
Vol.:(0123456789)

Data Mining and Knowledge Discovery (2023) 37:2389–2437
https://doi.org/10.1007/s10618-023-00956-2

1 3

Hypercore decomposition for non‑fragile hyperedges:
concepts, algorithms, observations, and applications

Fanchen Bu1 · Geon Lee2 · Kijung Shin1,2 

Received: 8 February 2023 / Accepted: 6 July 2023 / Published online: 8 August 2023
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2023

Abstract
Hypergraphs are a powerful abstraction for modeling high-order relations, which
are ubiquitous in many fields. A hypergraph consists of nodes and hyperedges (i.e.,
subsets of nodes); and there have been a number of attempts to extend the notion
of k-cores, which proved useful with numerous applications for pairwise graphs,
to hypergraphs. However, the previous extensions are based on an unrealistic
assumption that hyperedges are fragile, i.e., a high-order relation becomes obsolete
as soon as a single member leaves it.In this work, we propose a new substructure
model, called (k, t)-hypercore, based on the assumption that high-order relations
remain as long as at least t fraction of the members remains. Specifically, it is
defined as the maximal subhypergraph where (1) every node is contained in at least
k hyperedges in it and (2) at least t fraction of the nodes remain in every hyperedge.
We first prove that, given t (or k ), finding the (k, t)-hypercore for every possible k (or
t ) can be computed in time linear w.r.t the sum of the sizes of hyperedges. Then, we
demonstrate that real-world hypergraphs from the same domain share similar (k, t)
-hypercore structures, which capture different perspectives depending on t . Lastly,
we show the successful applications of our model in identifying influential nodes,
dense substructures, and vulnerability in hypergraphs.

Keywords  Hypergraphs mining · k-cores · Cohesive substructure models · Real-
world hypergraph analysis

Responsible editor: Charalampos Tsourakakis.

 *	 Kijung Shin
	 kijungs@kaist.ac.kr

	 Fanchen Bu
	 boqvezen97@kaist.ac.kr

	 Geon Lee
	 geonlee0325@kaist.ac.kr

1	 School of Electrical Engineering, KAIST, Daejeon, South Korea
2	 Kim Jaechul Graduate School of AI, KAIST, Seoul, South Korea

http://orcid.org/0000-0002-2872-1526
http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-023-00956-2&domain=pdf

2390	 F. Bu et al..

1 3

1  Introduction

Graphs are a powerful model for representing pairwise relations, and they have
been used for recommendation systems (Silva et al. 2010; Debnath et al. 2008),
information retrieval (Blanco and Lioma 2012; Mihalcea and Radev 2011),
knowledge representation (Chein and Mugnier 2008), and many more. However,
graphs are limited to pairwise relations and thus fail to precisely describe high-
order (i.e., group-wise) relations among more than two nodes.

Hypergraphs, where each hyperedge consists of an arbitrary number of nodes,
break the limitation by describing high-order relations precisely (Benson et al.
2018a; Yin et al. 2017) and contain graphs as special cases. Hypergraphs have
been successful in modeling real-life processes in diverse fields, including
chemical reactions (Konstantinova and Skorobogatov 2001), epidemic spread
(Bodó et al. 2016), and blockchain economy (Qu et al. 2018).

For a given pairwise graph, the k-core (Seidman 1983) is a cohesive
substructure that is defined as the maximal subgraph where each node
has degree at least k (i.e., each node is incident to at least k edges) within it.
Extensive research has been conducted to show its linear-time computability
(Batagelj and Zaversnik 2003) and successful applications to k-cores, including
graph visualization (Alvarez-Hamelin et al. 2006), community detection
(Corominas–Murtra et al. 2014), anomaly detection (Shin et al. 2018a), and
biological process modeling (Luo et al. 2009).

There have been attempts to generalize the notion of k-cores to hypergraphs (Hua
et al. 2023; Luo et al. 2021, 2022; Gabert et al. 2021a, b; Sun et al. 2020), and
the generalized notations, called hypercores, commonly assume that hyperedges are
fragile. That is, a hyperedge (i.e., a group relation) becomes obsolete as soon as
any constituent node opts out of it. Specifically, an entire hyperedge is ignored as
soon as any node in it is removed during hypercore computation. However, such
an assumption is unrealistic and potentially leads to much information loss. For
example, an online group chat may remain active even if someone leaves it; and a
recipe (i.e., a group of ingredients) may still produce a delicious result even if some
ingredients are unavailable. As another example, the hypergraph shown in Fig. 1(d)

Fig. 1   An example of (k, t)-hypercores. Assuming more robust hyperedges (i.e., decreasing the
hyperedge-fraction threshold t) reveals cohesive substructures that are overlooked when fragile
hyperedges are assumed. Notably, when fragile hyperedges are assumed (i.e., when t = 1 ), every node
has the same t-hypercoreness, as shown in (d)

2391

1 3

Hypercore decomposition for non-fragile...

cannot be decomposed into k-hypercores with different k, although the cohesiveness
of subhypergraphs varies, since fragile hyperedges are assumed.

In order to better reveal the structural information in hypergraphs, we propose the
notion of (k, t)-hypercores. In addition to the node-degree threshold k, we introduce
the hyperedge-fraction threshold t that determines how many constituent nodes
suffice to maintain a hyperedge. Specifically, given a hypergraph and thresholds
k and t, the (k, t)-hypercore is defined as the maximal subhypergraph where (1)
every node is contained in at least k hyperedges in it and (2) at least t fraction of
the constituent nodes (i.e., the nodes constituting the original hyperedge) remain
in every remaining hyperedge. The larger the value of t is, the more fragile the
hyperedges are. Based on the concept, we define the t-hypercoreness of a node as
the maximum k such that the node is in the (k, t)-hypercore, and the k-fraction of
a node as the maximum t such that the node is in the (k, t)-hypercore. In Fig. 1, we
show an example where the (k, t)-hypercore structures change with t. Notably, some
other variants of hypercores have been considered. The concept of (k;�)-hypercores
has been considered by Limnios et al. (2021), where the (k;�)-hypercore requires
that at least � constituent nodes (instead of t fraction required in the (k, t)-hypercore)
remain in every remaining hyperedge. The concept of neighbor-k-hypercores has
been considered by Arafat et al. (2023), which focuses on the number of neighbors
(i.e., nodes coexisting in at least one hyperedge) of each node, and the concept is
further extended to (neighbor, degree)-(k, d)-hypercores. Compared to the existing
concepts, our proposed concepts provide unique information on hypergraphs, as
theoretically proven and empirically demonstrated.

We first show that the proposed concepts are well-defined and have containment
properties w.r.t both k and t, then propose peeling-like computation algorithms
for computing all the proposed concepts and show their correctness and time
complexity. In particular, we show that both the t-hypercoreness for given k and the
k-fraction for given t of each node can be computed in time proportional to the sum
of the sizes of hyperedges.

In order to demonstrate the usefulness of the proposed concepts, we investigate
the (k, t)-hypercore structures of fourteen real-world hypergraphs in six different
domains (Sinha et al. 2015; Mastrandrea et al. 2015; Leskovec et al. 2007) while
varying t. The examination leads to the following observations from different
perspectives:(1) domain-based patterns of (k, t)-hypercore sizes: hypergraphs in
the same domain show similar patterns of the (k, t)-hypercore sizes with different k
and t values; (2) heavy-tailed distributions of t-hypercoreness: in most investigated
real-world hypergraphs, the t-hypercoreness of nodes consistently follows heavy-
tailed distributions regardless of t; (3) heterogeneity of t-hypercoreness: in the same
real-world hypergraph, the t-hypercoreness with different t provides statistically and
information-theoretically distinct information.

We also utilize some properties of the proposed concepts in three applications: (1)
influential-node identification: we generalize the SIR model in hypergraphs and use
the model to show that t-hypercoreness is a reliable indicator to node-influence; (2)
dense substructure discovery: we show that (k, t)-hypercores generally have much
higher density than the whole hypergraph and consider a generalized vertex cover
problem to demonstrate that t-hypercoreness can be used to find dense substructures;

2392	 F. Bu et al..

1 3

(3) vulnerability detection: we generalize the core minimization problem to detect
vulnerabilities in hypergraphs by finding the nodes whose removal reduces the
size of the (k, t)-hypercore (for given k and t) most, and to this end, we propose an
efficient and effective algorithm.

In short, our contributions are three-fold:

•	 New concepts. We propose the (k, t)-hypercore, a new substructure model for
hypergraphs, together with t-hypercoreness and k-fraction (Defs. 5 to 7). In
addition to the node-degree threshold k, the proposed concepts incorporate the
hyperedge-fraction threshold t to provide more comprehensive information.

•	 Properties and algorithms. We show some theoretical properties of the proposed
concepts, and computation algorithms (Algs. 1 to 3) for the proposed concepts
with analyses of the correctness and time complexity (Thorems. 1 to 3).

•	 Observations and applications. We investigate 14 real-world hypergraphs, which
leads to interesting observations (Sect. 5), including a surprising similarity in the
(k, t)-hypercores of hypergraphs in the same domain. We also show successful
applications (Sect. 6) of the proposed concepts to influence estimation, dense-
substructure detection, and vulnerability detection.

Reproducibility The code and datasets are available at https://​github.​com/​bokve​izen/​
non-​fragi​le-​hyper​core (Bu et al. 2023).

2 � Preliminaries

In this section, we provide the mathematical background and preliminaries that are
used throughout this paper.

Hypergraphs. A hypergraph H = (V ,E) consists of a node set V and a hyperedge
multiset E.1 Given a hypergraph H = (V ,E) , we associate each hyperedge
with a distinct positive integer in ℕ,i.e., E = {ei ∶ i ∈ IE} , where IE is called
the index set of E. The degree d(v; H) of a node v is the number of hyperedges
that contain v, i.e., d(v;H) = |{i ∈ IE ∶ v ∈ ei}| . The set N(v; H) of neighbors
of a node v is the number of nodes coexisting with v in at least one hyperedge,
i.e., N(v;H) = {u ∈ V ∶ u ≠ v,∃e ∈ E s.t. u, v ∈ e} . The constituent nodes of a
hyperedge e ∈ E , is the nodes in e. The size of a hyperedge e ∈ E , denoted by |E| , is
the cardinality of E (i.e., the number of constituent nodes of e). The size of H, denoted
by |H| , is the number of nodes in H, i.e., |H| = |V| . The total size of H, denoted
by TS(H), is the sum of the size of each hyperedge in H (i.e., TS(H) =

∑
i∈IE

�ei� ).
All hypergraphs in this paper are finite, undirected, and unweighted; and in them,
each node has degree at least 1, i.e., d(v;H) ≥ 1,∀v ∈ V  , and each hyperedge is of
cardinality at least two, i.e., |ei| ≥ 2,∀i ∈ IE . If in a hypergraph H = (V ,E) , each
hyperedge is of cardinality exactly two, i.e., |ei| = 2,∀i ∈ IE , then H is also called a
(pairwise) graph.

1  A multiset is a set al.lowing duplicate elements.

https://github.com/bokveizen/non-fragile-hypercore
https://github.com/bokveizen/non-fragile-hypercore

2393

1 3

Hypercore decomposition for non-fragile...

Definition 1  (Subhypergraph) A hypergraph H� = (V �,E�) is a subhypergraph of
H = (V ,E) if each hyperedge in H′ is a subset of the hyperedge with the same index in
H, i.e., e�

i
⊆ ei,∀i ∈ IE� ⊆ IE . If e�

i
= ei,∀i ∈ IE� , we call H′ a complete subhypergraph

of H.

Note that a subhypergraph should be a hypergraph, and thus each hyperedge in a
subhypergraph should also be of cardinality at least two.

We summarize the notations in Table 1. In the notations, the input hypergraph H
may be omitted when the context is clear.

Hypercores. In pairwise graphs, the concept of k-cores (Seidman 1983) is widely
used. Given a pairwise graph G and k ∈ ℕ , the k-core of G is the maximal subgraph
where each node has degree at least k within it.

Definition 2  (k-core) Given a pairwise graph G = (V ,E) and k ∈ ℕ , the k-core of
H, denoted by Ck(G) = (V �,E�) , is the maximal subgraph of G where each node has
degree at least k (i.e., is incident to at least k edges) within Ck.2

It is naturally generalized to hypergraphs (Hua et al. 2023; Luo et al. 2021, 2022;
Gabert et al. 2021a, b; Sun et al. 2020), as follows.

Definition 3  (k-hypercore) Given a hypergraph H = (V ,E) and k ∈ ℕ , the k
-hypercore of H, denoted by Ck(H) = (V �,E�) , is the maximal complete
subhypergraph of H where each node has degree at least k (i.e., is contained in at
least k hyperedges) within Ck.

Some variants of hypercores have been considered. See Sect. 3 for some related
discussions.

Clique expansion. One of the most common ways to convert hypergraphs into
pairwise graphs is the clique expansion, where each hyperedge e ∈ E is converted to
a clique consisting of the nodes in e. Given a hypergraph H = (V ,E) , its unweighted

Table 1   Notations Notation Definition

H = (V ,E) A hypergraph with nodes V and hyperedges E
d(v; H) The degree of v in H
IE The index set of E
k, t The degree and hyperedge-fraction thresholds
Ck,t(H) The (k, t)-hypercore of H
ct(v;H), c∗

t
(H) The t-hypercoreness of v in H, and that of H

fk(v;H), f ∗
k
(H) The k-fraction of v in H, and that of H

2  In this work, the maximal subgraph (subhypergraph) satisfying some conditions means that every other
graph (hypergraph) satisfying such conditions is a subgraph (subhypergraph) of the maximal one.

2394	 F. Bu et al..

1 3

clique expansion is Guc(H) = (V , E) , and its weighted clique expansion is

Gwc(H) = (V , E,�) , where the edge set E = {(u, v) ∈

(
V

2

)
∶ ∃e ∈ E s.t. {u, v} ⊆ e} ,

and the weight function 𝜔((u, v)) = |{i ∈ IE ∶ {u, v} ⊆ ei}| . Clique expansion pro-
vides an approach to make the hypergraphs easier to analyze, but the information on
the higher-order interactions is lost, which is natural since for a set of nodes V, there
are O(|V|2) possible pairs in V, while there are O(2|V|) possible subsets. Two hyper-
graphs with obviously different structures may have the same clique expansions.

Star expansion. Each hypergraph can be represented as a bipartite graph, which
is called its star expansion (Zien et al. 1999). The star expansion of a hypergraph
H is the bipartite graph whose node set is the union of V and E and whose edge set
consists of the incidence relations in H.

