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Abstract
Matrix decomposition is a widely used tool in machine learning with many applica-
tions such as dimension reduction or visualization. In this paper we consider decom-
posing X, a matrix of size n × m , to a product WS where we require that S, a matrix 
of size n × k , needs to have consecutive ones property. More specifically, we require 
that each row of S needs to be in the form of 0,… , 0, 1,… , 1, 0,… , 0 . Such decom-
positions are particularly meaningful if X is a matrix where each row represents a 
time series; in such a case the ones in each row in S represent a time segment. We 
show that the optimization problem is inapproximable. To solve the problem we pro-
pose 5 different algorithms. The first two algorithms are based on solving iteratively 
S while keeping W fixed and then solving W while keeping S fixed. The next two 
algorithms are based on greedily optimizing a single row in S and the corresponding 
column in W. The last algorithm first finds the optimal decomposition of with 2k − 1 
non-overlapping rows, and then greedily combines the rows until k rows remain. We 
compare the algorithms experimentally, focusing on the quality of the decomposi-
tion as well as the computational time. We show experimentally that our algorithms 
yield interpretable results in practical time.

Keywords  Matrix decomposition · Consecutive ones property · Segmentation · 
Dynamic program · Approximation algorithm

1  Introduction

Matrix decomposition, where a matrix X of size n × m is approximated with a 
product WS, where W and S are both of rank k, has been a standard tool in data 
mining with applications such as reducing dimensionality and visualization. In 
order to improve the interpretability of the decomposition, variants have been 
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proposed such as non-negative matrix factorization  (Wang and Zhang 2012), 
sparse matrix factorization  (Gupta et  al. 1997), or factorizations that prefer 
smooth rows  (Rallapalli et  al. 2010; Roughan et  al. 2011; Xiong et  al. 2010; 
Hsiang-Fu et al. 2016; Chen and Cichocki  2005).

In this paper we consider approximating X with WS, where S needs to be a 
binary matrix with consecutive ones property, that is, each row needs to be of 
form 0,… , 0, 1,… , 1, 0,… , 0 . Such decomposition is interesting if X has a natu-
ral column order, for example, X consists of n time-series, each with m aligned 
time stamps. In such a case, each row in S corresponds to a range, a potentially 
interesting feature.

We first show that our problem is NP-hard, and even inapproximable. In order 
to find good decompositions we propose 5 algorithms, see Table 1 for summary.

The first two algorithms are based on the iterative approach where we itera-
tively update S while fixing W and solve W while fixing S. We show that, unlike 
finding W, solving S is inapproximable. We propose an exponential time algo-
rithm, IExact, that finds S exactly using a dynamic program. IExact is fixed-
parameter tractable and is reasonable for smaller values of k. For large values of k 
we propose an iterative update approach IHill, where each row of S is optimized 
while keeping the remaining rows fixed.

The next two algorithms are based on optimizing a row of S and the corre-
sponding column of W simultaneously, while keeping the other rows fixed. The 
first algorithm GExact solves this subproblem exactly in O

(

m2n
)

 time. If m is 
large, then this approach may be infeasible. Consequently, we also propose an 
algorithm GEst that (1 + �)-approximates the optimal row in O(mn∕�) time.

The last algorithm is a bottom-up algorithm. We start by considering a decom-
position WS where the segments of S must also be disjoint. We show that such 
decomposition with 2k − 1 components is as good as the original decomposition 
with k components. We argue that we can solve the former in polynomial time 
with a dynamic program. Once, we have found the initial solution we greedily 
merge the rows until k rows remain.

The remainder of the paper is organized as follows. We introduce the 
notation and define the optimization problem in Sect. 2. In Sect. 3 we show the 

Table 1   Summary of the proposed algorithms

Here T ∈ O
(

k
3
+ mk

2
+ nmk

)

 is the time needed to solve a least squares problem. The second column 
shows parameters needed in addition to the input matrix and number of components k. The running times 
are per iteration, except for Merge

Algorithm Needed additional parameters Computational complexity

IExact Initial W O
(

3kkm + 2knm + T
)

IHill Initial W and S O(mnk + T)

GExact Initial W and S O
(

m
2
nk
)

GEst Initial W and S, guarantee � O(mnk∕�)

Merge Beam width w O
(

knm
2
+ wk

3
T
)
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NP-hardness of the problem and discuss how to solve the problem exactly. We 
introduce the algorithms in Sects. 4, 5 and 6. Section 7 is devoted to related work. 
We present the experimental evaluation in Sect. 8, and conclude the paper with 
discussion in Sect. 9.

2 � Preliminaries and problem definition

Throughout the paper we will use X, a matrix of size n × m , as our input data. We 
will write X

⋅i and Xi⋅ to indicate the ith column and row, respectively. We will write 
‖X‖2

F
=

∑

ij X
2

ij
 to indicate the (squared) Frobenius norm.

We are interested in approximating X with WS, where S has a particular 
shape. We say that a binary matrix S is a C1P matrix if its first row is full 1  s, 
and the remaining rows have consecutive ones property: every row is of form 
(0,… , 0, 1,… , 1, 0,… , 0) , that is, the 1 s on every row are all consecutive.

Our main optimization problem is as follows.

Problem 2.1  (Dcmp) Given a real-valued matrix X of size n × m and an integer k, 
find a C1P matrix S of size k × m and a real-valued matrix W of size n × k such that 
‖X −WS‖F is minimized.

We should point out that the reason for having the first row in S equal to 1 is to 
have W

⋅1 act as a bias term.
In addition, we will consider the two subproblems where either W or S is fixed. 

We will use these two problems extensively.

Problem 2.2  (Dcmp-W) Given a real-valued matrix X of size n × m and a C1P matrix 
S of size k × m , find a real-valued matrix W of size n × k such that ‖X −WS‖F is 
minimized.

Problem  2.3  (Dcmp-S) Given a real-valued matrix X of size n × m , a real-valued 
matrix W of size n × k find a C1P matrix S of length k × m , such that ‖X −WS‖F is 
minimized.

3 � Exact algorithm for Dcmp

Before introducing more practical algorithms in the following section, let us first 
show that Dcmp is NP-hard, and consider an exponential algorithm for solving the 
problem exactly.

