
Vol:.(1234567890)

Data Mining and Knowledge Discovery (2023) 37:2438–2493
https://doi.org/10.1007/s10618-023-00958-0

1 3

Improving the core resilience of real‑world hypergraphs

Manh Tuan Do1 · Kijung Shin1,2 

Received: 10 February 2023 / Accepted: 6 July 2023 / Published online: 9 August 2023
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2023

Abstract
Interactions that involve a group of people or objects are omnipresent in practice.
Some examples include the list of recipients of an email, the group of co-authors of
a publication, and the users participating in online discussion threads. These interac-
tions are modeled as hypergraphs in which each hyperedge is a set of nodes consti-
tuting an interaction. In a hypergraph, the k-core is the sub-hypergraph within which
the degree of each node is at least k. Investigating the k-core structures is valuable
in revealing some properties of the hypergraph, one of which is the network behav-
ior when facing attacks. Networks in practice are often prone to attacks by which
the attacker removes a portion of the nodes or hyperedges to weaken some proper-
ties of the networks. The resilience of the k-cores is an indicator of the robustness
of the network against such attacks. In this work, we investigate the core resilience
of real-world hypergraphs against deletion attacks. How robust are the core struc-
tures of real-world hypergraphs in these attack scenarios? Given the complexity of a
real-world hypergraph, how should we supplement the hypergraph with augmented
hyperedges to enhance its core resilience? In light of several empirical observations
regarding core resilience, we present a two-step method that preserves and strength-
ens the core structures of the hypergraphs.

Keywords  k-Core · Hypergraph · Deletion attack · Core resilience

Responsible editor: Charalampos Tsourakakis.

 *	 Kijung Shin
	 kijungs@kaist.ac.kr

	 Manh Tuan Do
	 manh.it97@kaist.ac.kr

1	 Kim Jaechul Graduate School of AI, KAIST, Seoul, South Korea
2	 School of Electrical Engineering, KAIST, Seoul, South Korea

http://orcid.org/0000-0002-2872-1526
http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-023-00958-0&domain=pdf

2439

1 3

Improving the core resilience of real-world hypergraphs

1  Introduction

Graphs are employed to represent social networks in which people and objects are
connected. Such modeling allows for an investigation of social networks in a conven-
ient manner. The progressive studies on the properties of graphs offer not only inter-
esting insights into how social beings interact but also several practical applications,
such as marketing influence maximization (Lei et al. 2015), fraud detection (Akoglu
and Faloutsos 2013), and product recommendation (Huang et al. 2002).

Some of the most important properties of graphs revolve around the concept of
k-core (Seidman 1983). The k-core of a graph is the maximal sub-graph in which the
degree of each node is at least k. The core number of a node v is the maximum inte-
ger k such that v is in the k-core. The core number has demonstrated effectiveness in
indicating the centrality of nodes in a network, especially in the problems of finding
influential nodes (Kitsak et al. 2010; Shin et al. 2016) and graph clustering (Mei
et al. 2021).

Real-world graphs often face attacks that remove or render several parts of the
network impaired (Freitas et al. 2022), and a line of work has investigated the resil-
ience of the core structure against such attacks (Linghu et al. 2020; Medya et al.
2020; Zhu et al. 2018). That is, in these works, resilience is characterized by the
ability of the core structure of a graph to maintain one or several properties after a
portion of the network has been removed. These works focus on how the size of the
k-core decreases or how the ranking of core numbers is altered as the consequence
of removing several nodes or edges from the network. One may devise strategies
to delete some nodes or edges to minimize the k-core size (Medya et al. 2020; Zhu
et al. 2018; Chen et al. 2021) or supplement the network with augmented edges to
consolidate the core structure (Laishram et al. 2018; Zhou et al. 2019; Linghu et al.
2020).

Despite extensive studies on the properties and robustness of graphs, much is left
undiscovered for hypergraphs. Hypergraphs, which are the extension of pair-wise
graphs allowing multiple nodes to be in the same hyperedge rather than just two,
naturally represent group interactions that are omnipresent in practice (Benson et al.
2018a; Yin et al. 2017; Do et al. 2020; Lee et al. 2021, 2020). For example, each
hyperedge may represent a publication whose co-authors are nodes in the hyper-
graph, an email involving several email addresses as nodes, or a discussion thread
consisting of several participants. Hypergraphs have been applied in the domain
of image processing (Liu et al. 2011), social networks (Tan et al. 2014; Yang et al.
2019), contagion models (Iacopini et al. 2019; de Arruda et al. 2020), electronic
commerce (Zhu et al. 2016), and circuit design (Ouyang et al. 2002).

Real-world hypergraphs may also face attacks that involve removing a portion
of the network (Peng et al. 2022; Ma et al. 2018) for the same reasons as graphs.
Hypergraphs are abstract structures representing several types of higher-order inter-
actions and are stored in databases for mining purposes. For instance, coauthorship
data are stored in academic databases (Sinha et al. 2015), emails are saved in storage
systems (Klimt and Yang 2004), and discussion threads are stored in online forums.1

1  https://​askub​untu.​com

https://askubuntu.com

2440	 M. T. Do, K. Shin

1 3

Attackers may intrude on those systems to remove several nodes or hyperedges to
weaken several properties of the networks, which corresponds to deletion attacks on
hypergraphs.

The concept of k-core has been proven useful also in hypergraphs, and thus
attackers may aim to impair the core structure in hypergraphs. Similarly to pair-wise
graphs, the k-core of a hypergraph (Sun et al. 2020) is construed as the maximal sub-
hypergraph within which the degree of each node is at least k. In hypergraphs, the
concept of k-cores demonstrates applications in identifying dense regions (Gabert
et al. 2021b) or monitoring epidemics (Gabert et al. 2021a), and as shown in Sect. 4,
hypergraph cores are also useful in several other practical applications, such as
identifying seed nodes for influence maximization or detecting abnormally dense
sub-networks. Invaders, hoping to degrade the performances in those tasks, may be
incentivized to attack the networks via the deletions of nodes or hyperedges, for the
same motivations that attackers aim to impair the core structures in graphs (Linghu
et al. 2020; Medya et al. 2020; Zhu et al. 2018).

In this work, we focus on the core resilience of real-world hypergraphs. Moti-
vated by the applications of hypergraph k-cores and the possibilities of attacks on
hypergraphs, we formulate CREAM (Core-conserving REsilience mAxiMization),
the problem of improving the core resilience of the hypergraphs against deletion
attacks through the means of augmenting hyperedges while conserving the original
core structure. We first explore the relevant patterns of core resilience of real-world
hypergraphs when a portion of the node set or the hyperedge set has been removed.
Based on these, we consider supplementing each hypergraph with augmented hyper-
edges that strengthen the core resilience of the hypergraph while preserving all core
numbers. Note that supplementing hyperedges to those hypergraphs constitutes add-
ing “virtual” hyperedge records into the respective databases to strengthen those
networks. These virtual hyperedges should be constructed carefully so that they
preserve the network properties. Moreover, while remaining indistinguishable from
real hypergraphs to attackers, these supplemented hyperedges can be removed by
database administrators whenever necessary, thus staying harmless to the network’s
applications.

However, there is a major challenge in augmenting hypergraphs through the
addition of hyperedges, which is due to the complexity of hypergraphs. In hyper-
graphs, each hyperedge may contain an arbitrary number of nodes, and thus the
number of all possible node combinations, which may form augmented hyperedges,
is insurmountable. As a result, the cost of iterating through each possible combina-
tion of nodes and checking whether it is desirable to add the combination would be
prohibitive.

To address the challenge, we introduce COREA, a fast, effective, and theoreti-
cally sound method that augments hyperedges to preserve the core structure and
improve the core resilience of the hypergraphs. Inspired by several observations
related to core resilience, COREA constructs a pool of candidate hyperedges, which
are guaranteed to conserve all core numbers, and selects the best candidates to aug-
ment to the hypergraph. Our experiments show that COREA is up to 1.7× more
effective than several baseline approaches while providing a better time-perfor-
mance trade-off.

2441

1 3

Improving the core resilience of real-world hypergraphs

In short, our contributions in this research are three-fold:

•	 Problem definition We propose and tackle CREAM (Core-conserving REsil-
ience mAxiMization), the problem of core resilience improvement in real-world
hypergraphs, for the first time, to the best of our knowledge.

•	 Key concepts and empirical observations We propose relevant concepts and pre-
sent the key observations regarding the core resilience of real-world hypergraphs
that motivate the design of our method.

•	 Method We propose COREA, a fast, effective, and theoretically sound method for
enhancing the core resilience of hypergraphs. Our extensive experiments dem-
onstrate the consistent superiority of COREA over several baseline approaches
across ten real-world hypergraphs.

For reproducibility, the code and datasets are available at https://​github.​com/​manht​
uando​97/​CoReA.

The remaining sections of this paper are as follows: In section 2, we review some
related work. We introduce some preliminaries and problem formulation in Sect. 3.
We then present some applications of core numbers in hypergraphs in Sect. 4 to
motivate our work. The key observations are summarized in Sect. 5. We propose our
method in Sect. 6. We evaluate our method in Sect. 7, where we also investigate how
our proposed method helps support the applications of hypergraph core numbers in
the tasks outlined in Sect. 4 under various attack scenarios. Lastly, we conclude our
work in Sect. 8.

2 � Related work

Hypergraphs: Hypergraphs represent high-order interactions in various fields (Ben-
son et al. 2018a; Yin et al. 2017; Do et al. 2020). There have been numerous stud-
ies on the structures and properties of real-world hypergraphs regarding transitivity
(Kim et al. 2023), reciprocity (Kim et al. 2022), simplicial closures (Benson et al.
2018a), motifs (Lee et al. 2020), evolution patterns (Kook et al. 2020; Benson et al.
2018b), and realistic generative models (Do et al. 2020; Lee et al. 2021; Kim et al.
2023, 2022; Giroire et al. 2022; Benson et al. 2018b). Meanwhile, some others
tackle several learning problems on hypergraphs, such as clustering (Rota Bulò and
Pelillo 2013; Li and Milenkovic 2017; Amburg et al. 2020), link prediction (Kumar
et al. 2020; Yadati et al. 2020; Hwang et al. 2022), and node classification (Feng
et al. 2019; Yadati et al. 2019; Chien et al. 2022).

k-Core in graphs and hypergraphs ∶ The concept of k-core plays an integral role
in the graph mining domain. It is used to detect dense subgraphs and influential
nodes in (Shin et al. 2016), whereas Giatsidis et al. (2011) employ this concept
to evaluate the cooperation within a community in social networks. Some other
problems on k-cores include scalable core decomposition (Li et al. 2013; Aridhi
et al. 2016), its maintenance on dynamic graphs (Lin et al. 2021), and core
decomposition on uncertain graphs (Peng et al. 2018). On the other hand, little
attention has been paid to the k-cores of hypergraphs. Some preliminary work

https://github.com/manhtuando97/CoReA
https://github.com/manhtuando97/CoReA

2442	 M. T. Do, K. Shin

1 3

focus on scalable maintenance of k-cores in dynamic hypergraphs (Gabert et al.
2021a; Sun et al. 2020) or how the concept of k-core in hypergraphs is applied in
discovering dense components in social networks (Gabert et al. 2021b).

Core resilience: Medya et al. (2020) define the resilience of a k-core as its abil-
ity to maintain its nodes. After many edges are deleted, several nodes can lose their
core numbers, and the size of the k-core can be reduced. Several studies attempt to
minimize the number of remaining nodes in the k-core by deleting edges (Medya
et al. 2020; Zhu et al. 2018) or removing nodes (Zhang et al. 2017). In contrast,
some others enhance the resilience of the k-core against such attacks by anchoring
nodes, i.e considering some nodes as having an infinite degree (Bhawalkar et al.
2015; Laishram et al. 2020; Linghu et al. 2020). Following a different approach,
Laishram et al. (2018) define core resilience as the rank correlation of nodes in core
numbers after several nodes or edges have been deleted. The authors correlate this
statistic with several node-level measurements and design an algorithm to enhance
the core resilience via adding edges.

In this work, we tackle the problem of improving the core resilience in hyper-
graphs. We adopt the same notion of hypergraph k-cores in (Leng et al. 2013) and
core resilience in (Laishram et al. 2018. To this end, we extend the existing concepts
of core strength and core influence in this work from graphs to hypergraphs, intro-
duce new relevant concepts, and design an algorithm for the core resilience improve-
ment problem. In this problem, we face new challenges unique to the complexity of
hypergraphs, outlined in Sect. 3.2, and propose our method to address these chal-
lenges. The details for our technical contributions are presented in Sects. 5 and 6.

3 � Preliminaries and problem definition

3.1 � Basic concepts

We introduce some basic concepts. The key notations are in Table. 1.
Hypergraphs: A hypergraph is defined as G = (V,E) , where V is the set of

nodes, and E ⊆ 2V is the set of hyperedges. Each hyperedge e ⊆ V is a set of |e|
( ≥ 2 ) nodes.2 For each node v, we define the set EG(v) of hyperedges incident to
v as EG(v) = {e ∈ E ∣ v ∈ e} . The degree dG(v) of v is defined as the number of
hyperedges incident to v, i.e., dG(v) = |EG(v)| . A node having degree 0 is an iso-
lated node. A sub-hypergraph G̃ = (Ṽ, Ẽ) of G is a hypergraph (i.e., Ẽ ⊆ 2Ṽ ) where
Ṽ ⊆ V , and Ẽ ⊆ E.

Clique expansion: The clique expansion of hypergraph G = (V,E) is a graph
G(1) = (V,E(1)) where E(1) = {{u, v} ∣ u, v ∈ V,∃e ∈ E, {u, v} ⊆ e} . That is, G(1)
is a graph in which two nodes u, v ∈ V are adjacent if and only if there exists a
hyperedge e in E containing both u and v. A hyperedge e ∈ E results in a clique
of |e| nodes in G(1) . The clique expansion is a representation of the hypergraph in

2  In this study, for the sake of simplicity, we choose to exclude self-loops (i.e., hyperedges of size 1) as
they are not significantly relevant to robustness.

2443

1 3

Improving the core resilience of real-world hypergraphs

the form of a pair-wise graph. However, this representation incurs information loss
as the original hypergraph G cannot be reconstructed from G(1) and two different
hypergraphs may result in the same clique expansion, as depicted in Fig. 1.

k-Core and core numbers: The k-core of G , denoted by C(k,G) , is the sub-hyper-
graph of G within which the degree of every node is at least k (Leng et al. 2013).
The core number NG(v) of node v in hypergraph G is the maximum integer k such

Fig. 1   The clique expansion of a hypergraph is a pair-wise graph in which two nodes are adjacent if and
only if there exists at least one hyperedge of the original hypergraph containing them. This representation
is lossy, as the original hypergraphs cannot be reconstructed from the clique expansion and different
hypergraphs may have the same clique expansion

Table 1   Frequently used symbols

Symbols Definition

G = (V,E) A hypergraph G with the node set V and the hyperedge set E
E
G
(v) The set of hyperedges incident to v in G

d
G
(v) The degree of node v in hypergraph G

G(1) = (V,E(1)) The clique expansion of G
C(k,G) The k-core of G
N
G
(v) The core number of node v in G

N
∗
G

The degeneracy of G
�
V(r, s) An attack that deletes r% of the nodes in V by a strategy s

�
E(r, s�) An attack that deletes r% of the hyperedges in E by a strategy s′

�(R(X),R(Y)) The Spearman’s rank correlation coefficient between X and Y

R
V

G
(r, s) The core resilience of G after r% nodes are deleted by �V(r, s)

R
E

G
(r, s�) The core resilience of G after r% hyperedges are deleted by �E(r, s�)

N
G
(e) The core number of hyperedge e in G

A
G
(e) The set of anchors of hyperedge e in G

CS
G
(v) The core strength of node v in G

CI
G
(v) The core influence of node v in G

CS
G
(e) The core strength of hyperedge e in G

2444	 M. T. Do, K. Shin

1 3

that v is in C(k,G) . The degeneracy N∗
G

 of hypergraph G is the highest core num-
ber of a node v ∈ V . The degeneracy core of G is the N∗

G
-core of G , denoted by

C(N∗
G
,G).

Core decomposition: Core decomposition is the process of obtaining the k-cores
and core numbers of nodes in a hypergraph G (Algorithm 3 in Appendix 1). After
removing all isolated nodes, the remaining hypergraph is the 1-core. For each k ≥ 1 ,
to obtain the (k + 1)-core, a pruning process starts from the k-core and repeatedly
removes the nodes of degrees lower than (k + 1) until no such removal is possible.
The nodes removed in this pruning process are assigned core number k.

Node and hyperedge deletions: Attackers often seek to weaken the structure of
G by deleting several nodes or hyperedges (Peng et al. 2022; Ma et al. 2018). We
denote a deletion attack as �V(r, s) that deletes r% of the nodes in V by a strategy
s. Similarly, �E(r, s�) is an attack that deletes r% of the hyperedges in E by a strat-
egy s′ . We introduce several potential attack strategies that attackers may employ in
Sect. 5.2.