Definition 4  (Star expansion) Given a hypergraph H = (V ,E) , its star expansion
(i.e., bipartite-graph representation) is Gse(H) = (V ∪ E,Ese(H)) , where
Ese(H) = {(v, e) ∶ v ∈ V , e ∈ E, v ∈ e} ⊆ V × E.3

As Yang et al. (2022) pointed out, although a star expansion contains all the inci-
dence information in hypergraphs, the remaining heterogeneous structure has no
explicit edges between nodes and is unsuitable for many well-studied graph algo-
rithms designed for simple homogeneous graphs.

3 � Concepts

In this section, we introduce the proposed concepts and show some theoretical
properties of them. Moreover, we discuss the connections and differences between
the proposed concepts and some existing related concepts.

3.1 � Proposed concepts

In pairwise graphs, each edge represents a connection between two nodes, and thus
the removal of either node naturally results in the complete nullification of the edge.
In contrast, a hyperedge with three or more nodes still represents the interactions
among the remaining nodes even when some constituent nodes are removed. As we
have discussed and shown in Fig. 1, the straightforward generalization in Definition 3
groundlessly assumes fragile hyperedges and suffers from information loss. We seek
to better reveal the structure of hypergraphs by considering non-fragile hyperedges.

3  Similar to clique expansion, we can also have weighted star expansion, which is, however, not used in
this work.

2395

1 3

Hypercore decomposition for non-fragile...

Therefore, we introduce the hyperedge-fraction threshold t that determines the
minimum proportion of constituent nodes required to maintain a hyperedge, which
leads to Definition 5.

Definition 5  ((k, t)-hypercore) Given H = (V ,E) , k ∈ ℕ , and t ∈ [0, 1] , the (k, t)
-hypercore of H, denoted by Ck,t(H) = (V �,E�) , is the maximal (in terms of total size)
subhypergraph of H where (1) every node in has degree at least k (i.e., is contained
in at least k hyperedges) within Ck,t and (2) at least t proportion of the constituent
nodes remain in every hyperedge of Ck,t(H) . Formally, d(v;Ck,t(H)) ≥ k,∀v ∈ V � and
|e�

i
∩ ei| ≥ t|ei|,∀i ∈ IE� ⊆ IE.

Note that the definition of (k, t)-hypercore requires that at least two nodes
remain in each hyperedge because of the definition of subhypergraphs (see
Sect. 2). See also Line 6 in Algorithm 1.

Definition 6  (t-hypercoreness) Given H = (V ,E) and t ∈ [0, 1] , the t-hypercoreness
of v ∈ V  , denoted by ct(v;H) , is the maximum positive integer such that v
is in the (ct(v), t)-hypercore, i.e., ct(v) = max{k ∈ ℕ ∶ v ∈ V(Ck,t)} . We call
c∗
t
(H)∶=max{ct(v) ∶ v ∈ V} the t-hypercoreness of H.

Definition 7  (k-fraction) Given H = (V ,E) and k ∈ ℕ , the k-fraction of v ∈ V  ,
denoted by fk(v;H) , is the maximum real number in [0, 1] such that v is in the
(k, fk(v))-hypercore, i.e., fk(v) = max{t ∈ [0, 1] ∶ v ∈ V(Ck,t)} . For the completeness
of definition, if {t ∈ [0, 1] ∶ v ∈ V(Ck,t)} = ∅ , we let fk(v;H) = −1 . We call
f ∗
k
(H)∶=max{fk(v) ∶ v ∈ V} the k-fraction of H.

Note that the proposed concepts are extendable to weighted hypergraphs.
Specifically, as long as we have rigorous definitions of node degrees and
hyperedge fractions on weighted hypergraphs, the extensions are straightforward.

Example. In Fig. 1, the t-hypercoreness of each node changes when the t
changes. Specifically, four nodes have t-hypercoreness 3 when t ≤ 4

7
 . They have

t-hypercoreness 2 when 4
7
< t ≤ 5

7
 , and have t-hypercoreness 1 when t > 5

7
 , which

means that their 3-fraction is 4
7
 and 2-fraction is 5

7
.

The following propositions show that the (k, t)-hypercores are well-defined
and have two-way containment properties.

Proposition 1  (Existence and uniqueness) Given any hypergraph H, k ∈ ℕ , and
t ∈ [0, 1] , Ck,t uniquely exists and is possibly empty.

Proof  See Appendix A.1. 	� ◻

Proposition 2  (Two-way containment) Let H be any hypergraph. Fix any k ∈ ℕ ,
for any 0 ≤ t1 < t2 ≤ 1 , Ck,t2

(H) is a subhypergraph of Ck,t1
(H) . Similarly, fix any

t ∈ [0, 1] , for any k1 < k2 ∈ ℕ , Ck2,t
(H) is a subhypergraph of Ck1,t

(H).

Proof  See Appendix A.2. 	� ◻

2396	 F. Bu et al..

1 3

3.2 � Related concepts

Below, we discuss some existing related concepts, especially the connections and
differences between them and our proposed concepts.

Existing variants of hypercores. As mentioned in Sect. 2 (see Definition 3), most
previous works (Hua et al. 2023; Luo et al. 2021, 2022; Gabert et al. 2021a, b; Sun
et al. 2020) are based on the straightforward generalization of k-cores to hypergraphs
assuming fragile hyperedges (i.e., a hyperedge is removed when any node leaves it),
which is equivalent to the (k, t)-hypercore with t = 1 (i.e., a special case of (k, t)-
hypercore). Limnios et al. (2021) defined the (k;�)-hypercore of a given hypergraph
H as the maximal subhypergraph of H where each node has degree at least k (i.e.,
is contained in at least k hyperedges) within the subhypergraph and each hyperedge
contains at least � nodes. Based on the concept, we can define �-hypercoreness.

Definition 8  ((k;�)-hypercore) Given a hypergraph H = (V ,E) and k,� ∈ ℕ , the
(k;�)-hypercore of H, denoted by C̃k;�(H) , is the maximal subhypergraph of H such
that each node has degree at least k (i.e., is contained in at least k hyperedges) in
within C̃k;�(H) and each hyperedge contains at least � nodes.

Definition 9  (�-hypercoreness) Given H = (V ,E) and � ∈ ℕ , the � -hypercoreness
of v ∈ V  , denoted by c̃

�
(v) , is the maximum positive integer such that v is in the

(c̃
�
(v);�)-hypercore, i.e., c̃

�
(v) = max{k ∈ ℕ ∶ v ∈ V(C̃k;�)}.

The concept of (k;�)-hypercores is equivalent to a k-core-like concept on bipartite
graphs called (�, �)-cores (Liu et al. 2020; Sarıyüce and Pinar 2018).

Definition 10  ((�;�)-core) Given a bipartite graph GB = (V1 ∪ V2,E) and �, � ∈ ℕ ,
the (�;�) -core of GB , denoted by Ĉ𝛼;𝛽(GB) = (V �

1
∪ V �

2
,E�) where V ′

1
⊆ V1 and

V ′
2
⊆ V2 , is the maximal subgraph of GB such that each node in V ′

1
 has degree at least

� within Ĉ𝛼;𝛽(GB) , and each node in V ′
2
 has degree at least � within Ĉ𝛼;𝛽(GB).

Lemma 1  Given H, k, and � , the (k;�)-hypercore of H is equivalent to the
(� = k, � = �)-core of Gbp(H) , the star expansion of H (see Sect. 2).

Proof  See Appendix A.3. 	� ◻

Notable, only the special case with � = 2 was actually used by Limnios et al.
(2021), and such a special case (i.e., (k;� = 2)-hypercore) was also previously
considered by Vogiatzis (2013). Also, (k;� = 2)-hypercore is equivalent to the
proposed (k, t)-hypercore with t = 0.

Lemma 2  Given a hypergraph H = (V ,E) and k ∈ ℕ , C̃k;�=2(H) = Ck;t=0(H).

Proof  See Appendix A.4. 	� ◻

2397

1 3

Hypercore decomposition for non-fragile...

Essential differences exist between the concept of (k;�)-hypercores and the
concept of (k, t)-hypercores proposed by us. In Appendix A.5, we theoretically
analyze the limitations of the (k;�)-hypercores and the superiority of the
proposed (k, t)-hypercores with empirical comparisons. For example, Lemma 3
below tells us that the proposed concept of (k, t)-hypercores can provide unique
information of a hypergraph, which is not contained in the existing concept of
(k;�)-hypercores for any �.

Lemma 3  There exist H, k, t such that Ck,t(H) ≠ C̃k;�(H) for any �.

Proof  See Appendix A.5. 	� ◻

Recently, Arafat et al. (2023) proposed a variant of hypercores, where for
each node, the number of neighbors (i.e., nodes coexisting in at least one hyper-
edge) of this node (instead of the degree of this node) is considered, which leads
to the concept of neighbor-k-hypercores. Based on the concept, we can define
neighbor-hypercoreness.

Definition 11  (neighbor-k-hypercores) Given a hypergraph H = (V ,E) , and k ∈ ℕ ,
the neighbor-k -hypercore of H, denoted by Cnbr

k
(H) , is the maximal complete

subhypergraph of H such that each node in Cnbr
k

(H) has at least k neighbors (i.e.,
|N(v;Cnbr

k
(H))| ≥ k,∀v ∈ Cnbr

k
(H)).

Definition 12  (neighbor-hypercoreness) Given H = (V ,E) , the neighbor-
hypercoreness of v ∈ V  , denoted by cnbr(v) , is the maximum positive integer such
that v is in the neighbor-cnbr(v)-hypercore, i.e., cnbr(v) = max{k ∈ ℕ ∶ v ∈ V(Cnbr

k
)}.

Arafat et al. (2023) further extended the concept of neighbor-k-hypercores by
incorporating the information of the degree of each node, which leads to the con-
cept of (neighbor, degree)-(k, d)-hypercores.

Definition 13  ((neighbor, degree)-(k, d)-hypercores) Given a hypergraph
H = (V ,E) , and k, d ∈ ℕ , the (neighbor, degree)-(k, d) -hypercore of H,
denote by Cnd

k,d
(H) , is the maximal complete subhypergraph of H such that

each node in Cnd
k,d
(H) has at least k neighbors and has degree at least d (i.e.,

|N(v;Cnd
k,d
(H))| ≥ k ∧ d(v;Cnd

k,d
(H)) ≥ d,∀v ∈ Cnd

k,d
(H)).

Since two parameters are involved, we can have multiple ways to define the
hypercoreness w.r.t (neighbor, degree)-(k, d)-hypercores, and an intuitive and
straightforward way is as follows.

Definition 14  (neighbor-degree-hypercoreness) Given H = (V ,E) , the neighbor-
degree-hypercoreness of v ∈ V  , denoted by cnd(v) , is the maximum positive
integer such that v is in the neighbor-degree-(cnd(v), cnd(v))-hypercore, i.e.,
cnd(v) = max{k ∈ ℕ ∶ v ∈ V(Cnd

k,k
)}.

2398	 F. Bu et al..

1 3

Notably, the above two concepts consider only complete subhypergraphs, i.e.,
they still assume fragile hyperedges.

Simplicial complexes. Another way to take the subsets of hyperedges into consid-
eration is to use simplicial complexes (Torres et al. 2021). For example, Preti et al.
(2021) considered the computation of k-trusses in simplicial complexes. Similar
to clique expansion, converting hypergraphs into simplicial complexes also brings
information loss. Our work shows that considering the subsets of relations is mean-
ingful also when the data is modeled as hypergraphs; when the data is modeled as
hypergraphs, considering the subsets of the relations is also meaningful; and we pro-
vide a way to do so.

4 � Computation algorithms

In this section, we provide the computation algorithms of the proposed concepts:
(k, t)-hypercore, t-hypercoreness, and k-fraction. We also show their correctness and
time complexity.

2399

1 3

Hypercore decomposition for non-fragile...

4.1 � Computation of (k, t)‑hypercore

Algorithm 1 shows the process of finding a (k, t)-hypercore, where D maps the index
of a hyperedge to the original size of the hyperedge (in the original hypergraph
H = (V ,E) , D(i) = |ei|,∀i ∈ IE ). During the process, we remove each node
with degree less than k from all its incident hyperedges (Line 5) and delete each
hyperedge with the number of remaining nodes below the threshold (Lines 6 to 8).
Notably, in the threshold for hyperedges (Line 6), we also require the cardinality to
be at least 2 because of the definition of hypergraphs. When the degree of a node
decreases from k to k − 1 , it is added to the set of nodes to be removed in the next
round (Line 7).

Theorem 1  Given H = (V ,E) , k ∈ ℕ , and t ∈ [0, 1] , Algorithm 1 returns Ck,t(H) in
O(�V� + �E� + (1 − t)

∑
e∈E �e�) time.4

Proof  See Appendix A.6. 	� ◻

4  We assume that the input hypergraph is in the memory and thus do not count the complexity of loading
the hypergraph, which is O(

∑
e∈E �e�).

2400	 F. Bu et al..

1 3

4.2 � Computation of t‑hypercoreness

Algorithm 2 describes the process of computing t-hypercoreness. Essentially, by
the containment property w.r.t k, we repeatedly find the (k, t)-hypercore, while
increasing k until the remaining hypergraph becomes empty; and thus Algorithm 2
can also output the (k, t)-hypercores for the given t and all possible k with the same
time complexity as shown in Thm. 2.

Theorem 2  Given H = (V ,E) and t ∈ [0, 1] , Algorithm 2 returns ct(v) for all v ∈ V
in O(c∗

t
�V� + �E� + (1 − t)

∑
e∈E �e�) time.

Proof  See Appendix A.7. 	� ◻

4.3 � Computation of k‑fraction
Algorithm 3 shows the process of computing k-fraction. Similar to Algorithm 2,
we repeatedly find the (k, t)-hypercore while increasing t until an empty
hypergraph remains. We first find the minimum fraction t for the remaining
hyperedges (Line 7), i.e., at least one hyperedge will be totally removed if we
use any fraction strictly larger than t. We check the hyperedges that will be

2401

1 3

Hypercore decomposition for non-fragile...

immediately removed and collect the nodes that will consequently be removed
(Lines 8–11). Notably, Algorithm 3 can output the (k, t)-hypercores for the given
k and all possible t with the same time complexity in Thm. 3.

Theorem 3  Given H = (V ,E) and k ∈ ℕ , Algorithm 3 returns fk(v) for all v ∈ V in
O(

∑
e∈E �e�) time.

Proof  See Appendix A.8. 	� ◻

There are some existing works on improving the efficiency of the computation
of some related hypercore concepts (Luo et al. 2021, 2022; Arafat et al. 2023). We
leave potential improvements of our computation algorithms as future directions.