Proposition 3.1  Dcmp is NP-hard even for n = 1.

Proof  We will prove the claim by reducing Subset-Sum, a known NP-complete 
problem, to Dcmp. In Subset-Sum we are given a multiset of integers y1,… , y

�
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with yi > 0 and an integer T, and are asked whether there is an index set I such 
∑

i∈I yi = T .
Assume an instance of Subset-Sum. We set X be a matrix of size 1 × (� + 1) , 

where X1i =
∑i

j=1
yj for i = 1,… ,� . We also set X1(�+1) = T  . Finally, we set k = �.

We claim that Subset-Sum has a solution if and only if there is C1P-decomposi-
tion such that X = WS.

Assume that there are W and S such that X = WS . Since X12 > X11 , there must be 
a row in S where the first 1 is at column 2. Similarly, since X13 > X12 , there must be 
a row in S where the first 1 is at column 3. Applied iteratively, we see that, for each 
i = 1,… ,� , there is a row in S where the first 1 is at column i. We can shuffle these 
rows and safely assume that first 1 in the ith row is at column i.

The assumption that X = WS forces W1i = yi . Let I =
{

i ∣ Si(�+1) = 1
}

 be 
the indices of rows with 1  s in the last column. Then since X = WS , we have 
T = X1(�+1) =

∑

i∈I W1i =
∑

i∈I yi.
To prove the other direction, assume that there is a set I such that 

∑

i∈I yi = T  . Set 
Sij = 1 if i ≤ j ≤ � , or if i ∈ I and j = � + 1 . Set W1i = yi . Then X = WS . 	�  ◻

The proof of Proposition  3.1 shows that Dcmp is not only NP-hard but also 
inapproximable.

Corollary 3.1  Let OPT(X, k) be the optimal cost for Dcmp. Assume that there is a 
polynomial-time algorithm ALG(X, k) finding a decomposition with a cost that yields 
an approximation guarantee OPT(X, k) ≥ �(X, k)ALG(X, k) , for some 𝛼 > 0 . Then 
P = NP . This holds even if we limit X to have n = 1.

Proof  The proof in Proposition 3.1 showed that it is NP-complete to test whether 
there is a C1P-decomposition such that ‖X −WS‖2

F
= 0 . This immediately implies 

that there is no algorithm that yields multiplicative approximation guarantee as we 
would be able to use the algorithm to test whether there is a decomposition with no 
error. 	�  ◻

We can provide more fine-grained complexity result if we assume that Strong 
Exponential Time Hypothesis (SETH) holds.1

Corollary 3.2  Assume that SETH holds. Assume that we can k-decompose X, a 
matrix of size n × m , in f (Δ, n,m, k) time, where T = maxi,j

|

|

|

Xij
|

|

|

 . Then, for each 𝜖 > 0 , 
there is � such that f (T , 1, k + 1, k) ∉ O

(

T1−�2�k
)

.

Proof  The claim follows from the proof of Proposition  3.1 and Theorem  1 
in (Abboud et al. 2022). 	�  ◻

1  SETH (Impagliazzo and Paturi 2001) states that there is no algorithm solving k-SAT of size m with n 
variables in O(poly(m)2cn) time, where c < 1 is a constant.
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Proposition  3.1 states that we cannot solve Dcmp in polynomial time, unless 
P = NP . However, we can find the exact solution by enumerating all possible 
matrices S and solve the sub-problem Dcmp-W.

Note that Dcmp-W is a standard multivariate least squares problem with the 
optimal solution being

Here, we assume that SST is invertible. If this does not hold, we can delete the 
dependent rows, and set the corresponding columns in W to 0.

Assuming, for simplicity, a naive implementations of matrix multiplication 
and inversion, solving Dcmp-W can be done in O

(

k3 + mk2 + nmk
)

 time. There are 
(

m+1

2

)

∈ O
(

m2
)

 different rows of length m with consecutive ones property. A C1P 
matrix of size k × m has k − 1 such rows. Consequently, there are O

(

m2k−2
)

 such 
matrices, leading to the following result.

Proposition 3.2  The solution for Dcmp can be found in O
(

m2k−2
(k3 + mk2 + nmk)

)

 
time.

We should point out that this enumeration is not practical unless m and k are 
both small. We present this result mainly to contrast the exponential solution of 
Dcmp-S in the next section.

4 � Iterative algorithm

A natural approach for obtaining a good decomposition is an iterative method, 
shown in Algorithm 1, where we first fix W and find optimal S (Dcmp-S) and then 
fix S and solve W (Dcmp-W). This is repeated until convergence. Note that we 
need to provide initial W as a parameter. We will use Merge, described in Sect. 6, 
for initial W.

As we saw in the previous section, we can solve Dcmp-W. In this section, we 
consider two approaches for solving Dcmp-S. Unfortunately, Dcmp-S, unlike 
Dcmp-W, is an NP-hard problem. We will show how to solve Dcmp-S in fixed 
parameter tractable time, and also provide a polynomial-time variant, IHill, that 
optimizes rows of S one at a time while keeping the remaining rows fixed.

W = XST (SST )−1 .
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We should point out that it is possible that after the update S has a smaller rank 
than k. In that case we remove the dependent rows and add new rows containing a 
single 1 so that S will have a rank of k.

4.1 � Exact solution for Dcmp‑S

Let us first prove the hardness of Dcmp-S.

Proposition 4.1  Dcmp-S is NP-hard even for n = m = 1.

Proof  The proof is a simpler version of the proof of Proposition  3.1. We reduce 
Subset-Sum to Dcmp.

Assume an instance of Subset-Sum. We set n = m = 1 and X11 = T  . We also set 
k = � + 1 , W11 = 0 and W1i = yi−1 for i = 1,… ,� + 1.

Then it immediately follows that Subset-Sum has a solution if and only if there is 
C1P matrix S such that X = WS . 	�  ◻

Moreover, the argument given in Corollary 3.1 can be used to show that Dcmp-S 
is also inapproximable.

Corollary 4.1  Let OPT(X,W) be the optimal cost for Dcmp-S. Assume that there is 
a polynomial-time algorithm ALG(X,W) finding a decomposition with a cost that 
yields an approximation guarantee OPT(X,W) ≥ �(X,W)ALG(X,W) , for some 
𝛼 > 0 . Then P = NP . This holds even if we limit X to have n = m = 1.