Spearman’s rank correlation: Spearman’s rank correlation is a measurement of
rank correlation between two variables. Let X = [x1, ..., xn] and Y = [y1, ..., yn] be two
variables. Let R(X) = [�X(x1), ..., �X(xn)] be the rank variable of X in which �X(xi) ,
for i = 1, ..., n , is the relative ranking position of xi when the values in {x1, ..., xn}
are sorted in the descending order3. Simiarly, let R(Y) = [�Y (y1), ..., �Y (yn)] be the
rank variable of Y. The Spearman’s rank correlation between X and Y, denoted as
�(R(X),R(Y)) , equals to the Pearson correlation coefficient of R(X) and R(Y), i.e.,

where cov(R(X),R(Y)) is the covariance of R(X) and R(Y); �R(X) and �R(Y) are the
standard deviations of R(X) and R(Y), respectively. We have −1 ≤ �(R(X),R(Y)) ≤ 1 ,
with �(R(X),R(Y)) = 1 when R(X) and R(Y) are identical and �(R(X),R(Y)) = −1
when R(X) and R(Y) are fully opposed.

Core resilience: The core resilience RV
G
(r, s) against node deletions of a hyper-

graph G is defined as the Spearman’s rank correlation coefficient of the core num-
bers of the nodes before and after r% of the nodes have been deleted from V by
attack �V(r, s) . After several nodes are deleted alongside their incident hyperedges,
there remains a sub-hypergraph G̃ = (Ṽ, Ẽ) in which some of the remaining nodes
may lose their original core numbers, potentially distorting the ranking of core
numbers. Denote the original and post-attack core numbers of the remaining nodes
Ṽ = {vi1 , ..., vim} as NG = [NG(vi1), ...,NG(vim)] and NG̃ = [NG̃(vi1), ...,NG̃(vim)]

4,
respectively. The core resilience RV

G
(r, s) is defined as the Spearman’s rank corre-

lation between NG and NG̃ , which is equal to 𝜌(R(NG),R(NG̃)) . Similarly, the core
resilience RE

G
(r, s�) against hyperedge deletions of a hypergraph G is defined as the

(1)�(R(X),R(Y)) =
cov(R(X),R(Y))

�R(X)�R(Y)
,

3  Identical rank values are each assigned the fractional rank equal to the average of their positions in the
ascending order of the rank values.
4  The nodes having no incident hyperedges left are assigned core number 0 in this case.

2445

1 3

Improving the core resilience of real-world hypergraphs

Spearman’s rank correlation coefficient of the core numbers of the nodes before and
after r% of the hyperedges have been deleted from E by attack �E(r, s�).

These definitions of core resilience against node deletions and hyperedge dele-
tions are adopted from (Laishram et al. 2018) and extended to hypergraphs. The core
number serves as a measure of node centrality (Shin et al. 2016; Laishram et al.
2018), and core resilience measures the tendency of central (or peripheral) nodes to
remain central (or peripheral) after the network faces node/hyperedge deletions.

3.2 � Problem definition

In this section, we aim to establish a clear understanding of the problem at hand.
First, we present a formal definition of the problem. Then, we discuss its objective
and constraints. Lastly, we discuss the challenges associated with this problem and
discuss its relevance to existing problems.

Problem 1  (CREAM: Core-conserving REsilience mAxiMization)

•	 Input: a hypergraph G = (V,E) with the hyperedge size distribution D and a
budget B,

•	 Find: b hyperedges: E = {e1, ..., eb} where E ⊆ 2V and E ∩ E = � to augment to
G to form G� = (V,E�) with E� = E ∪ E,

•	 to Maximize: the core resilience RT

G� (r, s) of G′ in a case of attack �T(r, s) , whose
target T , degree r and strategy s are unknown in advance ( T is either V , for a
node deletion attack, or E′ , for a hyperedge deletion attack)

•	 Subject to constraints

–	 all core numbers of nodes are conserved, i.e., NG(v) = NG� (v),
–	 the hyperedges are augmented within the budget, i.e., b ≤ B,
–	 the size distribution of the hyperedges in E follows D.

Objective: As shown later in Sect. 4, the ranking of core numbers is useful in sev-
eral applications. Such ranking may be distorted once several nodes or hyperedges
are deleted from the hypergraph. Thus, we wish to preserve such ranking under dele-
tion attacks by improving the core resilience.

Constraints on cores numbers: The goal is to consolidate the resilience of the
core structure, so it is essential to avoid distorting the core structure, to begin with.
Also, we augment hyperedges as a pre-caution measure without any prior knowl-
edge of the attack, so the augmented hyperedges should preserve the core structure
even in the case that the attack would not occur. These justify the constraint of pre-
serving the core numbers.

Constraints on the number of augmented hyperedges: While Problem 1 allows
a maximum budget of B, in order to satisfy the requirement of preserving all core
numbers, the actual number b of hyperedges that any method can augment to G can
be smaller than B.

2446	 M. T. Do, K. Shin

1 3

Constraints on the size of augmented hyperedges: In addition, since the aug-
mented hyperedges should not be easily distinguishable from the real hyperedges
or harmful to the network properties, the original hyperedge size distribution should
be preserved. Moreover, if the size distribution of the augmented hyperedges devi-
ates significantly from the real distribution, they become easily noticeable to the
attackers, which may enable them to deliberately ignore all the augmented hyper-
edges that they deem unrealistic prior to any attacks, which renders the augmenta-
tion unavailing.

Related problems and unique challenges: A similar problem in graphs is defined
in (Laishram et al. 2018), where the authors propose a method named MRKC.
Among all pairs of non-adjacent nodes, MRKC retains those guaranteed to preserve
all core numbers when they are added to the network while discarding the others.
MRKC then ranks all the retained pairs by a certain metric and greedily selects the
one with the highest score to be added to the network. A naive extension of MRKC
to hypergraphs is to check all combinations of nodes that are not actual hyperedges
and select only those that preserve all core numbers, However, the number of the
combinations is in the order of O(2|V|) , which is huge in practice. Therefore, the cost
of checking all possible node combinations is prohibitive and renders this approach
impractical. This proves the challenge of Problem 1. We address this challenge by
our method, COREA, in Sect. 6.

4 � Motivating applications

In this section, we present two applications of the concept of k-core on hypergraphs,
in the identification of influential nodes and anomaly detection, to motivate our stud-
ies on the core resilience of hypergraphs. Due to the importance of k-cores, attack-
ers are often incentivized to impair the core structures of pair-wise graphs (Linghu
et al. 2020; Medya et al. 2020; Zhu et al. 2018). Similarly, hypergraph core struc-
tures, proving useful in these applications, are vulnerable to deletion attacks. As
subsequently shown in Sect. 7.6, the usefulness of hypergraph cores in those tasks is
degraded when the networks face deletion attacks, and our proposed method helps
mitigate such degradation.

4.1 � Identification of influential nodes

The concept of core number in graphs has proven useful in finding influential nodes
in social networks (Kitsak et al. 2010; Shin et al. 2016). We generalize the SIR
model in (Kitsak et al. 2010) to hypergraphs (see Algorihm 4 in Appendix 2). In
each dataset, we start with one seed node (initially infected), simulate the SIR pro-
cess, and measure the number of ever-infected nodes (i.e., recovered nodes) as the
influence of the seed node.

2447

1 3

Improving the core resilience of real-world hypergraphs

In Table 2, we report the Spearman’s rank correlation coefficient between the
node influences and each of the following node-level statistics:

•	 Core: the core numbers in the original hypergraph.
•	 Degree: the degrees in the original hypergraph.
•	 Clique-C: the core numbers in the clique expansion of the hypergraph.
•	 Clique-D: the degrees in the clique expansion of the hypergraph.

Among them, the core number in hypergraph is the most correlated with the
individual nodes’ influences, demonstrating the usefulness of hypergraph core
number ranking in finding influential nodes in real-world hypergraphs.

4.2 � Anomaly detection

Shin et al. (2016) introduce an effective scoring function to detect abnormally
dense subgraphs. The scoring function employed to measure the abnormality of
node v is the difference in the rankings of v in core number and degree, specifi-
cally, s(v) = | log(rankc(v)) − log(rankd(v))|.

In each hypergraph, we select k nodes uniformly at random as abnormal nodes
and inject

⌈⌈
k(k−1)

m

⌉⌉
 hyperedges of size m in which each of the abnormal nodes

is incident to (k − 1) hyperedges, with m is the maximum hyperedge size of the
hypergraph. Each abnormal node now has core number and degree at least
(k − 1) . We use the score s(v) to estimate how abnormal each node v is in the two
settings:

Table 2   The Spearman’s rank
correlation coefficient between
the nodes’ influences and the
statistics

The ranking of core number in hypergraph possesses the highest cor-
relation, illustrating its utility in identifying influential nodes
In each row, we highlight the highest number, which corresponds to
the best performance in each dataset, in bold

Dataset Core Degree Clique-C Clique-D

Coauth-MAG-geology 0.79 0.58 0.56 0.52
Coauth-MAG-history 0.81 0.78 0.71 0.77
Contact-high-school 0.87 0.69 0.84 0.72
Contact-primary-school 0.92 0.72 0.82 0.69
Email-enron 0.84 0.73 0.78 0.67
Email-Eu 0.87 0.75 0.78 0.67
NDC-classes 0.85 0.62 0.72 0.57
NDC-substances 0.72 0.65 0.71 0.64
Threads-ask-ubuntu 0.87 0.58 0.87 0.65
Threads-math 0.89 0.59 0.88 0.56

2448	 M. T. Do, K. Shin

1 3

•	 Core: rankc(v) and rankd(v) are the rankings of v in core number and degree
in the hypergraph, respectively.

•	 Clique-C: rankc(v) and rankd(v) are the rankings of v in core number and
degree in the clique expansion of the hypergraph, respectively.

The AUC-PR of predicting which nodes are the abnormal nodes based on the
score s(v) in the two settings Core and Clique-C is reported in Fig. 2. Using
core numbers in hypergraphs yields better prediction than using the core num-
bers in the clique expansion, showing the usefulness of the concept of hyper-
graph core numbers, particularly the ranking of core numbers.

5 � Proposed concepts and observations

The objective of Problem 1, core resilience, is a hypergraph-level measurement,
and it is difficult to optimize directly for two major reasons. Firstly, measuring the
core resilience is computationally expensive as we need to conduct core decom-
position on the original hypergraph, apply a deletion attack, and administer core
decomposition again on the attacked networks. Furthermore, due to the unpredict-
able nature of attacks, it is impossible to anticipate their magnitude and strategy
accurately. This lack of foresight hinders the precise computation of core resil-
ience for our network. Thus, we define several node-level and hyperedge-level
measurements to characterize the core resilience so that we can improve the core
resilience indirectly via these measurements. In this section, we introduce such
measurements and show that they are effective indicators of the core resilience of
real-world hypergraphs via several empirical observations.

5.1 � Proposed concepts

We introduce a number of concepts that are related to core resilience. These con-
cepts serve as the foundation for the observations made in Sect. 5 and our pro-
posed method presented in Sect. 6.

Fig. 2   The AUC-PR of predicting the abnormal nodes. Employing core numbers in hypergraphs results
in a more accurate prediction than core numbers in the clique expansions

2449

1 3

Improving the core resilience of real-world hypergraphs

5.1.1 � Hyperedge core number and anchor

As we wish to augment the hyperedges that preserve the core numbers, we seek
to unravel how hyperedges contribute to the core numbers of nodes. While a node
relies on having enough incident hyperedges for its core number, by definition,
the existence of a hyperedge may not contribute to the core numbers of all of its
incident nodes. In the core decomposition process, when a node v of core number
k is removed, its incident hyperedges are also removed. If e is one of those hyper-
edges, e is not incident to any nodes of core numbers smaller than k; otherwise,
e would have been removed before v. Moreover, e cannot contribute to the core
numbers of the incident nodes whose core numbers are higher than k as e is not
present in the core levels higher than k. In other words, e only helps contribute to
the core numbers of the incident nodes whose core numbers are equal to k, and
we refer to them as the anchors of e.

Core number of a hyperedge e: It is the maximum integer k such that e is in
C(k,G) and denoted by NG(e) . In the pruning process to obtain the (k + 1)-core from
the k-core, a node is removed along its incident hyperedges. Therefore, NG(e) is
equal to the lowest core number of a node included in e: NG(e) = minv∈e NG(v).

Anchor(s) of a hyperedge e: They are the nodes involved in e having core number
equal to NG(e) . The set of anchors of e is denoted by AG(e) . For each v ∈ AG(e) , e
is said to be anchored at v. The anchors are critical to the core number of the hyper-
edge as the hyperedge loses its core number once an anchor loses its core number.

Each hyperedge incident to a node v has a core number that is either
equal to or lower than that of v. We denote the sets of such hyperedges as
E=
G
(v) = {e ∈ EG(v) ∣ NG(e) = NG(v)} and E<

G
(v) = {e ∈ EG(v) ∣ NG(e) < NG(v)} ,

respectively.

5.1.2 � Core strength and core influence

Before exploring the core resilience of the hypergraph as a whole, which is difficult
to compute exactly, we characterize what constitutes the resilience of nodes in keep-
ing their core numbers, how nodes benefit from the connections with other nodes
for their core numbers, and in turn how nodes contribute to the core numbers of
other nodes. As described, a node v of core number k relies entirely on the inci-
dent hyperedges whose core numbers are also k for its core number, i.e., the incident
hyperedges consisting of only nodes having core numbers at least k. If v is inci-
dent to many hyperedges of such kind, even when some are removed, v may still
have enough incident hyperedges, at least k, to maintain its core numbers k. In those
hyperedges, the nodes having core numbers greater than k help contribute to the core
number of v via the incident hyperedges. We extend the concepts of core strength
and core influence in graphs (Laishram et al. 2018) to hypergraphs to quantify how
resilient a node is in keeping its core number and how much a node contributes to
the connected nodes of lower core numbers, respectively, in a hypergraph.

Core strength of a node v: It is the minimum number of hyperedges to delete
to certainly reduce NG(v) , denoted by CSG(v) . The node v depends on its incident

2450	 M. T. Do, K. Shin

1 3

hyperedges in E=
G
(v) to obtain its core number because all hyperedges in E<

G
(v)

are deleted before the core decomposition process reaches the NG(v)-core.
|E=

G
(v)| − NG(v) is the number of “extra” hyperedges incident to v in the NG(v)-core,

beyond its minimum requirement of NG(v) incident hyperedges, so after merely
removing ∣ E=

G
(v) ∣ −NG(v) incident to v, v is not guaranteed to lose its core number

k. Thus, CSG(v) =∣ E
=
G
(v) ∣ −NG(v) + 1 . A node with a higher core strength has

higher resilience to maintain its core number against deletion attacks. In order to
improve a node’s resilience, we add hyperedges to improve its core strength.

Core strength of a hyperedge e: It is the minimum number of hyperedges to delete
to certainly reduce NG(e) . Since NG(e) certainly decreases once the core number of at
least 1 anchor of e decreases, NG(e) is equal to the lowest core strength among those
of its anchor(s). We denote the core strength of e by CSG(e) = minx∈AG(e)

CSG(v) . A
hyperedge with a higher core strength has higher resilience to maintain its core num-
ber against deletion attacks.

Core influence of a node v: It is a number measuring v’s contribution to the core
numbers of the anchors of the hyperedges in E<

G
(v) , denoted by CIG(v) . As a node

relies on its incident hyperedges consisting of nodes having equal or higher core
numbers to maintain its own core number, a node can contribute to the core numbers
of lower-core nodes via such incident hyperedges. Particularly, the anchors of these
hyperedges benefit from such contribution. CIG(v) measures such contribution and
is defined as:

where Δ = NG(v) − NG(e) indicates the gap in the core numbers between v and e,
and Δ

NG(v)−1
 is the gap normalized by the highest possible gap ( NG(v) − 1 ). Among

the nodes in e ⧵ AG(e) , the term 1 + Δ

NG(v)−1
 gives a higher value to a node with a

higher core number. For each anchor t ∈ AG(e) , t has (CSG(t) − 1) “extra
hyperedges” (deleting them does not change the core number of t). The term
1 −

CSG(t)−1

∣E=
G
(t)∣

 reflects the idea that the more extra hyperedges t has, the less dependent
t is on e. Among the anchors of e, the node with the greatest dependence on v is
selected, explaining the max aggregation. To compute the core influences, we first
initialize the core influence of each node to 1 We start computing the core ìnluences
of the nodes having the minimum core number and continue up until the nodes in
the degeneracy core. The core influence of each node only depends on the nodes
with lower core numbers, so we only need to iterate through each hyperedge once. A
node that has a high core influence is important to the core numbers of many nodes,
so if this node disappears or loses its core numbers, numerous nodes are affected. As
a result, to preserve the core structure of the network, we wish to enhance the
resilience in maintaining core numbers of the nodes having high core influences.

