Each head operates 
on a different part of the input matrix of size S × E

R
 allowing the transformer to learn 

different relationships between tokens.
Due to the use of the softmax function, which maps all input values to the range 

[0,  1], attention matrices contain only positive numbers. Consequently, any inter-
pretations extracted from these matrices will contain only positive values. How-
ever, interpretations containing both positive and negative values are often desir-
able (Liu et al. 2021), as the presence of polarity within feature importance scores 

(1)A = softmax

�
Q ⋅ KT

√
E

+ mask

�
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can facilitate a better association of input elements to a decision. To illustrate this, 
consider a situation where a model is uncertain about a decision and predicts a label 
with low probability. By highlighting the input elements that have a negative influ-
ence on the decision, users can comprehend the reasons behind the uncertainty and 
adjust or modify those elements to increase the certainty of the decision. Therefore, 
our experiments consider a modification on Eq. (1), which ignores the softmax func-
tion to allow negative values to appear in the resulting interpretations (Eq. 2). We 
denote the corresponding matrix by A∗:

3.1.2 � Interpretation extraction

An interpretation is typically obtained by first aggregating the attention matrices 
across all heads of each self-attention layer, then aggregating the resulting matrices 
across all self-attention layers, and finally extracting from the resulting matrix the 
one-dimensional interpretation vector. Head operations commonly found in the lit-
erature are averaging (Chefer et al. 2021; Mathew et al. 2021; Wang et al. 2019) and 
summing (Hoover et al. 2020; Schwenke and Atzmueller 2021) the attention matri-
ces of each head. These operations are equivalent in the context of interpretability 
evaluation, as they lead to the same ordering of the tokens by importance, differing 
only in the magnitude of the scores assigned to the tokens. Therefore, the summing 
operation is not included in our pipeline. Operations concerning the resulting matri-
ces of self-attention layers include averaging (Schwenke and Atzmueller 2021) and 
multiplying (Chefer et al. 2021). We therefore also consider multiplying as an opera-
tion for heads.

We further propose an additional operation for both heads and layers: selection 
of the attention matrix corresponding to a certain head/layer. As different heads are 
learning different relationships among the input tokens, including the [CLS] token 
in classification tasks, they are essentially learning different ways that input tokens 
influence the class. We therefore hypothesize that this new selection operation can 
be crucial for obtaining local interpretations tailored to a particular input sequence.

These head and layer operations lead to a single matrix, integrating the atten-
tion scores from the different heads of the different layers in a model. To obtain the 
final interpretation vector, a common approach is to consider the attention that each 
input token receives from the special [CLS] token that is prepended at the beginning 
of sequences in text classification tasks (Chefer et al. 2021; Mathew et al. 2021). We 
call this operation “From [CLS]”. Assuming that each row of the attention matrix cor-
responds to the attention a token pays towards the others, while each column corre-
sponds to the attention it receives from the others, this operation amounts to extracting 
the [CLS] row of the final attention matrix. We also consider a “To [CLS]” opera-
tion, by extracting the [CLS] column of the final matrix, containing the attention that 
the [CLS] token receives from each input token. Two additional operations that were 
identified in the literature, are selecting the maximum value from each column “Max 

(2)A∗ =
Q ⋅ KT

√
E

+ mask
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Columns” (Schwenke and Atzmueller 2021) and averaging the columns of the attention 
matrix “Mean Columns” (Clark et al. 2019). All these four operations are presented in 
Fig. 1.

In summary, we considered the following operations that are also depicted in Fig. 2: 
(a) averaging, multiplying and selection for heads, (b) averaging, multiplying and selec-
tion for layers, and c) From [CLS], To [CLS], Max Columns and Mean Columns at the 
matrix level. The combinations of these operations lead to a total of ( 2 + H ) × ( 2 +M ) 

Fig. 1   Interpretation extraction operations from an attention matrix

Fig. 2   Head, layer and matrix operations
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× 4 potentially different attention-based interpretations, where H denotes the number of 
heads and M the number of layers.

