
Vol:.(1234567890)

Data Mining and Knowledge Discovery (2023) 37:2216–2254
https://doi.org/10.1007/s10618-023-00952-6

1 3

Datasets, tasks, and training methods for large‑scale
hypergraph learning

Sunwoo Kim1 · Dongjin Lee2 · Yul Kim3 · Jungho Park3 · Taeho Hwang3 ·
Kijung Shin1,2

Received: 10 February 2023 / Accepted: 28 June 2023 / Published online: 26 July 2023
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2023

Abstract
Relations among multiple entities are prevalent in many fields, and hypergraphs are
widely used to represent such group relations. Hence, machine learning on hyper-
graphs has received considerable attention, and especially much effort has been
made in neural network architectures for hypergraphs (a.k.a., hypergraph neural net-
works). However, existing studies mostly focused on small datasets for a few single-
entity-level downstream tasks and overlooked scalability issues, although most real-
world group relations are large-scale. In this work, we propose new tasks, datasets,
and scalable training methods for addressing these limitations. First, we introduce
two pair-level hypergraph-learning tasks to formulate a wide range of real-world
problems. Then, we build and publicly release two large-scale hypergraph datasets
with tens of millions of nodes, rich features, and labels. After that, we propose PCL,
a scalable learning method for hypergraph neural networks. To tackle scalability
issues, PCL splits a given hypergraph into partitions and trains a neural network via
contrastive learning. Our extensive experiments demonstrate that hypergraph neural
networks can be trained for large-scale hypergraphs by PCL while outperforming 16
baseline models. Specifically, the performance is comparable, or surprisingly even
better than that achieved by training hypergraph neural networks on the entire hyper-
graphs without partitioning.

Keywords Large-scale hypergraph datasets · Scalable hypergraph learning ·
Hypergraph neural networks · Contrastive learning · Partitioning

Sunwoo Kim, Dongjin Lee have contributed equally to this work.

Responsible editor: Charalampos Tsourakakis.

Extended author information available on the last page of the article

http://orcid.org/0000-0002-2872-1526
http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-023-00952-6&domain=pdf

2217

1 3

Datasets, tasks, and training methods for large-scale hypergraph learning...

1 Introduction

Beyond pairwise relations among entities, understanding and modeling higher-
order relations have received considerable attention (Benson et al. 2018; Lee
et al. 2021; Ko et al. 2022; Luo et al. 2021; Torres et al. 2021; Yin et al. 2022; Li
et al. 2022; Kim et al. 2022). A hypergraph, which generalizes a graph, is a data
structure that is commonly used to model such higher-order relations (Konstanti-
nova and Skorobogatov 2001; Klamt et al. 2009; Qu et al. 2018). While an edge
in a graph joins only two entities, a hyperedge joins an arbitrary number of enti-
ties, which makes a hypergraph, which is a pair of a node set and a hyperedge set,
inherently capable of capturing high-order relations.

Due to the omnipresence of hypergraphs, a number of machine learning tasks,
such as node classification (Huang and Yang 2021; Yadati et al. 2019; Chien et al.
2021; Lee and Shin 2023) and hyperedge prediction (Yadati et al. 2020; Hwang
et al. 2022; Zhang et al. 2020b), have been considered for hypergraph-structured
data. One possible approach to tackle such tasks is to transform hypergraphs into
ordinary graphs and apply existing graph representation models (e.g., graph neu-
ral networks) (Kipf and Welling 2017; Hamilton et al. 2017; Veličković et al.
2018). On the other hand, previous studies have shown that this transition can
result in the loss of significant higher-order information, causing performance
degradation in machine learning tasks (Dong et al. 2020; Feng et al. 2019; Yadati
et al. 2020; Zhang et al. 2020b). These studies highlight the need for specialized
representation models specifically designed for hypergraphs.

Numerous hypergraph neural network models (e.g., HGNN (Feng et al. 2019),
NHP (Yadati et al. 2020), UniGCNII (Huang and Yang 2021), and AllSet (Chien
et al. 2021)) have been developed in recent years. Despite these advancements,
the evaluation of these models has been limited to small datasets, usually con-
sisting of tens of thousands of nodes and a few single-entity level downstream
tasks. Moreover, scalability for large-scale datasets has been overlooked in prior
research, with the majority of studies focusing on enhancing the expressive power
of these networks.

However, many real-world applications require predicting properties beyond
the single-entity level, such as pairs or groups of entities. Examples include
detecting collusion among users in peer review (Jecmen et al. 2023), recommend-
ing products to users (Koren et al. 2009), identifying the same users on online
social networks (Zhang and Tong 2016), and predicting pairwise differences for
chemical discovery (Tynes et al. 2021), to name a few. In addition, a massive
number of group relations can be found across various domains, including over
200 million co-authorship relations in research papers (Zhang et al. 2019), co-
appearances of hashtags in over 500 million posts on social media (Yang and
Leskovec 2011), and over 10 million group discussions on an online Q &A plat-
form (Benson et al. 2018).

To bridge the apparent gap between previous studies and practical applications,
we present new tasks, datasets, and scalable training methods for large-scale hyper-
graph learning. Our contributions toward these goals are summarized as follows:

2218 S. Kim et al.

1 3

• Novel Pair-level Tasks: We present two new pair-level prediction tasks, hyper-
edge disambiguation and local clustering, and demonstrate that they can be used
to address various real-world problems.

• Large-scale Datasets: We construct and publicly release two large-scale hyper-
graph-structured datasets: AMiner and MAG, which contain 10 million nodes
and 20 million nodes respectively. These datasets are equipped with rich features
and labels.

• Scalable Training Schemes: We propose PCL (Partitioning-based Contrastive
Learning), a scalable learning method for hypergraph neural networks (HNNs).

 In a nutshell, PCL partitions the input hypergraph and trains HNNs via con-
trastive learning while loading only one partition into memory at a time. PCL is
also equipped with additional techniques to reduce information loss due to par-
titioning, and as a result, HNNs trained by PCL show surprisingly good perfor-
mance in our experiments. Specifically, the performance is comparable to and
often even better than that achieved by training HNNs on entire hypergraphs
without partitioning, which is not scalable to large-scale datasets.