Futhermore, we can use SETH to provide a more fine-grained complexity 
statement.

Corollary 4.2  Assume that SETH holds. Assume that we can solve Dcmp-S for X and 
W in f (Δ, n,m, k) time, where T = maxi,j

|

|

|

Xij
|

|

|

 , n × m is the size of X and n × k is the 
size of W. Then, for each 𝜖 > 0 , there is � such that f (T , 1, 1, k) ∉ O

(

T1−�2�k
)

.

Proof  The claim follows from the proof of Proposition  4.1 and Theorem  1 
in (Abboud et al. 2022). 	�  ◻

Next we will show that even though Dcmp-S is inapproximable, the problem is 
fixed parameter tractable. More precisely, we will show that we can solve Dcmp-S in 
O
(

3kkm + 2knm
)

 time.
We can solve Dcmp-S exactly with a dynamic program by computing an array 

q[A, B, j], where A ⊆ B ⊆ {2,… , k} are two index sets and j ∈ [m].
In order to define q[A, B, j], assume that we are given an index j = 1,… ,m and 

two index sets A ⊆ B ⊆ {2,… , k} . Write X′ to be the first j columns of X. We define 
q[A, B,  j] to be the cost of the optimal C1P decomposition WS of X′ such that the 
rows corresponding to B have at least one 1 and the rows corresponding to A do not 
have 1 at the jth column, that is,
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Note that, by definition, Sij = 1 if and only if i ∈ B ⧵ A.

Proposition 4.2  The array q can be computed with the dynamic program,

and q[A,B, 0] = 0 as the boundary case.

Proof  Assume a matrix S of size k × j . Let S′ be S without its last column. Define two 
functions b(S) =

{

i ≥ 2 ∣ Si� = 1 for some � ≤ j
}

 and a(S) =
{

i ∈ b(S) ∣ Sij = 0
}

.
Assume two sets A ⊆ B ⊆ {2,… , k} . We claim the following: S is a C1P matrix 

with A = a(S) and B = b(S) if and only if (1) S′ is a C1P matrix with (2) a(S�) ⊆ A 
and A ⊆ b(S�) ⊆ B , and (3) Sij = 1 when i > 1 iff i ∈ B ⧵ A . The claim implies that S 
yields q[A, B, j] if and only if S′ yields r[A, B, j], proving the proposition.

We prove first the only if direction. Condition (1) follows since S is C1P matrix. 
Condition (3) follows from the definitions of a and b. Finally, by definition, 
A = a(S) ⊆ b(S�) ⊆ b(S) = B , and since S is C1P, a(S�) ⊆ a(S).

Next, we prove the if direction. Any i ∈ b(S) if and only if i ∈ b(S�) or Sij = 1 . 
Thus, b(S) = (B ⧵ A) ∪ b(S�) = (B ⧵ A) ∪ A = B . Secondly, by definition of the last 
column, we have a(S) = A . Since S′ is C1P, the only C1P violation can occur if 
Sij = 1 for i ∈ a(S�) . Since a(S�) ⊆ A , this cannot happen. 	�  ◻

Here, the first term corresponds to the error coming from the jth column with 
indices in B ⧵ A corresponding to the 1 s in the jth column of S. The term r[A, B, j] 
is the optimal error up to the (j − 1)th column such that the C1P requirement is met.

Once we have computed q, we can obtain the optimal cost of Dcmp-S by 
computing

In order to recover S, let us first write A(m) and B(m) to be the minimizers for Eq. 2. 
During the dynamic program, we store the minimizers of r[A, B, j] Eq. 1 for every 
A, B, and j. We then iteratively define A(j−1) and B(j−1) to be the sets responsible 
for r[A(j),B(j), j] . The optimal S is then defined by setting Sij = 1 if and only if 
i ∈ B(j) ⧵ A(j).

Next we show the running time needed to solve S.

Proposition 4.3  Dcmp-S can be solved in O
(

3kkm + 2knm
)

 time.

Proof  We can precompute the vectors 
∑

𝓁∈S W⋅𝓁
 for every S in O

(

2kn
)

 time. Once, 
precomputed we can compute the first term in Eq. 1 in O(n) time. There are O

(

2k
)

 

B =

{

i ∣ Si� = 1 for some � ≤ j
}

and A =

{

i ∈ B ∣ Sij = 0
}

.

(1)

q[A,B, j] =‖
‖

X
⋅j −W

⋅1 −

∑

𝓁∈B⧵A

W
⋅𝓁
‖

‖

2

F
+ r[A,B, j], where

r[A,B, j] = min
A� ⊆ A

A ⊆ B� ⊆ B

q[A�,B�, j − 1],

(2)min {q[A,B,m] ∣ A ⊆ B} .
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different subsets S = B ⧵ A and there are m different j. Consequently, computing the 
needed error terms requires O

(

2k(k + nm)
)

 time in total.
Consider now r[A, B, j]. We can show that

holds. This identity allows us to compute r[A, B, j] in O(k) time assuming we have 
computed r[A�,B�, j] for every subset A′ and B′.

Since an index in [k] can either belong to A, or belong to B ⧵ A , or be outside of 
both sets, there are O

(

3k
)

 valid pairs of (A, B). Consequently, are O
(

3km
)

 cells in r. 

Thus computing r requires O
(

3kkm
)

 time and computing q requires O
(

3kkm + 2knm
)

 
time. 	�  ◻

We should point out that unlike the exact exponential algorithm given in Sect. 3 
this algorithm may be practical as long as k is small. These cases may be particularly 
useful if we are using the obtained W to visualize the rows of X in a plane.

Proposition 4.3 shows that Dcmp-S is a fixed-parameter tractable problem. It is 
not known whether the main problem Dcmp is also fixed-parameter tractable. We 
conjecture that some techniques used by  Fomin et  al. (2020) can be adopted to 
develop a fixed-parameter tractable algorithm.

4.2 � Hill‑climbing algorithm for Dcmp‑S

If k is large, the dynamic program given in the previous section becomes impractical. 
In such cases, we propose the following optimization strategy. Instead of optimiz-
ing all rows of S simultaneously, we select one row to optimize while keeping the 
remaining rows fixed, as shown in Algorithm 2. We repeat this step for every row.