3.1.3 � Selecting the most faithful interpretation

Given a transformer model f, an input sequence x, Optimus Prime extracts interpreta-
tions using all combinations of the available operations at the head, layer and matrix 
level (see Algorithm 1). To arbitrate among all these interpretations, it uses an unsuper-
vised faithfulness evaluation metric e, in order to output the most faithful interpretation 
(see Algorithm 2).
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The first variation, Optimus Batch, finds the most faithful combination of opera-
tions for a set of instances (Algorithm 3). This combination is then used to provide 
interpretations for future instances. Optimus Batch is faster and more environmen-
tally friendly because the search for the most faithful combination occurs only once. 
However, it is expected to yield lower results than Optimus Prime, which performs 
the process separately for each instance.

Selecting one combination to extract an interpretation in a multi-label task 
with L labels, where each instance relates to more than one label may be insuf-
ficient, as the positive prediction of different labels may have different interpre-
tation. Therefore, Optimus Label acquires multiple interpretations, one for each 
different label predicted for an examined instance x (see Algorithm  4). While 
in a binary classification task this makes no difference, in multi-label tasks it 
can enhance the performance, as there is more flexibility to match the different 
ground truth rationales of the positive labels.
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3.2 � Ranked faithful truthfulness

The selection process presented in the previous subsection relies heavily on the use 
of a faithfulness metric. While metrics like faithfulness score (Du et al. 2019) and 
truthfulness (Mollas et al. 2022) could be used, this work introduces a novel feature 
importance metric named Ranked Faithful Truthfulness (RFT). Inspired by both 
faithfulness score and truthfulness, this metric combines their qualities to provide 
a more complete evaluation. RFT examines the whole interpretation, assigning each 
token a different penalty based on its importance.

Considering model f, input sequence x of size S, and the interpretation z of f(x), as 
discussed in the beginning of Sect. 3, RFT performs S independent modifications to 
x, each time removing a different token, ti , leading to instance x(−i) . For each modi-
fication, it computes a faithfulness score v based on wi and the difference of fp(x) 
and fp(x(−i)) , where fp returns the probability of x belonging in a certain label, as 
follows:

For non-zero weights, this score is positive (negative) when the change in predic-
tion aligns (contrasts) with our expectations given the weight of the model. For zero 
weights, it is negative or zero. In all cases, its magnitude corresponds to the absolute 
value of the difference in predictions.

(3)v(x, z, i) =

⎧
⎪⎨⎪⎩

fp(x) − fp(x
(−i)), If wi > 0,

fp(x
(−i)) − fp(x), If wi < 0,

−�fp(x) − fp(x
(−i))�, If wi = 0
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In addition, RFT normalizes this score proportionally to the importance of each 
token. An intuitive way to achieve this would be to multiply it by the absolute value 
of the token importance |wi| . However, this would result in information loss, as the 
prediction changes of zero weights would not be considered. We instead divide the 
score by the rank r(ti) of token ti based on the absolute value of its weight. For exam-
ple, the ranks of 3 tokens with importance values −0.1, 0.3, 0.2, would be 3, 1 and 2, 
respectively. Equation (4) provides the definition of RFT. Higher RFT values indi-
cate better performance.

3.2.1 � Token replacement by [UNK]

Faithfulness-oriented metrics, including RFT, evaluate the performance of an inter-
pretability technique based on how the model’s decision changes when one or more 
tokens of the input is removed. This however affects the context for the rest of the 
tokens, which is important in sequence processing models, like recurrent neural net-
works and transformers, and even more so, if they use positional encoding, which 
is the standard for transformer models. This is even more apparent when measuring 
the distributional shift between the original text and the one altered after removing 
the token (Rychener et al. 2020). This finding suggests that simply removing words 
or tokens produces texts that are out-of-distribution for the transformer, greatly hin-
dering the model’s performance.

To address this issue, we propose to replace tokens with [UNK], the special token 
for representing tokens that are not in the vocabulary, instead of deleting them. This 
way, we nullify the influence of the replaced token, while minimally affecting the 
context. Another similar option would be to use [MASK] which the transformer is 
already familiar with, rather than [UNK] (Liu et al. 2022). However, this would also 
lead to erroneously deflated scores, since the model is trained to replace [MASK] 
with words fitting to the context.

Figure 3 shows an example of the change in attentions when using [UNK], where 
image (a) presents the attentions of the initial sequence, (b) after the most impor-
tant token is removed, and (c) when replaced with [UNK]. We can see that remov-
ing the token affects attentions between the remaining tokens more than replacing it 
with [UNK]. For example, the attention “metric” has towards “amazing” is 0.07 in 
the original sequence. By removing “is” attention increases to 0.12, which is to be 
expected since the context of the sequence changed, as these tokens are next to each 
other. On the other hand, replacing “is” with [UNK], increases attention slightly to 
0.08, since this change does not affect the positions of the tokens.