The structure of this paper is as follows. In Sect. 2, we provide some preliminaries
and related work. In Sect. 3, we propose two pair-level prediction tasks with their
mathematical formulation and real-world applications. In Sect. 4, we describe the
two large-scale hypergraph datasets that we build. In Sect. 5, we present PCL, our
scalable learning method for hypergraph neural networks. Using all the above, we
perform experiments and report the results in Sect. 6. In Sect. 7, we offer a conclu-
sion of our work.

2 Preliminaries and related work

2.1 Preliminaries

We first give some preliminaries on hypergraphs and hypergraph neural networks.
See Table 1 for a list of the frequently-used symbols.

2.1.1 Hypergraphs and notations

A hypergraph generalizes a graph by allowing edges to join an arbitrary number of
nodes. Consider a hypergraph H = (V, E,X) where V = {v1, v2,… , v∣V∣} is the set
of nodes, E = {e1, e2,… , e∣E∣} is the set of hyperedges, and X ∈ ℝ

∣V∣×F is the node
feature matrix. Each hyperedge e ∈ E is a non-empty subset of V (i.e., e ⊆ V and
e ≠ ∅), and we use xi = X[i, ∶]T ∈ ℝ

F to denote the feature vector of the node vi .
The topological information in a hypergraph can also be represented in the form
of a matrix called an incidence matrix. In the incidence matrix H ∈ {0, 1}∣V∣×∣E∣
of H , each (i, j)-th entry has a value of 1 if a node vi is incident to a hyperedge
ej (i.e., hij = 1 if vi ∈ ej), or has a value of zero (i.e., hij = 0) otherwise. That is,
H = (V, E,X) can be denoted equivalently by H = (X,H).

2219

1 3

Datasets, tasks, and training methods for large-scale hypergraph learning...

2.1.2 Hypergraph neural networks (HNNs)

Hypergraph neural networks (HNNs) use the hypergraph structure H , node features
X , and (optionally) hyperedge features Y to learn representations of nodes P and/or
of hyperedges Q . Most of the modern HNNs (Feng et al. 2019; Yadati et al. 2019; Bai
et al. 2021; Dong et al. 2020; Arya et al. 2020; Chien et al. 2021) follow a two-stage
message aggregation strategy: node-to-hyperedge and hyperedge-to-node message
aggregation. They iteratively update (a) The representation of a hyperedge by aggregat-
ing messages from its incident nodes and (b) The representation of a node by aggregat-
ing messages from its incident hyperedges. Let P(k) ∈ ℝ

∣V∣×F� and Q(k) ∈ ℝ
∣E∣×F�� be the

hidden representations of the nodes and hyperedges at the kth layer, respectively. For-
mally, the k-th layer of HNNs uses the following update rules:

where fV→E(⋅) and fE→V(⋅) are the message aggregation functions, and the initial
node representation is identical to the node feature vector (i.e., for a node vi , z

(0)

i
= xi

holds). Throughout this paper, we use HGNN (Feng et al. 2019) whose message
aggregation strategies are as follows:

where (a) �(k) is a learnable weight matrix, (b) b(k) is a learnable bias, (c) di and �j
are the degrees of each node vi and hyperedge ej , respectively, and (d) wj is a positive
weight assigned to each hyperedge ej ∈ E . For each node vi ∈ V , its degree is
defined as di =

∑∣E∣

j=1
wjhij , and for each hyperedge ej ∈ E , its degree is defined as

(1)
q
(k)

j
= f

(k)

V→E

(

q
(k−1)

j
,
{
p
(k−1)

i
∶ vi ∈ ej

})

,

p
(k)

i
= f

(k)

E→V

(

p
(k−1)

i
,
{
q
(k)

j
∶ vi ∈ ej

})

,

(2)q
(k)

j
=

�

vi∈ej

p
(k−1)

i
√
di

, p
(k)

i
= �

�
1

√
di

�

ej∶vi∈ej

wjq
(k)

j
�(k)

�j
+ b(k)

�

,

Table 1 Frequently used symbols

Notation Definition

H = (V, E,X) Hypergraph with nodes V , hyperedges E , and node features X
H = (X,H) Hypergraph with node features X and the incidence matrix H
vi ∈ V, ej ∈ E Node and hyperedge
X ∈ ℝ

∣V∣×F Node feature matrix

H ∈ {0, 1}∣V∣×∣E∣ Incidence matrix of H
Enc�(⋅) Hypergraph encoder
Ck ⊆ V Cluster of nodes

Pk = (PV

k
,P

E

k
) Partition with nodes PV

k
 and hyperedges PE

k

Pk = (PX

k
,P

H

k
) Partition with node features PX

k
 and the incidence matrix PH

k

|A| Cardinality (i.e., number of elements) of a set A

2220 S. Kim et al.

1 3

�j =
∑∣V∣

i=1
hij . In this work, wj is fixed to 1 for simplicity. In general, node and

hyperedge representations at the last K-th layer are considered as final representations
used for downstream tasks.

2.2 Related work

In this subsection, we review previous studies on hypergraph neural networks, scal-
able (hyper)graph learning, contrastive learning, and (hyper)graph partitioning, all
of which are closely related to our work.

2.2.1 Hypergraph neural networks

There has been intense attention on designing message aggregation rules of hyper-
graph neural networks (HNN): fV→E(⋅) and fE→V(⋅) (see Eq. (1)). Many recent stud-
ies have focused on extending the applicability of graph neural networks (GNNs) to
hypergraphs. Some approaches (Feng et al. 2019; Bai et al. 2021; Yadati et al. 2020)
replace each hyperedge by a clique composed of its constituent nodes (i.e., clique-
expansion) and employ GNN-based message passing on the resulting graph, which
is called the clique-expanded graph. While these models are simple and effective,
they suffer from undesired information loss due to structural distortion caused by
clique expansion (Hein et al. 2013; Li and Milenkovic 2018; Dong et al. 2020). To
mitigate such information loss, HNHN (Dong et al. 2020) utilizes an approach based
on star-expansion, which does not lead to any information loss, with two different
weight matrices for node- and hyperedge-side message aggregations. Several studies
attempt to generalize the message-passing process in GNNs and HNNs in a unified
form (Huang and Yang 2021; Zhang et al. 2022), and AllSet (Chien et al. 2021)
generalizes message aggregation methods as multiset functions that are learned by
DeepSets (Zaheer et al. 2017) or Set Transformer (Lee et al. 2019).