We can find the optimal row Si⋅ using a similar dynamic program as in the 
previous section, except now the array is going to be significantly smaller. More 
formally, let j ∈ [m] be an index. We define q[0,  j] to be the error of the first j 
columns with Si⋅ being 0, q[1,  j] to be the optimal error of the first j columns 
with Sij = 1 , and q[2, j] to be the optimal error of the first j columns with Sij = 0 

r[A,B, j] = min(q[A,B, j − 1], �, �), where

� = min {r[A ⧵ {a},B, j] ∣ a ∈ A},

� = min {r[A,B ⧵ {b}, j] ∣ b ∈ B ⧵ A},
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and Si⋅ not being full of 0 s. Naturally, when computing q[⋅, j] we require that Si⋅ 
satisfies the consecutive ones property.

To simplify the notation, let us write E = X −WS� , where S′ is equal to the 
current S except that S�

i⋅
= 0.

Proposition 4.4  The array q can be computed using the dynamic program,

and q[0, 0] = q[1, 0] = q[2, 0] = 0 as the boundary case.

Proof  We will prove the claim by induction over j. The case j = 1 is trivial. Assume 
that the claim holds for j − 1.

The case q[0, j] is trivial.
Let S be responsible for q[1, j]. Write Δ =

‖

‖

‖

E
⋅j −W

⋅i
‖

‖

‖

2

F
 . If Sij contains the only 1 

on the row i, the cost is q[1, j] = Δ + q[0, j − 1] . Otherwise, since S is C1P, Si(j−1) = 1 
and q[1, j] = Δ + q[1, j − 1] . The value q[1,  j] is the minimum of the two cases, 
proving the case for q[1, j].

Let S be responsible for q[2,  j]. Write Δ =
‖

‖

‖

E
⋅j
‖

‖

‖

2

F
 . If Si(j−1) = 1 , the cost is 

q[2, j] = Δ + q[1, j − 1] . Otherwise, Si(j−1) = 0 but the row i is not a zero vector, 
consequently, q[2, j] = Δ + q[2, j − 1] . The value q[2, j] is the minimum of the two 
cases, proving the case for q[2, j]. 	�  ◻

Once q is computed, the optimal error is equal to � = minx q[x,m] . In order 
to restore the corresponding Si⋅ , let us define tj = 1 if q[1, j] < q[2, j] , and 
0 otherwise. Let us also define sj = 1 if q[0, j] < q[1, j] , and 0 otherwise. If 
� = q[0,m] , then the corresponding Si⋅ is all zeros. Otherwise, the last column 
containing 1  s is equal to b = max

{

j ∣ tj = 1
}

 . To extract the starting point of 
1 s, we set a = max

{

j < b ∣ sj = 1
}

+ 1 , or a = 1 is the set is empty.
Next we show the time needed to update S.

Proposition 4.5  Updating S in IHill requires O(mnk) time.

Proof  For a fixed i, the matrix E can be computed in O(mn) time by maintaining the 
matrix, say, Z = X −WS , and using the identity E = Z +W

⋅iSi⋅ . Computing a single 
entry in q requires O(n) time due to error term. Since there are O(m) cells in q, we 
can find optimal row in O(nm) time. Since, there are O(k) different values for i, the 
result follows. 	�  ◻

q[0, j] =
‖

‖

‖

E
⋅j
‖

‖

‖

2

F
+ q[0, j − 1],

q[1, j] =
‖

‖

‖

E
⋅j −W

⋅i
‖

‖

‖

2

F
+min(q[0, j − 1], q[1, j − 1]),

q[2, j] =
‖

‖

‖

E
⋅j
‖

‖

‖

2

F
+min(q[1, j − 1], q[2, j − 1]),
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5 � Greedy algorithm

In the previous section both algorithms kept W fixed while optimizing S. In this sec-
tion we consider approaches that update W and S at the same time.

More specifically, we propose optimizing a single row, say � , of S, the corre-
sponding column W

⋅𝓁
 , and the first column W

⋅1,2 while keeping the remaining cells 
in W and S fixed. The algorithm, given in Algorithm 3 enumerates over � until no 
gain is possible.

In addition to GExact, we consider a faster variant, Est, that provides (1 + �) 
approximation of the optimal row.

5.1 � Solving the greedy step exactly

Our next step is to solve the optimization problem in Greedy exactly and as quickly 
as possible.

To this end, fix � . Let us write R = X −W �S , where W ′ are the current weights 
except that W

⋅1 and W
⋅𝓁

 are set to 0. In other words, we consider the differences 
between X and the decomposition without the first and the � th dimension.

Assume that we have selected a new S
𝓁⋅

 such that 1 s start at the ith column and 
end at the jth column. Then it is straightforward to see that the optimal error is equal 
to a(i, j) + b(i, j) , where

where

(3)
a(i, j) =

j
∑

x=i

‖

‖

R
⋅x − 𝛼‖

‖

2

F
, b(i, j) =

∑

x < i, or

x > j

‖

‖

R
⋅x − 𝛽‖

‖

2

F
,

2  Recall that the first column is essentially the bias term of the decomposition.
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Here, a(i, j) is the error of the columns between i and j, and b(i, j) is the error of the 
remaining columns. Moreover, this error is achieved if we set

To find the optimal S
𝓁⋅

 , we simply test every index pair i ≤ j , leading to the follow-
ing proposition.

Proposition 5.1  A single iteration of GExact runs in O
(

m2nk
)

 time.

Proof  For a fixed � , the matrix R can be computed in O(mn) time by maintaining the 
matrix, say, Z = X −WS , and using the identity R = Z +W

⋅𝓁
S
𝓁⋅
+W

⋅1S1⋅.
We can compute a(i, j) and b(i, j) in O(n) time by precomputing the cumulative 

sums and the second moments. That is, we first precompute in O(nm) time the func-
tions f (x) =

∑

y≤x R⋅y and g(x) =
∑

y≤x R
2
⋅y
 , where the square is applied element-wise. 

Then we can compute a(i, j) in O(n) time with the standard identity

where the square is applied element-wise and e is a vector of 1 s of length k. The 
computation of b(i, j) is similar.