(4)RFT(x, z) =
1

S

S∑
i=1

�(x, z, i)

r(ti)
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4 � Experiments

This section presents our experimental setup, a comparative evaluation of RFT 
against faithfulness, and a comparative evaluation of the proposed attention-based 
explanation methods against LIME, IG and the standard attention-based technique 
in terms of the quality of their explanations (both quantitatively and qualitatively) 
and their computational requirements. The code used in our experiments, as well as 
a ready to use tool for interpreting transformers using Optimus and RFT are avail-
able in GitHub.1

4.1 � Setup

We use BERT and DistilBERT transformer models in our experiments. BERT was 
chosen due to its high prominence in the literature, while DistilBERT as a lighter 
alternative. The base implementation for both models was selected since it is the 
most common choice for text classification tasks. We compare the performance of 
our technique to two state-of-the-art competitors, LIME (Ribeiro et al. 2016) with 
200 neighbours for larger datasets and 2000 for smaller ones, and IG (Sundararajan 
et al. 2017) with 50 interpolations steps. These methods were covered in Sect. 2.

We experiment on 7 datasets coming from 4 different domains: hate speech, 
biomedicine, sentiment analysis, and Natural Language Understanding (NLU). We 
selected datasets of sequence length that could fit into the 512 token capacity of 
the base implementations of BERT and DistilBERT, ideally being accompanied by 
(token/sentence-level) rationales and covering both single and multi-label classifica-
tion tasks. Table 1 presents key statistics about each dataset, along with the perfor-
mance of the two transformer models.

HateXplain (HX) (Mathew et al. 2021) is a single-label and Ethos (Mollas et al. 
2022) a multi-label dataset from the hate speech domain. They contain hate speech 
posts collected from Twitter/Gab and YouTube/Reddit, respectively. The former 
classifies these posts as hateful, normal, offensive or undecided, out of which we 

Fig. 3   Example of attention with token removal and replacement with [UNK]

1  https://​tinyu​rl.​com/​bdh3v​2nw.

https://tinyurl.com/bdh3v2nw
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disregard the last two classes. In Ethos, each post is associated with eight labels 
regarding violence, target and type of hate speech.

From the biomedicine domain, we use Acute Ischemic Stroke (AIS) (Kim et al. 
2019), a single-label dataset, and Hallmarks of Cancer (HoC) (Baker et al. 2015), 
a multi-label one. The first concerns medical notes of brain MRI scans for acute 
ischemic stroke. HoC, contains biomedical abstracts indexed with 10 hallmarks of 
cancer.

From the sentiment analysis domain, two datasets, Movies (MV) (DeYoung et al. 
2020) and Hummingbird (HB) (Hayati et al. 2021), were employed for single and 
multi-label tasks, respectively. Movies contains reviews with positive or negative 
sentiment. Due to the larger sequences of the samples in this dataset, we applied a 
filtering step, only keeping the ones with size less than or equal to 512. Humming-
bird concerns a textual style classification task, with labels including politeness, sen-
timent, offensiveness, and five emotions.

ESNLI  (Camburu et  al. 2018) is a single-label classification dataset for natu-
ral language understanding. Given two sentences, the premise and hypothesis, the 
objective is to determine their relationship: entailment, contradiction, or neutral. 
Due to the ambiguous nature of the neutral class in the examples, we only kept the 
ones related to the entailment and contradiction classes. Furthermore, we limit the 
number of examples to the first 10,000.

Table 1   Key statistics for each dataset. Information about mean size is presented in token/sentence-level

 Performance is measured in terms of F1 macro (%) for BERT/DistilBERT 

Dataset Rationales Samples Mean size Labels Performance Domain

HX Token 13.749 23.9 1 87.97/87.61 Hate speech
Ethos – 433 20.4 8 85.71/79.71 Hate speech
AIS – 3.024 44.8/7.1 1 98.28/98.96 Biomedicine
HoC Sentence 1.852 244/10.1 10 82.44/78.46 Biomedicine
MV Token 421 388/18.7 1 92.61/93.86 Sent. analysis
HB Token 500 18.5 6 61.10/57.39 Sent. analysis
ESNLI Token 10.000 24.4 1 90.13/90.05 NLU