5 � Observations

In this section, we present observations with regard to our proposed concepts, on
real-world hypergraphs, from various perspectives. In particular, we show empirical
properties and patterns that are pervasive or shared within each domain.

Datasets In Tbl. 2, we report the basic statistics of the fourteen real-world hypergraph
datasets in six different domains used in this work (source: cs.cornell.edu/ arb/data).

For each dataset, we remove the hyperedges of cardinality 1. Although parallel
hyperedges are allowed in our framework, we only keep one copy of each group of
parallel hyperedges as in previous studies (Ko et al. 2022; Lee et al. 2020; Do et al.
2020; Lee et al. 2021).

5.1 � Patterns of (k, t)‑hypercore sizes

Due to the newly introduced parameter t, we have hypercores of different sizes
for different (k, t) pairs. In Fig. 2, we report the hypercore sizes (i.e., the number
of nodes in the hypercore) for different k and t, where the color represents the
size of the (k, t)-hypercore. Specifically, the color of the position (k, t) is the
color assigned to ñk,t∶= log|V| |V(Ck,t)| ∈ [0, 1] , for all (k, t) such that Ck,t ≠ ∅ .
Fig. 2 also shows f ∗

k
 for each k (see the boundary between the colored and empty

regions in each subfigure).
Similarity within each domain is observed in Fig. 2. To numerically measure

the similarity, we need to compare the size of all (k, t)-hypercores in different
hypergraphs. Since different hypergraphs may have different absolute sizes and
thus have different ranges of (k, t) pairs, normalization is needed. Given any
hypergraph H = (V ,E) , by the containment properties (Proposition 2),
1 ≤ c∗

t
≤ c∗

0
,∀t . Therefore, we can use the normalizer NH ∶ [0, 1] → {1, 2,… , c∗

0
}

defined by NH(x) = ⌈(c∗
0
)x⌉ . We then define the dissimilarity between two

hypercore sizes by their difference in log scale (as in Fig. 2), which is also
normalized in [0, 1]. Formally, the dissimilarity between two hypergraphs H1,H2

2402	 F. Bu et al..

1 3

at the normalized point (x, t) with x, t ∈ [0, 1] is
d̃(x, t;H1,H2):=min(|ñH1 (x),t

(H1) − ñH2 (x),t
(H2)|, 1) , where we let ñk,t = −1 if Ck,t is empty.

This dissimilarity can also be understood as the difference between the same
position of two subfigures in Fig. 2. Finally, we define the hypercore-size-mean-
difference (HSMD) distance, which lies between 0 and 1, as follows:

Definition 15  (Hypercore-size-mean-difference (HSMD) distance) Given two
hypergraphs H1 and H2 , the hypercore-size-mean-difference (HSMD) distance
between H1 and H2 is defined as

See Fig. 3 for the HSMD distance between each pair of datasets, where the
domain-based patterns are clearly shown by the small distance between those
datasets in the same domain.

Observation 1  (Domain-based patterns of (k, t)-hypercore sizes) Real-world
hypergraphs in the same domain usually have similar patterns of the hypercore sizes
with different k and t values, and the patterns vary from domain to domain.

HSMD(H1,H2)∶=

√

∫
1

0 ∫
1

0

(d̃(x, t;H1,H2))
2 dx dt.

Table 2   The basic statistics of the 14 real-world datasets from 6 domains used in our empirical
evaluations.See Table 5 in Appendix C for the number of hyperedges of different cardinality in each
dataset

Dataset |V| |E| max./avg. d(v) max./avg. |e|

Coauth-DBLP 1,831,126 2,169,663 846 / 4.06 25 / 3.42
Coauth-Geology 1,087,111 908,516 716 / 3.21 25 / 3.84
NDC-classes 1149 1047 221 / 5.57 24 / 6.11
NDC-substances 3438 6264 578 / 14.51 25 / 7.96
Contact-high 327 7818 148 / 55.63 5 / 2.33
Contact-primary 242 12,704 261 / 126.98 5 / 2.42
Email-Enron 143 1457 116 / 31.43 18 / 3.09
Email-Eu 979 24,399 910 / 86.93 25 / 3.49
Tags-ubuntu 3021 145,053 12,930 / 164.56 5 / 3.43
Tags-math 1627 169,259 13,949 / 363.80 5 / 3.50
Tags-SO 49,945 5,517,054 520,468 / 427.77 5 / 3.87
Threads-ubuntu 90,054 115,987 2170 / 2.97 14 / 2.31
Threads-math 153,806 535,323 11,358 / 9.08 21 / 2.61
Threads-SO 2,321,751 8,589,420 34,925 / 9.75 25 / 2.64

2403

1 3

Hypercore decomposition for non-fragile...

5.2 � Distributions of t‑hypercoreness

We now investigate the distributions of the t-hypercoreness of nodes with different t
values, which show common patterns. Heavy-tailed distributions, especially power-law
distributions, are observed in real-world (hyper)graphs w.r.t many different quantities
(McGlohon et al. 2008; Watts and Strogatz 1998; Albert and Barabási 2002; Adamic
et al. 2001; Ko et al. 2022; Lee and Shin 2021). In Fig. 4, for the t-hypercoreness
sequences of each dataset with t ∈ {0, 0.2, 0.4, 0.6, 0.8, 1} , we report the log-likelihood
ratio (R-value) of heavy-tailed distributions against the exponential distribution,
where a positive R-value indicates that heavy-tailed distributions are more promising.
In particular, we compute the log-likelihood ratio for two heavy-tailed distributions
(power-law and log-normal) and take the maximum. In most cases, the log-likelihood
ratio is positive, which supports the possibility that the t-hypercoreness follows heavy-
tailed distributions consistently regardless of the value of t. Notably, regarding the

Fig. 2   Domain-based patterns of (k, t)-hypercore sizes. The (k, t)-hypercore sizes vary depending on the
node-degree threshold k and the hyperedge-fraction threshold t with datasets grouped by domains. The
color indicates the size of the corresponding (k, t)-hypercore. The size and k are in a log scale

2404	 F. Bu et al..

1 3

distributions of k-fraction, we could not find any systematic pattern. Moreover, strong
power-law distributions are observed in some datasets. In Fig. 5, for two datasets, we
show the numbers of nodes with t-hypercoreness at least k with different k values with
different t values, together with the results of power-law fitting, i.e., linear regression in
log-log scale; and consistent power-law distributions of the t-hypercoreness sequences
are observed. In Table 3, we provide the full results of the heavy-tailed distribution
tests. Specifically, we report the log-likelihood ratio (R-value) of heavy-tailed
distributions against the exponential distribution, where a positive R-value indicates
that heavy-tailed distributions are more promising; and the p-values, where a small
p-value indicates that the heavy-tailed or exponential distribution is significant.

Observation 2  (Heavy-tailed distributions of t-hypercoreness) In most real-world
hypergraphs, t-hypercoreness follows heavy-tailed distributions regardless of t. In
particular, in some datasets, the t-hypercoreness strongly follows a power law.

5.3 � Heterogeneity of t‑hypercoreness

We show that t-hypercoreness is statistically different from several existing centrality
measures, and t-hypercoreness provides significantly different information depending
on t.

Correlations. To show (a) the distinctiveness of t-hypercoreness from existing
centrality measures, and (b) the dissimilarity between t-hypercoreness with different
t values, we first measure the Pearson correlation coefficients. In Fig. 6, we report
Pearson’s r between the t-hypercoreness sequences with different t values and each of
the degree and coreness sequences in the unweighted and weighted clique expansions.
We also report Pearson’s r between each pair of t-hypercoreness sequences. It is
observed that even for the same hypergraph, the hypercoreness sequences with different
t values can be fairly dissimilar.

Information gain. We also show from the perspective of information theory that
hypercoreness sequences with different t values contain different information. To this
end, we define the information gain.

Fig. 3   Datasets in the same
domain tend to have small
HSMD distance, while ones in
different domains usually have
large HSMD distance. The
average within-domain distance
0.166 and the global average
distance 0.323 are significantly
different with p = 8.6e−10 in
the t-test

2405

1 3

Hypercore decomposition for non-fragile...

Definition 16  (Information gain (Quinlan 1986)) Given H = (V ,E) , for i ∈ ℕ , define
Vi∶={v ∈ V ∶ d(v) = i} for i ∈ ℕ , and Vt

i
∶={v ∈ V ∶ ct(v) = i} . The information

gain of the t-hypercoreness sequence over the degree sequence is

H
t(H)∶= −

∑

i,j∈ℕ

|Vi ∩ Vt
j
|

n
log2

|Vi ∩ Vt
j
|

n
+
∑

i∈ℕ

|Vi|
n

log2
|Vi|
n

.

Fig. 4   t-Hypercoreness follows
heavy-tailed distributions
consistently. The maximum log-
likelihood ratio of two heavy-
tailed distributions (power-law
and log-normal) against the
exponential distribution for the
t-hypercoreness sequences with
different t values

Fig. 5   t-Hypercoreness consistently follows power-law distributions in some datasets. For the
NDC-classes and threads-ubuntu datasets with t ∈ {0, 0.6, 1} , we show the numbers of nodes with
t-hypercoreness at least k with different k values. Each red dashed line represents the result of power-
law fitting, i.e., the linear regression in log-log scale, with the R2 value above each subfigure. In the two
datasets, t-hypercoreness consistently and strongly follows a power law

2406	 F. Bu et al..

1 3

Ta
bl

e 
3  

T
he

 d
et

ai
le

d
st

at
ist

ic
s

on
 th

e
he

av
y-

ta
ile

d
di

str
ib

ut
io

n
te

sts
. F

or
 e

ac
h

da
ta

se
t a

nd
 e

ac
h
t
∈
{
0
,
0
.2
,
0
.4
,
0
.6
,
0
.8
,
1
}  ,

 w
e

re
po

rt
th

e
lo

g-
lik

el
ih

oo
d

ra
tio

 (
R-

va
lu

e)

of
 h

ea
vy

-ta
ile

d
di

str
ib

ut
io

ns
 a

ga
in

st
th

e
ex

po
ne

nt
ia

l
di

str
ib

ut
io

n
w

ith
 i

ts
 p

-v
al

ue
. I

n
m

os
t

ca
se

s,
th

e
R-

va
lu

e
is

 p
os

iti
ve

 a
nd

 t
he

 p
-v

al
ue

 i
s

sm
al

l,
w

hi
ch

 i
m

pl
ie

s
th

e
si

gn
ifi

ca
nc

e
of

 th
e

he
av

y-
ta

ile
d

di
str

ib
ut

io
ns

t
=
0

t
=
0
.2

t
=
0
.4

t
=
0
.6

t
=
0
.8

t
=
1

D
at

as
et

R-
va

lu
e

p-
va

lu
e

R-
va

lu
e

p-
va

lu
e

R-
va

lu
e

p-
va

lu
e

R-
va

lu
e

p-
va

lu
e

R-
va

lu
e

p-
va

lu
e

R-
va

lu
e

p-
va

lu
e

C
oa

ut
h-

D
B

LP
15

6.
75

7.
24

e−
13

18
4.

96
7.

28
e−

16
13

9.
27

3.
36

e−
13

50
.8

0
0.

00
1

16
85

.1
4

1.
45

e−
40

11
7.

76
4.

75
e−

56
C

oa
ut

h-
G

eo
lo

gy
10

6.
38

3.
06

e−
11

83
.2

1
7.

70
e−

8
31

.5
2

6.
86

e−
8

17
.8

0
9.

57
e−

5
10

49
.0

1
0.

0
98

9.
44

0.
0

N
D

C
-c

la
ss

es
45

.3
2

4.
38

e−
6

36
4.

85
5.

80
e−

24
10

3.
93

4.
90

e−
14

28
2.

71
1.

06
e−

42
29

0.
16

4.
21

e−
45

24
2.

25
1.

28
e−

41
N

D
C

-s
ub

st
an

ce
s

30
.9

0
2.

34
e−

5
26

.9
5

0.
00

06
1

26
08

.9
9

4.
33

e−
20

8
18

84
.0

7
6.

54
e−

17
1

11
75

.0
6

8.
51

e−
91

22
1.

15
2.

78
e−

24
C

on
ta

ct
-h

ig
h

16
.1

5
3.

20
e−

20
16

.1
5

3.
20

e−
20

16
.1

5
3.

20
e−

20
16

.7
6

0.
00

40
0.

70
0.

48
0.

70
0.

48
C

on
ta

ct
-p

rim
ar

y
0.

19
0.

23
0.

19
0.

23
0.

19
0.

23
13

6.
51

1.
75

e−
16

12
7.

81
6.

41
e−

13
12

7.
81

6.
41

e−
13

Em
ai

l-E
nr

on
0.

29
0.

73
2.

05
0.

24
2.

67
0.

06
3

8.
43

0.
02

4
1.

55
2.

4e
−

26
7

0.
22

0.
76

Em
ai

l-E
u

−
0.

47
0.

60
0.

05
0.

97
2.

40
3.

77
e−

9
83

.6
9

2.
05

e−
11

−
0.

28
0.

36
11

.2
6

0.
00

5
Ta

gs
-u

bu
nt

u
20

1.
24

4.
28

e−
21

20
1.

24
4.

28
e−

21
20

1.
24

4.
28

e−
21

83
.6

9
2.

05
e−

11
−

14
.6

8
5.

76
e−

6
−

17
.4

0
1.

30
e−

32
Ta

gs
-m

at
h

8.
81

0.
06

8.
81

0.
06

8.
81

0.
06

15
.3

1
0.

02
7

−
17

.9
6

1.
03

e−
9

−
14

.3
4

0.
00

05
2

Ta
gs

-S
O

61
6.

59
2.

41
e−

29
61

6.
59

2.
41

e−
29

36
17

.2
4

8.
07

e−
22

2
21

89
.2

5
5.

27
e−

23
4

−
17

.4
0

1.
30

e−
32

Th
re

ad
s-

ub
un

tu
27

9.
41

2.
09

e−
22

27
8.

50
2.

71
e−

22
25

9.
53

8.
96

e−
22

13
0.

95
1.

15
e−

14
11

9.
14

8.
15

e−
14

22
6.

74
6.

06
e−

41
Th

re
ad

s-
m

at
h

22
6.

30
1.

45
e−

23
22

5.
66

1.
68

e−
23

51
92

.5
0

2.
08

e−
28

2
11

46
1.

10
0.

0
33

05
.6

4
0.

0
66

32
.5

3
0.

0
Th

re
ad

s-
SO

44
4.

93
3.