CIG(v) = 1 +
∑

e∈E<

G
(v)

(1 +
Δ

NG(v) − 1
) max
t∈AG(e)

[
(1 −

CSG(t) − 1

∣ E=
G
(t) ∣

)CIG(t)

]
,

2451

1 3

Improving the core resilience of real-world hypergraphs

5.1.3 � Core influence‑strength and degeneracy centralized index of a hypergraph

Having described the resilience to maintain core numbers at the node and hyperedge
levels, we aggregate the relevant measures to the hypergraph level to characterize
the hypergraph’s core resilience. These characterizations involve core strengths, core
influences, and the degeneracy core.

Core influence-strength of G: It is the average of CIG × CSG over the nodes in V ,
denoted by CIS(G) : CIS(G) =

1

�V�
∑

v∈V CIG(v)CSG(v) . If nodes of high core influ-
ences have high core strengths, they are resilient in keeping their core numbers, and
as a result, many nodes benefit from the contribution of the high-influence nodes in
keeping their core numbers, making the core structure more resilient. Thus, we
hypothesize that the CIS(G) is a good indicator of core resilience of G , which is
confirmed in Observation 4 in Sect. 5.3.

Degeneracy centralized index of G: It is a value from 0 to 1 measuring how cen-
tralized G is around its degeneracy core. An index of 0 means that in every hyper-
edge, every node has the same core number. An index of 1 indicates that every
hyperedge is incident to at least one node in the degeneracy core. The degeneracy
centralized index of a hypergraph G is defined as: i(G) =

1

�E�
∑

e∈E
k∗(e)−NG(e)

N∗
G
−NG(e)

 , where

k∗(e) denotes the highest NG(v) among all nodes v ∈ e . We extend a similar
measurement for graphs in (Laishram 2020), which is theoretically proven to be
positively correlated with the core resilience of a random graph, to hypergraphs.

5.2 � Attack strategies

In this section, we introduce several attack strategies that attackers may exploit
to weaken a hypergraph G = (V,E) . Each strategy reflects the preferences of the
attackers to delete particular nodes/hyperedges, which they may deem more vital
to the core structure of the network. By simulating these attacks, we measure the
core resilience of each hypergraph against each attack strategy and confirm the
usefulness of the concepts proposed in Sect. 5.1.

Node deletions: We introduce different strategies s for an attack �V(r, s) that
deletes r% of nodes.

•	 If s is Random Attack: r% of the nodes, together with their incident hyper-
edges, are chosen uniformly at random and deleted by �V(r, s).

•	 If s is Degree Attack: The high-degree nodes are targeted, and the chance for a
node v to be deleted by �V(r, s) , alongside its incident hyperedges, is propor-
tional to its degree dG(v).

•	 If s is Core Number Attack: The nodes having high core numbers are targeted,
and the chance for a node v to be deleted by �V(r, s) , with its incident hyper-
edges, is proportional to its core number NG(v).

•	 If s is Core Strength Attack: The nodes of low core strengths are targeted, and
the chance for a node v to be deleted by �V(r, s) is proportional to 1

CSG(v)
.

2452	 M. T. Do, K. Shin

1 3

Hyperedge deletions: We introduce different strategies s for an attack �E(r, s)
that deletes r% of hyperedges.

•	 If s is Random Attack: r% of the hyperedges are chosen uniformly at random and
deleted by �E(r, s).

•	 If s is Cardinality Attack: The large-cardinality hyperedges are targeted, and the
chance for a hyperedge e to be deleted by �E(r, s) is proportional to its cardinal-
ity |e|.

•	 If s is Degree Attack: The hyperedges incident to high-degree nodes are targeted,
and the chance for a hyperedge e to be deleted by �E(r, s) is proportional to the
degree of its highest-degree constituent node.

•	 If s is Core Strength Attack: The hyperedges of low core strengths are targeted,
and the chance for a hyperedge e to be deleted by �E(r, s) is proportional to 1

CSG(e)
.

5.3 � Observations in real‑world hypergraphs

We present several patterns of core resilience of 10 real-world hypergraphs (Benson et al.
2018a) to validate the usefulness of the concepts proposed in Sect. 5.1. More details
on the datasets are in Appendix 1. In this section, we present the results of hyperedge
deletions only. The figures highlighting the results of node deletions are in Appendix 3.

Observation 1  Core strength attack is the most destructive to the core resilience of
real-world hypergraphs for both node-deletion and hyperedge-deletion attacks.

Figure 3 shows the core resilience of real-world hypergraphs against hyperedge-
deletion attack strategies, random, degree, cardinality, and core strength, across
deletion ratios. The figure illustrates how the Spearman’s rank correlation, between
the original and the post-attack core number distributions, changes depending on

Fig. 3   The core resilience of real-world hypergraphs against hyperedge-deletion attacks varies among
the attack strategies and across deletion ratios. The x-axis shows the deletion ratio, and the y-axis
indicates Spearman’s rank correlation coefficient between the original and the post-attack core number
distributions. Core strength attack is consistently the most destructive to the core resilience, while
random attack is the least destructive

2453

1 3

Improving the core resilience of real-world hypergraphs

the ratio of the hyperedges that are deleted. Core strength attack results in the lowest
core resilience per deletion ratio, while random attack results in the highest core
resilience.

Observation 2  The node core-strength distribution in each dataset is positively skewed.

The core strength distribution of nodes for each dataset is illustrated in Fig. 4.
In each dataset, the distribution of core strengths is positively skewed, i.e., most
nodes have low core strengths, and they are more prone to losing core num-
bers due to hyperedge deletions. Augmenting hyperedges to enhance their core
strengths can make them more robust against deletion attacks.

Observation 3  A hypergraph of high core resilience tends to possess a low skewness
of the core-strength distribution and vice versa. Hypergraph datasets within the
same domain exhibit similarities in terms of both skewness and core resilience.

Fig. 4   The distribution of core strengths of nodes in each dataset, visualized on a log-log scale, is
positively skewed. This indicates that a majority of nodes have relatively low core strengths, indicating
the potential for improvement through the augmentation of hyperedges

Fig. 5   The skewness of the distribution of core strengths is negatively correlated with the core resilience.
“CorrCoef” indicates Spearman’s rank correlation coefficient. It is worth noting that datasets within the
same domain exhibit similarities in terms of both skewness and core resilience

2454	 M. T. Do, K. Shin

1 3

The relationship between the skewness of core-strength distribution and core
resilience, when 50% of hyperedges are deleted, is depicted in Fig. 5. A high
skewness indicates a tendency for the distribution to have a heavy tail to the
right, indicating more nodes of low core strengths. This tendency is negatively
correlated with core resilience. The two datasets in each domain (“co-authorship”,
“contact”, “email”, “NDC”, and “threads”) exhibit similarities in terms of both
core resilience and the skewness of core strength distribution.

Observation 4  A hypergraph of high core resilience tends to possess a high core
influence-strength and vice versa.

Observation 5  A hypergraph of high core resilience tends to possess a high
degeneracy centralized index, and vice versa.

Fig. 6   The core influence-strength is positively correlated with the core resilience. “CorrCoef” indicates
Spearman’s rank correlation coefficient

Fig. 7   The degeneracy centralized index is positively correlated with core resilience. “CorrCoef”
indicates Spearman’s rank correlation coefficient

2455

1 3

Improving the core resilience of real-world hypergraphs

For each hypergraph G , we measure the core influence-strength, CIS(G) , and
the degeneracy centralized index i(G) . The positive correlations between the core
resilience, when 50% of hyperedges are deleted, with CIS(G) and i(G) are shown
in Figs. 6 and 7, respectively. The results imply two indicators for high core resil-
ience. The first indicator is that the nodes of high core influences have high resil-
ience against deletion attacks, i.e., high core strengths. The second indicator is that
many hyperedges are incident to the nodes in the degeneracy core.

The core resilience, a hypergraph-level measurement, is difficult to optimize directly
as core resilience is computationally expensive to measure exactly and the deletion strat-
egies and degree of attacks that attackers employ are unknown. Therefore, we seek to
optimize the correlated measurements that are presented in this section. The details of our
proposed method, COREA, are described in Sect. 6. Apart from basing on the observa-
tions, COREA also has several theoretical merits, outlined in Sect. 6.4.

6 � Proposed method: COREA

In this section, we introduce our proposed method, COREA (COre REsilience
Improvement by Hyperedge Augmentation), for addressing Problem 1. We begin by
providing an overview of the approach, followed by a detailed description of each
step. Lastly, we present its theoretical merits.

6.1 � Overview

We present an overview of our two-step method, COREA, whose pseudocode is
given in Algorithm 1. The inputs of Problem 1, which are defined regardless of
specific solutions, are a hypergraph G with the hyperedge size distribution D and a
budget B. Given these problem input parameters, COREA is tasked to find at most B
hyperedges to augment to G such that these hyperedges have a size distribution fol-
lowing D and conserve all core numbers of the nodes in G.

•	 Step 1: Construct a pool P of candidate hyperedges that are guaranteed to con-
serve all core numbers. Firstly, COREA follows the core decomposition process
(see Algorithm 2), i.e., a node-deletion process, to determine C , the maximum
number of hyperedges to augment to G while conserving all core numbers. We
introduce a tie-breaking scheme � to determine the order by which nodes are
deleted in this process. Once the number C is determined, we introduce a sam-
pling scheme � to construct C candidate hyperedges.

•	 Step 2: Theorem 3 shows that there is a maximum number M of hyperedges that can
be augmented to G while preserving all core numbers and C = M . Therefore, the
maximum number b of hyperedges COREA can augment is b = min{B, C} , subject
to the constraints of Problem 1. As our budget is limited and |P| might be greater than
b, we need to select a few of the candidate hyperedges, constructed in Step 1, from P
to add to G . The core resilience is a hypergraph-level objective that is hard to maxi-
mize directly due to computational cost and attack unpredictability. Therefore, we use
the improvement to the core influence-strength of G , demonstrated to correlate with

2456	 M. T. Do, K. Shin

1 3

the core resilience in Observation 4, as the ranking metric. At each step, c candidate
hyperedges with the highest scores are chosen to augment to G , with c as the batch
size of each step, an input parameter of COREA.

Apart from the input parameters given by Problem 1, COREA also employs 3 other
algorithm input parameters: the tie-breaking scheme � in Step 1-1, the sampling
scheme � in Step 1-2, and the batch size c in Step 2, as described above. These algo-
rithm input parameters are the exclusive hyperparameters of our method, which may
not be used for other algorithms. In section 7.3, we present our ablation study to
investigate the importance of these algorithm input parameters.

2457

1 3

Improving the core resilience of real-world hypergraphs

6.2 � Step 1: construct candidate hyperedges

As discussed, it is infeasible to check all possible node combinations and select
those guaranteed to change no core numbers. As a workaround, we instead answer
this question: for each node v of core number k, how many hyperedges anchored at v
can be augmented without changing the core number of v?

Suppose a candidate hyperedge e is formed by grouping v with other nodes hav-
ing core numbers higher than or equal to k. If we can guarantee the augmentation
of e preserves the core number k of its anchor(s) including v, e will be deleted in
process of obtaining the (k + 1)-core from the k-core. Therefore, the core numbers
of all the nodes in e are unchanged. Because each hyperedge only contributes to the
core number of its anchor(s), e does not affect any nodes of core numbers lower than
k. As a result, augmenting e into G changes no core numbers. In Step 1, COREA
forms a pool P of such candidate hyperedges like e. We further divide Step 1 into
two parts.

6.2.1 � Step 1‑1: compute anchor availabilities

This step is outlined in Algorithm 2 Following the core decomposition process, for
each node v ∈ E , Algorithm 2 computes the number of hyperedges anchored at v
that can be augmented while preserving NG(v).

In the pruning process of obtaining the (k + 1)-core from the k-core, when node v,
NG(v) = k , is about to be deleted, its degree is lower than (k + 1) , i.e., dG(v) ≤ k , and
let a ≥ 0 be the value satisfying dG(v) = k − a . If we augment a = k − (k − a) hyper-
edges anchored at v, its degree becomes k − a + a = k , which still qualifies v for
removal. Prior to removing v, Algorithm 2 computes the number c(v) = a , referred
to as the anchor availability of v. c(v) is the number of hyperedges anchored at v that
can be augmented while preserving NG(v) . The total number C of hyperedges that
can be augmented by COREA, subject to preserving all core numbers, is the sum of
all anchor availabilities of the nodes: C =

∑
v∈V c(v).

Fig. 8   An illustration of Algorithm 2 with two different valid orders of node removals in the core
decomposition of hypergraph G . Incorporating the core decomposition process, the method computes
the anchor availability c(v) before removing node v of core number N

G
(v) . While different orders lead to

different individual anchor availabilities, the sum of anchor availabilities is always 0 for the one node of
core number 1, 1 for the nodes of core number 2, 5 for the nodes of core number 3, and 6 for total

2458	 M. T. Do, K. Shin

1 3

At any point during the pruning process of obtaining the (k + 1)-core from the

k-core, several nodes may have degree ≤ k , and the order by which those nodes are
removed may affect their respective anchor availabilities. In particular, when both u
and v have degree ≤ k . If we delete u first, the hyperedges anchored in both u and
v are removed along u, which further reduces the degree of v. As a result, Algo-
rithm 2 will afford a higher anchor availability for v. The tie-breaking scheme � that
decides which node to remove first impacts the anchor availabilities of the nodes.
While COREA does not assume a specific tie-breaking scheme, we set � to select v
to delete first with the chance proportional to CSG(v)∕CIG(v) . By this, we defer the
removals of the nodes having high CIG∕CSG values to potentially afford them higher
anchor availabilitiles. Our experiment results in Sects. 7.2 and 7.3 justify this choice
for the tie-breaking scheme �.

An example in Fig. 8 illustrates the process of computing the anchor availabilities
of Algorithm 2 in two different deletion orders. In the two different deletion orders,
the anchor availabilities of a node may be different, but the total anchor availabilities
is always zero for the one node of core number 1, one for the nodes of core number
2, five for the nodes of core number 3, and six for total.

Note that our method does not always afford the maximum anchor availabilities
for all nodes. Different deletion orders, governed by the tie-breaking scheme � ,
may result in different anchor availabilities for the same node v, and not every order
guarantees the maximum availability for v. In Appendix 5, we conduct additional

2459

1 3

Improving the core resilience of real-world hypergraphs

analysis regarding the reasons why achieving the maximum anchor availabilities for
all nodes is not always guaranteed. As presented in Sect. 6.4, Theorem 2 shows that
the sum C of anchor availabilities, where the anchor availabilities of some nodes
might be sub-optimal, is always constant with respect to G . More importantly,
however, Theorem 3 shows that C is actually the maximum number of hyperedges
any method can augment to G , subject to conserving all core numbers of G . That
is, any method that augments more than C hyperedges, attempting to provide more
anchor availabilities than COREA, certainly violates the core-conserving constraint
of Problem 1.

Given G and the tie-breaking scheme � , the first output of Step 1-1 (Algorithm 2)
is the anchor availabilities of the nodes in V , which are the number of hyperedges
anchored at the respective nodes that can be augmented while conserving all core
numbers. The anchor availabilities are exclusive to COREA. Other output results
include the core numbers of the nodes in V , the deletion order � of the nodes in V in
the core decomposition process, and the degeneracy of G , which are the output of a
core decomposition process.

6.2.2 � Step 1‑2: build a pool P of candidate hyperedges

Given the results of Step 1-1, Step 1-2 constructs a pool P of C candidate hyperedges
guaranteed to conserved all core numbers if augmented to G.

For each v, COREA constructs c(v) candidate hyperedges anchored at v to add to
the pool P of candidates. To conserve the size distribution D of the hyperedges in E ,
the size s of each candidate hyperedge e is drawn from D. e includes v, and the other
(s − 1) nodes have the core numbers ≥ NG(v).

As shown in Line 11 of Algorithm 1, those (s − 1) nodes are chosen from
�[i + 1 ∶] by the sampling scheme � , which are the nodes removed after v in the
core decomposition process. As stated in Theorem 1, it is guaranteed that augment-
ing e into G does not alter any core numbers. While our method does not assume
a particular sampling scheme � , we set � to choose each node u with a chance pro-
portional to CIG(u)∕CSG(u) , giving the nodes of high core influences and rela-
tively low core strengths more incident hyperedges, and include at least one node
in the degeneracy core. In Sect. 5.3, we show that the core influence-strength and
degeneracy centralized index are positively correlated with the core resilience (see
Observations 4 and 5). The nodes of high CIG∕CSG values are favored with higher
anchor availabilities (due to the tie-breaking scheme � described in Sect. 6.2.1)
and in turn higher core strenghts in the augmented hypergraph, making them more
robust in keeping core numbers and indirectly improve the core influence-strength
of G . Therefore, the anchors of e can potentially benefit from the connections with
such nodes. Moreoever, to maximize the degeneracy centralized index of the aug-
mented hyperedges, each hyperedge of core number lower than N∗

G
 , the degenracy

of G , needs to include at least one of in the degeneracy. The choices for � reflect the
results of Observations 4 and 5 and prove helpful in the empirical performance of
COREA in Sects. 7.2 and 7.3.