Table 2   Pearson and 
Spearman correlations between 
faithfulness score (F) and RFT 
with AUPRC

 Higher correlation denoted with bold 

BERT DistilBERT

Pearson Spearman Pearson Spearman

F RFT F RFT F RFT F RFT

HX 0.93 0.96 0.93 0.96 0.91 0.96 0.93 0.95
HoC 0.67 0.67 0.58 0.58 0.82 0.85 0.82 0.86
MV 0.33 0.51 0.31 0.40 0.67 0.77 0.37 0.52
HB 0.69 0.76 0.67 0.76 0.86 0.86 0.83 0.83
ESNLI 0.67 0.77 0.63 0.75 0.67 0.77 0.69 0.74
Average 0.66 0.73 0.62 0.69 0.79 0.84 0.72 0.78
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We used 20% of each dataset as test set, while the remaining 70 and 10% were 
used as training and validation sets, respectively, for fine-tuning the models. We ran 
our experiments once for each dataset, as all examined techniques besides LIME 
are deterministic, and the computational complexity of LIME makes multiple runs 
prohibitive.

4.2 � Evaluating RFT

In this experiment, we focus on the five datasets where rationales are available and 
measure the Pearson and Spearman correlation of the faithfulness score (F) and our 
RFT metric with the supervised AUPRC metric, which uses ground-truth rationales. 
For each dataset, we measure the F, RFT and AUPRC performance of each inter-
pretation technique (for Optimus we separately consider each combination of head, 
layer and matrix operation), by averaging the scores of the techniques across the test 
instances. Then, we compute the correlation values between the performance of F 
and AUPRC as well as RFT and AUPRC across the techniques.

Table 2 shows that RFT is more correlated to AUPRC than F. Specifically, in 4 
out of the 5 examined datasets RFT has higher correlation to AUPRC than F when 
evaluating the interpretations for BERT’s decisions, while in HoC the 2 metrics have 
the same correlation. For DistilBERT, we observe a similar pattern, with RFT being 
more aligned to AUPRC in 4 out of 5 cases and the same in HB, with respect to F. 
Therefore, we use RFT as the faithfulness evaluation metric of Optimus, as well as 
for the comparison of the interpretability techniques in the following section.

4.3 � Quantitative results

In the tables below, B denotes a baseline attention setup, namely mean for heads, 
mean for layers, and From [CLS] at the matrix level. These operations are the ones 
most commonly found in the literature. Regarding our technique, OP represents 
Optimus Prime, OB the Optimus Batch variant and OL the Optimus Label one. It is 
worth noting that, OP and OL, yield the same results in binary classification.

For datasets with larger sequences, namely AIS, HoC, and MV, the evaluation 
using RFT was performed both at the token and at the sentence level, with the latter 
designated by (S) next to the dataset name. For the sentence level experiments, the 
weight of a sentence sk is obtained by computing the average weight of its tokens: 
1

�sk�
∑

ti∈sk
wi.

The top part of Table  3 summarizes the RFT performance of the examined 
techniques across the different datasets in relation to the explanations provided for 
BERT. We can see that even the baseline attention setup achieves competitive per-
formance in all datasets when using A as raw attention with a mean rank of 7.7. Fur-
thermore, our proposed unsupervised process further boosts those results, with OP 
obtaining a mean rank of 2.4. OL increases the performance in multi-label datasets 
achieving a mean rank of 1.7. These two techniques, however, are computationally 
demanding since they require a search step for each instance and label. In contrast, 
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OB which also has performance higher than state-of-the-art (mean rank 5.6), is less 
costly and friendlier to the environment. The results, when using A∗ , show a slight 
decline for OP (1.9) and OL (2.9). In addition, the baseline setup has the worst per-
formance for A∗ , consistently being last (10). Investigating the interpretations pro-
vided by the A∗ baseline setup, we found that many of them consist solely of nega-
tive weights, which is the cause for the low RFT performance. The OB results with 
A∗ are much worse than those with A.