47
e−

57
43

6.
37

4.
84

e−
56

15
3.

14
6.

50
e−

19
−

23
.8

3
7.

24
e−

8
60

02
.4

6
0.

0
26

82
.9

0
4.

64
e−

10
2

2407

1 3

Hypercore decomposition for non-fragile...

The higher the information gain a hypercoreness sequence has, the more finely
the nodes can be divided by the corresponding degree-hypercoreness pairs. In Fig. 7,
we report the information gain for different t values. The highest information gain is
achieved by different t values in different datasets, and hypergraphs in the same domain
show similar patterns. In summary:

Observation 3  (Heterogeneity of t-hypercoreness) In real-world hypergraphs, the
t-hypercoreness of nodes provides statistically and information-theoretically distinct
information depending on t.

Fig. 6   Statistical difference exists between t-hypercoreness and other centrality measures, as well
as among t-hypercoreness with different t. Left: the Pearson correlation coefficients between the
t-hypercoreness sequences with different t and each of the degree and coreness sequences in the
unweighted (coreness-U) and weighted (coreness-W) clique expansions. Right: the Pearson correlation
coefficient between each pair of t-hypercoreness sequences. See Fig. 15 in Appendix C for the results on
other datasets

2408	 F. Bu et al..

1 3

6 � Applications

In this section, we present some successful applications of our proposed concepts to
demonstrate their usefulness.

6.1 � Influential‑node identification

It is well-known that in pairwise graphs, coreness is a good indicator of influential
nodes (Kitsak et al. 2010). However, influential-node identification in hypergraphs
is still underexplored, while some trials have been done (Zhu et al. 2018a; Antelmi
et al. 2021). We use the SIR model, a widely-used epidemic model. The model
is straightforwardly generalized so that it can be used on hypergraphs, where the
probability of a susceptible node being infected by the infected nodes in a hyperedge
is proportional to the proportion of infected nodes in the hyperedge. At each time
step, each infected node recovers with a given probability ( � ) independently. We
simulate the hyperSIR (see Algorithm 4) process assuming a single initially infected
node. In Algorithm 4, we show the process of hyperSIR. In the relatively large
datasets (coauth-DBLP, coauth-Geology, and threads-SO), we randomly draw 10%
of the nodes, and perform the simulation 100 times for each seed node. In the other
datasets, we simulate 10, 000 times for each node as the seed.

We investigate the relations between the average number of ever-infected nodes
and the following quantities of the seed node in addition to t -hypercoreness and
degree:

•	 Neighbor-hypercoreness (Arafat et al. 2023): see Definition 12 (abbreviation:
nbr-hypercoreness);

•	 Neighbor-degree-hypercoreness (Arafat et al. 2023): see Definition 14
(abbreviation: nd-hypercoreness);

2409

1 3

Hypercore decomposition for non-fragile...

•	 Coreness in the unweighted (coreness-U) / weighted (coreness-W) clique
expansion;

•	 Eigencentrality in unweighted (eigencentrality-U)/ weighted (eigencentrality-W)
clique expansion;

•	 Hyper-eigencentrality (Tudisco and Higham 2021): three different versions,
linear (hyperEC-L), log-exp (hyperEC-LE), and max (hyperEC-M);

•	 � -hypercoreness (Limnios et al. 2021): see Definition 9.5

We also consider two supervised machine-learning methods. Specifically, we apply
node2vec (Grover and Leskovec 2016) to the unweighted clique expansion of each
dataset, and we apply a self-supervised hypergraph learning method TriCL (Lee
and Shin 2023) (which is based on the architecture proposed by Feng et al. (2019))
directly to the original hypergraphs. Both additional baseline methods output node
embeddings of dimension 128. For each dataset, we sample 10% of the nodes (for
the three relatively large datasets where we only use 10% of the nodes, we sample
1% of the total nodes, i.e., 10% of the 10% ) uniformly at random and provide the
ground-truth influence of the sampled nodes.6 For both methods, we apply linear
regression using the node embeddings as the features, and then we use the fitted

Fig. 7   t-Hypercoreness has substantial information gain over degree, and it provides distinct information
depending on t. The average Pearson’s r between the information gain sequences is 0.232 overall and
0.890 within domains. The two values are significantly different with 5.0e−9 as the p-value of the t-test.
See Appendix C for the results on other datasets and the results using other quantities

5  Recall that �-hypercoreness with � = 2 is include in t-hypercoreness with t = 0 . For each dataset,
we apply min-max normalization to all the possible � values with � ≥ 3 so that t-hypercoreness and �
-hypercoreness can fit in the same x-axis with the range [0, 1].
6  The average performance over five independent trials is reported.

2410	 F. Bu et al..

1 3

linear regression model to predict the influence of the nodes. Due to the scalability
issues, results of them are unavailable on some large datasets.

We take the largest connected component of each dataset, as in previous works
on pairwise graphs (Kitsak et al. 2010). For simplicity, we use � = 1 , and choose
� ∈ {0.05, 0.025, 0.01, 0.005, 0.0025} to avoid the cases when almost all seed
nodes lead to similar results. For the email-Eu dataset, Fig. 9 shows the detailed
relations between the average number of ever-infected nodes (i.e., final |R| ) and
each of the aforementioned quantities, with the best-fitted lines. Figure 8 shows
the Pearson correlation coefficient between the average number of ever-infected
nodes and each quantity. The comparison between t-hypercoreness and the
coreness in clique expansions validates the information loss brought by the clique
expansions. On most of the datasets, at least one among the t-hypercoreness with
t ∈ {0,

1

2
,
2

3
, 1} works better than all the other baseline methods. On the remaining

datasets, t-hypercoreness with a proper t value ranks second. Moreover, even if we
always use the t-hypercoreness with t = 1

2
 , t-hypercoreness still outperforms all

the baseline methods on 10 out of 14 datasets. In practice, we may sample a small
number of nodes and choose the t value that is most influence-indicative (w.r.t the
Pearson correlation coefficient) on the sampled set of nodes. For this purpose, we
use the same 10% nodes (or 1% for some large datasets) that are used as a training
set for the machine-learning methods. In Table 4, for each dataset, we show (1)
the most indicative t value in each of the five trials, (2) the performance and rank
of t-hypercoreness averaged on the five trials,7 and (3) the performance and rank
of t-hypercoreness with the best t values among the four candidate values. We
can observe that a well-performing t value is always found (although the chosen t
values may vary), and t-hypercoreness performs well and stably, almost always
outperforming all the baselines.

Observation 4  (Influence indicativeness of t-hypercoreness) In real-world
hypergraphs, t-hypercoreness identifies influential nodes well. In most cases,
t-hypercoreness with a proper t is the best indicator of influential nodes among all
considered centrality measures. In different hypergraphs, the t value maximizing the
correlation between t-hypercoreness and node influence varies, and in most cases,
such t is neither 0 nor 1.

6.2 � Dense substructure discovery

Intuitively, (k, t)-hypercores are not limited to complete subhypergraphs. Thus,
they can be denser than complete subhypergraphs, which previous works (Hua

7  We count �-hypercoreness with each � value as a separate method ( � = 2 is not counted since it is
already included in the concept of t-hypercoreness with t = 0).

2411

1 3

Hypercore decomposition for non-fragile...

et al. 2023; Luo et al. 2021, 2022; Gabert et al. 2021a, b; Sun et al. 2020) focus
on.

Given H = (V ,E) , we define its density as �(H) = |E|∕|V| . In Fig. 10, for each
dataset and each t ∈ [0, 1] , we show the relative density of the (c∗

t
, t)-hypercore,

which is defined as 𝛿t = 𝛿(Cc∗t ,t
)∕𝛿(H) . Note that the hypercores are significantly

denser than the whole hypergraph, especially when t is small. In addition, except
for the tags-SO dataset, the similarity between hypergraphs in the same domain is
observed. Similar to the normalized hypercore-size-mean-difference (HSMD) dis-
tance used in Sect. 5.1, we define the relative-density-mean-difference (RDMD)
distance between two hypergraphs to measure the similarity of the patterns.

Definition 17  (Relative-density-mean-difference (RDMD) distance) Given two
hypergraphs H1 and H2 , the relative-density-mean-difference (RDMD) distance
between H1 and H2 is defined as

See Fig. 11 for the RDMD distance between each pair of datasets.

Observation 5  (Density of (k, t)-hypercores) In real-world hypergraphs, (k, t)-
hypercores are dense, and the density tends to decrease as t increases. The relative
density with respect to t tends to be similar in hypergraphs in the same domain.

We utilize the high density of (k, t)-hypercores for the max (kc, tc)-vertex cover
problem below, where we say a hyperedge e is tc-covered by a set of nodes V ′ if
|e ∩ V �| ≥ tc|e|.

Problem 1  (max (kc, tc)-vertex cover problem) given a hypergraph H = (V ,E) ,
kc ∈ ℕ and tc ∈ (0, 1] , the max (kc, tc)-vertex cover problem aims to find

V∗ ∈

(
V

kc

)
∶={V � ⊂ V ∶ |V �| = kc} such that the number of hyperedges tc-covered

by V∗ is maximized.

In our experiments, we compare three different algorithms:

•	 tc-Hypercoreness: kc nodes with highest tc-hypercoreness in H are chosen (tie
broken by node-degrees);

•	 Degree kc nodes with highest degree in H are chosen;
•	 Greedy it first chooses the node with the highest degree and greedily chooses a

node that increases the number of tc-covered hyperedges most until kc nodes are
chosen.

RDMD(H1,H2)∶=

√

∫
1

0

(log 𝛿t(H1) − log 𝛿t(H2))
2 dt.

2412	 F. Bu et al..

1 3

In each dataset, we track the count of tc-covered hyperedges by the kc nodes
chosen by each algorithm while varying kc from 10 to 100. Then, we divide each
count by the count obtained by the degree algorithm in the same setting. The relative
counts are averaged over all datasets for tc ∈ {0.6, 0.7, 0.8} and reported in Fig. 12.
We choose those tc values because they require a majority of, but not all of, the
constituent nodes to cover a hyperedge. On average, the algorithm tc-hypercoreness
outperforms the other two algorithms, with clear superiority when tc ∈ {0.6, 0.7}.

6.3 � Hypergraph vulnerability detection

Through the observations and applications, we have shown the significance of the
proposed concepts and the importance of nodes in the (k, t)-hypercore with large k
values. Thus, in order to reinforce the engagement of nodes in a hypergraph (e.g.,

Table 4   Results of t-hypercoreness by choosing the t values based on sampled nodes. Sampled nodes:
the results where the t values are chosen based on sampled nodes. Ground-truth best: the results where
for each dataset, the best t value is chosen among the candidate values. Best t: the most indicative t value
(in each of the five trials, or among the candidate values). Perm.: the average performance (the Pearson
correlation coefficient; the higher the better) over the five trials. Rank: the rank (the lower the better)
among all the baseline methods and each considered one (i.e., the result based on sampled nodes or using
the ground-truth best t value)

Sampled nodes Ground-truth best

Dataset Best t Perm Rank Best t Perm Rank

Coauth-DBLP (
1

2
,
1

2
,
1

2
,
1

2
,
1

2
) 0.927 ± 0.000 1 1

2
0.927 1

Coauth-Geology (
1

2
,
1

2
,
1

2
,
1

2
,
1

2
) 0.930 ± 0.000 1 1

2
0.930 1

NDC-classes (
1

2
,
1

2
,
1

2
,
2

3
,
2

3
) 0.939 ± 0.001 2 1

2
0.940 2

NDC-substances (
2

3
,
2

3
,
2

3
,
2

3
,
2

3
) 0.959 ± 0.000 1 2

3
0.959 1

Contact-high (0, 0, 0, 0, 0) 0.947 ± 0.000 1 0 0.947 1
Contact-primary (0, 0,

2

3
,
2

3
, 1) 0.970 ± 0.007 1 2

3
0.975 1

Email-Enron (
2

3
,
2

3
,
2

3
,
2

3
,
2

3
) 0.960 ± 0.000 1 2

3
0.960 1

Email-Eu (
1

2
,
1

2
,
1

2
,
2

3
,
2

3
) 0.975 ± 0.003 1 2

3
0.977 1

Tags-ubuntu (1, 1, 1, 1, 1) 0.970 ± 0.000 2 1 0.970 2
Tags-math (1, 1, 1, 1, 1) 0.990 ± 0.000 1 1 0.990 1
Tags-SO (1, 1, 1, 1, 1) 0.844 ± 0.000 2 1 0.844 2
Threads-ubuntu (

2

3
,
2

3
,
2

3
,
2

3
,
2

3
) 0.938 ± 0.000 1 2

3
0.938 1

Threads-math (
2

3
,
2

3
,
2

3
,
2

3
,
2

3
) 0.971 ± 0.000 1 2

3
0.971 1

Threads-SO (
2

3
,
2

3
,
2

3
,
2

3
,
2

3
) 0.962 ± 0.000 1 2

3
0.962 1

2413

1 3

Hypercore decomposition for non-fragile...

user engagement in online social networks), intuitively, the (k, t)-hypercores should
be paid close attention to. From another perspective, we should protect the nodes
whose deletions will cause a large number of nodes to leave the (k, t)-hypercores.
For example, online social network providers should try to make such nodes stay.
Based on such ideas, in pairwise graphs, the collapsed k-core problem (Zhang
et al. 2017a) and its variants (Zhu et al. 2018b, 2019) have been considered to
find the critical users whose deletions reduce the size of k-core most, i.e., the most
vulnerable nodes in the k-core. We generalize the problem to hypergraphs based on
our proposed concepts.

Problem 2  (Collapsed (k, t)-hypercore problem) Given a hypergraph H = (V ,E) ,
k ∈ ℕ , t ∈ [0, 1] , and b ∈ ℕ . The collapsed (k, t)-hypercore problem aims to find

B ∈

(
V

b

)
 so that the size (i.e., the number of nodes) of (k, t)-hypercore is mini-

mized when all nodes in B are removed from H.

Fig. 8   t-Hypercoreness is consistently indicative of influence in all datasets. We show the Pearson
correlation coefficients between the average number of ever-infected nodes and each of the considered
quantity of the seed node. See Fig. 17 in Appendix C for the results on other datasets

2414	 F. Bu et al..

1 3

Fig. 9   t-Hypercoreness with a proper t value is the best indicator of influence among all considered
centrality measures (Dataset: email-Eu). The red dashed line represents the best-fitted line, and the
R2 value is shown above each subfigure. The full results on all the datasets are in the supplementary
document (Bu et al. 2023)

2415

1 3

Hypercore decomposition for non-fragile...