2460	 M. T. Do, K. Shin

1 3

6.3 � Step 2: select the best hyperedges from the pool

As shown in Theorem 3, there is a maximum number M of hyperedges that can be
augmented to G while preserving all core numbers, and the total anchor availabili-
ties C =

∑
v∈V c(v) is equal to M . As a result, in order to satisfy all constraints of

Problem 1, the maximum number b of hyperedges that COREA can augment to G is
not only ≤ B but also ≤ C . In other words, b = min{B, C} . In the case |P| > b , which
is usually true as the budget B is usually tight in practice, COREA needs to select b
hyperedges from P to augment to G.

Given the pool P of candidate hyperedges from Step 1, COREA ranks each candi-
date e in P by the increase in the core influence-strength of the hypergraph. At each
iteration, let the current hypergraph snapshot be Gcur = (V,Ecur) , where COREA
has augmented q hyperedges from P to E to form Ecur ( q = 0 at the beginning of
Step 2). For each e ∈ P , COREA computes a score s(e) = CIS(Gnew) − CIS(Gcur) ,
with Gnew = (V,Enew),Enew = Ecur ∪ {e}.

COREA keeps greedily selecting c candidate hyperedges with the highest scores,
augmenting them to G , and updating the scores of the remaining hyperedges in P
until b hyperedges have been augmented to G.

This scoring method is based on Observation 4 in which a higher core influence-
strength implies a higher core resilience. Since the core resilience is difficult to
optimize directly for the computational challenges and unpredictable behavior of
attackers, we employ a surrogate objective that is the improvement to the core influ-
ence-strength of G in Step 2 This surrogate objective reflects the goal of maximizing
the core influence-strength of G , which is positively correlated with core resilience,
and is more convenient to maximize.

6.4 � Theoretical analysis

In this section, we present several theoretical results regarding COREA. All proofs
can be found in "Appendix 4".

Theorem 1  (Feasibility of COREA) Step 1 of COREA guarantees to construct a
pool P of candidate hyperedges that do not change the core number of any node
when they are added together to G.

Theorem 2  (Invariance of COREA) The total number of anchor availabilities
C =

∑
v∈V c(v) realized by COREA is always constant with respect to G.

Theorem 3  (Exhaustivenessof COREA) There is a maximum number M of
hyperedges that can be augmented to G while conserving all core numbers, and the
total number of anchor availabilities C realized by COREA is equal to M.

Theorems 1 and 2 state that COREA always satisfies the constraint of preserv-
ing all core numbers in Problem 1 and returns the same total number C of anchor
availabilities regardless of the tie-breaking scheme � in Step 1. According to

2461

1 3

Improving the core resilience of real-world hypergraphs

Theorem 3, C , is equal to M , which is the maximum possible number of hyper-
edges that can be augmented without altering any core numbers. That is, in a case
where the budget B exceeds M , COREA is guaranteed to augment the maximum
number M of hyperedges while ensuring the preservation of all core numbers.
In general, COREA always augments b = min{B,M} hyperedges, which is the
maximum number of hyperedges that can be augmented subject to all constraints.

Theorem 4  (Time Complexity of COREA) Given the hypergraph G = (V,E) with
maximum hyperedge cardinality m, the budget B, the total number of anchor availa-
bilities C of all nodes (constant with respect to each dataset), and the batch size c by
which COREA augments c hyperedges at a time in Step 2, the time complexity of
COREA is O

�
�V�log�V� + Cm log �V� + (�V� +

∑
e∈E �e� + Cm2)

b

c

�
, where

b = min{B, C}.

7 � Empirical evaluation of COREA

In this section, we answer the following questions:

•	 Q1. Time and performance how are different methods compared in terms of
the running time and improvement of the core resilience in real-world hyper-
graphs?

•	 Q2. Ablation study how do different variants of each component of COREA
affect the performance and running time?

•	 Q3. Effect of hyperedge size distribution what is the effect of the size distribution
of the augmented hyperedges on the performance?

•	 Q4. Further insights what are interesting characteristics of the hyperedges
returned by COREA?

•	 Q5. Applications to what extent do the hyperedges augmented by COREA con-
tribute to the applications of core numbers discussed in Sect. 4?

7.1 � Experiment settings

Datasets: We used 10 real-world hypergraphs across several domains. The basic sta-
tistics of the datasets are provided in Appendix 1.

Proposed method: For COREA, the tie-breaking scheme � in Step 1-1 selects v to
delete first with the chance proportional to CSG(v)∕CIG(v) among several nodes up
for removals. This defers removing nodes having high CIG∕CSG to potentially afford
them higher anchor availabilities. The sampling scheme � in Step 1-2 selects v with
the chance proportional to CIG(v)∕CSG(v) and ensures each candidate hyperedge has
at least one node in the degeneracy core. These options stem from Observations 4
and 5. Including one node in the degeneracy core maximizes the degeneracy
centralized index after augmentation. To improve the core strengths of the nodes

2462	 M. T. Do, K. Shin

1 3

having high core influences, COREA prioritizes nodes of high CIG∕CSG with higher
anchor availabilities and more incident hyperedges. COREA is implemented in Java.

Baselines: We consider the following baseline methods:

•	 MRKC-G: we apply the method MRKC in (Laishram et al. 2018) to generate the
augmented edges for the clique expansion. We augment the edges (i.e., size-2
hyperedges) that satisfy the constraints of Problem 1 to the hypergraph.

•	 MRKC-D: we construct the decomposed pairwise graphs from the original
hypergraph, as in (Do et al. 2020), and then apply MRKC (Laishram et al. 2018)
to each decomposed graph to generate edges. After that, we construct the hyper-
edges from those edges (each edge in a decomposed graph corresponds to a
hyperedge), select those that satisfy the constraints of Problem 1, and augment
them to G.

•	 MRKC-H: we generate the hyperedges of size 2 only in Step 2 of COREA and
use the same scoring function as MRKC in (Laishram et al. 2018).

•	 Random: We replace the tie-breaking scheme � in Step 1-1 and the sampling
scheme � in Step 1-2 of COREA by uniform random selection. The selection of
candidate hyperedges in Step 2 from the pool P is also uniform at random.

MRKC-G and MRKC-D are extentions of the core-resilience improvement method
for pair-wise graph (Laishram et al. 2018) with proper adjustments to hypergraphs,
and we use the implementation provided by the authors for these two baselines. We
implement MRKC-H as a variant of COREA that constructs size-2 hyperedges only.
Random is a simplified variant of COREA with randomization at each step outlined
in Sects. 6.2 and 6.3.

Experimental details: We evaluate the performance of each method in terms of
the improvement of core resilience: RE�

G� (r, s) −R
E
G
(r, s) with G′ obtained by aug-

menting the hyperedges selected by each method to G . The budget B is fixed to
5% × |E| . For hyperedge-deletion attacks, r% × |E| ( r = 10, 20, 30, 40, 50 ) hyper-
edges are deleted. For node-deletion attacks, r% × |V| ( r = 5, 10, 15, 20, 25 ) nodes
are deleted along their incident hyperedges. For each method and each dataset, we
report the average running time and performance over 10 trials.

In this section, we present the results of hyperedge-deletion attacks when s is
Core Strength Attack only. The results for node-deletion attacks when s is Core
Strength Attack are in Appendix 3. The results for all other attack strategies are in
the supplementary material. In all cases, we draw similar conclusions regarding
the superior performance of COREA compared with the baselines and the roles
each component of COREA plays in the performance.

7.2 � Q1. Time and performance

Performance: The comparison of different methods in core resilience
improvement across deletion ratios is in Fig. 9. The x-axis indicates the deletion
ratios, the y-axis shows the performance, and the vertical bars indicate the

2463

1 3

Improving the core resilience of real-world hypergraphs

standard deviations. COREA consistently outperforms the others in all datasets.
In each dataset, the performance by COREA is 5% − 35% better than that of the
best-performing baseline and up to 70% superior to the performance of Random.
While Random is consistently the worst-performing baseline, for the three
baselines MRKC-G, MRKC-D, and MRKC-H, they all perform slightly better
than Random, and no method surpasses the other two consistently in all datasets.

Time and performance trade-off: The time-performance tradeoff of the meth-
ods is illustrated in Fig. 10. The x-axis indicates the running time, the y-axis
shows the performance when the deletion ratio r = 50% , and the vertical bars
indicate the standard deviations. COREA significantly outperforms other meth-
ods in all datasets, while the running time of COREA is relatively close to the
fastest baseline Random, which is the worst-performing method.

In addition to Figs. 9 and 10, for each dataset, we test the difference in the perfor-
mance of our method with that of the best-performing baseline using an one-tailed
Student’s t-test as follows:

•	 H0 : the mean performance of COREA is lower than or equal to the mean perfor-
mance of the baseline.

•	 Ha : the mean performance of COREA is greater than the mean performance of
the baseline.

At 95% confidence when � = 0.05 , the test rejects H0 in favor of Ha (p-value < 0.05 ),
confirming that COREA is significantly superior to all the baselines.

Fig. 9   The comparison of different methods in terms of performance. The x-axis shows the deletion
ratios, and the y-axis shows the core resilience improvement of the methods. The vertical bars indicate
the standard deviations. COREA consistently brings better improvement of core resilience than the
others in all datasets regardless of deletion ratios

2464	 M. T. Do, K. Shin

1 3

7.3 � Q2. Ablation study

We investigate the role of each component of COREA in improving the core resil-
ience of the hypergraphs. Similar to Sect. 7.2, in each section of the ablation study,
apart from highlighting the results in Figs. 11, 12, 13, and 14, we also employ an
one-tailed Student’s t-test, at 95% confidence, to verify that our full-fledged method
significantly outperforms all the other variants. In all cases, the p-value is smaller
than 0.05, so the test rejects H0 in favor of Ha that the full-fledged variant of COREA
is superior to the best-performing simplified variant.

Simplified variants of COREA: We compare the full-fledged version of COREA,
as described in Sect. 7.1, with the following five simplified variants in terms of run-
ning time and performance:

•	 CoReA-CI: obtained by modifying the scoring function s(.) in Step 2 of
COREA to the sum of the core influences of the anchor. The score for each
candidate hyperedge e is: s�(e) =

∑
v∈AG(e)

CIG(v) . This scoring function gives
high priority to hyperedges anchored at high-influence nodes, those contribut-
ing to the core numbers of other nodes.

•	 RB1: obtained by replacing the tie-breaking scheme � in Step 1-1 of COREA
by selecting a node uniformly at random.

•	 RB2: obtained by replacing the sampling scheme � in Step 1-2 of COREA by
selecting nodes from �[i + 1 ∶] uniformly at random.

•	 RB3: in Step 2 of COREA, choose candidate hyperedges uniformly at ran-
dom.

•	 Random: the same as method Random in Sects. 7.1 and 7.2.

For each method, if we increase the batch size c while keeping other components
unchanged, the running time decreases as there are fewer iterations of the loops
in lines 16-22 of Algorithm 1. However, the performance declines as the method
augments more hyperedges at 1 iteration and undertakes fewer updates on the scores

Fig. 10   The trade-off of the methods in terms of time and performance. The x-axis shows the running
time, and the y-axis shows the core resilience improvement of each variant when the deletion ratio
r = 50% . The vertical bars indicate the standard deviations. COREA consistently provides a better time-
performance trade-off than the other methods in all datasets regardless of deletion ratios

2465

1 3

Improving the core resilience of real-world hypergraphs

of the candidate hyperedges in Step 2 of Algorithm 1. For the full-fledged version,
we set the batch size c equal to the budget b and record the running time as t. For
the competitors, we set the batch size c′ to afford them sufficient time and update
iterations for potentially better performance. Specifically, for each competitor, we
set c� = min{10, b} if the running time is at least as long as t, and otherwise, we
set c� = 1 to give it the most possible time. We compare the performance across
deletion ratios in Fig. 11 and the time-performance trade-off of all methods when
deletion ratio r = 50% in Fig. 12. It is clear that the full-fledged version of COREA

Fig. 11   The comparison of different variants in terms of performance. The x-axis shows the deletion
ratios, and the y-axis shows the core resilience improvement of each variant. The vertical bars indicate
the standard deviations. The full-fledged version of COREA consistently outperforms the other variants
in all datasets regardless of deletion ratios

Fig. 12   The trade-off of different variants in terms of time and performance. The x-axis shows the
running time, and the y-axis shows the core resilience improvement of each variant when the deletion
ratio r = 50% . The vertical bars indicate the standard deviations. The full-fledged version of COREA
consistently provides a better time-performance trade-off than the other variants in all datasets regardless
of deletion ratios

2466	 M. T. Do, K. Shin

1 3

consistently yields a better time-performance trade-off and outperforms the others
regardless of deletion ratios.

Degeneracy core: We examine the effectiveness of the idea of including at
least one node in the degeneracy core in each candidate hyperedge, as proposed in
Sect. 6.2.2. Figure 13 highlights the performance of COREA in two scenarios: when

Fig. 13   The performance of COREA when the degeneracy requirement is enforced and waived. The
x-axis shows the deletion ratios, and the y-axis shows the core resilience improvement of each variant.
The vertical bars show the standard deviations. Enforcing the degeneracy requirement of having at least
one node in the degeneracy core in each candidate hyperedge is helpful to the performance

Fig. 14   The performance of COREA with different tie-breaking schemes in Step 1-1. The x-axis shows
the deletion ratios, and the y-axis shows the core resilience improvement of each variant. The vertical
bars show the standard deviations. The tie-breaking scheme CS

G
∕CI

G
 , leads to the highest improvement

of core resilience among the three schemes

2467

1 3

Improving the core resilience of real-world hypergraphs

the requirement of including at least one node in the degeneracy core in each can-
didate hyperedge is enforced in Step 1-2 of COREA, and when the requirement is
waived. A better performance is achieved when this requirement is enforced, indi-
cating that it is necessary to meet this requirement in our method.

Tie-breaking scheme: We also examine how different tie-breaking schemes �
in Step 1-1 of COREA, which is discussed in Sect. 6.2.1, leads to different perfor-
mances. Recall that a tie-breaking scheme � governs the order nodes are deleted in
the core decomposition process and in turn determines the anchor availabilities of
nodes. We compare three schemes of selecting which node to delete first when fac-
ing multiple nodes qualified for removal in Algorithm 2:

•	 CSG∕CIG : the chance of selecting a node v is proportional to CSG(v)∕CIG(v) as
of COREA described in Sect. 7.1.

•	 1∕CIG : the chance to select a node v, to delete first among several nodes up for
removal in the core decomposition process, is proportional to 1∕CIG(v) . This
defers removing nodes of high CIG values to potentially afford them higher
anchor availabilities.

•	 Random: a node is selected uniformly at random. This is method RB1 in
Sect. 7.3.

Figure 14 shows that the scheme CSG∕CIG consistently leads to better performance
than the other two.

7.4 � Q3. Effect of hyperedge size distribution

The distributions of hyperedge sizes in real-world hypergraphs are known to be
positively skewed (Kook et al. 2020), where most hyperedges have small sizes
while only a small fraction of hyperedges have large sizes (see Fig. 15). To exam-
ine the effect of the size distribution, for each dataset, we reconfigure COREA to
augment the hyperedges whose size distribution follows the uniform distribution.
In other words, we replace the original hyperedge size distribution D of G in Algo-
rithm 1 by the uniform distribution. The results are highlighted in Fig. 16. In the
case of uniform distribution, as COREA creates and augments more hyperedges of
larger sizes, due to switching from a heavy-tailed to the uniform distribution, the
augmented hyperedges potentially help more nodes to maintain their core numbers,
resulting in a better performance of core resilience improvement. However, it would
be unrealistic to assume such uniform distribution as we are constrained to preserve
the original skewed hyperedge size distributions in order to prevent attackers from
deliberately ignoring our augmented hyperedges, as discussed in Sect. 3.2.

7.5 � Q4. Further insights

We present three interesting characteristics of the hyperedges returned by COREA.

2468	 M. T. Do, K. Shin

1 3

Insight 1  The augmentation by COREA is more helpful to the nodes of with
medium to high original core numbers.

For each dataset, we group the nodes into three groups based on core numbers:
low, medium, and high (each accounts for one-third of the range of core numbers)
and measure the decrease in core numbers in each group after 50% of the hyperedges
are removed by the Core Strength Attack, with or without the augmentation by
COREA. As Fig. 17 shows, COREA mitigates such decrease more clearly in the
medium and high groups.

Fig. 15   The distribution of hyperedge sizes in each dataset, visualized on a log-log scale, is positively
skewed. In each distribution, only a small fraction of hyperedges have large sizes, while the majority of
hyperedges are of small sizes

Fig. 16   The performances of COREA when following the original and uniform hyperedge size
distributions, respectively. The x-axis shows the deletion ratios, and the y-axis shows the core resilience
improvement. The vertical bars indicate the standard deviations. For the uniform distribution, COREA
augments larger-size hyperedges, potentially helping more nodes with the augmentation, and results in a
better performance

2469

1 3

Improving the core resilience of real-world hypergraphs

Insight 2  A hypergraph of higher core resilience tends to possess less availability
for augmentation and vice versa.