Similarly, the bottom part of Table 3 presents the results for the AUPRC metric 
in datasets with rationales. The baseline attention yet again outperforms LIME in 
mean rank, while our unsupervised process increases the obtained AUPRC values 
in most datasets. Here, however, we can see that the best technique is OB using A, 
with a rank of 2.4, instead of OP and OL, which achieve a mean rank of 3.6. The 
cause of this phenomenon is that our unsupervised procedure finds the best setup per 
instance according to RFT, which may not necessarily increase the AUPRC scores. 
Interpretations provided using A∗ seem to be less effective than those of A for the 
AUPRC metric as well, specifically OB’s ranking goes from 2.4 to 5.8, OP’s from 
3.6 to 5.6 and OL’s from 3.6 to 5.4. Nevertheless, the results of A∗ ’s RFT evaluation 
are much lower than AUPRC’s. This is due to the two metrics’ distinct natures, with 
RFT considering and evaluating polarity as well as ranking, while AUPRC only 

Table 3   Performance of interpretability techniques in terms of RFT (top) and AUPRC (bottom) when 
explaining BERT on different datasets

 Best performance denoted with bold, second best denoted with underline. The average rank of each tech-
nique across the datasets is also available 

Dataset LIME IG A A*

B OB OP OL B OB OP OL

HX .180 .487 .455 .465 .528 .528 .133 .453 .548 .548
Ethos .483 .515 .422 .444 .543 .620 .181 .450 .498 .635
AIS .068 .079 .063 .081 .110 .110 .001 .077 .105 .105
AIS (S) .132 .164 .139 .185 .202 .202 .008 .173 .201 .201
HoC .114 .307 .239 .240 .349 .417 −.013 .208 .326 .399
HoC (S) .141 .270 .244 .273 .360 .404 −.132 .203 .372 .436
MV .011 .062 .132 .137 .242 .242 .001 .085 .201 .201
MV (S) .063 .053 .110 .144 .293 .293 −.124 .144 .341 .341
HB .356 .151 .226 .269 .408 .429 −.079 .259 .410 .437
ESNLI .292 .277 .246 .453 .636 .636 −.074 .394 .627 .627
Avg. Rank 7.9 6.7 7.7 5.6 2.4 1.7 10.0 7.0 2.9 1.9

HX .296 .391 .366 .374 .369 .371 .358 .387 .367 .369
HoC .367 .646 .554 .557 .511 .547 .469 .421 .493 .546
MV .139 .169 .176 .183 .188 .188 .183 .147 .177 .177
HB .506 .366 .399 .483 .479 .454 .391 .498 .456 .443
ESNLI .477 .446 .411 .510 .500 .500 .433 .452 .491 .491
Avg. Rank 7.4 5.6 7.2 2.4 3.6 3.6 7.8 5.8 5.6 5.4



144	 N. Mylonas et al.

1 3

ranking. The A∗ baseline setup, however, has a better ranking when evaluated by 
AUPRC (7.8) when compared to RFT’s evaluation (10). In this scenario, where we 
detected numerous interpretations with exclusively negative values, RFT evaluated 
them harshly due to their polarity, although AUPRC considered the ranking to be 
relatively correct.

The findings for DistilBERT showcased in Table 4 are similar to the aforemen-
tioned ones, suggesting that our technique is stable across different encoder-based 
Transformer architectures.

Table 4   Performance of interpretability techniques in terms of RFT (top) and AUPRC (bottom) when 
explaining DistilBERT on different datasets

 Best performance denoted with bold, second best denoted with underline. The average rank of each tech-
nique across the datasets is also available 

Dataset LIME IG A A*

B OB OP OL B OB OP OL

HX .166 .309 .293 .349 .477 .477 .066 .355 .475 .475
Ethos .499 .540 .471 .497 .591 .651 .200 .482 .596 .658
AIS .064 .082 .093 .095 .116 .116 .001 .091 .113 .113
AIS (S) .111 .193 .207 .216 .223 .223 −.079 .202 .225 .225
HoC .079 .291 .216 .216 .306 .354 .003 .204 .293 .334
HoC (S) .117 .266 .245 .245 .326 .356 −.098 .165 .337 .376
MV .023 .098 .073 .080 .185 .185 −.003 .079 .173 .173
MV (S) .069 .140 .136 .159 .239 .239 −.103 .158 .253 .253
HB .329 .167 .281 .319 .399 .406 .194 .319 .394 .402
ESNLI .413 .353 .326 .377 .619 .619 −.035 .356 .612 .612
Avg. Rank 7.9 6.8 7.4 6.0 2.4 1.6 9.9 6.9 2.8 2.0