Since there are O
(

m2
)

 pairs of (i, j) and O(k) different values of � , the claim fol-
lows. 	�  ◻

5.2 � Approximating the greedy step fast

Finding the optimal row requires O
(

m2n
)

 time which may be impractical for large 
values of m. In this section we design an algorithm that (1 + �)-approximates the 
optimal row in O(mn∕�) time.

The main idea of the algorithm is as follows: Recall the definition of a and b 
as given in Eq. 3. Let (i∗, j∗) be the index pair minimizing a(i, j) + b(i, j) . Assume 
that we know � that is larger than but close to a(i∗, j∗) . If we were to select the 
largest j such that a(i∗, j) ≤ � , then a(i∗, j) is close to a(i∗, j∗) and b(i∗, j) ≤ b(i∗, j∗) 
since j∗ ≤ j.

We will see later that, given � , enumerating every maximal interval such 
that a(i, j) ≤ � can be done in linear time. The issue is that we do not know 
� . Instead we compute an upper bound of a(i∗, j∗) , say, u and a decrement � 
and test every � = u − r� , where r is an integer. For each tested pair (i,  j) we 

𝛼 =
1

j − i + 1

j
∑

x=i

R
⋅x, 𝛽 =

1

m − j + i − 1

∑

x < i, or

x > j

R
⋅x

W
⋅1 = �, and W

⋅𝓁
= � − � .

� =
f (j) − f (i − 1)

j − i + 1
and

a(i, j) = eT (g(j) − g(i − 1) − (j − i + 1)�2
),
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compute a(i, j) + b(i, j) , and store the smallest cost, say � , as well as the pair that 
yielded � , which is the final output of the algorithm. See Algorithm 4 for the 
pseudo-code.

We still need to select u and � such that the approximation guarantee holds 
and there are not too many values of � that need to tested. To the end, we set 
u = 2� and � = �� , where � = mini≤j max(a(i, j), b(i, j)) . Proposition 5.2 shows that 
these values are suitable. The complete pseudo-code is shown in Algorithm 5.

Before proving correctness we need to show that we can compute � in linear 
time. The algorithm, MaxSeg, for finding � is given in Algorithm 6. The algo-
rithm enumerates index pairs in the following manner: if currently a(i, j) < b(i, j) 
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we increase j as this potentially decreases max(a(i, j), b(i, j)) , otherwise we 
increase i.

Let us now prove the correctness of MaxSeg.

Lemma 5.1  Let � = MAXSEG(a, b) . Then

Moreover, MAXSEG(a, b) runs in O(mn) time.

Proof  Let i∗ and j∗ be the indices yielding the smallest error max(a(i, j), b(i, j)) . If 
there are ties, we select the smallest possible indices. Let i and j be the variables 
used in MaxSeg. To prove the lemma, we show by induction that MaxSeg has 
visited (i∗, j∗) , or i ≤ i∗ and i ≤ j∗ . The induction base i = j = 1 is trivial.

In order to prove the general case assume that the claim holds for (i, j). If Max-
Seg has been visited, then we have nothing to prove. Assume otherwise, then by the 
induction assumption i ≤ i∗ and j ≤ j∗.

If i = i∗ and j = j∗ , then we have nothing to prove.
If i < i∗ and j < j∗ , then the induction step follows trivially since we increase i or 

j by 1.
Assume i = i∗ and j < j∗.
If a(i∗, j∗) < b(i∗, j∗) , then

and MaxSeg increases j.
If a(i∗, j∗) ≥ b(i∗, j∗) , then, by the optimality of j∗ , a(i∗, j∗ − 1) < b(i∗, j∗ − 1) as 

otherwise (i∗, j∗ − 1) is also optimal. Consequently,

and MaxSeg increases j.
Assume i < i∗ and j = j∗.
If a(i∗, j∗) ≥ b(i∗, j∗) , then

� = min
i≤j

max(a(i, j), b(i, j)) .

a(i, j) ≤ a(i∗, j∗) < b(i∗, j∗) ≤ b(i, j)

a(i, j) ≤ a(i∗, j∗ − 1) < b(i∗, j∗ − 1) ≤ b(i, j) .
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and MaxSeg increases i.
If a(i∗, j∗) < b(i∗, j∗) , then, by the optimality of i∗ , a(i∗ − 1, j∗) > b(i∗ − 1, j∗) as 

otherwise (i∗ − 1, j∗) is also optimal. Consequently,

and MaxSeg increases i. This proves the induction step.
The while-loop in MAXSEG(a, b) is executed at most 2m times. Each a(i,  j) or 

b(i, j) requires O(n) time, proving the claim. 	� ◻

Next, we prove the approximation result.

Proposition 5.2  Let O = mini≤j a(i, j) + b(i, j) be the optimal error. Let 
� = MAXSEG(a, b) . Assume 𝜖 > 0 . Let � be the cost of the row returned by 
EST(2�, ��) . Then � ≤ (1 + �)O.

Moreover, EST(2�, ��) runs in O(mn∕�) time.

Proof  Let (i∗, j∗) be the indices yielding O . Similarly, let (i�, j�) be the indices 
yielding � . Lemma 5.1 implies

To summarize � ≤ O ≤ 2�.
Let � be the smallest variable used by Est such that � ≥ a(i∗, j∗) . Such variable 

exist since a(i∗, j∗) ≤ O ≤ 2� . During this iteration, let j be the largest variable vis-
ited by Est when i = i∗ . Note that since a(i∗, j∗) ≤ � , we must have j ≥ j∗ as other-
wise j is not maximal.

Since � is minimal, we have a(i∗, j∗) ≥ � − �� . Consequently,

proving the first claim.
To prove the second claim note that the inner loop is executed O(m) times and the 

outer loop is executed O(u∕�) = O(1∕�) times. 	�  ◻

a(i, j) ≥ a(i∗, j∗) ≥ b(i∗, j∗) ≥ b(i, j)

a(i, j) ≥ a(i∗ − 1, j∗) > b(i∗ − 1, j∗) ≥ b(i, j) .

� ≤ max(a(i∗, j∗), b(i∗, j∗))

≤ a(i∗, j∗) + b(i∗, j∗)

= O

≤ a(i�, j�) + b(i�, j�)

≤ 2max(a(i�, j�), b(i�, j�)) = 2� .