For each dataset, we define the ratio of availability as the average of anchor avail-
abilities of nodes, found by COREA, normalized by their respective core numbers:
r(G) =

1

�V�
∑N∗

G

k=2

∑
v∈Vk

c(v)

k
=

1

�V�
∑N∗

G

k=2

∑
v∈Vk

c(v)

k
 ( Vk = {v ∈ V ∣ NG(v) = k} ). For

each v ∈ Vk , 0 ≤ c(v) ≤ k . A dataset with high r(G) implies more availability for
augmentation, and this statistic is negatively correlated with core resilience, as
shown in Fig. 18 (left). Intuitively, if we can augment more, i.e., a high value of
r(G) , the core structure of the hypergraph is “less complete”, resulting in weak core
resilience against deletion attacks.

Insight 3  The skewness of the distributions of the core numbers of hyperedges in E
is positively correlated with that of the hyperedges constructed by COREA.

This positive correlation is shown in Fig. 18 (right). For example, in threads-ask-
ubuntu, the skewness of the core number distribution of hyperedges in E is positive,
indicating more hyperedges of low core numbers but fewer hyperedges of high core
numbers, and this tendency is also found in the pool of hyperedges P returned by

Fig. 17   Hyperedges augmented by COREA are more helpful in mitigating the core number degree, due
to core strength attack, of the nodes of medium and high core numbers

Fig. 18   (Left) The ratio of availability is negatively correlated with core resilience. (Right) the set
of actual hyperedges and the set of candidate hyperedges, constructed by COREA, have positively
correlated distribution skewness of core numbers. “CorrCoef” indicates Spearman’s rank correlation
coefficient

2470	 M. T. Do, K. Shin

1 3

COREA. By contrast, such skewness for the set E in contact-primary-school is
negative, implying more hyperedges of high core numbers, and this is also true for
the hyperedges in P from the dataset.

7.6 � Q5. Applications

In this section, we demonstrate that the hyperedges augmented by COREA support
the applicability of hypergraph core numbers, introduced in Sect. 4, when the net-
works face deletion attacks.

Identification of influential nodes: Table 3 reports the Spearman’s rank correla-
tion coefficient between the nodes’ influences in the original hypergraph with: the
original core numbers (Before Attack), the core numbers of the hypergraph after
50% of hyperedges have been deleted (No Augmentation), and the core numbers of
the hypergraph after several hyperedges are augmented by COREA and then 50% of
hyperedges are deleted (COREA). After the deletion attack, the ranking of core num-
ber is less correlated to the ranking of node influences, i.e., core numbers become
less useful in characterizing influential nodes. However, the hyperedges augmented
by COREA help alleviate that decrease in the usefulness of core numbers.

Anomaly detection: Fig. 19 highlights the AUC-PR of predicting abnormal
nodes of the method Core with the settings detailed in Sect. 4.2 before (Original)
and after 50% of hyperedges have been deleted (COREA and No Augmentation).
COREA and No Augmentation indicate the cases where hyperedges are augmented
by COREA before the attack and no augmentation is undertaken, respectively. After
an attack, the ranking of core numbers is less useful in detecting anomalies, but this
decline of usefulness is mitigated with the hyperedges augmented by COREA.

Table 3   Spearman’s rank
correlation coefficients between
the node’s influences and the
core numbers before an attack,
after an attack, and after an
attack with augmentation
by COREA. COREA helps
preserve the usefulness of core
numbers in finding influential
nodes after the networks are
attacked

Dataset Before attack After attack

No augmentation COREA

Coauth-MAG-geology 0.79 0.63 0.75
Coauth-MAG-history 0.81 0.62 0.78
Contact-high-school 0.87 0.74 0.81
Contact-primary-school 0.92 0.73 0.86
Email-enron 0.84 0.74 0.82
Email-Eu 0.87 0.72 0.82
NDC-classes 0.85 0.67 0.79
NDC-substances 0.72 0.64 0.65
Threads-ask-ubuntu 0.87 0.77 0.84
Threads-math 0.88 0.73 0.81

2471

1 3

Improving the core resilience of real-world hypergraphs

8 � Conclusion

In this work, we formulate and study the problem of enhancing the core resilience
of real-world hypergraphs. We discuss the challenges of the problem, introduce the
relevant concepts, and present the key patterns regarding the core resilience of the
hypergraphs

Based on these, we develop a two-step method, COREA, to consolidate the core
structure of hypergraphs by augmenting hyperedges within a given budget. COREA
is fast, theoretically sound, and empirically effective in improving the core resilience
of the hypergraphs. The hyperedges augmented by COREA not only preserve the
core structure of the hypergraphs but also enhance its resilience. Through our exten-
sive experiments in ten real-world hypergraphs, we demonstrate the superiority of
COREA over the baseline approaches, investigate the characteristics of the augmen-
tation by COREA, and examine the role each component plays in the performance
of COREA. In addition, we show that COREA helps support the applications of
hypergraph core numbers when the hypergraphs face deletion attacks. The code and
datasets are available at https://​github.​com/​manht​uando​97/​CoReA.

Appendix A: Datasets

Throughout the paper, we use 10 real-world hypergraph datasets (Benson et al.
2018a). The basic statistics are provided in Table 4. Their domains are:

•	 Co-authorship (coauth-MAG-Geology and coauth-MAG-History): each node is
an author, and each hyperedge is the list of coauthors in a publication.

•	 Contact (contact-high-school and contact-primary-school): each node is an indi-
vidual, and each hyperedge is a group of people in contact at a high/primary
school.

Fig. 19   The AUC-PR of predicting abnormal nodes by the method Core, which is based on the ranking
of core numbers and outlined in Sect. 4, before (Original) and after deletion attack with (COREA) and
without (No Augmentation) the hyperedges augmented by COREA. After the attack, the ranking of core
numbers is less useful in predicting anomalies, but the augmentation by COREA helps reduce such drop
in usefulness

https://github.com/manhtuando97/CoReA

2472	 M. T. Do, K. Shin

1 3

•	 Email (email-Enron and email-Eu): each node is an email address, and each
hyperedge consists of the sender and recipients of an email.

•	 Drugs (NDC-classes and NDC-substances): each node represents a drug class/
substance, and each hyperedge represents a set of classifications/substances of a
drug.

•	 Threads (threads-ask-ubuntu and threads-math): each node is a user in an online
forum, and each hyperedge is the list of users in a question thread.

Appendix B: Core decomposition algorithm

The Core Decomposition process is outlined in Algorithm 3.

Table 4   Basic statistics of real-
world hypergraphs

Dataset |V| |E| N
∗
G

Coauth-MAG-geology 1,087,111 908,516 7
Coauth-MAG-history 1,014,734 895,668 7
Contact-high-school 327 7818 39
Contact-primary-school 242 12,704 74
Email-enron 143 1457 22
Email-Eu 979 24,399 70
NDC-classes 1,149 1047 23
NDC-substances 3,438 6264 46
Threads-ask-ubuntu 90,054 115,987 12
Threads-math 153,806 535,323 42

2473

1 3

Improving the core resilience of real-world hypergraphs

Appendix C: Algorithm for SIR on hypergraphs

The SIR model generalized to the hypergraph setting is outlined in Algorithm 4.

2474	 M. T. Do, K. Shin

1 3

For the results reported in Sects. 4 and 7.6, we set r = 1 and t = 0.025 in all
datasets. Similar conclusions regarding the applicability of hypergraph core num-
bers (Sect. 4) and how the hyperedges augmented by COREA help support the
applications of core numbers (Sect. 7.6) are drawn with different values of t in
{0.05, 0.025, 0.01, 0.005}.

Appendix D: Results on node‑deletion attacks

We present the results of node-deletion attacks. The five observations, similar to
those in Sect. 5.3, are reported for all attack strategies in Figs. 20, 21, 22, and 23.
The results in Figs. 21, 22, and 23 are of the cases where 25% of nodes are deleted.

The method evaluation results reported in Figs. 24, 25, 26, 27, 28, 29 and 30
are of Core Strength Attack. Similarly to Sect. 7, we also report the mean of 10 tri-
als together with the standard deviations indicated by the vertical bars. Overall, our
full-fledged method COREA significantly outperforms and provides a better time-
performance trade-off than the baselines and simplified variants. The statistical sig-
nificance of the gap is also verified by the one-tailed Student’s t-test, as in Sect. 7.2,
at 95% confidence (p-values < 0.05 in all cases).

For all other attack strategies, we draw the same conclusion about the superi-
ority in performance and time-performance trade-off of the full-fledged version of
COREA compared to the baselines and simplified variants. Due to the large number
of figures, we present the results of all other attack strategies in the supplementary
material.

When switching from the real hyperedge size distribution, heavy-tailed, to the
uniform distribution, COREA achieves a better performance as more larger-size
hyperedges are augmented. However, assuming a uniform hyperedge distribution is
both unrealistic and violative of the constraints of Problem 1.

2475

1 3

Improving the core resilience of real-world hypergraphs

Appendix E: Theoretical results and proofs

In this section, we present detailed theoretical results with the accompanying proofs
to support the soundness of COREA.

We first define a valid deletion order in a hypergraph G = (V,G) as a particular
permutation � = [vi1 , vi2 , ..., vin] of the nodes in V = {v1, ..., vn} such that the nodes
in V are removed exactly in the order of � in an execution of the core decomposition
process. Different tie-breaking schemes � , described in Sect. 6.2.1 determine
differently which node to delete first when several nodes are up for removal,
resulting in different executions of the core decomposition process of G and in turn
different valid deletion orders. In addition, we refer to any augmentation method that

Fig. 20   The core resilience of real-world hypergraphs against node-deletion attacks varies among
the attack strategies and across deletion ratios. The x-axis shows the deletion ratio, and the y-axis
indicates Spearman’s rank correlation coefficient between the original and the post-attack core number
distributions. Core Strength Attack is consistently the most destructive to the core resilience, while
Random Attack is the least destructive

Fig. 21   The skewness of the distribution of core strengths is negatively correlated with the core
resilience against node-deletion attacks. “CorrCoef” indicates Spearman’s rank correlation coefficient. It
is worth noting that datasets within the same domain exhibit similarities in terms of both skewness and
core resilience

2476	 M. T. Do, K. Shin

1 3

augments several hyperedges of its choice to hypergraph G while preserving all core
numbers of G as a feasible augmentation of G.

E.1: Feasibility of COREA

In this section, we prove that COREA is a feasible augmentation method, i.e., the
hyperedges augmented by COREA to G are guaranteed to preserve all core numbers
of G.

Lemma 1  Assuming that after applying F, a feasible augmentation of G , a
subsequence of a valid deletion order in the core decomposition process for the
nodes having core number k is: Sk = [a1, ..., aq]. Without F, Sk is still a subsequence
of a valid deletion order for the nodes having core number k in the pruning process
of obtaining the (k + 1)-core in the original hypergraph G.

Fig. 22   The core influence-strength is positively correlated with the core resilience, against node-
deletion attacks. “CorrCoef” indicates Spearman’s rank correlation coefficient

Fig. 23   The degeneracy centralized index is positively correlated with core resilience, against node-
deletion attacks. “CorrCoef” indicates Spearman’s rank correlation coefficient

2477

1 3

Improving the core resilience of real-world hypergraphs

Proof  Let G′ denote the result of applying F to G . For i = 1, ..., q , let EF(ai) be the
set of hyperedges augmented by F, each of which has {ai} ∪ s , with s ⊆ {ai+1, ..., aq}
(s may be an empty set) as the set of anchors. Let F(ai) = |EF(ai)| . Following the
core decomposition process, all the hyperedges in EF(ai) are removed when ai is
removed.

For a1 , as a1 can be removed first in the process of obtaining the (k + 1)-core from
the k-core of G′ , its degree at the k-core of G′ is dk

G� (a1) ≤ k . As the degree of a1 in
the k-core of G is equal to dk

G
(a1) = dk

G� (a1) − F(a1) ≤ k , a1 can also the first node of
core number k to be deleted in the core decomposition process of G.

Fig. 24   The comparison of different methods in terms of performance against node-deletion attacks.
The x-axis shows the node deletion ratios, and the y-axis shows the core resilience improvement of
the methods. The vertical bars indicate the standard deviations. COREA consistently brings better
improvement of core resilience than the others in all datasets regardless of deletion ratios

Fig. 25   The trade-off of the methods in terms of time and performance against node-deletion attacks.
The x-axis shows the running time, and the y-axis shows the core resilience improvement of each variant
when the node deletion ratio r = 25% . The vertical bars indicate the standard deviations. COREA
consistently provides a better time-performance trade-off than the other methods in all datasets regardless
of deletion ratios

2478	 M. T. Do, K. Shin

1 3

For any ai, i > 1 , during the pruning process of obtaining the (k + 1)-core, after
nodes a1, ..., ai−1 have been removed along with their incident hyperedges, the
degree of ai in G′ must be lower than or equal to k. In other words, the degree of ai
at this point is equal to k − g(ai) ≤ k with g(ai) ≥ 0 . This value is equal to F(ai) plus
the degree of ai in a sub-hypergraph of G , obtained by removing a1, ..., ai−1 along
with their incident hyperedges. If the order Sk is followed in the core decomposition
process of the original hypergraph G (without the augmentation F), the degree of
ai at this point, after nodes a1, ..., ai−1 have been removed along with their incident
hyperedges, would be: k − g(ai) − F(ai) ≤ k , which also qualifies ai for deletion.

Fig. 26   The comparison of different variants in terms of performance against node-deletion attacks.
The x-axis shows the node deletion ratios, and the y-axis shows the core resilience improvement of
each variant. The vertical bars indicate the standard deviations. The full-fledged version of COREA
consistently outperforms the other variants in all datasets regardless of deletion ratios

Fig. 27   The trade-off of different variants in terms of time and performance against node-deletion
attacks. The x-axis shows the running time, and the y-axis shows the core resilience improvement of each
variant when the node deletion ratio r = 25% . The vertical bars indicate the standard deviations. The
full-fledged version of COREA consistently provides a better time-performance trade-off than the other
variants in all datasets regardless of deletion ratios

2479

1 3

Improving the core resilience of real-world hypergraphs

Therefore, without the hyperedges augmented by F, Sk is still a subsequence of
a valid deletion order for the nodes having core number k in the pruning process of
obtaining the (k + 1)-core in the original hypergraph G.

Fig. 28   The performance of COREA when the degeneracy requirement is enforced and waived. The
x-axis shows the node deletion ratios and the y-axis shows the core resilience improvement of each
variant. The vertical bars show the standard deviations. Enforcing the degeneracy requirement of having
at least one node in the degeneracy core in each candidate hyperedge is helpful to the performance

Fig. 29   The performance of COREA against node-deletion attacks with different tie-breaking schemes
in Step 1–1. The x-axis shows the node deletion ratios, and the y-axis shows the core resilience
improvement of each variant. The vertical bars show the standard deviations. The tie-breaking scheme
CS

G
∕CI

G
 , leads to the highest improvement of core resilience among the three schemes

2480	 M. T. Do, K. Shin

1 3

Theorem 1  (Feasibility of COREA) Step 1 of COREA guarantees to construct a
pool P of candidate hyperedges that do not change the core number of any node
when they are added together to G.

Proof  We show that after COREA augments all the candidate hyperedges in P,
the pool of candidate hyperedges constructed in Step 1 of COREA (Sect. 6.2), to
G = (V,E) to form G� = (V,E�) , the original deletion order � = [vi1 , vi2 , ..., vin] of
an execution of the core decomposition process on G in Algorithm 2 is still a valid
deletion order in G′ and returns the original core numbers.

We prove by induction on the elements vi1 , ..., vin in � that in G′ , � is still a valid
deletion order and NG(vij) = NG� (vij), j = 1, ..., n.

- Base case: As vi1 is the first node deleted in G , immediately prior to the removal
of vi1 , dG(vi1) < NG(vi1) + 1 , and dG(vi1) ≥ NG(vi1) (no hyperedges have been
removed at this point and the degree of vi1 must be sufficient for the core number of
vi1 ). Therefore, dG(vi1) = NG(vi1) , so the anchor availability c(vi1) realized for vi1 is
c(v) = NG(vi1) − dG(vi1) = 0 . As a result, in G′ , dG� (vi1) = dG(vi1) , so vi1 can also be
the first node deleted in the core decomposition process in G′ and NG(vi1) = NG� (vi1)

.
- Inductive hypothesis: Assume that in an execution of the core decomposition

process on G′ , the nodes vi1 , ..., vih−1 have been deleted exactly in this order (same
order as in G ) and NG(vij) = NG� (vij), j = 1, ..., h − 1 . We need to show that vih can
now also be deleted and NG(vih) = NG� (vih) . Indeed, suppose NG(vih) = k and c(vih) is
the anchor availability realized for vih by COREA. COREA constructs c(vih)

Fig. 30   The performances of COREA against node-deletion attacks when following the original and
uniform hyperedge size distributions, respectively. The x-axis shows the node deletion ratios, and the
y-axis shows the core resilience improvement. The vertical bars indicate the standard deviations. For the
uniform distribution, COREA augments larger-size hyperedges, potentially helping more nodes with the
augmentation, and results in a better performance

2481

1 3

Improving the core resilience of real-world hypergraphs

hyperedges, formed by grouping vih with other nodes from {vih+1 , ..., vin} (Line 11 of
Algorithm 1) and augments those c(vih) hyperedges to G.