HX .322 .378 .342 .402 .381 .392 .375 .402 .382 .387
HoC .387 .671 .607 .607 .525 .596 .535 .442 .494 .547
MV .147 .240 .205 .305 .238 .238 .176 .275 .229 .229
HB .514 .372 .386 .470 .488 .453 .388 .496 .473 .447
ESNLI .463 .447 .409 .489 .497 .497 .487 .501 .496 .496
Avg. Rank 7.8 6.0 7.6 3.0 4.4 3.8 7.6 3.2 5.4 5.2

Fig. 4   Frequency of operations in layer, head and matrix level
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Another noteworthy discovery is an analysis of the most commonly used 
options for layer, head, and matrix operations as indicated by OP’s per instance 
best interpretations based on AUPRC, with both A and A∗ (Fig. 4). This analysis 
indicates that, while the most commonly used operations in the literature appear 
more frequently (mean, multi, From [CLS]), they are insufficient for providing 
the best attention-based interpretations. As a result, using Optimus, our sugges-
tions (layer and head selection, To [CLS]) can improve those interpretations.

Specifically, Fig. 4a, b show the percentage of occurrence for each operation at 
the layer level for BERT (12 layers) and DistilBERT (6 layers). We can see that the 
mean operation is the most common, occurring in 36% of the interpretations, with 
multi being selected in only 2 and 5% of the interpretations. In case of BERT, the 
first layer is more commonly employed (10%), whereas DistilBERT favors the last 
layer (13%). In both scenarios, the rest of the layers occur with similar frequency. 
In Fig. 4c, we can see the frequency of operations for heads concerning both BERT 
and DistilBERT. Similarly to before, mean is the most prevalent (27%) and multi 
is the least dominant (1%). This time, though, all the heads appear at a similar fre-
quency (5–7%), with only the sixth one standing out (10%). Finally, among matrix 
operations (Fig. 4d), the most common is From [CLS], with 43%, followed by To 
[CLS], with 24%. Mean Columns (MC) and Max Columns (MxC) occur with com-
parable frequency in BERT and DistilBERT.

4.4 � Qualitative results

In addition to the quantitative results, we present two examples, one from the domain 
of hate speech and one from biomedicine, to qualitatively evaluate the interpreta-
tions provided by LIME, IG, Baseline and OL. Red highlighting indicates a positive 
influence on the prediction, while blue highlighting indicates a negative influence. 
The intensity of the colors reflects the magnitude of the influence, with more intense 
colors representing a stronger impact.

Starting with the hate speech domain, a random instance from the HX dataset 
predicted by DistilBERT as “hate speech” is selected. In Fig. 5, we showcase the 
selected instance, having removed any tokens that may correspond to offensive or 
derogatory words or imply them. The first line corresponds to ground truth ration-
ales for the examined instance. Baseline attention seems to highlight the important 
tokens in the sequence, however, giving higher importance to only one of them, 

Fig. 5   Interpretation example for each examined technique on HX. Red (blue) denotes positive (negative) 
influence (Color figure online)



146	 N. Mylonas et al.

1 3

according to the ground truth. On the other hand, Optimus correctly identifies the 
most important tokens, giving minimal weight to others. IG behaves similarly, 
assigning correct values to important tokens and also including a few irrelevant 
ones. LIME seems to miss some important tokens, even assigning a negative score 
to one.

One intriguing aspect of this example is that the two hidden tokens preceding 
“strong” are not included in the ground truth rationale, even though they should 
have been. This is also supported by the interpretations, which assigned an influence 
score to those tokens. Indeed, removing these two tokens, has a negative impact on 
the prediction’s probability. This suggests that even ground truth information might 
be prone to inaccuracies or annotator bias.

Having presented a token-level example, the second one concerns sentence-level 
interpretations. As such, we select HoC, where sentence-level rationales are avail-
able. Choosing a random instance, we obtain its prediction, and select one label 
among the predicted, namely enabling replicative immortality. Figure 6 illustrates 
the interpretations provided by the techniques for that instance and label. Baseline 

Fig. 6   Interpretation example for each examined technique on HoC. Red (blue) denotes positive (nega-
tive) influence (Color figure online)
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correctly highlights all three important sentences, but gives less importance to one 
of them, while also highlighting an unrelated one, according to the ground truth. OL 
accurately identifies all three sentences. However, it assigns importance weight to an 
unrelated one as well. IG and LIME both erroneously give one of the three ground 
truth sentences a negative importance score, but correctly underline the other two.