While many HNN models have been developed, the evaluation of their perfor-
mance in most studies has primarily focused on single-entity-level prediction tasks,
such as node classification (Feng et al. 2019; Huang and Yang 2021; Chien et al.
2021; Lee and Shin 2023), hyperedge classification (Dong et al. 2020), and hyper-
edge prediction (Yadati et al. 2020; Hwang et al. 2022). Although these tasks are
commonly used as benchmarks for machine-learning models, it is important to
note that many real-world applications may not inherently align with these tasks, as
explained in greater detail in Sect. 3.3.

2.2.2 Scalable (Hyper)graph learning

As real-world graphs grow larger, many studies have been conducted to scale graph
neural networks (GNNs) to large graphs through parallelism (Zhang et al. 2020a;
Zheng et al. 2020, 2022a), graph sampling (Hamilton et al. 2017; Chen et al. 2018a,
b; Huang et al. 2018; Chiang et al. 2019; Zeng et al. 2019), and pre-computed convo-
lutional filters (Wu et al. 2019; Rossi et al. 2020). Here, we focus on sampling-based

2221

1 3

Datasets, tasks, and training methods for large-scale hypergraph learning...

approaches. Graph sampling, which approximates local graph structures by subsam-
pled ones suitable for computation, has been demonstrated to be effective for scala-
ble graph learning. For instance, GraphSAGE (Hamilton et al. 2017) utilizes uniform
sampling of a fixed-size set of neighboring nodes to approximate local connectivity.
Similarly, FastGCN (Chen et al. 2018a) conducts node-level sampling independently
for each layer while incorporating importance sampling to reduce variance. Instead
of node-wise sampling, some works build mini-batches by graph-level sampling.
In ClusterGCN (Chiang et al. 2019), non-overlapping clusters are computed at the
pre-processing phase and form mini-batches cluster by cluster. Inter-cluster edges
are simply disregarded, and this process enables ClusterGCN to avoid the “neigh-
borhood expansion” problem (Chiang et al. 2019). GraphSAINT (Zeng et al. 2019)
adopts a graph sampling approach, and specifically, it uses sampling algorithms for
variance reduction with an additional normalization technique for unbiasedness.

The representation learning method for large hypergraphs remains largely under-
explored. HyperNetVec, a scalable unsupervised hypergraph embedding method
proposed by Maleki et al. (2022) leverages multi-level (hierarchical) embedding
approaches that adopt existing graph embedding methods (Grover and Leskovec
2016; Hamilton et al. 2017) on a coarsened hypergraph. While HyperNetVec can
handle hypergraphs with millions of hyperedges, it is a transductive embedding
method. That is, it directly learns node embeddings and cannot be directly utilized
for training HNNs. To the best of our knowledge, our study is the first to propose
a scalable training approach for HNNs applicable to hypergraphs with millions of
nodes and hyperedges. It should be noticed that our approach is scalable enough to
be used with hypergraphs with tens of millions of nodes and hyperedges.

2.2.3 Contrastive learning (CL)

Due to its effectiveness and generality, contrastive learning (CL) has emerged as a
novel solution for alleviating the label-scarcity issue in representation learning in
various domains, including computer vision (Chen et al. 2020; He et al. 2020), natu-
ral language processing (Gao et al. 2021), graph learning (Veličković et al. 2018;
You et al. 2020; Zhu et al. 2020, 2021; Hassani and Khasahmadi 2020; Luo et al.
2022), and hypergraph learning (Zhang et al. 2021; Xia et al. 2021; Yu et al. 2021;
Lee and Shin 2023). The basic concept of CL is to (a) create two augmented views
from the input data and (b) learn an encoder to maximize the agreement between
the two views. That is, CL approaches aim to minimize (maximize) the distance
between positive (negative) pairs. The learned representations can be utilized for
various downstream tasks, such as node classification (Veličković et al. 2018; Zhu
et al. 2020; Lee and Shin 2023) and recommendation (Liu et al. 2021; Xie et al.
2022).

Among contrastive learning for hypergraphs (Zhang et al. 2021; Xia et al. 2021; Yu
et al. 2021; Lee and Shin 2023). S 2-HHGR (Zhang et al. 2021) uses a coarse- and fine-
grained node dropout for hypergraph augmentation, and it remedies a data sparsity issue
for group recommendation. DHCN (Xia et al. 2021) employs session-level contrast for
session recommendation. TriCL (Lee and Shin 2023) uses a tri-directional contrastive

2222 S. Kim et al.

1 3

loss, which combines node-, group-, and membership-level contrastive losses, resulting
in better performance on several downstream tasks, compared to employing simply a
node-level contrastive loss.

2.2.4 (Hyper)graph partitioning

(Hyper)graph partitioning is a fundamental task where the objective is to divide nodes
into multiple groups (Girvan and Newman 2002; Çatalyürek and Aykanat 2011; Tsitsu-
lin et al. 2020) to minimize the connectivity between groups, and it has extensive appli-
cations, including anomaly detection (Ahmed et al. 2021), molecular mining (Grunig
et al. 2022), and face analysis (Wang et al. 2019).