� ≤ a(i∗, j) + b(i∗, j)

≤ � + b(i∗, j∗)

≤ a(i∗, j∗) + �� + b(i∗, j∗)

= O + ��

≤ (1 + �)O,
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The running time results in Lemma 5.1 and in Proposition 5.2 immediately imply 
the following result.

Proposition 5.3  A single iteration of GEst runs in O(mnk∕�) time.

In order to improve the performance in practice, at the end of each iteration we 
optimize S using the for-loop given in IHill. This update does not change the run-
ning time analysis.

We should point out that the problem relevant to minimizing a(i, j) + b(i, j) is 
segmentation, where the goal is to partition a sequence into k segments minimizing 
some error function. The segmentation problem can be solved exactly in quadratic 
time  (Bellman 1961) and approximated in polylogaritmic time  (Guha et  al. 2006; 
Tatti 2019).3 However, we cannot use these results directly since b(i, j) depends both 
on the beginning and on the end of the row.

6 � Bottom‑up algorithm

In this section we introduce our final algorithm. We start by considering an easier 
decomposition problem.

We say that a binary matrix S is segment matrix, if all the rows have consecutive 
ones property, are disjoint, and every column has at least 1. This definition leads to 
the following optimization problem.

Problem 6.1  (Seg) Given a matrix X of size n × m and an integer k, find a segment 
matrix S of size k × m and a matrix W of size n × k such that ‖X −WS‖F is 
minimized.

We should point out that Seg is equivalent to segmenting X into k segments, each 
segment correspond to 1 s in a row of S, while minimizing L2 cost. This problem can 
be solved with a dynamic program in O

(

km2n
)

 time (Bellman 1961).

Proposition 6.1  Assume a C1P matrix S of size k × m and a weight matrix W of size 
n × k . Let k� = 2k − 1 . Then there is a segment matrix T of size k� × m and a weight 
matrix U of size n × k� such that WS = UT .

Proof  We claim that there are at most k� − 1 columns in S that are different than the 
column on their right. The claim is trivial for k = 1 , and follows immediately by 
induction since a new row in S introduce at most 2 such columns.

Let i1,… , ik�−1 be these columns. Write also i0 = 0 and ik� = n . We define T such 
that the jth row has 1 s between ij−1 + 1 and ij , and 0 otherwise. Finally, we set U 
such that jth column is equal to WS

⋅ij
 . The proposition follows. 	� ◻

3  Here we assume that the cost of a single segment can be obtained in constant time.
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The proposition leads to the following approach, for which the pseudo-code is 
given in Algorithm 7. Given X we find a decomposition with 2k − 1 components 
WS, where S is a segment matrix. In order to manipulate S we will represent these 
matrices as a sequence of pairs I = ((ai, bi)) , where ai and bi indicate the column 
end points containing 1 s at the ith row.

In order to transform S to C1P-matrix with only k segments, we first add a con-
stant row full of 1 s, that is, we add (1, m) to I.

We then test each pair, say (a, b) and (a�, b�) , in I. We replace these pairs with 
a new pair of (s, t) = (min(a, a�), max(b, b�)) , generating a new candidate. We test 
the new candidate by solving Dcmp-W. In addition, if I contains a pair that starts 
at t + 1 , we generate a new candidate by extending that pair to max(a, a�) , and test 
the new candidate. Similarly, if I contains a pair that ends at s − 1 , we generate a 
new candidate by extending that pair to min(b, b�) , and test the new canidate.

After the tests, we keep w best candidates, where w is a user parameter speci-
fying the width of the beam search. As a tiebreaker we use the total number of 
1 s. This procedure is repeated k times for each of the w candidates, after which 
only k rows remain in each I. We select the candidate with the lowest score as the 
final output.

Next, let us analyze the running time of Merge.

Proposition 6.2  Merge runs in O
(

knm2
+ wk3(k3 + mk2 + nmk)

)

 time.

Proof  Finding initial segmentation requires O
(

knm2
)

 time.



2580	 N. Tatti

1 3

During the merging phase we need to solve O
(

wk3
)

 Dcmp-W problems for which 
we need O

(

k3(k3 + mk2 + nmk)
)

 time. 	�  ◻

We should point out that Merge has a high dependency on k, due to the excessive 
comparisons when merging rows. Luckily, k is typically of moderate size. We leave 
developing more aggressive merging strategies for large k as a future line of work.

7 � Related work

In this paper, we require that S has a very specific shape, making the neighbor-
ing columns of WS to look similar. Instead of having a hard constraint, previous 
approaches regularized S by punishing large changes between neighboring columns. 
Hsiang-Fu et  al. (2016) regularized matrix decomposition with a score based on 
a Markov model, thus encouraging discovering temporal dependencies. Chen and 
Cichocki  (2005) considered non-negative decompositions WS where the rows S 
are regularized by the error when compared against exponentially weighted mov-
ing average, thus encouraging smooth behavior of rows. In similar spirit, regulari-
zations have been propposed where a column of S is compared to its neighboring 
columns, encouraging having similar values. (Rallapalli et al. 2010; Roughan et al. 
2011; Xiong et al. 2010).

In related work, Tatti and Miettinen (2019) considered permuting and approxi-
mating binary matrix X with WT

◦S where W and S are both C1P-matrices and ◦ is 
a boolean multiplication. In their setup the order of column and rows is not fixed 
but one also needs to find a good permutation of rows and columns, as well as find 
W and S. Discovering such decomposition is closely related to discovering tilings, 
regions of 1 s in a binary matrix that are dense. Discovering such tilings have been 
proposed by Miettinen et  al. (2008), minimizing the Frobenius norm. In addition, 
Gionis et  al. (2004),  Tatti and Vreeken (2012) proposed mining geometric tiles, 
that is, tiles that are column and row coherent, organized as trees while maximiz-
ing a likelihood-based score. Geerts et al. (2004) proposed mining covering binary 
data with k tiles while maximizing the number of 1 s covered by the tiles. Similarly, 
Henelius et  al. (2016) proposed mining tiles from time series that were column-
coherent while maximizing same objective. Kontonasios and De  Bie (2010) pro-
posed mining tiles maximizing a score based on a maximum entropy model. Xiang 
et  al. (2008) considered representing the data exactly with tiles while minimizing 
their border length. Discovering tiles in a data stream was considered by Lam et al. 
(2014).