In both examples, Optimus appears to provide a closer approximation of the 
ground truth rationales compared to the other techniques. However, it also assigns 
importance to additional tokens or sentences that are not part of the ground truth 
rationales. This outcome is expected because human-annotated ground truth ration-
ales often have sparse coverage, and in some cases, they may even miss critical 
information. In contrast, interpretability techniques provide dense interpretations, 
with nearly all tokens or sentences receiving a feature importance score. In cases 
where sparse interpretations are preferred, we can introduce a threshold to these 
weights, resulting in sparse interpretations for Optimus as well.

4.5 � Computational overhead analysis

One key advantage of using attention interpretations, is the low computational over-
head since they are already computed during inference. This leads to faster response 
times and lower environmental impact. This is especially true in cases where one 
combination of operations is identified beforehand (B and OB and then applied on 
incoming instances. In contrast, identifying the most faithful combination for each 
instance individually (OP and OL as seen in Sect. 4.3) and techniques such as LIME 
and IG require additional procedures, resulting in increased computational cost.

Let’s begin by discussing the theoretical complexity of each technique for inter-
preting a single label. Starting with the competitors, LIME has a complexity of 
O(g × s + g + g × s2 + s3) , where g is the number of neighbors and s is the number 
of tokens in the input sequence. The complexity breakdown is as follows: O(g × s) 
for neighborhood generation, O(g) for similarity computation, and O(g × s2 + s3) for 
ridge regression training. The complexity of IG is O(g × s) , with g representing the 
number of interpolation steps and s representing the number of tokens. The baseline 
attention setup B has a complexity of O(1) since it only requires three operations to 
create the interpretation.

OP has a complexity of O(g × s) , where s represents either the number of tokens 
in the input sequence or the number of sentences, depending on the specific problem. 
Meanwhile, g corresponds to the number of different combinations, as discussed in 
Sect.  3.1.2. On the other hand, OB has a preparation complexity of O(g × s × v) , 
where v denotes the number of instances. During inference, OB has a complexity 
of O(1) , as the setup has already been selected through the preparation procedure. 
Lastly, for OL, the runtime is the same as OP since this analysis focuses on a single 
label.

In smaller input sequences (smaller s), the primary factor influencing complex-
ity among the examined techniques is variable g. However, the value of g varies for 
each technique. For instance, in LIME, g represents the number of neighbors, with 
a default value of 5000. In the case of IG, where g represents interpolation steps, 
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the default value is 50. Regarding OP, g refers to the number of possible attention 
combinations and varies depending on the specific transformer being examined. For 
example, in BERT, the value of g is 784.

In larger sequences (larger s, up to 512), the most influential variable shifts to s 
in LIME and IG. However, for OP, the influence of both s and g remains relatively 
similar. Notably, OP offers an advantage at the sentence level because s represents 
sentences rather than tokens. Consequently, the influence of s becomes minimal, 
resulting in a lower time response as g once again becomes the most influential vari-
able. Hence, we believe that as the sequence length increases, OP performs better 
than LIME but is surpassed by IG in terms of time response. Nevertheless, this sce-
nario changes in sentence-level situations where OP outperforms both techniques.

To empirically validate this, we performed a time response analysis for each 
technique in HX (small sequences), HoC and MV (large sequences) using BERT. 
Additionally, we computed their carbon footprint in terms of metric tons of CO2 
equivalent emissions (tCO2 e) based on  (Patterson et  al. 2021). We performed our 
experiments in Google Colab using a single GPU with an average power consump-
tion of 271W. We used the formula tCO2e=KWh× kg CO2 e per KWh∕103 , assuming 
kg CO2e/KWh to be 0.429  (Patterson et  al. 2021) and the formula KWh= (inter-
pretation time×# of GPUs × avg. power/GPU × PUE)∕103 , assuming PUE2 (Power 
Usage Effectiveness) to be 1.10.

The average time response (seconds) and tCO2e emissions for each examined 
technique are showcased in Table 5. When interpretations are provided at sentence-
level, OP and OL seem to have lower time responses and emissions, compared to 
LIME and IG, while at token-level the opposite holds true. This is due to RFT, 
which is an important part of the OP and OL procedures, needing to examine fewer 
interpretation elements at the sentence-level. This is also backed up by our theo-
retical complexity analysis performed on this section. It is worth mentioning that in 
the case of LIME, we used 2000 neighbors in HX, and 200 in HoC (S) and MV, as 
LIME cannot be efficiently applied to datasets with larger sequences. Finally, B and 
OB require the least amount of time.