Fig. 10   Overall, hypercores are much denser than the whole hypergraph, and the density decreases as t
increases. For each dataset, we report the relative density of the (c∗

t
, t)-hypercore (i.e., the (k, t)-hypercore

with maximal k) w.r.t t 

Fig. 11   The RDMD distance
is small between datasets in
the same domain (0.456 in
average) while the overall
average is 1.741; the two means
are significantly different with
p = 0.0035 in the t-test. We
report the RDMD distance
between each pair of datasets
except for tag-SO 

Fig. 12   Nodes chosen by tc-hypercoreness cover most hyperedges. The performance of tc-hypercoreness,
degree, and greedy in solving the max (kc, tc)-vertex cover problem

2416	 F. Bu et al..

1 3

Algorithm 5 (with nc = −1 ) shows the generalization of CKC (Zhang et al.
2017a), which was originally designed for the collapsed k-core problem, to the
collapsed (k, t)-hypercore problem. Following CKC, in each round, we find a best
collapser (i.e., a node that reduces the size of (k, t)-hypercore most) in the candidate
set T, and update the (k, t)-hypercore after removing the chosen collapser, until all
b collpasers are chosen. However, the naive generalization encounters the following
problems:

•	 CKC only considers simple pairwise graphs. In simple pairwise graphs, where
at most one edge exists between each node pair, the candidate set T, i.e., the
set of nodes whose deletion will result in the removal of some other node,
simply consists of the neighbors of the nodes with degree k. In hypergraphs,
two nodes may co-exist in multiple hyperedges. Therefore, we need to
additionally check the number of endangered hyperedges in the set Ẽ , where
endangered hyperedges are the ones with exactly the minimum size satisfying

2417

1 3

Hypercore decomposition for non-fragile...

the threshold determined by t. Furthermore, we need to count each node pair
in each endangered hyperedge, which is time-consuming with time complexity
O(

∑
e∈E� �e�2) (Line 12). To make the situation worse, this process is repeated

in each round (b times in total).
•	 CKC computes the k-core after removing each candidate to evaluate the

candidates. Similarly, (k, t)-hypercore computation is required for each
candidate (Line 19), where the number of all candidates can be large.
Compared to core computation with time complexity linear in the number of
edges (Batagelj and Zaversnik 2003), as shown in Thm. 1, (k, t)-hypercore
computation has considerably higher time complexity.

We propose HyCoM (Hyper-Core Minimization) and the further-optimized
HyCoM+, which are described in Algorithm 5, to address the above problems
with the following improvements:

•	 Only checking the most promising candidates Although we may have a large
number of candidates, not every candidate is likely to be the best collapser.
Intuitively, we may set a maximum number of candidates to check in each
round ( nc ≪ T  ) and only check the most promising ones. The technique
reduces the time of hypercore decompositions in each round from O(T)
to O(nc) , which gives HyCoM. We further improve the algorithm by the
following two techniques and have HyCoM+.

•	 Sorting candidates by the number of direct followers In HyCoM, the degrees
are used to sort the candidates and to find the promising ones. However, the
degree does not always imply a node’s ability in (hyper)core minimization.
The direct followers ( F(⋅) in Line 14, i.e., the nodes that will leave the
hypercore immediately due to the deletion) of each candidate are accessible
without additional cost during the process of finding candidates, and the
number of direct followers provides a lower bound for the total number
of followers. Thus, we use the number of direct followers to find the most
promising candidates (Line 15).

•	 Incremental update of the endangered hyperedges It is necessary to find the
endangered hyperedges, and we incrementally update the set whenever the
hypercore is updated (Line 24) instead of computing it from scratch in each
round. By doing so, during the whole process, Ẽ is constructed from scratch only
once. The number of hyperedges needed to be checked in each round is the size
of the symmetric difference between the current set of endangered hyperedges
and that in the previous round, which is empirically much less than the total
number of hyperedges in the hypercore.

Algorithms. The algorithms to compare are as follows:

•	 hyperCKC: the naive generalization of CKC, which is equivalent to HyCoM
with nc = −1;

•	 HyCoM-nc : HyCoM with nc ∈ {1, 10, 100};
•	 HyCoM+: HyCoM+ with nc = 1 , i.e., the fastest version.

2418	 F. Bu et al..

1 3

Settings. We conducted all the experiments on a machine with i9-10900K CPU
and 64GB RAM. All algorithms are implemented in C++, and complied by
G++ with O3 optimization.

Results. We show the results on five relatively large datasets: coauth-
DBLP, coauth-Geology, tags-SO, threads-math, and threads-SO, and use
k = 10 and t = 0.6 . Full results, where we use different datasets and different
(k, t) values, are in Table 7 in Appendix C. In Fig. 13, we report the running
time and the reduction in the size of (k, t)-hypercore size when using different
algorithms with b = 100 , where HyCoM+ shows outstanding efficiency and
competent effectiveness. We do not count the time used on the initial (k, t)-
hypercore computation since it is common in all algorithms. In particular, in
the tag-SO, thread-math, and threads-SO datasets, the performance of HyCoM+
is comparable or even better than that of hyperCKC while HyCoM+ is 16.5-
27.9× faster than hyperCKC. Besides, on the largest dataset threads-SO whose
input hypercore has 301K nodes and 5.7M hyperedges, HyCoM+ takes only
38.2 seconds. In Fig. 14, we show the linear scalability w.r.t the budget and
the hypercore size of HyCoM and HyCoM+, where we generate synthetic
hypergraphs by upscaling the original ones. In particular, we duplicate each
hyperedge up to 64× , which is simple and generates realistic hypergraphs.

7 � Related work

k-Hypercores. The concept of k-cores in pairwise graphs was first proposed in
(Seidman 1983) and has been used for various applications (Shin et al. 2018a;
Alvarez-Hamelin et al. 2008, 2006; Peng et al. 2014; Corominas-Murtra et al. 2014;
Luo et al. 2009; Wood and Hicks 2015; Malliaros et al. 2020). Most previous works
(Hua et al. 2023; Luo et al. 2021, 2022; Gabert et al. 2021a, b; Sun et al. 2020)
are based on the straightforward generalization of k-cores to hypergraphs assuming
fragile hyperedges (i.e., a hyperedge is removed when any node leaves it), which
is included in the proposed (k, t)-hypercore with t = 1 . Limnios et al. (2021) and
Vogiatzis (2013) considered a variant where each hyperedge is kept until only one
node remains in it, which is equivalent to the (�, �)-core in bipartite graphs (Liu
et al. 2020; Sarıyüce and Pinar 2018) with (�, �) = (k, 2) , and the proposed (k, t)-
hypercore with t = 0 . No existing work has investigated the spectrum between the
two extreme cases above, which is covered by our proposed concepts.

Generalized k-cores. Zhang and Parthasarathy (2012) generalized k-cores to tri-
angle k-cores, which are also known as k-trusses, to extract the information in pair-
wise graph. Peng et al. (2018) generalized k-cores on uncertain graphs, where each
edge exists in a probabilistic way. Specifically, they considered the problem of k-core
decomposition on uncertain graphs, and propose the concept of (k, �)-cores. Wang
et al. (2018) generalized k-cores on geo-social networks. Specifically, they proposed
the radius-bounded k-core by taking the spatial constraints into consideration. Zhang
et al. (2020) generalized k-cores to (k, p)-cores. Specifically, given k and p, they
further required each node in the (k, p)-core to have at least p fraction of its neigh-
bors in the (k, p)-core. Lu et al. (2022) further investigated (k, p)-cores on dynamic

2419

1 3

Hypercore decomposition for non-fragile...

graphs. Bonchi et al. (2019) generalized k-cores to (k, h)-cores. Specifically, they
relaxed the node-degree condition by requiring each node in the (k, h)-cores to have
at least k other nodes at a distance at most h, i.e., to have at least k h-hop neighbors.
Dai et al. (2021) further investigated (k, h)-cores. Zhang et al. (2017b) generalized
k-cores to (k, r)-cores, where they took the similarity between each pair of nodes
w.r.t the attributes also into consideration. Victor et al. (2021) generalized k-cores by
combining multiple node properties and introducing the notion of data depth. Chen
et al. (2021) generalized triangle k-cores, i.e., k-trusses to (k, �)-trusses, by taking the
h-hop neighbors of each node into consideration, which is based on a similar idea
of the (k, h)-cores (Bonchi et al. 2019). Sarıyüce and Pinar (2018) and Shin et al.
(2018b) proposed to find dense substructures in bipartite graphs and tensors, respec-
tively, by adapting the standard ‘peeling’ algorithm for obtaining the k-core. Gabert
et al. (2021b) used k-nuclei, a generalization of k-cores and k-trusses, to detect dense
substructures. Preti et al. (2021) generalized k-trusses to simplicial complexes.

Patterns in real-world hypergraphs. Do et al. (2020) proposed to convert
hypergraphs into pairwise graphs where each k-subset of the node set is regarded as a
node in the converted graph and found some pervasive structural patterns. Lee et al.
(2020) defined hypergraph motifs that depict the connectivity patterns among each
of three connected hyperedges. They revealed that the frequencies of hypergraph
motifs are similar in hypergraphs in the same domain. Lotito et al. (2022) also
studied hypergraph motifs using different definitions, and Kim et al. (2023) recently

Fig. 13   HyCoM+ shows outstanding efficiency and comparable effectiveness. Given budget b = 100 ,
we show the average running time over ten trials and the amount of reduction in the size of the
(10, 0.6)-hypercore by different algorithms

2420	 F. Bu et al..

1 3

studied motifs in simplicial complexes.8 Lee et al. (2021) defined the degree of
overlaps of hyperedges and found some patterns related to the overlap. Moreover,
temporal patterns have also been explored (Ko et al. 2022; Benson et al. 2018a, b).
Structural properties (e.g., node centrality measures, the number of graph motifs
involving each node) have been used as features of nodes in pairwise graphs (Cui
et al. 2022; He et al. 2021). We believe that structural properties on hypergraphs
can also be useful for feature representation (Arya et al. 2020), especially as inputs
of hypergraph neural networks (Feng et al. 2019; Jiang et al. 2019; Liao et al. 2021;
Bai et al. 2021; Huang and Yang 2021; Chien et al. 2021; Gao et al. 2022; Kim et al.
2022; Xia et al. 2022; Lee and Shin 2023; Wu and Ling 2023; Han et al. 2023).

Influential-node identification in hypergraphs. Besides the trivial degree
centrality, a variety of node centrality measures (e.g., eigenvector centrality
(Bonacich and Lloyd 2001) and coreness (Kitsak et al. 2010)) have been used to
find influential nodes in pairwise graphs (Rossi et al. 2015), and some have been
generalized to hypergraphs (Benson 2019). Overall, influential-node identification
in hypergraphs is still underexplored, although some analyses have been made (Zhu
et al. 2018a; Antelmi et al. 2021; Xie et al. 2023; Li et al. 2023). We provide an
efficient and effective metric for practical use.

8 � Conclusion

In this paper, we proposed the notion of (k, t)-hypercores and some related concepts
(Definitions 5-7) for which we presented the theoretical properties (Propositions 1-
2) and computation algorithms (Algorithms 1-3) with analyses (Theorems 1-
3). Through extensive experiments on real-world hypergraphs, we presented
interesting findings from various perspectives (Observations 1-5), including striking
similarities of the hypercore structure within each domain. We also demonstrated

Fig. 14   HyCoM + has linear scalability w.r.t the budget and the hypercore size. On the left, we show the
running time of HyCoM-1 and HyCoM+ with b increasing. On the right, we show the running time of
HyCoM-1 and HyCoM+ while upscaling the tags-SO dataset ( b = 100 ). HyCoM+ takes less than 10
minutes (574 s) when the total size of the input hypergraph is 1.37B ( 64× upscaled)

8  Simplicial complexes can be seen as a special class of hypergraphs.

2421

1 3

Hypercore decomposition for non-fragile...

the usefulness of the proposed concepts in identifying influential nodes (Figs. 8-9),
detecting dense substructures (Fig. 12), and revealing vulnerabilities (Figs. 13-14).
For reproducibility, we made the code and datasets publicly available online (Bu
et al. 2023).

A. Proofs

A.1 Proof of proposition 1

Proof  Since H is finite, the number of subhypergraphs of H is also finite. Therefore,
there exists one subhypergraph with maximal total size (which is possibly an empty
hypergraph) where each node has degree at least k and at least t proportion of the
constituent nodes remain in each hyperedge, completing the proof of existence. To
show the uniqueness, suppose the opposite, and let C1 = (V1,E1) and C2 = (V2,E2)
be two distinct (k, t)-hypercores of H. Then we consider the hypergraph C� = (V �,E�)
with E� = {e1

i
∪ e2

i
∶ i ∈ IE1 ∪ IE2} . Clearly, C′ is a subhypergraph of H with a larger

total size that satisfies the node-degree and hyperedge-fraction conditions, which
contradicts the maximality and completes the proof. 	� ◻

A.2 Proof of proposition 2

Proof  Suppose that Ck,t2
(H) is not a subhypergraph of Ck,t1

(H) . Then we take the
union Ck,t2

(H) ∪ Ck,t1
(H) and we obtain a hypergraph that is strictly larger than

Ck,t1
(H) and satisfies the conditions of (k, t1)-hypercore, which contradicts with the

maximality, completing the proof. The second statement can be proved similarly. 	
� ◻

A.3 Proof of lemma 1

Proof  This equivalence is immediate by two facts. First, for each node v ∈ V  , the
degree of v in H is equal to the degree of v in Gbp(H) . Second, for each hyperedge
e ∈ E , the number of nodes in e is equal to the degree of e in Gbp(H) . With the
above two facts, this equivalence immediately follows. 	� ◻

A.4 Proof of lemma 2

Proof  By Definition 5, when t = 0 , the definition of Ck;t=0(H) is the maximal
subhypergraph of H where (1) every node in Ck,t=0(H) has degree at least k and (2)
at least two nodes remain in every hyperedge of Ck,t=0(H) . Such a definition exactly
coincides with C̃k;�=2(H) , completing the proof. 	� ◻

2422	 F. Bu et al..

1 3

A.5 Proof of lemma 3

We can understand the differences between (k;�)-hypercores and (k, t)-hypercores
by two intuitions. When we obtain the (k;�)-hypercore of a given H with � > 2 ,
all hyperedges of cardinality 2 are removed in the first place. Therefore, if we want
to find an � such that C̃k;� = Ck,t where Ck,t contains any hyperedge of cardinality
2, the only possible � value is � = 2 . Since the threshold in the (k, t)-hypercore is
proportional, it imposes different absolute cardinality thresholds for hyperedges
of different sizes. On the contrary, the (k;�)-hypercore imposes the same absolute
cardinality threshold for each hyperedge. We shall show two counterexamples from
the two intuitions above.