Especially for hypergraph partitioning, multi-level approaches have received inten-
sive attention (Çatalyürek and Aykanat 2011; Karypis et al. 1997; Schlag et al. 2023).
A multi-level hypergraph partitioning algorithm consists of three phases: coarsening,
initial partitioning, and uncoarsening. (a) Coarsening: A coarsened hypergraph H(c)
is formed by merging pairs of nodes in the input hypergraph H . This procedure is
recursively applied to the coarsened hypergraph. The final hypergraph is the coarsest
one that meets predefined termination criteria. (b) Initial partitioning: The coarsest
hypergraph is partitioned using any partitioning rules. (c) Uncoarsening: Partitions
found in the second phase are successively projected back towards the original hyper-
graph H . In this paper, we adopt PaToH (Çatalyürek and Aykanat 2011) for hyper-
graph partitioning due to its high-scalability. However, other approaches (Karypis
et al. 1997; Schlag et al. 2023; Caldwell et al. 2000; Mayer et al. 2018) can be
employed instead.

While the above hypergraph partitioning (clustering) studies make assump-
tions about static input hypergraphs and disjoint partitions, there have been efforts
to relax these assumptions in ordinary graphs. Refer to (Xie et al. 2013; Rossetti
and Cazabet 2018) for surveys on this topic. Notably, such extensions include
overlapping clustering, which allows entities to belong to multiple clusters (Yang
and Leskovec 2013; Shchur and Günnemann 2019), clustering in time-varying
graphs (Ruan et al. 2021), and overlapping clustering in time-varying graphs (Mut-
takin et al. 2022). Recently, overlapping clustering is addressed using graph neural
networks (Shchur and Günnemann 2019) and also considered in hypergraphs (Con-
tisciani et al. 2022).

3 Proposed hypergraph learning tasks

In this section, we propose two new hypergraph learning tasks: hyperedge disambigua-
tion and local clustering. For each task, we first provide its mathematical formulation
and then discuss its application to real-world problems. Lastly, we describe how our
proposed tasks differ from commonly considered benchmark tasks, with a focus on
advantages in addressing potential issues in practice.

2223

1 3

Datasets, tasks, and training methods for large-scale hypergraph learning...

3.1 Hyperedge disambiguation

3.1.1 Mathematical description

Consider a hypergraph H = (V, E,X) and a subset S ⊆ E of hyperedges. Every
hyperedge ei ∈ S is split (disjointly or with partial overlap) into two hyperedges ei1
and ei2 so that ei1 ∪ ei2 = ei holds. The hyperedges in S are replaced by these split
hyperedges, which results in a new hypergraph H� = (V, E�) where

Based on this setting, hyperedge disambiguation is defined as to predict whether
a given pair of hyperedges in the given hypergraph H� = (V, E�,X) are split hyper-
edges or not. Formally,

where ei, ej ∈ E
� . The goal of this task is to learn a function f ∶

(
E
�

2

)

↦ ℝ ∈ [0, 1]

to approximate Y(⋅) in Eq. (4). In this paper, we consider this task in a semi-
supervised setting where a small amount of the ground-truth split pairs of
hyperedges are given. However, this problem can also be considered in other
settings.1

3.1.2 Real‑world applications

The hyperedge disambiguation task can be applied to many real-world applica-
tions. Below, we introduce two examples: researcher disambiguation and user
identification.

Researcher disambiguation is a task to identify whether a given pair of research-
ers are in fact the same researcher or not. Due to namesakes and other reasons, one
researcher can be represented as multiple individuals in a system, which compli-
cates searching for experts, surveying related papers, and recommending scholarly
papers (Milojević 2013; Caron and van Eck 2014; Sanyal et al. 2021). This problem
can naturally be formulated as a hyperedge disambiguation task on a publication-
author hypergraph where nodes denote publications and each hyperedge represents a
(potentially partial) set of publications authored by one researcher. Then, predicting
whether a given pair of hyperedges are split ones or not corresponds to predicting
whether the two sets of publications are authored in fact by the same researcher or
not, as visually depicted in Fig. 1a.

(3)E
� = (E ⧵ S) ∪

⋃

ei∈S

{ei1, ei2}.

(4)Y({ei, ej}) =

{
1 ei ∪ ej ∈ S

0 otherwise
,

1 For example, in an unsupervised setting without any given positive example pairs, one can additionally
split edges in E′ to use them as positive example pairs for training.

2224 S. Kim et al.

1 3

The second task is user identification, which is to identify whether a given pair
of electronic devices (or accounts for a web service) are owned by the same user
(Deng et al. 2019; Malatras et al. 2017). If such a pair can be identified, the data
(e.g., behavior log) from both can be used together to improve the quality of services
(e.g., personalization and recommendation). To handle this problem, we can build
a hypergraph where nodes denote devices (or accounts) and each hyperedge repre-
sents the set of devices (or accounts) that each device (or account) communicates
with. Then, predicting whether a given pair of hyperedges are split ones or not cor-
responds to predicting whether the two devices (or accounts) are owned by the same
user or not.

3.2 Local clustering

3.2.1 Mathematical description

Consider a hypergraph H = (V, E,X) and (disjoint or partially overlapping) clus-
ters of nodes C = {C1,C2,⋯ ,C|C|} where each cluster is a subset of nodes (i.e.,
Ck ⊆ V, ∀Ck ∈ C). Based on this setting, local clustering is defined as to predict
whether a given pair of nodes in a given hypergraph H belongs together to the same
cluster or not. Formally,

where vi, vj ∈ V . The goal of this task is to find a function f ∶
(
V

2

)

↦ ℝ ∈ [0, 1]

to approximate Y(⋅) in Eq. (5). In this paper, we consider this task in a semi-super-
vised setting where the members of a few clusters are given, while any information
about the other clusters (e.g., the number of them) is not provided. However, this
problem can also be considered in other settings.2

(5)Y({vi, vj}) =

{
1 ∃Ck ∈ C such that {vi, vj} ⊆ Ck

0 otherwise
,

Fig. 1 Example applications of the proposed tasks. a In a researcher disambiguation task, we aim to pre-
dict whether a given pair of researchers (modeled as hyperedges) are identical or not. b In a household
matching task, we aim to predict whether a given pair of devices (modeled as nodes) are owned by peo-
ple in the same household or not

2 For example, it can be considered in unsupervised settings especially when the clustering membership
is strongly correlated with node features and/or topological information.