Firstly, these c(vih) hyperedges do not affect the core numbers of the nodes that
have been deleted before v in � , which are vi1 , ..., vih−1.

In addition, as E ⊆ E′ , NG� (vij) ≥ NG(vij) for j = h, ..., n . Moreover, after
vi1 , ..., vih−1 have been removed in the core decomposition process of G′ , the degree of
vij in G′ is no less than the degree of vij in G after vi1 , ..., vih−1 have been removed in
the core decomposition process of G , for j = h, ..., n.

Following the removal order � in the pruning process of obtaining the (k + 1)

-core from the k-core in G , after the nodes vi1 , ..., vih−1 have been removed, the degree
of vih in G immediately prior to its removal is k − c(vih) . Therefore, in G′ , at this point
of the core decomposition process when vi1 , ..., vih−1 along with their incident hyper-
edges have been deleted, the degree of vih is dG� (vih) = k − c(vih) + c(vih) = k < k + 1 ,
so NG� (vih) ≤ k . Therefore, NG� (vih) = k = NG(vih) , and the degree of vih at this point
is equal to k. Thus, in G′ , vih can be removed immediately after vi1 , ..., vih−1 have been
removed. Such removal deletes vih and all of its incident hyperedges, including the
newly augmented c(vih) hyperedges, thus having no impacts on vih+1 , ..., vin.

By the principle of mathematical induction, in G′ , � is still a valid deletion order
and NG(vij) = NG� (vij), j = 1, ..., n . Thus, Step 1 of COREA guarantees to construct a
pool P of candidate hyperedges that do not change the core number of any node
when they are added together to G.

When the given budget B is tight, which is usually true in practice, only a subset
of P is chosen to augment to G in Step 2 of COREA 6.3. Whether all hyperedges in
P are augmented or only a subset of P is augmented to G , in all cases, the hyperedges
augmented by COREA are guaranteed to preserve all the original core numbers.

E2: Invariance of COREA

Lemma 2  Let � = {a1, ..., an} be a set of n elements, F(�) be the set of all subsets
of S, and t ∶ F(𝕊) ↦ ℕ be a function that maps each subset of � to a natural number.
Denote S(i) ∈ F(�) as the set of all subsets of � contaning the element ai . Then, the
following equality holds:

Proof  It suffices to show the sum on the left-hand side of Equation (2) only involves
the subsets of � whose cardinalities are no less than 2 and that each term t(s) for
each s ⊆ �, |s| ≥ 2 , appears exactly (|s| − 1) times in this sum.

Indeed, the set
i−1⋃
j=1

(S(i) ∩ S(j)) is the set of all subsets of � that contain ai and at

least 1 element among a1, ..., ai−1 . In addition, on the left-hand side of Equation (2),

(2)

n�

i=2

�

s∈
i−1⋃
j=1

(S(i)∩S(j))

t(s) =
�

s⊆�,�s�≥2
(�s� − 1)t(s).

2482	 M. T. Do, K. Shin

1 3

the sum only involves all subsets of � having at least 2 elements. It is because each
subset needs to involve at least 2 distinct elements and for any subset s′ ⊆ � such

that |s′| ≥ 2 , take 2 elements ap, aq ∈ s�, p < q , then s� ∈
q−1⋃
j=1

(S(q) ∩ S(j)).

Let s = {ak1 , ..., akm} with k1 < ... < km and |s| = m ≥ 2 be a subset of � . For each

i = k2, ..., km , s appears exactly once in
i−1⋃
j=1

(S(i) ∩ S(j)) because for each of those

i = k2, ..., km , the set s is a subset of � that contains ai and ak1(k1 < i).

For each i ∈ � ⧵ {k2, ..., km} , s does not appear in
i−1⋃
j=1

(S(i) ∩ S(j)) as s fails to

contain both ai and an element aj(j < i).
Therefore, the term t(s) corresponding each set s, s ⊆ �, |s| ≥ 2 , appears exactly

(|s| − 1) times on the left-hand side of Eq. (2). Since both sides of Eq. (2) involve
exactly all the subsets of � whose cardinalities are greater than or equal to 2, the two
sides of Equation (2) are equal to each other.

Lemma 3  (Invariance of COREA in each k-core) For k = k0, ...,N
∗
G

, with k0 as the
minimum core number of a node in G, the total number of anchor availabilities of
nodes having core number k, realized by COREA, remains unchanged regardless of
the order of nodes removed in the core decomposition.

Proof  Without loss of generality, assume a particular order in which the nodes are
deleted in the pruning process of obtaining the (k + 1)-core from the k-core is
[a1, ..., aq] , and their respective anchor availabilities realized by COREA are
c(a1), ..., c(aq) . Note that � = {a1, ..., aq} is the set of all nodes having core number
k. Denote S(i) as the set of all subsets of � containing ai . For each subset s ⊆ � ,
|s| ≥ 1 , let t(s) be the number of hyperedges that have s as the set of anchors:
t(s) = |{e ∈ E ∣ AG(e) = s}| . Denote the set of all subsets of � that contain ai as S(i) .
The set of subsets of � that contain ai and at least one element among a1, ..., ai−1 is
i−1⋃
j=1

(S(i) ∩ S(j)).

At the k-core, the degree dG(vi1) of node ai ∈ � is k + R(ai) with R(ai) ≥ 0 since
the degree of each node among {a1, ..., aq} has to be at least k. It should be noticed
that R(ai) = dG(vi1) − k is independent of the order of node deletions.

Assuming that Algorithm 2 is now at the k-core and undertakes the pruning
process to obtain the (k + 1)-core while simultaneously obtaining the anchor
availability for each node that has core number k. As node a1 is the first node to
delete, its degree is ≤ k . However, since no hyperedges at the k-core have been
deleted yet, the degree of a1 at this point is k + R(a1) ≤ k . Therefore, R(a1) = 0 , and
according to COREA, the anchor availability realized for a1 is c(a1) = 0.

For each i = 2, ..., q , after nodes a1, ..., ai−1 have been removed, all of the hyper-
edges anchored at any of those nodes have also been removed from the network.
Among those hyperedges, the ones that affect the degree of ai are the ones co-
anchored by ai and at least 1 among a1, ..., ai−1 . The number of such hyperedges is:

2483

1 3

Improving the core resilience of real-world hypergraphs

∑
s∈

i−1⋃
j=1

(S(i)∩S(j))
t(s) . Due to the removals of these hyperedges, the degree of ai immedi-

ately prior to its deletion is k + R(ai) −
∑

s∈
i−1⋃
j=1

(S(i)∩S(j))
t(s) . To qualify for deletion, the

degree of ai must be lower than (k + 1) . In other words,
k + R(ai) −

∑
s∈

i−1⋃
j=1

(S(i)∩S(j))
t(s) ≤ k , or −R(ai) +

∑
s∈

i−1⋃
j=1

(S(i)∩S(j))
t(s) ≥ 0 . The anchor

availability realized for node ai by COREA is then equal to:
c(ai) = −R(ai) +

∑
s∈

i−1⋃
j=1

(S(i)∩S(j))
t(s).

The sum of anchor availabilities realized by COREA for all nodes in the k-core is:
ck =

∑q

i=1
c(ai) = −

∑n

j=1
R(aj) +

∑q

i=2

∑
s∈

i−1⋃
j=1

(S(i)∩S(j))
t(s) . Lemma 2 implies the fol-

lowing equality:

Thus, c(k) = −
∑q

j=1
R(aj) +

∑
s⊂�,�s�≥2(�s� − 1)t(s) . This value is symmetric with

respect to each of a1, ..., aq , which is independent of any particular ordering of
� = {a1, ..., aq}.

Therefore, the total number of anchor availabilities realized by COREA for the
nodes in the k-core is constant regardless of the order of deletions.

Lemma 4  For each k = k0, ...,N
∗
G

, with k0 as the minimum core number of a node
in G, in the pruning process of obtaining the (k + 1)-core from the k-core, assume
that in two different valid deletion orders � and �′ , ap is the p-th node having core
number k deleted and a1, ..., ap−1 are the (p − 1) nodes of core number k deleted
before ap (with different orders). The anchor availability realized for ap is the same
in both � and �′.

Proof  We employ all the notations as in Lemma 3. According to the proof of
Lemma 3, the anchor availability realized for ap in either � or �

′ is
−R(ap) +

∑
s∈

p−1⋃
j=1

(S(p−1)∩S(j))
t(s) , which is symmetric with respect to a1, ..., ap−1 and

does not depend on any particular ordering or a1, ..., ap−1 . This demonstrates that the
anchor availability realized for each node is only dependent on the set of nodes
deleted before it and independent of the deletion order by which those nodes are
deleted.

Theorem 2  (Invariance of COREA) The total number of anchor availabilities
C =

∑
v∈V c(v) realized by COREA is always constant with respect to G.

(3)

q�

i=2

�

s∈
i−1⋃
j=1

(S(i)∩S(j))

t(s) =
�

s⊂�,�s�≥2
(�s� − 1)t(s).

2484	 M. T. Do, K. Shin

1 3

Proof  According to Lemma 3, for each k = k0, ...,N
∗
G

 , with k0 as the minimum core
number of a node in G , the total anchor availabilities realized by COREA for the
nodes having core number k is the same regardless of the order � of deletion ( � is a
valid deletion order).

Since the total anchor availabilities realized by Algorithm 1 can be obtained by
summing up all anchor availabilities realized at each core level, the total number
of anchor availabilities realized by COREA is constant regardless of the order of
deletions.

E3: Exhaustiveness of COREA

Lemma 5  (Exhaustiveness of COREA in each k-core) For k = k0, ...,N
∗
G

, with k0
as the minimum core number of a node in G , the total anchor availabilities for the
nodes having core number k realized by COREA always is the maximum number of
hyperedges anchored at the nodes of core number k that can be augmented, subject
to the constraint of preserving the core number k of those nodes.

Proof  According to Lemma 3, the total anchor availabilities realized by Algorithm 1
for the nodes having core number k, is always the same regardless of the order of
node deletions, and let Tk be such total number.

Assume the contradiction that Tk is not the maximum number of hyperedges
anchored at the nodes of core number k that can be augmented to G while conserving
all core numbers. As a result, there is a feasible augmentation method I that augments
Ik hyperedges anchored at the nodes having core number k-core that preserve all core
numbers with Ik ≥ Tk + 1 . Without loss of generality, assume that with I, in a valid
deletion order of the core decomposition process, all nodes having core number k are
deleted in the order [a1, ..., aq] in the pruning process to obtain the (k + 1)-core from the
k-core. Immediately before the deletion of ai , its degree is k − x(ai) ≤ k , with x(ai) ≥ 0 .
Denote I(i)

k
 as the number of hyperedges augmented by I whose anchors involve ai and a

subset s of {ai+1, ..., aq} (s maybe an empty subset). We then have
∑q

i=1
I
(i)

k
= Ik

By Lemma 1, we know that without I, [a1, ..., aq] is still a subsequence, involving
all the nodes having core number k, of a valid deletion order in the core decom-
position of the original hypergraph G . That is, without I, in the original hyper-
graph G , the pruning process can still delete nodes a1, ..., aq in this particular order
to obtain the (k + 1)-core from the k-core. The degree of ai immediately prior to
its deletion is k − x(ai) − I

(i)

k
 . As a result, COREA realizes the anchor availability

c(ai) = x(ai) + I
(i)

k
 for node ai . Lemma 3 proves that the value of Tk is always equal

to: Tk =
∑q

i=1
c(ai) =

∑q

i=1
[x(ai) + I

(i)

k
] =

∑q

i=1
I
(i)

k
+
∑q

i=1
x(ai) = Ik +

∑q

i=1
x(ai) ≥ Ik ≥ Tk + 1 , which is a

contradiction.
Therefore, the initial assumption is false, which proves that COREA returns the

maximum number of hyperedges anchored at the nodes having core number k, sub-
ject to the constraint of preserving all core numbers.

2485

1 3

Improving the core resilience of real-world hypergraphs

Theorem 3  (Exhaustiveness of COREA) There is a maximum number M of
hyperedges that can be augmented to G while conserving all core numbers, and the
total number of anchor availabilities C realized by COREA is equal to M.

Proof  Lemma 5 shows that COREA always returns the maximum total number of
anchor availabilities Tk of nodes having core number k for k = k0, ...,N

∗
G

 , with k0 as
the minimum number of core number of a node in G . According to Theorem 2, the
total anchor availabilities realized by COREA is always C =

∑
v∈V c(v) =

∑N∗
G

k=k0
Tk .

Below, we prove that C is actually the maximum number of hyperedges that can be
augmented to G while conserving all core numbers.

Indeed, assume that a feasible augmentation method F augments Ik hyperedges,
anchored at the nodes having core number k, for each k = k0, ...,N

∗
G

 , without chang-
ing any core numbers of the nodes in G . The total anchor availability realized by F
is I =

∑N∗
G

k=1
Ik . According to Lemma 5, Ik ≤ Tk , so: I =

∑D

k=k0
Ik ≤

∑N∗
G

k=k0
Tk = C . In

other words, the total number of hyperedges augmented by F is ≤ C.
Thus, the total anchor availabilities C found by COREA is the maximum number

of hyperedges that any feasible augmentation method can add to G , subject to the
constraint of preserving all core numbers. Theorem 2 states that C is always constant
with respect to G , indicating that C is the maximum number M of hyperedges that
can be augmented to G while conserving all core numbers, and M = C.

E4: Time complexity of COREA

Theorem 4  (Time Complexity of COREA) Given the hypergraph G = (V,E) with
maximum hyperedge cardinality m, the budget B, the total number of anchor
availabilities C of all nodes (constant with respect to each dataset), and the batch size
c by which COREA augments c hyperedges at a time in Step 2, the time complexity
of COREA is O

�
�V�log�V� + Cm log �V� + (�V� +

∑
e∈E �e� + Cm2)

b

c

�
 , where

b = min{B, C}.

Proof  As described in Sect. 5.1, computing the core influences of all nodes requires
initializing the value 1 for each node and iterating through each node in each hyperedge
once, so the time complexity of computing core influences is O(�V� +

∑
e∈E �e�).

Step 1–1 of COREA, presented in Algorithm 1, undertakes the core decomposi-
tion process and computes the anchor availability of each node. The core decompo-
sition process requires iterating through each node v for its removal and each hyper-
edge e for its removal and updating the degrees of its constituent nodes. The total
time complexity for these operations is O(�V� +

∑
e∈E �e�) . Computing the anchor

availability of each node v, NG(v) = k , requires some primitive operations (subtract-
ing the degree immediately prior to the removal from k), so the time complexity of
removing nodes, along with their incident hyperedges, and computing anchor avail-
abilities for all nodes is O(|V|) , which is dominated by O(�V� +

∑
e∈E �e�).

2486	 M. T. Do, K. Shin

1 3

If the tie-breaking scheme � is being proportional to CSG∕CIG (or 1∕CIG ), the
core strength and core influence of each node v can be computed when v becomes
qualified for removal in the core decomposition process. The reason is that the core
influences of all the nodes in the k-core can be computed by the time Algorithm 2
completes finding the (k − 1)-core (the core influence of v only depends on the
hyperedges incident to v having lower core numbers than that of v). Also, when a
node v becomes qualified for removal in Algorithm 2, its core strength can be
updated with constant time (based on its degree at the beginning of the k-core and
its core number, which is determined to be k at this point already). Therefore, com-
puting core strengths and core influences of all nodes for the scheme � does not
affect the time complexity. For each k = k0, ...,N

∗
G

 , with k0 as the minimum core
number of a node in G , denote Nk as the number of nodes in G that have core num-
ber k. For each k, in the pruning process of obtaining the (k + 1)-core from the
k-core, at each step, among the nodes in �� (Line 5 in Algorithm 2) that are the
nodes qualified for removal, the tie-breaking scheme � needs to conduct weighted
sampling to select a node to delete first. For each node v among Nk nodes of core
number k, according to Vitter (1987), adding v to �� takes O(1) time, sampling v
from �� takes O(log|��|) time, and removing v after sampling from �� takes
O(log|��|) time. Since |��| ≤ Nk , the total time complexity the tie-breaking
scheme � to decide the order of nodes to delete in the k-core is O(NklogNk) . There-
fore, the total time complexity for � to decide the deletion order � for G is
∑N∗

G

k=k0
O(NklogNk) . We have:

∑N∗
G

k=k0
Nk logNk ≤

∑N∗
G

k=k0
Nk log �V� = �V� log �V� .

Therefore,
∑N∗

G

k=k0
O(NklogNk) = O(�V�log�V�).

As a result, the total time complexity of Step 1–1 of COREA is
O(�V� +

∑
e∈E �e�) +O(�V�log�V�) = O(�V�log�V� +

∑
e∈E �e�).