Proof  Consider H = (V ,E) with E = {{1, 2}, {1, 3}{1, 2, 3, 4}, {1, 3, 4, 5, 6}}. The
(k = 2, t = 3∕4)-hypercore of H consists of the hyperedges {{1, 2}, {1, 3}, {1, 2, 3}},
where the hyperedge {1, 3, 4, 5, 6} is totally removed since only 3∕5 < t = 3∕4
of the constituent nodes remain by the node-degree threshold k = 2 . For the
(k;�)-hypercore, the (k = 2;� = 2)-hypercore of H consists of the hyperedges
{{1, 2}, {1, 3}, {1, 2, 3, 4}, {1, 3, 4}} ; the (k = 2;� = 3)-hypercore of H consists of
the hyperedges {{1, 3, 4}, {1, 3, 4}} ; when � ≥ 4 , the (k = 2;�)-hypercore of H is
empty, completing the proof.

We show another counterexample. Consider H = (V ,E) with E = {{1, 2, 3, 4},

{1, 2, 5, 6}, {5, 6, 7, 8}, {3, 4, 9, 10, 11}, {1, 2, 3, 4, 5, 6, 7, 8}}. The (k = 3, t = 1∕2)

-hypercore of H consists of the hyperedges {{1, 2}, {1, 2, 5, 6}, For the (k;�)
-hypercore, when � = 2 , the (k = 3;� = 2)-hypercore of H consists of the
hyperedges {{1, 2, 3, 4}, {1, 2, 5, 6}, {5, 6}, {3, 4}, {1, 2, 3, 4, 5, 6}}; when � ≥ 3 , the
(k = 3;�)-hypercore of H is empty, completing the proof. 	� ◻

Remark 1  Our proposed (k, t)-hypercore allows arbitrarily fine-grained adjustment
since the value of t is continuous in [0, 1], while � must be an integer. In real-world
hypergraphs, many hyperedges are of cardinality 2. Therefore, the (k;�)-hypercore
with � > 2 is significantly less meaningful than the (k, t)-hypercore since many
hyperedges are not taken into consideration at all. See Tbl. 5 for the detailed number
of hyperedges of different cardinality in each dataset we have used. See Figs. 8 and 9
for the performance of hypercoreness w.r.t (k;�)-hypercore to indicate the influence
of nodes. Note again that the (k;� = 2)-hypercore is included in our proposed
concept as the (k, t = 0)-hypercore. We observe that in most datasets, the (k;�)
-hypercores become less meaningful and fail to indicate the influence of nodes when
� becomes large, as expected.

A.6 Proof of theorem 1

Proof  Correctness. The size of a hyperedge changes only when some node in R
is removed from it, and the degree of a node changes only when some incident
hyperedge is removed. Therefore, when Algorithm 1 ends, each node has degree
at least k, otherwise it must have been included in R and removed, and each

2423

1 3

Hypercore decomposition for non-fragile...

hyperedge satisfies the hyperedge-fraction condition, otherwise it must have been
removed. This implies that the output of Algorithm 1 satisfies both the node-degree
and hyperedge-fraction conditions w.r.t H, k, and t. We now show the maximality.
Suppose not, and let (v, ei) be the first node-hyperedge pair that appears during the
process of Algorithm 1 with v ∈ ei ∈ E(Ck,t) but v ∉ e�

i
∈ E� , where C� = (V �,E�)

is the returned hypergraph. This implies that v is removed from e, and thus v is
included in R because its degree has been below k. However, by the definition of the
(k, t)-hypercore and the assumption that (v, ei) is the first pair, before the deletion,
the degree of v is at least k, which completes the proof by contradiction.

Time complexity. We assume the input hypergraph has been loaded in the
memory and thus do not count the complexity of loading the hypergraph. Checking
the initial degrees (Line 1) takes O(|V|) . In the while loop, each node is added to the
set of nodes to be removed at most once since each node is added exactly when its
degree decreases from k to k − 1 . Therefore, this process takes O(|V|) . By checking
the incident edges of each node in R , we find all e′

i
 s intersecting with R , which takes

O(|R|) = O(|V|) . Hash tables are used to implement the sets. Before a hyperedge
e ∈ E is totally removed, at least max (⌈t�e�⌉, 2) nodes remain in it (otherwise it has
been removed earlier), and thus it can be visited at most �e� −max (⌈t�e�⌉, 2) + 1
times (because one node is removed at each time). This process takes
O(

∑
e∈E(�e� −max (⌈t�e�⌉, 2) + 1)) = O(�E� + (1 − t)

∑
e∈E �e�) . Therefore, the total

time complexity is O(�V�) + O(�E� + (1 − t)
∑

e∈E �e�) = O(�E� + (1 − t)
∑

e∈E �e�) . 	
� ◻

A.7 Proof of theorem 2

Proof  Correctness. For each node v, the assignment of ct(v) happens only once when
v ∈ R , i.e., before its deletion. By Theorem 1, ct(v) = k − 1 implies that v is not in
the (k, t)-hypercore but in the previous (k�, t)-hypercore where each node has degree
at least k − 1 , i.e., v is in the (k − 1, t)-hypercore.

Time complexity. The values of k increases O(c∗
t
) times, thus the process

in Lines 4 and 5 is repeated for O(c∗
t
) times and takes O(c∗

t
|V|) . The assignment

of t-hypercoreness of each node (Line 7) takes O(|V|) . As shown in the proof of
Theorem 1, each hyperedge is visited at most �e� −max(⌈t�e�⌉, 2) + 1 times before
being deleted and each node is added to the set of nodes to be removed only once.
Therefore, the remaining process takes O(�V� + �E� + (1 − t)

∑
e∈E �e�) . 	� ◻

A.8 Proof of theorem 3

Proof  Correctness. For each node v, the assignment of fk(v) happens only once
when v ∈ R , i.e., before its deletion. By Theorem 1, fk(v) = t implies that v is in
the (k, t)-hypercore with degree k and is in at least one hyperedge that is in the (k, t)-
hypercore but not in any (k, t�)-hypercore with t′ > t . Therefore, v is not in any (k, t�)
-hypercore with t′ > t.

2424	 F. Bu et al..

1 3

Ta
bl

e 
5  

T
he

 n
um

be
r o

f h
yp

er
ed

ge
s

of
 d

iff
er

en
t c

ar
di

na
lit

y
in

 e
ac

h
da

ta
se

t.
Fo

r e
ac

h
da

ta
se

t,
w

e
lis

t t
he

 n
um

be
r o

f h
yp

er
ed

ge
s

of
 e

ac
h

sp
ec

ifi
c

si
ze

. S
pe

ci
fic

al
ly

, i
n

m
os

t
da

ta
se

ts
, a

 la
rg

e
nu

m
be

r o
f h

yp
er

ed
ge

s a
re

 o
f c

ar
di

na
lit

y
2.

 W
e

us
e
E
s t

o
de

no
te

 th
e

se
t o

f h
yp

er
ed

ge
s o

f c
ar

di
na

lit
y

s,
fo

r e
ac

h
s 

D
at

as
et

|E
|

|E
2
| (

%
)

|E
3
| (

%
)

|E
4
| (

%
)

|E
5
| (

%
)

�⋃
s>

5
E
s
� (

%
)

C
oa

ut
h-

D
B

LP
2,

16
9,

66
3

69
3,

36
4

(3
1.

96
)

66
7,

30
2

(3
0.

76
)

41
9,

43
1

(1
9.

33
)

20
5,

96
5

(0
9.

49
)

18
3,

60
1

(0
8.

46
)

C
oa

ut
h-

G
eo

lo
gy

90
8,

51
6

27
5,

73
6

(3
0.

35
22

7,
95

0
(2

5.
09

)
15

9,
50

9
(1

7.
56

99
,1

40
 (1

0.
91

)
14

6,
18

1
(1

6,
09

N
D

C
-c

la
ss

es
10

47
29

7
(2

8.
37

)
12

1
(1

1.
56

%
)

12
5

(1
1.

94
)

94
 (0

8.
98

)
41

0
(3

9.
16

)
N

D
C

-s
ub

st
an

ce
s

62
64

11
30

 (1
8.

04
)

74
5

(1
1.

89
)

53
5

(0
8.

54
%

)
50

0
(0

7.
98

%
)

33
54

 (5
3.

54
)

C
on

ta
ct

-h
ig

h
78

18
54

98
 (7

0.
32

)
20

91
 (2

6.
75

)
22

2
(0

2.
84

)
7

(0
0.

09
)

0
(0

0.
00

)
C

on
ta

ct
-p

rim
ar

y
12

,7
04

77
48

 (6
0.

99
)

46
00

 (3
6.

21
)

34
7

(0
2.

73
)

7
(0

0.
09

)
0

(0
0.

00
)

Em
ai

l-E
nr

on
14

57
80

9
(5

5.
53

)
31

7
(2

1.
76

)
13

8
(0

9.
47

)
63

 (0
4.

32
)

13
0

(0
8.

92
)

Em
ai

l-E
u

24
,3

99
12

,7
53

 (5
2.

27
)

49
38

 (2
0.

24
)

22
94

 (0
9.

40
)

13
59

 (0
5.

57
)

30
55

 (1
2.

52
)

Ta
gs

-u
bu

nt
u

14
5,

05
3

28
,1

38
 (1

9.
40

)
52

,2
82

 (3
6.

04
)

39
,1

58
 (2

7.
00

)
25

,4
75

 (1
7.

56
)

0
(0

0.
00

)
Ta

gs
-m

at
h

16
9,

25
9

25
,2

53
 (1

4.
92

)
63

,8
70

 (3
7.

74
)

50
,8

92
 (3

0.
07

)
29

,2
44

 (1
7.

28
)

0
(0

0.
00

)
Ta

gs
-S

O
5,

51
7,

05
4

39
9,

05
1

(0
7.

23
)

1,
53

7,
70

2
(2

7.
87

)
1,

94
7,

54
2

(3
5.

30
%

)
1,

63
2,

75
9

(2
9.

59
)

0
(0

0.
00

)
Th

re
ad

s-
ub

un
tu

11
5,

98
7

88
,3

01
 (7

6.
13

)
21

,6
21

 (1
8.

64
)

4,
56

0
(0

3.
93

)
1,

11
7

(0
0.

96
)

38
8

(0
0.

33
)

Th
re

ad
s-

m
at

h
53

5,
32

3
31

9,
60

1
(5

9.
70

)
14

2,
06

5
(2

6.
54

)
49

,1
98

 (0
9.

19
)

16
,4

02
 (0

3.
06

)
80

57
 (0

1.
51

)
Th

re
ad

s-
SO

8,
58

9,
42

0
5,

21
0,

91
6

(6
0.

67
)

2,
10

2,
20

8
(2

4.
47

)
78

7,
70

1
(0

9.
17

)
29

9,
17

2
(0

3.
48

)
18

9,
42

3
(0

2.
21

)

2425

1 3

Hypercore decomposition for non-fragile...

Time complexity. Recording the hyperedge sizes (Line 1) takes O(|E|) . By
Theorem 1, computing Ck,0 (Line 2) takes O(

∑
e∈E �e�) . As shown in the previous

proofs, the while loop (Lines 4 to 12) takes O(�V� + �E� +∑
e∈E �e�) = O(

∑
e∈E �e�) . 	

� ◻

Details of datasets

In this section, we provide more details of the datasets used in our experiments.

•	 Coauth-DBLP/Geology. In these two coauthorship hypergraphs, each hyperedge
represents a publication, and the constituent nodes of a hyperedge represent the
authors of the corresponding publication.

•	 NDC-classes/substances. In these two hypergraphs from the National Drug
Code (NDC) Directory, each hyperedge represents a drug (with its unique NDC
code), and the constituent nodes of a hyperedge represent the class labels (for
NDC-classes) or the ingredients (for NDC-substances) of the drug.

•	 Contact-high/primary. In these two contact hypergraphs, each hyperedge
represents a group of interacting individuals (the constituent nodes) within a
predetermined time period.

Table 6   For each dataset, we report the information gain over degree, for each of the considered
quantities: �-hypercoreness with � ∈ {3, 4, 5} , neighbor-hypercoreness, and neighbor-degree-
hypercoreness

Dataset � = 3 � = 4 � = 5 Neighbor Neighbor-degree

Coauth-DBLP 1.386 1.470 1.273 3.053 0.701
Coauth-Geology 1.239 1.394 1.313 3.262 0.447
NDC-classes 1.186 1.190 1.159 2.515 0.592
NDC-substances 1.221 1.459 1.607 3.974 0.975
Contact-high 1.456 0.893 0.173 1.685 1.231
Contact-primary 0.725 0.534 0.204 0.886 0.545
Email-Enron 1.228 1.176 1.114 1.340 1.020
Email-Eu 1.706 1.654 1.627 1.929 1.305
Tags-ubuntu 2.104 2.176 1.919 2.734 1.467
Tags-math 1.489 1.683 1.531 1.876 1.203
Tags-SO 2.530 3.213 3.007 4.046 2.219
Threads-ubuntu 0.967 0.451 0.207 1.253 0.409
Threads-math 1.510 1.061 0.616 2.146 0.626
Threads-SO 1.738 1.261 0.801 2.394 0.930

2426	 F. Bu et al..

1 3

•	 Email-Enron/Eu. In these two email hypergraphs, each hyperedge represents an
email (possibly sent to multiple people individually at the same time), which
contains the sender and all the receivers as its constituent nodes.

•	 Tags-ubuntu/math/SO. In these three tags hypergraphs from https://​stack​overf​
low.​com/, each node represents a tag, and each hyperedge represents a question,
where each constituent node represents a tag applied to the question.

•	 Threads-ubuntu/math/SO. In these three threads hypergraphs also from https://​
stack​overf​low.​com/, each hyperedge represents a thread, where each constituent
node represents a person that participates in it.

Fig. 15   Supplementary results for Fig. 6

https://stackoverflow.com/
https://stackoverflow.com/
https://stackoverflow.com/
https://stackoverflow.com/

2427

1 3

Hypercore decomposition for non-fragile...

We have used the preprocessed version of the datasets where each hyperedge con-
sists of at most 25 nodes. In Table 5, we report the number of hyperedges of dif-
ferent cardinality in each dataset. Notably, on https://​www.​cs.​corne​ll.​edu/​~arb/​data/,
the full version of the datasets, in which the cardinality of the hyperedges is not
limited, is also available.