2225

1 3

Datasets, tasks, and training methods for large-scale hypergraph learning...

3.2.2 Real‑world applications

The local clustering task can be used to formulate a wide range of real-world prob-
lems. Here, we provide two examples: sub-field detection and household matching.

The first task is sub-field detection, which is to classify whether a given pair of
publications belong to the same sub-field or not. Note that the boundary of a sub-
field is often unclear, and thus a single publication may belong to multiple sub-
fields. This problem is formulated as a local clustering task on hypergraphs where
a node denotes a publication, a hyperedge represents the set of publications that are
co-cited by one publication, and clusters indicate sub-fields.

The second task is household matching, a task to predict whether a given pair
of electronic devices are owned by people in the same household or not. By group-
ing devices from the same households, recommendations and advertisements can
be better personalized. For example, consider a hypergraph where nodes denote
devices and each hyperedge indicates the set of devices access to the same IP within
a specific time interval (e.g., set of devices access to IP 123.456.789 between 9 and
10 AM on May 16, 2023). If each cluster is formed by the devices from the same
household, inferring whether two nodes belong to the same cluster or not corre-
sponds to inferring whether two devices are from the same household or not, as vis-
ually depicted in Fig. 1b. Note that household matching is not formulated accurately
as an entity classification task, since (1) It is hard to know in advance the number
of households, which is required and fixed in entity classification tasks, and (2) The
number of households changes over time.

3.3 Differences from existing tasks

In this subsection, we discuss some difficulties when formulating the aforemen-
tioned real-world applications as commonly-used single-entity-level tasks (e.g. node
classification). Note that our proposed pair-level tasks mitigate such difficulties.

3.3.1 Entity classification

One may suspect that the aforementioned applications can also be formulated as
single-entity-level tasks. However, formulating these applications as our tasks offer
several advantages over formulating them as an entity classification task: (1) Our
tasks do not require the number of labels. which is equivalent to the number of split
hyperedges and the number of clusters in our tasks, in advance, and (2) A model for
our tasks does not need to be retrained whenever the number of labels changes in
time-evolving data.

For example, one may consider formulating the household matching problem
as a node classification problem where each class indicates a household. Here, it is
important to note that the number of such classes is typically impossible to know in

2226 S. Kim et al.

1 3

advance, and it also changes ceaselessly over time. Moreover, no example can be
provided for some classes during training. However, in node-classification formula-
tion, the output dimension of classifiers should be predetermined by the number of
classes, and they cannot output classes that are not observed during training.

On the other hand, our formulation as the local clustering task is free from such
unrealistic requirements. That is, we do not require the number of households in
advance and require only some pairs of devices from some households. Moreover,
machine learning models trained for the local clustering task can naturally be gener-
alized to households unseen during training.

Formulating the researcher disambiguation problem as a hyperedge classification
task also encounters the same issues above. The number of real identities, which
change over time, is impossible to know in advance. However, considering the
researcher disambiguation problem as a hyperedge disambiguation task is free from
the above-mentioned issues.

3.3.2 Overlapping clustering

The proposed local clustering problem is also closely related to the overlapping
clustering problem, whose goal is to identify clusters where an object (e.g., a node)
can belong to multiple clusters (see Sect. 2.2.4). The problem has been considered
mostly in ordinary graphs and more importantly in transductive settings. That is,
clusters are identified based on the current state of a graph, and once the graph
changes, one needs to re-run the entire clustering process from scratch. Thus, the
task is not proper to be used for evaluating HNNs (especially their generalization
capabilities), which are particularly useful in inductive settings. Moreover, in many
cases, the number of ground truth clusters is required, while it is unavailable in
many realistic settings.

4 Proposed large‑scale hypergraph datasets

In this section, we introduce two large-scale hypergraph-structured datasets. We
build them by processing raw data from AMiner (Tang et al. 2008) and Micro-
soft Academic Graph (MAG) (Sinha et al. 2015). First, we describe how the node
features and labels are obtained from the raw data, and then we present how the
hypergraph topologies are constructed. Figure 2 provides a visual description of the
hypergraph construction process.

4.1 Extracting basic information

The source of the datasets is Open Academic Graph3 (Zhang et al. 2019), and it provides
two large academic bibliographic datasets: AMiner and MAG. These bibliographic

3 Available at https:// www. aminer. cn/ oag-2-1.

https://www.aminer.cn/oag-2-1

2227

1 3

Datasets, tasks, and training methods for large-scale hypergraph learning...

datasets consist of huge raw text data containing information about over 100 million
authors and publications. From this raw data, we first extract the (a) publication ID, (b)
author IDs, (c) the title, (d) keywords, and (e) the venue ID of each publication.

4.2 Building node features

We construct a 300-dimensional feature vector for each publication, which corre-
sponds to a node. To this end, we average the embeddings of all the words appearing
in its title and keywords, where the word embeddings are obtained by the pre-trained
GloVe (Pennington et al. 2014) model4. The node features are created separately for
AMiner and MAG.

4.3 Building node labels

We classify publications based on the academic fields they belong to. Since the origi-
nal raw data does not contain any information about the publications’ academic fields,
we utilize the venue name (e.g., conference and journal) of each publication to infer
its field. Specifically, we use the category hierarchy provided by Google Scholar5
for mapping venue names to academic fields. The hierarchy consists of three levels:
fields, sub-fields, and venues. For example, the journal Data Mining and Knowledge
Discovery (DAMI) belongs to the sub-field Data Mining & Analysis, which in turn
belongs to the field Engineering & Computer Science. We label each publication

Fig. 2 Examples for the construction process of the AMiner and MAG datasets. (Left) From raw text
data, we extract the a publication ID, b author IDs, c title, d keywords, and e venue ID of each publica-
tion. (Middle) We obtain the 300-dimensional features for each publication by averaging the embeddings
of all words in its title and keywords. Each publication is labelled based on the sub-field it belongs to.
(Right) We create nodes corresponding to publications and hyperedges corresponding to authors

4 Available at https:// github. com/ UKPLab/ sente nce- trans forme rs.
5 Available at https:// schol ar. google. com/ citat ions? view_ op= top_ venue s & hl= en & vq= eng. In this tax-
onomy, a single venue is associated with a single sub-field.

https://github.com/UKPLab/sentence-transformers
https://scholar.google.com/citations?view_op=top_venues%20&hl=en%20&vq=eng

2228 S. Kim et al.

1 3

based on the sub-field (i.e., the middle level) it belongs to. Note that, in the category
that we use, each venue (node) is matched with exactly one sub-field (label).