The aforementioned approaches are focused on modeling binary data. Similar to 
tilings, finding biclusters, submatrices in real-valued data that are coherent accord-
ing to a given objective function have been proposed  (Cheng and Church 2000; 
Madeira and Oliveira  2005; Zhang et al. 2005; Hartigan 1972). These approaches 
do not regularize or constraint biclusters based on the column/row order.

Our method resembles a problem of segmentation, where the goal is to partition 
the sequence into k segments such that segments are cohesive according to some 
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error function (Bellman 1961). In our case, the segments would be the neighboring 
columns in S having equal values. While the standard segmentation problem is solv-
able in polynomial time (Bellman 1961; Guha et al. 2006; Tatti 2019) our problem 
is NP-hard because the columns of W may participate in multiple segments. In simi-
lar fashion, Gionis and Mannila  (2003) considered an NP-hard problem where k 
segments can only use h < k different centroids. However, their approach cannot be 
applied to our problem due to the differences in the optimization problems.

8 � Experimental evaluation

In this section we present our experimental evaluation.

8.1 � Datasets

We used a series of synthetic datasets and 4 real-world datasets as benchmark 
datasets.

We generate two synthetic dataset series as follows. In the first set, each data-
set is a size of 500 × 500 and has the form WgenSgen + N  . Here Sgen is of size 
5 × 500 , the ith row has 1 s between 50i − 49 and 550 − 50i , Wgen has real values 
sampled uniformly between 1 and 2, and N is a matrix of size 500 × 500 , consist-
ing of Gaussian noise with 0 mean and �2 variance. We denote this dataset by 
Mode (�) , and vary �.

In the second dataset series, each dataset has the form WgenSgen + N  . Here, Sgen 
is of size 5 × n with intervals of 1 s sampled uniformly. However, we reject cases 
where two segments share the same end point since the ground truth becomes 
ambiguous as the shorter row can be subtracted from the longer row. The ith 
column in Wgen has real values sampled uniformly between 1i and 2i. Finally, 
N is a matrix of size n × m , consisting of Gaussian noise with 0 mean and �2 
variance. We denote this dataset by Syn (�) , and vary � . Unless specified, we set 
n = m = 500.

The first real-world dataset, Milan, consists of monthly averages of maximum 
daily temperatures in Milan between the years 1763–2007.4 The second dataset, 
Power, consists of hourly power consumption (variable global_active_
power) of a single household over almost 4 years, a single time series 
representing a day.5 The third dataset, ECG are heart beat data  (Goldberger 
et al. 2000). We used MLII data of a single patient (id 106) from the MIT-BIH 
arrhythmia database,6 containing both normal beats and abnormal beats with 
premature ventricular contraction. Each time series represent measurements 

4  https://​www.​ncdc.​noaa.​gov/.
5  http://​archi​ve.​ics.​uci.​edu/​ml/​datas​ets/​Indiv​idual+​house​hold+​elect​ric+​power+​consu​mption.
6  https://​physi​onet.​org/​conte​nt/​mitdb/1.​0.0/.

https://www.ncdc.noaa.gov/
http://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption
https://physionet.org/content/mitdb/1.0.0/
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between −300 ms and 400 ms around each beat. The fourth dataset, Population 
consists of age distribution of municipalities in Finland.7

8.2 � Setup

We implemented the 4 algorithms using Python and used a laptop with Intel Core i5 
(2.3GHz) to conduct our experiments.8

We decomposed each dataset with 5 algorithms using k = 5 . Since the 4 iterative 
algorithms require initial decomposition, we used the solution given by Merge 
as the starting point. To speed up computation of Merge, we used approximative 
segmentation algorithm by Guha et al. (2001) with � = 0.05 . We set the beam search 
width to w = 50 . Finally, we used � = 0.1 for GEst.

8.3 � Results

Synthetic data: Our first goal is to test how well we can recover ground truth from 
synthetic data as a function of noise. We used Merge with k = 5 , the other algo-
rithms produced identical results. For comparison we used SVD decomposition in 
the following manner: we first demeaned every row and used these means as the first 
column in W (with the row being full of 1 s), we then applied SVD with 4 compo-
nents to obtain the remaining part of the decomposition.

In Figs. 1a, 2a we show the error, normalized by nm, of SVD and Merge as a 
function of the variance of the noise � . As expected, the cost increases as the noise 
increases. Moreover, SVD has a smaller cost as it does not have C1P requirements 
on S. In Figs.  1b,  2b, we see that the errors of the disovered decompositions are 
always slightly smaller than the error of the ground truth. This is largely due to the 
matrix W optimized to the deviations in X due to the noise.

Next, we compare how well the recovered S matches the ground truth Sgen . To 
that end, we computed L1 distance between S discovered by Merge, here we took 
into account all possible row permutations of S. Note that S discovered by SVD 

Table 2   Sizes of the datasets 
and results of the greedy 
algorithms

Each matrix is a size of n × m . E is the error of the decomposition 
normalized by the error of SVD decomposition, T is the execution 
time of an algorithm, R is the number of rounds

Dataset n m GEst GExact

E T R E T R

Mode(1) 500 500 1.01 4.06 1 1.01 23.27 1
Syn(1) 500 500 1.01 4 1 1.01 46 2
ECG 2 027 253 5.01 30.33 8 5.01 236.54 21
Milan 245 12 1.95 0.1 2 1.95 0.03 2
Population 309 8 7.49 0.01 1 7.49 0.01 1
Power 1 417 24 1.28 0.24 1 1.28 0.08 1

7  https:/�/​stat.​fi/​en/​stati​stics/​vaerak.
8  The code is available at https://​versi​on.​helsi​nki.​fi/​dacs/​column-​coher​ent-​decom​posit​ion.

https://stat.fi/en/statistics/vaerak
https://version.helsinki.fi/dacs/column-coherent-decomposition
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has orthogonal rows, which does not hold for Sgen . Therefore, in order to make the 
comparison more fair, when evaluating SVD, we projected Sgen to the subspace 
spanned by S, and computed L1 distance between the projection and Sgen.