Additional experimental results

In this section, we provide additional experimental results supplementing the main
text. In Fig. 15, we report the results regarding the statistical difference between
t-hypercoreness and other centrality measures, as well as among t-hypercore-
ness with different t, on the datasets not covered in the main text. In Fig. 16, we
report the results regarding the information gain over degree, on the datasets not
covered in the main text. In Table 6, for each dataset, we report the information
gain over degree for the following quantities: �-hypercoreness with � ∈ {3, 4, 5},9

Fig. 16   Supplementary results for Fig. 7

9  The case � = 2 is included in the proposed concept of t-hypercoreness with t = 0.

https://www.cs.cornell.edu/%7earb/data/

2428	 F. Bu et al..

1 3

neighbor-hypercoreness, and neighbor-degree-hypercoreness (Definitions. 9, 12,
and 14). Notably, we do not claim that higher information gain is always better,
since degree is still a reason measure by cohesiveness, and being too different from
degrees can be negative as a cohesiveness measure. In Fig. 17, we report the results
on influential-node identification, on the datasets not covered in the main text. In
Table 7, we report the full results of the collapsed (k, t)-hypercore problem.

Fig. 17   Supplementary results for Fig. 8

2429

1 3

Hypercore decomposition for non-fragile...

Ta
bl

e 
7  

F
ul

l r
es

ul
ts

 o
f t

he
 c

ol
la

ps
ed

 (k
, t

)-
hy

pe
rc

or
e

pr
ob

le
m

 ( b
=
1
0
0
 ).

Ti
m

e:
 ru

nn
in

g
tim

e
(in

 se
co

nd
s)

. R
ed

.:
re

du
ct

io
n

in
 th

e
hy

pe
rc

or
e

si
ze

H
y
pe

r
CK

C
H

y
C
o
M

-1
H

y
C
o
M

-1
0

H
y
C
o
M

-1
00

H
y
C
o
M

+

D
at

as
et

k
t

Ti
m

e
Re

d
Ti

m
e

Re
d

Ti
m

e
Re

d
Ti

m
e

Re
d

tT
m

e
Re

d

C
oa

ut
h-

D
B

LP
5

0
63

.0
1

11
76

15
.8

0
68

0
16

.4
4

72
9

17
.5

0
81

2
5.

37
10

88
5

0.
2

63
.3

8
11

85
15

.8
7

69
1

16
.4

7
73

8
17

.5
4

81
9

5.
41

10
91

5
0.

4
70

.4
3

13
78

18
.2

1
83

1
18

.8
7

89
7

19
.9

1
98

6
6.

28
12

50
5

0.
6

11
3.

38
25

36
34

.1
7

16
75

35
.0

0
17

95
36

.1
8

19
69

11
.8

3
22

59
5

0.
8

13
0.

19
66

81
43

.2
1

44
87

43
.9

0
50

75
45

.8
6

57
85

13
.8

8
59

43
5

1
87

.7
5

75
23

25
.4

0
59

14
26

.1
0

61
08

27
.9

3
67

52
8.

70
67

31
10

0
50

.4
2

11
81

9.
74

66
1

10
.0

8
69

9
11

.3
7

83
2

2.
51

10
08

10
0.

2
50

.8
2

11
95

9.
74

67
6

10
.2

1
71

6
11

.4
6

85
2

2.
55

10
19

10
0.

4
56

.9
4

14
62

11
.3

8
84

4
11

.7
8

87
7

13
.1

3
10

01
3.

08
12

06
10

0.
6

75
.0

3
27

98
16

.0
5

16
21

16
.4

5
17

11
18

.1
4

20
50

4.
30

23
28

10
0.

8
0.

24
26

99
0.

03
4

27
42

0.
05

1
26

99
0.

13
26

99
0.

13
27

40
20

0
33

.3
2

12
51

5.
21

59
0

5.
45

63
2

6.
72

78
8

1.
02

94
5

20
0.

2
33

.5
6

12
86

5.
24

58
8

5.
50

61
7

6.
73

80
2

1.
03

10
00

20
0.

4
34

.7
2

15
58

5.
14

74
9

5.
41

78
4

6.
71

10
03

1.
11

12
06

20
0.

6
13

.6
7

28
17

2.
06

18
13

2.
19

19
75

3.
17

22
88

0.
51

22
18

2430	 F. Bu et al..

1 3

Ta
bl

e 
7  

(c
on

tin
ue

d)

H
y
pe

r
CK

C
H

y
C
o
M

-1
H

y
C
o
M

-1
0

H
y
C
o
M

-1
00

H
y
C
o
M

+

D
at

as
et

k
t

Ti
m

e
Re

d
Ti

m
e

Re
d

Ti
m

e
Re

d
Ti

m
e

Re
d

tT
m

e
Re

d

C
oa

ut
h-

G
eo

lo
gy

5
0

16
.6

5
85

9
3.

83
34

3
4.

03
35

2
4.

44
42

3
1.

35
70

8
5

0.
2

16
.7

9
87

7
3.

84
34

4
4.

05
35

2
4.

46
42

9
1.

36
72

0
5

0.
4

20
.5

5
11

20
4.

60
38

6
4.

86
40

3
5.

26
51

8
1.

77
86

5
5

0.
6

36
.5

8
20

04
9.

22
66

0
9.

58
68

6
10

.0
7

91
4

3.
29

15
78

5
0.

8
32

.3
2

53
34

7.
58

29
92

7.
92

31
64

8.
45

39
86

2.
53

38
91

5
1

4.
67

72
94

0.
94

94
98

0.
94

95
76

1.
24

95
36

0.
47

68
91

10
0

12
.8

1
85

6
2.

65
31

6
2.

77
32

8
3.

14
42

3
0.

64
72

0
10

0.
2

12
.9

7
85

7
2.

68
33

1
2.

80
34

9
3.

17
44

1
0.

65
71

5
10

0.
4

16
.8

1
11

32
3.

34
37

4
3.

49
38

6
3.

89
52

4
0.

85
92

6
10

0.
6

21
.5

1
26

52
3.

92
91

4
4.

03
96

6
4.

61
13

11
1.

03
18

67
10

0.
8

0.
00

27
29

9
0.

00
23

38
8

0.
00

27
29

9
0.

00
27

29
9

0.
03

38
8

20
0

9.
08

94
0

1.
73

31
9

1.
81

33
0

2.
14

46
2

0.
29

68
9

20
0.

2
9.

18
97

7
1.

74
33

4
1.

81
34

3
2.

22
47

6
0.

30
71

3
20

0.
4

10
.1

3
14

70
1.

78
52

8
1.

85
55

0
2.

23
74

2
0.

32
11

05
20

0.
6

0.
03

1
45

9
0.

00
93

52
9

0.
01

4
45

9
0.

03
0

45
9

0.
03

3
52

7

2431

1 3

Hypercore decomposition for non-fragile...

Ta
bl

e 
7  

(c
on

tin
ue

d)

H
y
pe

r
CK

C
H

y
C
o
M

-1
H

y
C
o
M

-1
0

H
y
C
o
M

-1
00

H
y
C
o
M

+

D
at

as
et

k
t

Ti
m

e
Re

d
Ti

m
e

Re
d

Ti
m

e
Re

d
Ti

m
e

Re
d

tT
m

e
Re

d

ta
gs

-S
O

5
0

19
1.

84
10

42
42

.0
3

93
0

55
.6

6
96

2
10

8.
93

10
12

7.
87

10
42

5
0.

6
36

1.
12

21
03

11
1.

72
19

24
12

5.
07

19
68

18
4.

97
20

56
18

.8
3

21
02

5
0.

8
60

5.
38

96
69

18
5.

49
92

32
20

8.
27

93
06

29
6.

96
95

50
25

.3
9

96
63

5
1

48
8.

02
15

,5
60

15
2.

06
15

,0
57

17
7.

59
15

,1
50

25
2.

22
15

,5
17

20
.0

5
15

,5
52

10
0

20
2.

64
12

58
42

.0
3

11
26

55
.6

5
11

60
10

7.
56

12
03

8.
26

12
56

10
0.

6
38

0.
46

26
38

11
0.

93
24

23
12

4.
09

24
50

18
5.

16
26

09
18

.9
9

26
40

10
0.

8
60

9.
48

11
,2

53
17

9.
73

10
,9

19
20

3.
65

11
,0

35
29

1.
75

11
,2

27
24

.3
1

11
,2

44
10

1
47

6.
07

16
,9

50
14

5.
35

16
,6

87
16

9.
36

16
,7

50
24

0.
98

16
,9

47
19

.4
4

16
,9

51
20

0.
4

21
3.

17
13

28
41

.3
8

11
98

54
.9

4
12

24
10

7.
45

13
13

8.
49

13
27

20
0.

6
39

4.
77

29
05

10
8.

75
27

43
12

2.
38

7
27

96
18

3.
53

28
85

18
.9

9
29

00
20

0.
8

58
6.

81
11

,4
31

16
6.

97
11

,1
47

19
0.

06
11

,2
54

27
5.

55
11

,4
39

22
.9

8
11

,4
38

20
1

44
5.

40
16

,4
27

13
1.

03
16

,3
02

15
3.

92
16

,3
55

21
9.

95
16

,4
27

18
.1

2
16

,4
37

2432	 F. Bu et al..

1 3

Ta
bl

e 
7  

(c
on

tin
ue

d)

H
y
pe

r
CK

C
H

y
C
o
M

-1
H

y
C
o
M

-1
0

H
y
C
o
M

-1
00

H
y
C
o
M

+

D
at

as
et

k
t

Ti
m

e
Re

d
Ti

m
e

Re
d

Ti
m

e
Re

d
Ti

m
e

Re
d

tT
m

e
Re

d

Th
re

ad
s-

m
at

h
5

0
18

.6
5

45
49

2.
89

43
19

3.
61

43
95

7.
04

45
43

0.
70

45
52

5
0.

4
18

.7
1

45
64

2.
92

43
45

3.
62

44
19

7.
12

45
57

0.
70

45
67

5
0.

6
21

.2
3

53
39

3.
93

52
09

4.
62

52
59

8.
35

53
39

0.
91

53
36

5
0.

8
32

.8
9

93
66

8.
31

92
62

9.
52

92
96

14
.5

3
93

66
1.

72
93

59
5

1
32

.6
1

97
41

8.
59

96
19

9.
74

96
70

14
.5

4
97

41
1.

72
97

31
10

0
15

.9
3

27
08

2.
40

25
45

3.
02

25
95

6.
33

26
97

0.
50

27
08

10
0.

4
16

.0
8

27
22

2.
45

25
65

3.
07

26
15

6.
39

27
13

0.
51

27
08

10
0.

6
18

.9
3

33
18

3.
26

32
28

3.
96

32
41

7.
65

3.
31

6
0.

67
33

20
10

0.
8

22
.8

6
56

18
4.

78
55

22
5.

71
55

82
9.

51
56

18
0.

94
56

08
10

1
21

.4
9

57
73

4.
53

56
44

5.
32

57
07

8.
96

57
68

0.
87

57
60

20
0

13
.0

6
16

58
1.

95
15

73
2.

49
15

98
5.

59
16

61
0.

37
16

73
20

0.
4

13
.2

5
16

91
1.

99
15

94
2.

55
16

23
5.

64
16

90
0.

38
16

83
20

0.
6

16
.1

2
21

57
2.

62
20

99
3.

29
21

43
6.

69
21

60
0.

49
21

59
20

0.
8

12
.8

0
36

93
2.

09
36

27
2.

63
36

67
5.

03
36

92
0.

43
37

01
20

1
10

.8
3

36
25

1.
68

35
89

2.
12

36
16

4.
25

36
35

0.
36

36
22

2433

1 3

Hypercore decomposition for non-fragile...

Ta
bl

e 
7  

(c
on

tin
ue

d)

H
y
pe

r
CK

C
H

y
C
o
M

-1
H

y
C
o
M

-1
0

H
y
C
o
M

-1
00

H
y
C
o
M

+

D
at

as
et

k
t

Ti
m

e
Re

d
Ti

m
e

Re
d

Ti
m

e
Re

d
Ti

m
e

Re
d

tT
m

e
Re

d

Th
re

ad
s-

SO
5

0
63

4.
38

13
,7

39
18

3.
04

11
,9

27
18

6.
79

12
,2

09
20

5.
62

13
,0

83
41

.6
4

13
,7

36
5

0.
4

64
2.

64
13

,7
48

18
2.

99
11

,9
35

18
7.

02
12

,2
16

20
5.

41
13

,0
93

41
.6

0
13

,7
45

5
0.

6
65

3.
52

15
,0

50
22

4.
97

13
,4

62
22

7.
72

13
,6

59
24

0.
00

14
,5

36
49

.0
5

15
,0

46
5

0.
8

14
09

.6
6

31
,3

83
52

2.
59

29
,3

17
52

9.
38

30
,1

98
56

5.
72

31
,1

33
11

2.
59

31
,3

36
5

1
15

92
.0

6
36

,0
82

57
2.

42
34

,0
44

58
0.

25
34

,6
63

63
8.

44
35

,9
13

13
3.

73
36

,0
13

10
0

56
2.

91
84

25
14

8.
98

74
32

15
4.

16
75

32
17

0.
28

81
00

29
.8

7
84

17
10

0.
4

56
4.

14
84

49
14

9.
99

74
56

15
3.

27
75

58
17

0.
84

81
24

30
.0

8
84

33
10

0.
6

64
1.

40
10

,1
00

20
4.

75
92

10
20

5.
99

93
31

21
9.

53
98

79
38

.3
5

10
,0

65
10

0.
8

11
05

.5
9

21
,2

02
34

0.
25

19
,4

90
34

6.
77

19
,8

19
37

5.
53

21
,0

91
67

.1
2

21
,0

99
10

1
11

31
.4

7
23

,2
34

34
2.

87
22

,0
56

34
9.

27
22

,3
11

38
2.

53
23

,0
58

66
.8

8
23

,1
15

20
0

47
7.

38
51

55
12

0.
34

45
02

12
3.

52
46

21
14

0.
99

49
43

19
.3

1
51

24
20

0.
4

48
2.

70
51

77
12

3.
59

45
39

12
8.

87
46

45
14

5.
46

49
67

19
.6

6
51

54
20

0.
6

61
0.

01
70

60
16

5.
86

64
57

17
0.

97
65

91
18

7.
87

68
89

28
.2

1
70

19
20

0.
8

69
0.

80
14

,1
29

15
8.

07
13

,6
22

16
1.

77
13

,7
25

18
5.

95
14

,0
29

27
.3

4
14

,0
09

20
1

53
3.

83
14

,7
34

10
9.