4.4 Building hypergraph structures

The raw data are far from complete with many missing values (e.g., missing authors)
and meaningless information (e.g., incomprehensible words). For the quality of the
created hypergraphs, we first filter out all publications that satisfy at least one of the
following three conditions:

• It does not have author information (i.e., names or IDs),
• Its title and keywords consist of less than three words,
• It is not matched with any academic field.

Then, we build hypergraphs using the remaining publications.
As mentioned in Sect. 4.2, publications and authors are represented by nodes and

hyperedges, respectively. To be specific, for each author ID, the publications that
contain the ID as an author form a hyperedge. In this way, we create two co-author-
ship hypergraphs, AMiner and MAG, which contain over 20 million hyperedges and
30 million hyperedges, respectively. Numerically, the MAG dataset contains 158×
more nodes and 129× more hyperedges than the Trivago dataset, one of the com-
monly used hypergraph datasets. Table 2 compares the statistics of the proposed
datasets and some existing datasets. Note that, the AMiner and MAG datasets can
be used not only for the proposed pair-level tasks but also for common downstream
tasks, such as node classification, hyperedge prediction, and clustering.

5 Proposed scalable hypergraph learning method

In this section, we introduce PCL (Partitioning-based Contrastive Learning), a scal-
able hypergraph learning algorithm for pair-level tasks. We first provide an overview
of PCL together with the rationale of its components. Next, we describe the details
of PCL. At last, we give the complexity analysis of PCL. A pictorial description of
PCL is provided in Fig. 3.

5.1 Challenges and main ideas

We analyze two challenges encountered in training representation learning models
for pair-level downstream tasks on large-scale hypergraphs. Then, we present our
proposed solutions for overcoming these problems.

2229

1 3

Datasets, tasks, and training methods for large-scale hypergraph learning...

Challenge 1. Considerable Time and Space Cost: How can we train hypergraph
neural network models on large-scale hypergraph datasets? The commonly-used full-
batch training is typically not possible, since such hypergraphs cannot be entirely
loaded into GPU memory, and this causes the out-of-memory problem. To miti-
gate this issue, a mini-batch training method (Hamilton et al. 2017) loads only the
subgraph from which each node aggregates messages into GPU memory at a time.
Although it reduces memory requirements, it introduces significant computational

Table 2 Statistics of five real-world hypergraph datasets. MAG has 158× more nodes and 129× more
hyperedges than Trivago, a commonly used hypergraph dataset

* In the Trivago dataset, we use the first 300 left singular vectors of the incidence matrix as the node
features.
** Transformed from a heterogeneous graph

Source Dataset |V| |E| # features # classes

Existing DBLP 41,302 22,363 1,425 6
Trivago* 172,738 233,202 300 160

Transformed** OGBN-MAG 736,389 1,134,649 128 349
Proposal AMiner 13,262,573 22,552,647 300 257

MAG 27,320,375 30,175,013 300 257

Fig. 3 Overview of Basic PCL and PCL+PinS, the proposed large-scale hypergraph learning methods.
We consider each partition (Pi and Pj in the example) as a mini-batch and perform contrastive learning
on each mini-batch. In Basic PCL, after a single contrastive learning iteration is done on a partition (Pi),
it moves to another partition (Pj) and starts the next iteration. In PCL+PinS, after a model is updated on
a partition (Pi), PCL+PinS extracts the node embeddings of Pi ’s two views (Zi1 and Zi2 in our example)
and uses Zi1 and Zi2 to compute inter-partition CL loss in the next partition Pj

2230 S. Kim et al.

1 3

overhead to extract such subhypergraphs for each node and load them repeatedly
into GPU memory. Even worse, such subhypergraphs are often large since real-
world hypergraphs tend to have a small diameter (Do et al. 2020; Ko et al. 2022).

Solution 1: Our solution to the scalability issue in large-scale hypergraph rep-
resentation learning is partitioning (or equivalently node clustering). The process
involves dividing the input hypergraph into smaller partitions, treating each parti-
tion as a distinct mini-batch. Partitioning-based approaches have proved efficient
in training models (i.e., graph neural networks) for representation learning in ordi-
nary graphs, mitigating the neighborhood expansion problem (Chiang et al. 2019).
Despite their efficiency, partitioning-based approaches have not been considered
for training HNNs on large-scale hypergraphs. Motivated by this efficiency, we
split the entire hypergraph into K partitions. Here, we use a well-known hypergraph
partitioning algorithm PaToH6 (Çatalyürek and Aykanat 2011), while any partition-
ing method can be used instead. We load a single partition into GPU memory at a
time, which requires K times more processes of loading and unloading partitions
into GPU memory. Alternatively, one can put two different partitions into GPU
memory, but it requires at most K(K − 1)∕2 times more processes, which are com-
putationally too costly for large K.

Challenge 2. Information Loss Caused by Partitioning: Although the partitioning
approach can mitigate the scalability issues, it has several limitations in handling
pair-level downstream tasks presented in Sect. 3.

• Some hyperedges do not exist in any partitioned hypergraph if their constituent
nodes belong to different partitions, and thus such hyperedges cannot be utilized
in the training phase (see e1 of Fig. 4a).

• Certain node pairs and hyperedge pairs that are given as labeled pairs may be split
into different partitions (see {v1, v5} of Fig. 4a). In such scenarios, these divided pairs
cannot be used as labeled pairs for the partitioning-based approach to train HNNs.