Figure 7 presents the cumulative tCO2 e emissions for up to 100 instances. On the 
left, we simulate an interpretable Hate Speech detection system on a social media 

Table 5   Average time response and tCO2e emissions

HX HoC (S) MV

Seconds tCO2e Seconds tCO2e Seconds tCO2e

LIME 38.252 4.892 134.903 17.252 27.422 3.507
IG 0.393 0.050 14.699 1.880 3.451 0.441
B/OB 4.21E−05 5.38E−06 0.010 0.001 0.009 0.001
OP/OL 3.050 0.390 5.304 0.678 132.204 16.907

2  https://​tinyu​rl.​com/​2u8ze​ks8.

https://tinyurl.com/2u8zeks8
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platform, where a large amount of data is being produced every second. Likewise, 
the middle plot concerns interpretability-assisted semantic indexing of biomedical 
publications, which tend to have bigger sequences, in conjunction to the large num-
ber of publications processed each day in databases like PubMed (986K articles for 
20203). Finally, on the right, we model a database in which users constantly search 
for reviews, and an interpretable sentiment analysis system provides insight to these 
reviews.

5 � Conclusions

This section serves as a conclusion to our work, where we discuss our findings, 
acknowledge the limitations of our technique, and outline potential directions for 
future research.

5.1 � Findings

Some studies argue that attention should not be used as an interpretation tool, while 
others incorporate attention-based methods in their experiments without specifying 
how interpretations are produced. This work investigates various ways attention is 
used in the literature as interpretation and proposes an arbitration scheme to deter-
mine the best way to extract interpretations from attention information. The most 
faithful combination is determined via an optimization procedure based on an unsu-
pervised faithfulness metric.

Our findings support that, when properly configured, especially using operations 
that select particular attention matrices from heads and layers, attention can effec-
tively be used as an interpretation tool for text classification. In addition, we dem-
onstrate that attention can compete with other cutting-edge techniques in a series 
of experiments that include a new faithfulness metric based on feature importance. 

Fig. 7   Interpolated emissions for each method (Left: HX, Middle: HoC (S), Right: MV). X-axis: number 
of instances, Y-axis: cumulative tCO2 e emissions

3  https://​tinyu​rl.​com/​4nprs​skn.

https://tinyurl.com/4nprsskn
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Furthermore, compared to other techniques, attention is easier to implement, while 
also being faster and less harmful to the environment, in certain cases, such as B and 
Optimus Batch.

5.2 � Limitations

Optimus does not come without certain limitations. For instance, while identify-
ing the most faithful combination of operations per instance and per label (Opti-
mus Prime and Optimus Label) achieves top performance, it is time-consuming. 
Additionally, it faces scalability issues in token-level scenarios with large texts 
since it requires examining every individual token to evaluate the interpretations 
using the proposed RFT metric. Another limitation is that Optimus has only been 
implemented and tested on textual data and NLP tasks, and thus, its applicability 
in different data types remains unexplored.

5.3 � Future work

In the future, we aim to address the issue of runtime in the Optimus Prime 
and Optimus Label setups to make them more environmentally friendly. One 
approach we will explore is experimenting with alternative faithfulness metrics 
that are more time efficient or different unsupervised metrics, such as robustness 
or complexity. Additionally, we will investigate the use of twin models, where 
one model is responsible for making predictions and another model is dedicated 
to extracting attention information. This approach could offer significant benefits, 
as it would enable us to perform RFT queries without the need for attention infor-
mation, reducing computational complexity while maintaining accuracy.

Another approach would be to explore the differences in performance between 
using both A and A∗ as input to Optimus techniques, instead of using only one of 
them to extract interpretations. Since both examined transformer models, BERT 
and DistilBERT, are encoder based, experiments investigating encoder-decoder 
based models could also be conducted. Given that Optimus is independent of the 
downstream task, there are other tasks beyond single and multi-label classifica-
tion worth exploring. For instance, we can investigate the applicability of Opti-
mus to multi-class classification and token classification. Finally, we have plans 
to conduct a user study to evaluate the quality of the interpretations provided by 
Optimus.
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