77
14

,2
59

11
3.

39
14

,3
58

13
4.

04
14

,6
14

20
.6

5
14

,4
61

2434	 F. Bu et al..

1 3

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s10618-​023-​00956-2.

Funding  This work was supported by National Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (No. NRF-2020R1C1C1008296) and Institute of Information & Communi-
cations Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No.
2022-0-00871, Development of AI Autonomy and Knowledge Enhancement for AI Agent Collaboration)
(No. 2019-0-00075, Artificial Intelligence Graduate School Program (KAIST)).

Declarations 

Conflict of interest  The authors have no relevant financial or non-financial interests to disclose.

References

Adamic LA, Lukose RM, Puniyani AR et al. (2001) Search in power-law networks. Phys Rev E
64(4):046–135

Albert R, Barabási AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74(1):47
Alvarez-Hamelin JI, Dall’Asta L, Barrat A, et al. (2006) Large scale networks fingerprinting and

visualization using the k-core decomposition. In: NeurIPS
Alvarez-Hamelin JI, Dall’Asta L, Barrat A et al. (2008) K-core decomposition of internet graphs:

hierarchies, self-similarity and measurement biases. Netw Heterog Media 3(2):371
Antelmi A, Cordasco G, Spagnuolo C et al. (2021) Social influence maximization in hypergraphs.

Entropy 23(7):796
Arafat NA, Khan A, Rai AK, et al. (2023) Neighborhood-based hypergraph core decomposition. PVLDB

16
Arya D, Gupta DK, Rudinac S, et al. (2020) Hypersage: Generalizing inductive representation learning

on hypergraphs. arXiv preprint arXiv:​2010.​04558
Bai S, Zhang F, Torr PH (2021) Hypergraph convolution and hypergraph attention. Pattern Recogn

110(107):637
Batagelj V, Zaversnik M (2003) An o(m) algorithm for cores decomposition of networks. In: arXiv
Benson AR (2019) Three hypergraph eigenvector centralities. SIAM J Math Data Sci 1(2):293–312
Benson AR, Abebe R, Schaub MT et al. (2018) Simplicial closure and higher-order link prediction.

PNAS 115(48):E11221–E11230
Benson AR, Kumar R, Tomkins A (2018b) Sequences of sets. In: KDD
Blanco R, Lioma C (2012) Graph-based term weighting for information retrieval. Inf Retr 15(1):54–92
Bodó Á, Katona GY, Simon PL (2016) Sis epidemic propagation on hypergraphs. Bull Math Biol

78(4):713–735
Bonacich P, Lloyd P (2001) Eigenvector-like measures of centrality for asymmetric relations. Social

Netw 23(3):191–201
Bonchi F, Khan A, Severini L (2019) Distance-generalized core decomposition. In: SIGMOD
Bu F, Lee G, Shin K (2023) Code, datasets, and supplementary materials. https://​github.​com/​bokve​izen/​

non-​fragi​le-​hyper​core
Chein M, Mugnier ML (2008) Graph-based knowledge representation: computational foundations of

conceptual graphs. Springer
Chen Z, Yuan L, Han L, et al. (2021) Higher-order truss decomposition in graphs. In: TKDE
Chien E, Pan C, Peng J, et al. (2021) You are allset: a multiset function framework for hypergraph neural

networks. arXiv preprint arXiv:​2106.​13264
Corominas-Murtra B, Fuchs B, Thurner S (2014) Detection of the elite structure in a virtual multiplex

social system by means of a generalised k-core. PLoS ONE 9(12):e11,2606
Cui H, Lu Z, Li P, et al. (2022) On positional and structural node features for graph neural networks on

non-attributed graphs. In: CIKM
Dai Q, Li RH, Qin L, et al. (2021) Scaling up distance-generalized core decomposition. In: CIKM
Debnath S, Ganguly N, Mitra P (2008) Feature weighting in content based recommendation system using

social network analysis. In: WWW​

https://doi.org/10.1007/s10618-023-00956-2
https://doi.org/10.1007/s10618-023-00956-2
http://arxiv.org/abs/2010.04558
https://github.com/bokveizen/non-fragile-hypercore
https://github.com/bokveizen/non-fragile-hypercore
http://arxiv.org/abs/2106.13264

2435

1 3

Hypercore decomposition for non-fragile...

Do MT, Yoon Se, Hooi B, et al. (2020) Structural patterns and generative models of real-world
hypergraphs. In: KDD

Feng Y, You H, Zhang Z, et al. (2019) Hypergraph neural networks. In: AAAI
Gabert K, Pinar A, Çatalyürek ÜV (2021a) Shared-memory scalable k-core maintenance on dynamic

graphs and hypergraphs. In: IPDPSW
Gabert K, Pinar A, Çatalyürek ÜV (2021b) A unifying framework to identify dense subgraphs on

streams: Graph nuclei to hypergraph cores. In: WSDM
Gao Y, Feng Y, Ji S, et al. (2022) Hgnn+ : General hypergraph neural networks. IEEE Transactions on

Pattern Analysis and Machine Intelligence
Grover A, Leskovec J (2016) node2vec: Scalable feature learning for networks. In: Proceedings of

the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp
855–864

Han Z, Zheng X, Chen C, et al. (2023) Intra and inter domain hypergraph convolutional network for
cross-domain recommendation. In: WWW​

He T, Ong YS, Bai L (2021) Learning conjoint attentions for graph neural nets. In: NeurIPS
Hua QS, Zhang X, Jin H et al. (2023) Revisiting core maintenance for dynamic hypergraphs. IEEE Trans

Parallel Distrib Syst 34:981–994
Huang J, Yang J (2021) Unignn: a unified framework for graph and hypergraph neural networks. arXiv

preprint arXiv:​2105.​00956
Jiang J, Wei Y, Feng Y, et al. (2019) Dynamic hypergraph neural networks. In: IJCAI
Kim H, Ko J, Bu F, et al. (2023) Characterization of simplicial complexes by counting simplets beyond

four nodes. In: WWW​
Kim J, Oh S, Cho S, et al. (2022) Equivariant hypergraph neural networks. In: ECCV
Kitsak M, Gallos LK, Havlin S et al. (2010) Identification of influential spreaders in complex networks.

Nat Phys 6(11):888–893
Ko J, Kook Y, Shin K (2022) Growth patterns and models of real-world hypergraphs. KAIS

64(11):2883–2920
Konstantinova EV, Skorobogatov VA (2001) Application of hypergraph theory in chemistry. Discret

Math 235(1–3):365–383
Lee D, Shin K (2023) I’m me, we’re us, and i’m us: Tri-directional contrastive learning on hypergraphs.

In: AAAI
Lee G, Shin K (2021) Thyme+: Temporal hypergraph motifs and fast algorithms for exact counting. In:

ICDM
Lee G, Ko J, Shin K (2020) Hypergraph motifs: concepts, algorithms, and discoveries. PVLDB

13(11):2256–2269
Lee G, Choe M, Shin K (2021) How do hyperedges overlap in real-world hypergraphs? - patterns,

measures, and generators. In: WWW​
Leskovec J, Kleinberg J, Faloutsos C (2007) Graph evolution: Densification and shrinking diameters.

TKDD 1(1):2–es
Li P, Wang H, Li K, et al. (2023) Influence without authority: Maximizing information coverage in

hypergraphs. In: SDM
Liao X, Xu Y, Ling H (2021) Hypergraph neural networks for hypergraph matching. In: ICCV
Limnios S, Dasoulas G, Thilikos DM, et al. (2021) Hcore-init: Neural network initialization based on

graph degeneracy. In: ICPR
Liu B, Yuan L, Lin X et al. (2020) Efficient ( � , �)-core computation in bipartite graphs. VLDB J

29(5):1075–1099
Lotito QF, Musciotto F, Montresor A et al. (2022) Higher-order motif analysis in hypergraphs. Commun

Phys 5(1):79
Lu Z, Zhu Y, Zhong M, et al. (2022) On time-optimal (k, p)-core community search in dynamic graphs.

In: ICDE
Luo F, Li B, Wan XF, et al. (2009) Core and periphery structures in protein interaction networks. In:

BMC bioinformatics
Luo Q, Yu D, Cai Z, et al. (2021) Hypercore maintenance in dynamic hypergraphs. In: ICDE
Luo Q, Yu D, Cai Z et al. (2022) Toward maintenance of hypercores in large-scale dynamic hypergraphs.

VLDB J 32:1–18
Malliaros FD, Giatsidis C, Papadopoulos AN et al. (2020) The core decomposition of networks: theory,

algorithms and applications. VLDB J 29:61–92

http://arxiv.org/abs/2105.00956

2436	 F. Bu et al..

1 3

Mastrandrea R, Fournet J, Barrat A (2015) Contact patterns in a high school: a comparison between data
collected using wearable sensors, contact diaries and friendship surveys. PloS one 10(9):e0136497

McGlohon M, Akoglu L, Faloutsos C (2008) Weighted graphs and disconnected components: patterns
and a generator. In: KDD

Mihalcea R, Radev D (2011) Graph-based Natural Language Processing and Information Retrieval.
Cambridge University Press

Peng C, Kolda TG, Pinar A (2014) Accelerating community detection by using k-core subgraphs. In:
arXiv

Peng Y, Zhang Y, Zhang W, et al. (2018) Efficient probabilistic k-core computation on uncertain graphs.
In: ICDE

Preti G, De Francisci Morales G, Bonchi F (2021) Strud: Truss decomposition of simplicial complexes.
In: WWW​

Qu C, Tao M, Yuan R (2018) A hypergraph-based blockchain model and application in internet of things-
enabled smart homes. Sensors 18(9):2784

Quinlan JR (1986) Induction of decision trees. Mach Learn 1:81–106
Rossi MEG, Malliaros FD, Vazirgiannis M (2015) Spread it good, spread it fast: Identification of

influential nodes in social networks. In: WWW​
Sarıyüce AE, Pinar A (2018) Peeling bipartite networks for dense subgraph discovery. In: WSDM
Seidman SB (1983) Network structure and minimum degree. Social Netw 5(3):269–287
Shin K, Eliassi-Rad T, Faloutsos C (2018) Patterns and anomalies in k-cores of real-world graphs with

applications. KAIS 54(3):677–710
Shin K, Hooi B, Faloutsos C (2018) Fast, accurate, and flexible algorithms for dense subtensor mining.

TKDD 12(3):1–30
Silva NB, Tsang R, Cavalcanti GD, et al. (2010) A graph-based friend recommendation system using

genetic algorithm. In: CEC
Sinha A, Shen Z, Song Y, et al. (2015) An overview of microsoft academic service (mas) and

applications. In: WWW​
Sun B, Chan THH, Sozio M (2020) Fully dynamic approximate k-core decomposition in hypergraphs.

TKDD 14(4):1–21
Torres L, Blevins AS, Bassett DS et al. (2021) The why, how, and when of representations for complex

systems. SIAM Rev 63:435–485
Tudisco F, Higham DJ (2021) Node and edge nonlinear eigenvector centrality for hypergraphs. Commun

Phys 4(1):1–10
Victor F, Akcora CG, Gel YR, et al. (2021) Alphacore: data depth based core decomposition. In: KDD
Vogiatzis D (2013) Influence study on hyper-graphs. In: AAAI Symposia
Wang K, Cao X, Lin X, et al. (2018) Efficient computing of radius-bounded k-cores. In: ICDE
Watts DJ, Strogatz SH (1998) Collective dynamics of small-world networks. Nature 393(6684):440–442
Wood CI, Hicks IV (2015) The minimal k-core problem for modeling k-assemblies. J Math Neurosci

5(1):1–19
Wu T, Ling Q (2023) Self-supervised heterogeneous hypergraph network for knowledge tracing. Inf Sci

624:200–216
Xia L, Huang C, Xu Y, et al. (2022) Hypergraph contrastive collaborative filtering. In: SIGIR
Xie M, Zhan X, Liu C, et al. (2023) An efficient adaptive degree-based heuristic algorithm for influence

maximization in hypergraphs. Inf Process Manage 60(2):103161
Yang C, Wang R, Yao S, et al. (2022) Semi-supervised hypergraph node classification on hypergraph line

expansion. In: CIKM
Yin H, Benson AR, Leskovec J, et al. (2017) Local higher-order graph clustering. In: KDD
Zhang C, Zhang F, Zhang W, et al. (2020) Exploring finer granularity within the cores: efficient (k,

p)-core computation. In: ICDE
Zhang F, Zhang Y, Qin L, et al. (2017a) Finding critical users for social network engagement: the

collapsed k-core problem. In: AAAI
Zhang F, Zhang Y, Qin L, et al. (2017b) When engagement meets similarity: efficient (k, r)-core

computation on social networks. In: PVLDB
Zhang Y, Parthasarathy S (2012) Extracting analyzing and visualizing triangle k-core motifs within

networks. In: ICDE
Zhu J, Zhu J, Ghosh S et al. (2018) Social influence maximization in hypergraph in social networks.

TNSE 6(4):801–811
Zhu W, Chen C, Wang X, et al. (2018b) K-core minimization: an edge manipulation approach. In: CIKM

2437

1 3

Hypercore decomposition for non-fragile...

Zhu W, Zhang M, Chen C, et al. (2019) Pivotal relationship identification: the k-truss minimization
problem. In: IJCAI

Zien JY, Schlag MD, Chan PK (1999) Multilevel spectral hypergraph partitioning with arbitrary vertex
sizes. IEEE Trans Comput Aided Des Integr Circuits Syst 18(9):1389–1399

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

	Hypercore decomposition for non-fragile hyperedges: concepts, algorithms, observations, and applications
	Abstract
	1 Introduction
	2 Preliminaries
	3 Concepts
	3.1 Proposed concepts
	3.2 Related concepts

	4 Computation algorithms
	4.1 Computation of (k, t)-hypercore
	4.2 Computation of t-hypercoreness
	4.3 Computation of k-fraction

	5 Observations
	5.1 Patterns of (k, t)-hypercore sizes
	5.2 Distributions of t-hypercoreness
	5.3 Heterogeneity of t-hypercoreness

	6 Applications
	6.1 Influential-node identification
	6.2 Dense substructure discovery
	6.3 Hypergraph vulnerability detection

	7 Related work
	8 Conclusion
	A. Proofs
	A.1 Proof of proposition 1
	A.2 Proof of proposition 2
	A.3 Proof of lemma 1
	A.4 Proof of lemma 2
	A.5 Proof of lemma 3
	A.6 Proof of theorem 1
	A.7 Proof of theorem 2
	A.8 Proof of theorem 3

	Details of datasets
	Additional experimental results
	Anchor 33
	References