In Step 1-2 of COREA, for each node v, we need to construct c(v) hyperedges
anchored at v. For each hyperedge e among those c(v) hyperedges, this requires
sampling a hyperedge size (constant time) and sampling other nodes from �[i + 1 ∶]
(as shown in Line 11 of Algorithm 1). For the sampling scheme � described in
Sect. 6.2.2, the sampling step of other nodes to fill up e takes O(m log |V|) time,
according to Vitter (1987). Therefore, the total time complexity of Step 1-2 is
O(

∑
v∈V c(v)m log �V�) = O(Cm log �V�).

In Step 2, we go through b/c iterations, and in each iteration, we add c hyperedges
to Gcur . At each iteration, before choosing the hyperedges to augment to Gcur , for
each candidate hyperedge e in the pool P, COREA needs to evaluate how much
augmenting e improves the term f (Gcur) =

∑
v∈V CIGcur

(v)CSGcur
(v) , with Gcur as the

current hypergraph snapshot. To do this, we maintain a measurement g(v)
for each node v, quantifying how much f (Gcur) increases if CIGcur

(v) is incremented
by 1 unit. Particularly, if CIGcur

(v) increases by 1 unit, f (Gcur) increases by g(v). In
order to achieve this, we reverse the process of calculating all core influences.
In the formula of core influence in Sect. 5.1, suppose

CIGcur
(v) = 1 +

∑
e∈E<

Gcur
(v)(1 +

Δ

NGcur
(v)−1

)

�
(1 −

CSGcur
(t)−1

�E=
Gcur

(t)�)CIGcur
(t)

�
 , for each

e ∈ E<

Gcur
(v) , if CIGcur

(t) increases by 1 unit, CIGcur
(v) increases by

2487

1 3

Improving the core resilience of real-world hypergraphs

(1 +
Δ

NGcur
(v)−1

)

[
(1 −

CSGcur
(t)−1

|E=
Gcur

(t)|)

]
 units. As a result, g(t) needs to increase by

(1 +
Δ

NGcur
(v)−1

)

[
(1 −

CSGcur
(t)−1

|E=
Gcur

(t)|)

]
g(v) units. To compute such value g(v) for each node

v, we first initialize g(v) = CSGcur
(v) , start from the nodes with the highest core

number, update the values g(.) until reaching the nodes with the lowest core number.
The whole process requires iterating through each node once and each node in each
hyperedge once, accounting for the total time complexity of O(�V� +

∑
e∈Ecur

�e�).
Once the values g(.) are up-to-date, for each candidate hyperedge e anchored at

{v1, ..., va} , and the other nodes in e that are not anchors of e are {u1, ..., ub} . Suppose
adding e increases the core influences of u1, ..., ub by �1, ..., �b , respectively, which
can be calculated in O(|e|2) time that is upper-bounded by O(m2) . The contribution
of e into f (Gcur) if augmented is then:

∑a

i=1
CIGcur

(vi) +
∑b

j=1
�j × g(uj) , which can

be calculated in O(m) time. Assume that we are at iteration t, for t = 1, ..., b∕c ,
when (t − 1)c candidate hyperedges have been added to G , there are C − (t − 1)c
hyperedges remaining in P. The time complexity of calculating the scores for the
candidate hyperedges and choosing c hyperedges with the highest scores is then
O([C − (t − 1)c]m2).

At each iteration t, for t = 1, ..., b∕c , of Step 2, after calculating the g(.) values
and the score of each candidate hyperedge in P, we add c candidate hyperedges with
the highest scores to the hypergraph. Once we augment c more hyperedges into Gcur ,
we need to update all core strengths, core influences, and the values g(.), whose
complexity is O(�V� +

∑
e∈Ecur

�e�).
At each iteration t, since tc hyperedges have been added to G ,

O(�V� +
∑

e∈Ecur
�e�) = O(�V� +

∑
e∈E �e� + tcm) holds. Thus, the

total time complexity of iteration t, for t = 1, ..., b∕c , of Step 2 is:
O(�V� +

∑
e∈E �e� + tcm) +O([C − (t − 1)c]m2) +O(�V� +

∑
e∈E �e� + tcm) = O(�V�

+
∑

e∈E �e� + [C − (t − 1)c]m2 + tcm).
Summing over all iterations t = 1, ..., b∕c , the total time complexity of Step 2 of

COREA is: ∑b∕c

t=1
O
�
�V� +

∑
e∈E �e� + [C − (t − 1)c]m2 + tcm

�
= O

�
(�V� +

∑
e∈E �e� + Cm2)

b

c

�
.

Summing up the time complexities of Steps 1-1, 1-2, and 2, the total time
complexity of COREA is O

�
�V�log�V� + Cm log �V� + (�V� +

∑
e∈E �e� + Cm2)

b

c

�
.

E5: Maximum anchor availability of a node

In this section, we discuss the cases when COREA cannot guarantee to afford maximum
anchor availabilities for all nodes and the sufficient conditions to achieve the maximum
anchor availability of a particular node v. While Theorem 2 shows that the sum of anchor
availabilities of all nodes, realized by COREA, is always constant with respect to G , dif-
ferent deletion orders in Step 1 of COREA, governed by the tie-breaking scheme � in
Line 6 of Algorithm 2, may result in different anchor availabilities for each node.

2488	 M. T. Do, K. Shin

1 3

In the pruning process of obtaining the (k + 1)-core form the k-core, at any
point, there might be several nodes qualified for removal, i.e., they all have
degrees ≤ k . We first show that, deferring the removal of v, while choosing
another node to delete first, potentially helps afford a higher anchor availability
for v, as stated in Lemma 6.

Lemma 6  In the pruning process of obtaining the (k + 1)-core from the k-core,
assume that both u and v are up for removal, and a valid deletion order � chooses
to remove v immediately before u. If we obtain a valid deletion order �′ by switching
the positions of nodes v and u in �, the anchor availability realized by COREA for v
remains the same or increases.

Proof  Assume that by the ordering of � , immediately prior to the deletion of v, the
degrees of u and v are d(u) and d(v), respectively, with d(u), d(v) ≤ k . Also assume
that there remain t({u, v}) ≥ 0 hyperedges anchored by both u and v. In � , we
remove v then u and the deletion of v will remove all of its incident hyperedges,
along with those t({u, v}) hyperedges anchored by u and v, so the respective degrees
of v and u immediately prior to removals are d(v) and d(u) − t({u, v}) . As a result,
COREA realizes the respective anchor availabilities for v and u as c(v) = k − d(v)
and c(u) = k − d(u) + t({u, v}) , respectively.

Switching the positions of v and u in � , we obtain another valid deletion order �′ .
In �′ , the deletion of u will remove all of its incident hyperedges, along with those
t({u, v}) hyperedges anchored by u and v, so the respective degrees prior to removals
of u and v are d(u) and d(v) − t({u, v}) . As a result, the afforded anchor availabilities
of u and v become c�(u) = k − dG(u) and c�(v) = k − d(v) + t({u, v}).

As t({u, v}) ≥ 0 , c�(v) ≥ c(v) . Therefore, if we switch the positions of nodes v and
u to obtain another valid deletion order, the anchor availability realized by COREA
for v remains the same or increases.

In the proof for Lemma 6, in the case that t({u, v}) > 0 , if we swap from a valid
deletion order, deleting v first then deleting u, to obtain another valid deletion order,
deleting u first then deleting v, the anchor availability for u decreases and that of v
increases. Since COREA needs to remove one node at a time, it is clear that if u is
deleted before v, u is certainly not afforded its maximum anchor availability, and the
same holds for v in the case when v is removed before u. Therefore, if there are sev-
eral nodes up for deletion and there are hyperedges co-anchored by them, those nodes
cannot be afforded their respective maximum anchor availabilities simultaneously.

Lemma 7  In the pruning process of obtaining the (k + 1)-core from the k-core, in 2
different valid deletion orders � and �′ where the removal of node v is deferred until
a point when v is the only node up for removal, the anchor availabilities of v realized
by Algorithm 2 in both � and �′ are the same.

Proof  For each x ∈ V and NG(x) = k , refer to the degree of x at the beginning of the
pruning process to obtain the (k + 1)-core from the k-core, when no nodes of core

2489

1 3

Improving the core resilience of real-world hypergraphs

number k have been deleted, as the core degree of x, denoted as d(x). Denote S
�
(x)

and S
�� (x) as the sets of nodes that have core number k and get removed before x in

� and �′ , respectively.
We first show that in both � and �′ , the sets of nodes deleted before v, denoted as

S
�
(v) and S

�� (v) respectively, are the same.
If S

�
(v) = � , starting at the k-core, � has to begin with v in the pruning process

of obtaining the (k + 1)-core from the k-core. It implies that among the nodes of core
number k, v is the only node whose core degree is equal to k. As a result, in �′ , v
also has to be the first node of core number k to delete, i.e., S

�� (v) = � . Therefore,
S
�
(v) = S

�� (v) . A similar argument is made for the case in which S
�� (v) = �.

Assume the case that both S
�
(v) and S

�� (v) are non-empty sets. Note that start-
ing at the k-core, both � and �′ need to begin with a node, other than v, whose core
degree is exactly equal to k. Furthermore, all of the nodes, of core number k and
other than v, whose core degrees are exactly equal to k must belong to both S

�
(v)

and S
�� (v) as these nodes are always qualified for removal at the beginning of the

pruning process. It implies that S
�
(v) ∩ S

�� (v) ≠ �.
Assume by contradiction that there exists u ∈ S

�
(v) such that u ∉ S

�� (v) . In other
words, in �′ , u is deleted after v, so d(u) > k . For u to be deleted before v in � , the
necessary and sufficient condition is that the removals of the nodes in S

�
(u) , along with

their incident hyperedges, result in the degree of u dropping lower than k + 1 . We have
S
�
(u) ⊂ S

�
(v) . In �′ , as we defer removing v to the point when v is the only node up

for removal and u is deleted after v, the degree of u never drops lower than k + 1 before
v is removed. If all nodes in S

�
(u) are also in S

�� (v) , u can be qualified for removal
before v is removed in �′ . Therefore, ∃t ∈ S

�
(u) and t ∉ S

�� (v) , which also implies
that t ∈ S

�
(v) and d(t) > k . t is removed before u in � , t ≠ u, t ∈ S

�
(v) , and t ∉ S

�� (v) .
We now repeat the argument for u on t to derive that ∃y ∈ S

�
(v) , y is removed before t

in � , d(y) > k , y ≠ u, y ≠ t , and y ∉ S
�� (v) . Applying the same argument on y and so

on, we can repeat it infinitely many times. However, that is impossible because S
�
(v)

has a finite number of elements. Therefore, the assumption that u ∉ S
�� (v) is false, i.e.,

u ∈ S
�� (v).

Thus S
�
(v) ⊆ S

�� (v) . Similarly, we can also show S
�� (v) ⊆ S

�
(v) . It implies that

S
�
(v) = S

�� (v)

According to Lemma 4, even though the orders of the nodes preceding v are dif-
ferent in � and �′ , since they are the same set of nodes, the anchor availabilities of v
in both � and �′ , are the same.

Theorem 5  5 [Maximum anchor availability of a node] If the tie-breaking scheme �
in Algorithm 2 always defers the removal of node v, NG(v) = k, until the point when
v is the only node qualified for removal during the pruning process to obtain the
(k + 1)-core, COREA achieves the maximum anchor availability c∗(v) for v. For all
tie-breaking schemes, the anchor availability c(v) realized for v, in Algorithm 2, is
always ≤ c∗(v).

2490	 M. T. Do, K. Shin

1 3

Proof  Denote S1 as a valid deletion order resulting from a tie-breaking scheme � that
always defers the removal of v, NG(v) = k , in the core decomposition process until
the point when v is the only node qualified for removal.

According to lemma 7, in all valid deletion orders that defer removing v to the
point when v is the only node qualified for removal, the anchor availability realized
for v by COREA is always the same, and equal to cS1 (v) , the anchor availability real-
ized by following S1 . If there exists a valid deletion order �0 such that when v and
at least another node are qualified for removal, v is chosen to be deleted first and
afforded anchor availability c

�o
(v) , we can always form another valid deletion order

by deferring the removal of v and deleting the other node first until v is the only node
qualified for removal. According to Lemma 6, each time we do so, the new anchor
availability for v is higher than or equal to the previous value, so c

�o
(v) ≤ cS1 (v) .

Therefore, cS1 (v) is the maximum anchor availability for v that can be realized by
COREA in any valid deletion order.

Thus, if the tie-breaking scheme � in Algorithm 2 always defers the removal of v
until the point when v is the only node qualified for removal, COREA achieves the
maximum anchor availability for c∗(v) for v.

Given a particular valid deletion order � of nodes in the core decomposition, gov-
erned by the tie-breaking scheme � , the anchor availability for each node is either
the maximum possible or sub-optimal. While not guaranteeing to afford the maxi-
mum anchor availabilities for all nodes, in Theorem 5, we provide sufficient condi-
tions to achieve the maximum anchor availability for a particular node v. That is,
in the core decomposition process, COREA needs to always defer the deletion of v
until the point when v is the only node qualified for removal.

However, as previously mentioned, it is important to note that, regardless of
whether the availability for each node is sub-optimal, the sum C of all anchor avail-
abilities realized by COREA is always constant with respect to each hypergraph
(Theorem 2) and equal to the maximum number of hyperedges any method can
augment to the hypergraph without altering any core numbers (Theorem 3). There-
fore, given the constraint of preserving all core numbers, no feasible augmentation
method can augment more than C hyperedges.

Funding  This work was supported by National Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (No. NRF-2020R1C1C1008296) and Institute of Information & Communi-
cations Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No.
2022-0-00871, Development of AI Autonomy and Knowledge Enhancement for AI Agent Collaboration)
(No. 2019–0-00075, Artificial Intelligence Graduate School Program (KAIST)).

Declarations 

Conflict of interest  The authors have no relevant financial or non-financial interests to disclose.

2491

1 3

Improving the core resilience of real-world hypergraphs

References

Akoglu L, Faloutsos C (2013) Anomaly, event, and fraud detection in large network datasets. In:
Proceedings of the 6th ACM international conference on web search and data mining (WSDM), pp
773–774, https://​doi.​org/​10.​1145/​24333​96.​24334​96

Amburg I, Veldt N, Benson A (2020) Clustering in graphs and hypergraphs with categorical edge labels.
In: Proceedings of the web conference 2020 (WWW), pp 706–717. https://​doi.​org/​10.​1145/​33664​
23.​33801​52

Aridhi S, Brugnara M, Montresor A, et al (2016) Distributed k-core decomposition and maintenance in
large dynamic graphs. In: Proceedings of the 10th ACM international conference on distributed and
event-based systems (DEBS), pp 161–168. https://​doi.​org/​10.​1145/​29332​67.​29332​99

de Arruda GF, Petri G, Moreno Y (2020) Social contagion models on hypergraphs. Phys Rev Res
2(2):023,032. https://​doi.​org/​10.​1103/​PhysR​evRes​earch.2.​023032

Benson AR, Abebe R, Schaub MT, et al (2018a) Simplicial closure and higher-order link prediction. Proc
Natl Acad Sci 115(48):E11,221–E11,230. https://​doi.​org/​10.​1073/​pnas.​18006​83115doi:

Benson AR, Kumar R, Tomkins A (2018b) Sequences of sets. In: Proceedings of the 24th ACM SIGKDD
international conference on knowledge discovery and data mining (KDD), pp 1148–1157. https://​
doi.​org/​10.​1145/​32198​19.​32201​00

Bhawalkar K, Kleinberg J, Lewi K et al (2015) Preventing unraveling in social networks: the anchored
k-core problem. SIAM J Discret Math 29(3):1452–1475. https://​doi.​org/​10.​1137/​14097​032X

Chen C, Zhu Q, Sun R et al (2021) Edge manipulation approaches for k-core minimization: metrics and
analytics. IEEE Trans Knowl Data Eng 32(1):390–403. https://​doi.​org/​10.​1109/​TKDE.​2021.​30855​70

Chien E, Pan C, Peng J, et al (2022) You are AllSet: a multiset function framework for hypergraph neural
networks. In: Proceedings of the 10th international conference on learning representations (ICLR).
https://​doi.​org/​10.​48550/​arXiv.​2106.​13264

Do MT, Yoon Se, Hooi B, et al (2020) Structural Patterns and Generative Models of Real-world
Hypergraphs. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), pp 176–186. https://​doi.​org/​10.​1145/​33944​86.​34030​60

Feng Y, You H, Zhang Z, et al (2019) Hypergraph Neural Networks. In: Proceedings of the 33rd AAAI
Conference on Artificial Intelligence (AAAI), pp 3558–3565. https://​doi.​org/​10.​1609/​aaai.​v33i01.​
33013​558

Freitas S, Yang D, Kumar S, et al (2022) Graph vulnerability and robustness: A survey. IEEE
Transactions on Knowledge and Data Engineering pp 5915–5934. https://​doi.​org/​10.​1109/​TKDE.​
2022.​31636​72doi:

Gabert K, Pinar A, Çatalyürek ÜV (2021a) Shared-memory scalable k-core maintenance on dynamic
graphs and hypergraphs. In: Proceedings of the 2021 IEEE international parallel and distributed
processing symposium workshops (IPDPSW), IEEE, pp 998–1007. https://​doi.​org/​10.​1109/​IPDPS​
W52791.​2021.​00158