In Figs. 1c, 2c we show the L1 distance, normalized by mk, of SVD and Merge 
as a function of the variance of the noise � . We see that in both cases the distance 
increases as a function of � . However, Merge is more resilient to the noise and out-
performs SVD.

Table 3   Results for Merge, 
IHill, and IExact 

E is the error of the decomposition normalized by the error of SVD 
decomposition, T is the execution time of an algorithm, R is the 
number of rounds

Dataset Merge IHill IExact

E T E T R E T R

Mode(1) 1.01 34.37 1.01 0.05 1 1.01 0.194 1
Syn(1) 1.01 34.47 1.01 0.05 1 1.01 0.194 1
ECG 5.17 24.01 5.01 0.206 4 4.95 0.471 4
Milan 1.95 0.92 1.95 0.004 2 1.95 0.006 1
Population 7.49 0.63 7.49 0.003 1 7.49 0.005 1
Power 1.28 1.97 1.28 0.005 1 1.28 0.011 1
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Fig. 1   Results Merge and SVD decompositions for Mode(�) as a function of noise �,averages of 10 runs. 
a cost of the decomposition, normalized by nm. b cost of the decomposition, normalized by the cost of 
the ground truth decomposition. c L1 distance between S produced by Merge and the ground truth Sgen , 
normalized by mk 
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Fig. 2   Results Merge and SVD decompositions for Syn(�) as a function of noise �,averages of 10 runs. 
a cost of the decomposition, normalized by nm. b cost of the decomposition, normalized by the cost of 
the ground truth decomposition. c L1 distance between S produced by Merge and the ground truth Sgen , 
normalized by mk 
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Real-world data: Next let us look out our benchmark datasets. In Tables 2 and 
3 we show the errors, running time, and number of required iterations. In order to 
normalize the errors we used the error of an SVD decomposition with 5 components.

Our first observation is that Merge typically finds a good solution that the itera-
tive algorithms cannot improve. However, in ECG Merge finds the worst decom-
position, further improved by every iterative algorithm, with IExact yielding the 
smallest cost.

The error values are between 1 and −7.5, that is, produced errors are up to 8 times 
larger than the errors of SVD decomposition. This is expected, as our decomposi-
tion is significantly more restricted when compared to SVD. The largest error ratio 
of 7.5. was achieved for Population. However, in this case both decompositions are 
accurate: SVD achieves an L2 error of 8 × 10−5 for an average row, while Merge 
achieves an L2 error of 6 × 10−5 for an average row. Recall that a single row is a his-
togram summing to 1.

Next, we demonstrate how error behaves as a function of k. A typical example is 
shown in Fig. 4a for ECG data. Here, the error drops quickly as k increases: an error 
for k = 20 is 2% of the error for k = 1.

Running time: In our experiments, IHill was the fastest and GExact or Merge 
were the slowest, mostly due to the O

(

m2
)

 term. We should stress that the running 
times for the iterative algorithms do not include the running time needed to compute 
the initial solution.

Figure  3 shows the running time of the algorithms as we increase either n or 
m. The behavious is as expected. The algorithm scale linearly with n, and GExact 
and Merge scale quadratically with m while the remaining algorithms scaler lin-
early with m. The reported times in Fig. 3 are per iteration, the number of iterations 
required were between 1 and 3.
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Fig. 4   a Error, normalized by the error of 1-decomposition, as a function for k using ECG and IHill. b 
Computation time for decomposing ECG as a function of k. Note that the y-scale is logarithmic. c Time 
per single iteration for decomposing m first columns of ECG ( k = 5)
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We see in Table 2 that GEst yields as good decomposition for ECG as GExact, 
despite solving the subproblem only approximately. On the other hand, GEst is 
faster than GExact.

Next, let us compare the running times of the two iterative algorithms. Recall 
that IExact is exponential w.r.t. k while IHill remains polynomial. This effect 
is shown in Fig. 4b with ECG data. Here IExact slows down considerably as k 
increases when compared to IHill (note that y-axis is logarithmic).

Similarly, GExact requires quadratic time w.r.t. m while GEst is quasilinear. 
This effect is shown in Fig. 4c when decomposing m first columns of ECG data: 
GExact slows down faster than GEst as the number of columns increases.

Examples: Finally, as an application we consider scatter plots of ECG and 
Population datasets, shown in Fig.  6. Here, we used GExact with k = 3 and 
used 2nd and 3rd columns of W as coordinates of each row in X. We did not 
plot the first column W as this is a bias term. In Fig. 5a we see that the normal 
beats and the abnormal beats yield different scatter plots, suggesting that the 

(a) ECG (b) Population

Fig. 5   Scatter plots based on W of ECG and Population. Here, GExact with k = 3 was used
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Fig. 6   a Averages of normal and abnormal ECG signals. b Averages of the reconstructed (WS) normal 
and abnormal ECG signals using GExact and k = 3
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decomposition was able to find discriminative features. These features are shown 
in Fig. 6b, compared to the data averages given in Fig. 6a.

The y-axis in Fig. 5b differentiates large university cities in Finland from the 
more rural municipalities.

9 � Concluding remarks

We proposed a matrix decomposition problem that promotes having neighboring 
columns to have similar values. More specifically, we propose approximating X 
with WS, where S is a binary matrix such that 1 s on each row of S form a con-
tiguous segment. We showed that the problem is inapproximable and proposed 5 
algorithms whose computational complexity is summarized in Table 1.

Of the 5 algorithms, Merge produces good results that typically cannot be 
improved by the iterative algorithms. When improvement is possible the greedy 
algorithms GExact and GEst is a good choice: GExact when the number of col-
umns is small and GEst when the number of columns is large.

We should point out that the consecutive ones requirement is strict. This is by 
design, since it allows us to summarize each row of S with just two numbers. An 
immediate extension would be to allow S to have � segments of ones, per row; 
proposed algorithms can be extended to handle such a case. However, we can 
achieve a more flexible decomposition with the current approach by multiplying 
k with �.

Future lines of work include additional regularization and relaxing the constraints 
for S, for example, requiring that S must be consistent with a PQ-tree  (Booth and 
Lueker 1976).
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