Gabert K, Pinar A, Çatalyürek ÜV (2021b) A unifying framework to identify dense subgraphs on streams:
graph nuclei to hypergraph cores. In: Proceedings of the 14th ACM international conference on web
search and data mining (WSDM), pp 689–697. https://​doi.​org/​10.​1145/​34379​63.​34417​90

Giatsidis C, Thilikos DM, Vazirgiannis M (2011) Evaluating cooperation in communities with the k-Core
Structure. In: Proceedings of the 2021 international conference on advances in social networks
analysis and mining (ASONAM), pp 87–93. https://​doi.​org/​10.​1109/​ASONAM.​2011.​65

Giroire F, Nisse N, Trolliet T et al (2022) Preferential attachment hypergraph with high modularity.
Network Science 10(4):400–429. https://​doi.​org/​10.​1017/​nws.​2022.​35

Huang Z, Chung W, Ong TH, et al (2002) A Graph-Based Recommender System for Digital Library. In:
Proceedings of the 2nd ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL), pp 65–73.
https://​doi.​org/​10.​1145/​544220.​544231

Hwang H, Lee S, Park C, et al (2022) AHP: Learning to Negative Sample for Hyperedge Prediction.
In: Proceedings of the 45th International ACM SIGIR conference on research and development in
information retrieval (SIGIR), pp 2237–2242. https://​doi.​org/​10.​1145/​34774​95.​35318​36

Iacopini I, Petri G, Barrat A et al (2019) Simplicial models of social contagion. Nat Commun 10(1):1–9.
https://​doi.​org/​10.​1038/​s41467-​019-​10431-6

Kim S, Choe M, Yoo J, et al (2022) Reciprocity in directed hypergraphs: measures, findings, and
generators. In: Proceedings of the 2022 IEEE international conference on data mining (ICDM), pp
1005–1010, https://​doi.​org/​10.​1109/​ICDM5​4844.​2022.​00122

https://doi.org/10.1145/2433396.2433496
https://doi.org/10.1145/3366423.3380152
https://doi.org/10.1145/3366423.3380152
https://doi.org/10.1145/2933267.2933299
https://doi.org/10.1103/PhysRevResearch.2.023032
https://doi.org/10.1073/pnas.1800683115
https://doi.org/10.1145/3219819.3220100
https://doi.org/10.1145/3219819.3220100
https://doi.org/10.1137/14097032X
https://doi.org/10.1109/TKDE.2021.3085570
https://doi.org/10.48550/arXiv.2106.13264
https://doi.org/10.1145/3394486.3403060
https://doi.org/10.1609/aaai.v33i01.33013558
https://doi.org/10.1609/aaai.v33i01.33013558
https://doi.org/10.1109/TKDE.2022.3163672
https://doi.org/10.1109/TKDE.2022.3163672
https://doi.org/10.1109/IPDPSW52791.2021.00158
https://doi.org/10.1109/IPDPSW52791.2021.00158
https://doi.org/10.1145/3437963.3441790
https://doi.org/10.1109/ASONAM.2011.65
https://doi.org/10.1017/nws.2022.35
https://doi.org/10.1145/544220.544231
https://doi.org/10.1145/3477495.3531836
https://doi.org/10.1038/s41467-019-10431-6
https://doi.org/10.1109/ICDM54844.2022.00122

2492	 M. T. Do, K. Shin

1 3

Kim S, Bu F, Choe M, et al (2023) How transitive are real-world group interactions?–Measurement and
reproduction. arXiv preprint arXiv:​2306.​02358

Kitsak M, Gallos LK, Havlin S et al (2010) Identification of influential spreaders in complex networks.
Nat Phys 6(11):888–893. https://​doi.​org/​10.​1038/​nphys​1746

Klimt B, Yang Y (2004) The enron corpus: a new dataset for email classification research. In: Proceedings
of the 15th European conference on machine learning (ECML), Springer, pp 217–226, https://​doi.​
org/​10.​1007/​978-3-​540-​30115-8_​22

Kook Y, Ko J, Shin K (2020) Evolution of real-world hypergraphs: patterns and models without oracles.
In: Proceedings of the 2020 IEEE international conference on data mining (ICDM), https://​doi.​org/​
10.​1109/​ICDM5​0108.​2020.​00036

Kumar T, Darwin K, Parthasarathy S, et al (2020) PHPRA: hyperedge prediction using resource
allocation. In: Proceedings of the 12th ACM conference on web science, pp 135–143, https://​doi.​
org/​10.​1145/​33942​31.​33979​03

Laishram R (2020) The resilience of k-cores in graphs. PhD thesis, Syracuse University
Laishram R, Sariyüce A, Eliassi-Rad T, et al (2018) Measuring and Improving the Core Resilience of

Networks. In: Proceedings of the web conference 2018 (WWW), pp 609–618, https://​doi.​org/​10.​
1145/​31788​76.​31861​27

Laishram R, Erdem Sar A, Eliassi-Rad T, et al (2020) Residual core maximization: an efficient algorithm
for maximizing the size of the k-core. In: Proceedings of the 2020 SIAM international conference
on data mining (SDM), pp 325–333. https://​doi.​org/​10.​1137/1.​97816​11976​236.​37

Lee G, Ko J, Shin K (2020) Hypergraph motifs: concepts, algorithms, and discoveries. Proc VLDB
Endow 13(11):2256–2269. https://​doi.​org/​10.​14778/​34077​90.​34078​23

Lee G, Choe M, Shin K (2021) How do hyperedges overlap in real-world hypergraphs?-Patterns,
measures, and generators. In: Proceedings of the web conference 2021 (WWW), pp 3396–3407.
https://​doi.​org/​10.​1145/​34423​81.​34500​10

Lei S, Maniu S, Mo L, et al (2015) Online influence maximization. In: Proceedings of the 21th ACM
SIGKDD international conference on knowledge discovery and data mining (KDD), pp 645–654.
https://​doi.​org/​10.​1145/​27832​58.​27832​71

Leng M, Sun L, Jn Bian et al (2013) An O(m) algorithm for cores decomposition of undirected
hypergraph. J Chin Comput Syst 34(11):2568–2573

Li P, Milenkovic O (2017) Inhomogeneous hypergraph clustering with applications. In: Proceedings of
the 31st international conference on neural information processing systems, pp 2305–2315. https://​
doi.​org/​10.​48550/​arXiv.​1709.​01249s

Li RH, Yu JX, Mao R (2013) Efficient core maintenance in large dynamic graphs. IEEE Trans Knowl
Data Eng 26(10):2453–2465. https://​doi.​org/​10.​1109/​TKDE.​2013.​158

Lin Z, Zhang F, Lin X et al (2021) Hierarchical core maintenance on large dynamic graphs. Proc VLDB
Endow 14(5):757–770. https://​doi.​org/​10.​14778/​34460​95.​34460​99

Linghu Q, Zhang F, Lin X, et al (2020) Global reinforcement of social networks: the anchored coreness
problem. In: Proceedings of the 2020 ACM SIGMOD international conference on management of
data (SIGMOD), pp 2211–2226. https://​doi.​org/​10.​1145/​33184​64.​33897​44

Liu Q, Huang Y, Metaxas DN (2011) Hypergraph with sampling for image retrieval. Pattern Recogn
44(10–11):2255–2262. https://​doi.​org/​10.​1016/j.​patcog.​2010.​07.​014

Ma X, Ma F, Yin J et al (2018) Cascading failures of k uniform hyper-network based on the hyper
adjacent matrix. Physica A 510:281–289. https://​doi.​org/​10.​1016/j.​physa.​2018.​06.​122

Medya S, Ma T, Silva A, et al (2020) A game theoretic approach for core resilience. In: Proceedings of
the 29th international joint conference on artificial intelligence (IJCAI), pp 3473–3479. https://​doi.​
org/​10.​24963/​ijcai.​2020/​480

Mei G, Tu J, Xiao L et al (2021) An efficient graph clustering algorithm by exploiting k-core
decomposition and motifs. Comput Electric Eng 96(107):564. https://​doi.​org/​10.​1016/j.​compe​
leceng.​2021.​107564

Ouyang M, Toulouse M, Thulasiraman K et al (2002) Multilevel cooperative search for the circuit/
hypergraph partitioning problem. IEEE Trans Comput Aided Des Integr Circuits Syst 21(6):685–
693. https://​doi.​org/​10.​1109/​TCAD.​2002.​10043​12

Peng H, Qian C, Zhao D, et al (2022) Targeting attack hypergraph networks. Chaos Interdiscip J
Nonlinear Sci 32(7):073,121. https://​doi.​org/​10.​1063/5.​00906​26

Peng Y, Zhang Y, Zhang W, et al (2018) Efficient Probabilistic K-Core Computation on Uncertain
Graphs. In: Proceedings of the IEEE 34th international conference on data engineering (ICDE), pp
1192–1203. https://​doi.​org/​10.​1109/​ICDE.​2018.​00110

http://arxiv.org/abs/2306.02358
https://doi.org/10.1038/nphys1746
https://doi.org/10.1007/978-3-540-30115-8_22
https://doi.org/10.1007/978-3-540-30115-8_22
https://doi.org/10.1109/ICDM50108.2020.00036
https://doi.org/10.1109/ICDM50108.2020.00036
https://doi.org/10.1145/3394231.3397903
https://doi.org/10.1145/3394231.3397903
https://doi.org/10.1145/3178876.3186127
https://doi.org/10.1145/3178876.3186127
https://doi.org/10.1137/1.9781611976236.37
https://doi.org/10.14778/3407790.3407823
https://doi.org/10.1145/3442381.3450010
https://doi.org/10.1145/2783258.2783271
https://doi.org/10.48550/arXiv.1709.01249s
https://doi.org/10.48550/arXiv.1709.01249s
https://doi.org/10.1109/TKDE.2013.158
https://doi.org/10.14778/3446095.3446099
https://doi.org/10.1145/3318464.3389744
https://doi.org/10.1016/j.patcog.2010.07.014
https://doi.org/10.1016/j.physa.2018.06.122
https://doi.org/10.24963/ijcai.2020/480
https://doi.org/10.24963/ijcai.2020/480
https://doi.org/10.1016/j.compeleceng.2021.107564
https://doi.org/10.1016/j.compeleceng.2021.107564
https://doi.org/10.1109/TCAD.2002.1004312
https://doi.org/10.1063/5.0090626
https://doi.org/10.1109/ICDE.2018.00110

2493

1 3

Improving the core resilience of real-world hypergraphs

Rota Bulò S, Pelillo M (2013) A game-theoretic approach to hypergraph clustering. IEEE Trans Pattern
Anal Mach Intell 35(6):1312–1327. https://​doi.​org/​10.​1109/​TPAMI.​2012.​226

Seidman SB (1983) Network structure and minimum degree. Soc Netw 5(3):269–287. https://​doi.​org/​10.​
1016/​0378-​8733(83)​90028-X

Shin K, Eliassi-Rad T, Faloutsos C (2016) Corescope: Graph Mining Using k-Core Analysis-Patterns,
Anomalies and Algorithms. In: Proceedings of the IEEE 16th international conference on data
mining (ICDM), pp 469–478. https://​doi.​org/​10.​1109/​ICDM.​2016.​0058

Sinha A, Shen Z, Song Y, et al (2015) An overview of microsoft academic service (MAS) and
applications. In: Proceedings of the web conference 2015 (WWW), pp 243–246. https://​doi.​org/​10.​
1145/​27409​08.​27428​39

Sun B, Chan THH, Sozio M (2020) Fully dynamic approximate k-core decomposition in hypergraphs.
ACM Trans Knowl Discov Data 14(4):1–21. https://​doi.​org/​10.​1145/​33854​16

Tan S, Guan Z, Cai D, et al (2014) Mapping users across networks by manifold alignment on hypergraph.
In: Proceedings of the 28th AAAI conference on artificial intelligence (AAAI), pp 159–165. https://​
doi.​org/​10.​1609/​aaai.​v28i1.​8720

Vitter JS (1987) An efficient algorithm for sequential random sampling. ACM Trans Math Softw
13(1):58–67. https://​doi.​org/​10.​1145/​21465.​21474

Yadati N, Nimishakavi M, Yadav P, et al (2019) HyperGCN: a new method of training graph
convolutional networks on hypergraphs. In: Proceedings of the 33rd international conference on
neural information processing systems (NeurIPS), pp 1511–1522. https://​doi.​org/​10.​48550/​arXiv.​
1809.​02589

Yadati N, Nitin V, Nimishakavi M, et al (2020) NHP: neural hypergraph link prediction. In: Proceedings
of the 29th ACM international conference on information and knowledge management (CIKM), pp
1705–1714. https://​doi.​org/​10.​1145/​33405​31.​34118​70

Yang D, Qu B, Yang J, et al (2019) Revisiting user mobility and social relationships in LBSNs: a
hypergraph embedding approach. In: Proceedings of the web conference 2019 (WWW), pp 2147–
2157. https://​doi.​org/​10.​1145/​33085​58.​33136​35

Yin H, Benson AR, Leskovec J, et al (2017) Local higher-order graph clustering. In: Proceedings of the
23rd ACM SIGKDD international conference on knowledge discovery and data mining (KDD), pp
555–564. https://​doi.​org/​10.​1145/​30979​83.​30980​69

Zhang F, Zhang Y, Qin L, et al (2017) Finding critical users for social network engagement: the collapsed
k-core problem. In: Proceedings of the 31st AAAI conference on artificial intelligence (AAAI), pp
245–251. https://​doi.​org/​10.​1609/​aaai.​v31i1.​10482

Zhou Z, Zhang F, Lin X, et al (2019) K-core maximization: an edge addition approach. In: Proceedings of
the 28th international joint conference on artificial intelligence (IJCAI), pp 4867–4873. https://​doi.​
org/​10.​24963/​ijcai.​2019/​676

Zhu W, Chen C, Wang X, et al (2018) K-Core Minimization: An Edge Manipulation Approach. In:
Proceedings of the 27th ACM international conference on information and knowledge management
(CIKM), pp 1667–1670. https://​doi.​org/​10.​1145/​32692​06.​32692​54

Zhu Y, Guan Z, Tan S et al (2016) Heterogeneous hypergraph embedding for document recommendation.
Neurocomputing 216:150–162. https://​doi.​org/​10.​1016/j.​neucom.​2016.​07.​030

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

https://doi.org/10.1109/TPAMI.2012.226
https://doi.org/10.1016/0378-8733(83)90028-X
https://doi.org/10.1016/0378-8733(83)90028-X
https://doi.org/10.1109/ICDM.2016.0058
https://doi.org/10.1145/2740908.2742839
https://doi.org/10.1145/2740908.2742839
https://doi.org/10.1145/3385416
https://doi.org/10.1609/aaai.v28i1.8720
https://doi.org/10.1609/aaai.v28i1.8720
https://doi.org/10.1145/21465.21474
https://doi.org/10.48550/arXiv.1809.02589
https://doi.org/10.48550/arXiv.1809.02589
https://doi.org/10.1145/3340531.3411870
https://doi.org/10.1145/3308558.3313635
https://doi.org/10.1145/3097983.3098069
https://doi.org/10.1609/aaai.v31i1.10482
https://doi.org/10.24963/ijcai.2019/676
https://doi.org/10.24963/ijcai.2019/676
https://doi.org/10.1145/3269206.3269254
https://doi.org/10.1016/j.neucom.2016.07.030

	Improving the core resilience of real-world hypergraphs
	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries and problem definition
	3.1 Basic concepts
	3.2 Problem definition

	4 Motivating applications
	4.1 Identification of influential nodes
	4.2 Anomaly detection

	5 Proposed concepts and observations
	5.1 Proposed concepts
	5.1.1 Hyperedge core number and anchor
	5.1.2 Core strength and core influence
	5.1.3 Core influence-strength and degeneracy centralized index of a hypergraph

	5.2 Attack strategies
	5.3 Observations in real-world hypergraphs

	6 Proposed method: COREA
	6.1 Overview
	6.2 Step 1: construct candidate hyperedges
	6.2.1 Step 1-1: compute anchor availabilities
	6.2.2 Step 1-2: build a pool P of candidate hyperedges

	6.3 Step 2: select the best hyperedges from the pool
	6.4 Theoretical analysis

	7 Empirical evaluation of COREA
	7.1 Experiment settings
	7.2 Q1. Time and performance
	7.3 Q2. Ablation study
	7.4 Q3. Effect of hyperedge size distribution
	7.5 Q4. Further insights
	7.6 Q5. Applications

	8 Conclusion
	Appendix A: Datasets
	Appendix B: Core decomposition algorithm
	Appendix C: Algorithm for SIR on hypergraphs
	Appendix D: Results on node-deletion attacks
	Appendix E: Theoretical results and proofs
	E.1: Feasibility of COREA
	E2: Invariance of COREA
	E3: Exhaustiveness of COREA
	E4: Time complexity of COREA
	E5: Maximum anchor availability of a node

	References