• A single partition may not represent the entire hypergraph adequately since
partitioning algorithms tend to group similar nodes together in the same parti-
tion (Chiang et al. 2019; Guo et al. 2021). In other words, each partition may
exhibit bias.

Solution 2: Our countermeasure for the second challenge is three-fold.

• The first one is to leverage a contrastive learning (CL) framework (Chen et al.
2020; Lee and Shin 2023) to train hypergraph encoders (i.e., HNNs) on parti-
tioned hypergraphs. The basic concept of CL is to train a hypergraph encoder by

6 PaToH is a balanced partitioning method. It ensures that all generated partitions are of similar
sizes (Çatalyürek and Aykanat 2011), specifically satisfying �PV

k
� ≤

(1+�)

�P�

∑�P�

i=1
�PV

i
�, ∀k = 1,⋯ , �P� . As

shown in Table 8 in Sect. 6.3.5, partitions obtained by PaToH from real-world hypergraphs are well bal-
anced. Specifically, the standard deviation of the number of nodes in each partition is less than 0.5% of
the average number of nodes per partition.

2231

1 3

Datasets, tasks, and training methods for large-scale hypergraph learning...

(a) creating two augmented views from the input data and (b) letting the encoder
maximize the agreement between the two views. Note that CL does not require
any label supervision, and this characteristic ensures that the encoder is properly
trained even in the case where labeled pairs are split or lost.

• The second one is PINS, which mitigates the bias problem caused by hyper-
graph partitioning. Since it processes a single partition as a mini-batch, a
hypergraph encoder has limited exposure to the differences between nodes in
different partitions. To enable the hypergraph encoder to incorporate informa-
tion from other partitions, PINS utilizes the node representations from the pre-
vious partition.

• The last one is P-IOS, restores each hyperedge by adding its missing nodes back
to the hyperedge, to alleviate information loss caused by partitioning.

5.2 Details of proposed methods

In this subsection, we explain the details of the three proposed solutions discussed
in the previous subsection. We first introduce Basic PCL, a contrastive learning
(CL) framework with partitioned hypergraphs. Then, we introduce PCL+PinS, a
method that uses the embeddings of the previous partitions as negative samples. In
addition, we provide PCL+P-iOS , a method that augments each partition without
additional hyperedges. Lastly, we describe how a classifier of downstream tasks is
trained with pre-trained hypergraph encoders.

Fig. 4 (a) Assume the two nodes v1 and v5 belong to the same cluster, and the two hyperedges e1 and e2
are split from one original hyperedge. Note that v1 and v5 belong to different partitions, and e1 = {v2, v5}
does not even exist in any partitioned hypergraph since v2 ∈ P

V

1
 and v5 ∈ P

V

2
 . Thus, {v1, v5} and {e1, e2}

cannot be used as labeled pairs when one trains a model on partitioned hypergraphs in a supervised man-
ner. (b) In order to mitigate information loss caused by partitioning, P-iOS restores each hyperedge by
adding its missing nodes back to the hyperedge

2232 S. Kim et al.

1 3

5.2.1 Basic PCL

Basic PCL (Partitioning-based Contrastive Learning) is a contrastive learning
framework that trains HNNs on partitioned hypergraphs. An example of Basic PCL
is illustrated in Fig. 3, and its pseudocode is provided in Algorithm 1. We denote
the set of all partitions as P = {P1,⋯ ,PK} , where each partition is defined as
Pk = (PV

k
,PE

k
) , where PV

k
⊆ V and PE

k
= {e ∩ P

V

k
∶ e ∈ E, e ∩ P

V

k
≠ �} . Here, K

denotes the number of partitions7. Note that Pk can also be expressed as (PX

k
,PH

k
) ,

where PX

k
 denotes the node features of PV

k
 , and PH

k
 denotes the incidence matrix of

Pk.
In a nutshell, Basic PCL receives a set of partitions P as an input and treats each

partition Pk ∈ P as a mini-batch (line 3) for contrastive learning. It trains a hyper-
graph encoder (i.e., hypergraph neural network) aiming to minimize a contrastive
learning loss, which will be further elaborated. Details are as follows:

First, Basic PCL creates two augmented views of an input partition Pk (line 4). It
mainly utilizes a masking-based augmentation strategy (Lee and Shin 2023), which

7 One can set K based on the available amount of space (low K takes more memory consumption in gen-
eral). Note that the performance of the proposed method is not significantly affected by K, which will be
demonstrated in Sect. 6.3.5.

2233

1 3

Datasets, tasks, and training methods for large-scale hypergraph learning...

corrupts node features and membership (each group and its members). For node
feature augmentation, Basic PCL employs a single random binary mask, with each
entry sampled from a Bernoulli distribution B(1 − pv) . This mask is utilized to set
certain columns of PX

k
 , which is a feature matrix of the current partition, to zero vec-

tors. Similarly, for membership augmentation, Basic PCL randomly removes nodes
from the hyperedges that they belong to. Specifically, Basic PCL generates a binary
mask of size nnz(PH

k
) (i.e., the number of nonzero entries of an incidence matrix

P
H

k
 of the current partition) with each entry sampled from a Bernoulli distribution

B(1 − pe) . This mask is leveraged to remove certain node-hyperedge memberships.
We use P′

k1
 and P′

k2
 to denote the two resulting views created through this process,

as in Eq. (6):

where Au denotes the augmentation process described above.
Then, Basic PCL obtains node representations of the two views by sequen-

tially passing the two views through a hypergraph encoder Enc� (see Sect. 2.1.2 for
details) and a projection head ProjΘ (line 5-6):

where ProjΘ is a one-layer MLP with the ReLU (Nair and Hinton 2010) activation
function. Lastly, PCL employs the InfoNCE loss (Oord et al. 2018) for parameter
updates to make the representations of the corresponding nodes in the two views
similar and those of different nodes dissimilar8:

where zka,i is a ith row vector of Zka , � is a temperature parameter, and s is a simi-
larity function. As the similarity function s, we use the consine similarity, i.e.,
s(u, v) = (uTv)∕(‖u‖ ⋅ ‖v‖)). As shown in the denominator of Eq. (8), for each node,
its similarity with all other nodes of PV

k
 is computed. For computational efficiency,

instead of using the entire PV

k
 , we obtain a uniform sample P�V

k
⊂ (PV

k
⧵ {vi}) , where

|P�V
k
| = min(|PV

k
|,N) and N is a hyperparameter, and use it as negative samples. That

is,

In practice, we symmetrize Eq. (8) so that the final CL loss (line 7) becomes:

(6)P
�
k1

= (P�X
k1
,P�H

k1
) ← Au(Pk, pv, pe);P

�
k2

= (P�X
k2
,P�H

k2
) ← Au(Pk, pv, pe),

(7)Zk1 = ProjΘ(Enc�(P
�
k1
)));Zk2 = ProjΘ(Enc�(P

�
k2
))),

(8)�(zk1,i, zk2,i) = − log
exp (s(zk1,i, zk2,i)∕�)

∑�PV

k
�

t=1
exp (s(zk1,i, zk2,t)∕�)

,

(9)�(zk1,i, zk2,i) = − log
exp (s(zk1,i, zk2,i)∕�)

exp (s(zk1,i, zk2,i)∕�) +
∑

vt∈P
�V
k
exp (s(zk1,i, zk2,t)∕�)

.

8 Note that other self-supervised losses (e.g., (Addanki et al. 2021)) can be used alternatively.

2234 S. Kim et al.

1 3

By using Eq. (10), Basic PCL updates Enc� and ProjΘ via gradient descent.

5.2.2 PCL+PINS

PCL+PinS (Previous partItion’s Negative Samples) encourages a hypergraph
encoder Enc� to learn dissimilarity between nodes at different partitions (see
Fig. 3). A pseudocode of PCL+PinS is provided in Algorithm 1. As Basic PCL
does, PCL+PinS treats each partition as a mini-batch for contrastive learning. How-
ever, while Basic PCL only utilizes contrastive loss obtained within each partition,
PCL+PinS incorporates information from other partitions.

In PCL+PinS, before moving to the next partition (after updating the encoder
in the current partition), the encoder extracts node embeddings of two augmented
views of the current partition Pk (denoted by Zk1 and Zk2) (line 12). For the next
partition Pt , PCL+PinS uses not only the CL loss in Eq. (10), which is obtained
within a partition Pt , but also an inter-partition CL loss to maximize the dissimilar-
ity between the node embeddings from a view of Pt and those from a view of Pk .
Specifically, the inter-partition CL loss between a view P′

t1
 of Pt and a view P′

k1
 of

Pk is defined as:

where PV

k,s
⊂ P

V

k
 are sampled nodes from Pk for negative samples. We consider all

possible pairs of a view from Pt and a view from Pt , and based on them we define
LI,t(1, 1) , LI,t(1, 2) , LI,t(2, 1) , and LI,t(2, 2) , accordingly. Then, the final loss of
PCL+PinS for each partition Pt is defined as:

where LCL,t is the loss within Pt in Eq. (10), and � is a hyperparameter that controls
the strength of the inter-partition CL loss.

In summary, PCL+PinS uses node embeddings from the previous partitions as
negative samples for the current partition. It is important to note that Zk1 and Zk2 are
obtained from a partition already residing in GPU memory, and does not require any
additional data loading process. In addition, Zk1 and Zk2 are not outdated since they
are extracted after updating the encoder.

5.2.3 PCL+P‑IOS

PCL+P-iOS (Partitions with the Inclusion of Outsider Set) restores each hyperedge
by adding its constituent nodes missed during partitioning back to the hyperedge, to

(10)LCL,k =
1

2|PV

k
|

|PV

k
|

∑

i=1

(
�(zk1,i, zk2,i) + �(zk2,i, zk1,i)

)
.

(11)LI,t(1, 1) =
1

�PV

t
�

�PV

t
�

�

i=1

log

⎛
⎜
⎜
⎝

�

j∈PV

k,s

exp

�
s(zt1,i, zk1,j)

�

�⎞
⎟
⎟
⎠

,

(12)L = LCL,t + �
(
LI,t(1, 1) + LI,t(1, 2) + LI,t(2, 1) + LI,t(2, 2)

)
,

2235

1 3

Datasets, tasks, and training methods for large-scale hypergraph learning...

mitigate information loss caused by partitioning. An example of P-iOS is illustrated in
Fig. 4b.

Formally, for a given set of hypergraph partitions P , PCL+P-iOS builds a new
hypergraph partition set P̃ , which is defined as:

where P̃E

k
= {e ∈ E ∶ e ∩ Pk ≠ �} , and P̃V

k
=
⋃

e∈P̃
E

k

e . The training strategy of
PCL+P-iOS is the same as that of Basic PCL except that PCL+P-iOS uses P̃ , as
input hypergraph partitions, instead of P.

5.2.4 Classifier for pair‑level downstream tasks

Note that the proposed methods (Basic PCL, PCL+PinS, and PCL+P-iOS) are for
obtaining representations of nodes. Lastly, we present how PCL makes predictions for
node-pair-level tasks and hyperedge-pair-level tasks with acquired representations. We
denote node representations obtained by a hypergraph encoder (trained by one of the
proposed methods) by Pv ∈ ℝ

|V|×F� . It should be noticed that the representations are
the output of the hypergraph encoder Enc� not the projection head ProjΘ , which is used
only for contrastive learning.

For a node pair-level task, PCL directly uses Pv as node features. To make a predic-
tion for a pair of nodes {vi, vj} , PCL uses a classifier hv ∶ (ℝF�

×ℝ
F�

) ↦ [0, 1] . Spe-
cifically, hv is structured as follows:

where ⊗ denotes the element-wise product; � denotes the sigmoid function; R
denotes the ReLU activation function (Nair and Hinton 2010); W11 and W12 are
learnable weight matrices; and b11 and b12 are learnable bias matrices. All param-
eters (i.e., W11 , W12 , b11 , and b12) are updated using a classification loss. Note that in
the proposed local clustering task, this prediction is used to identify whether the pair
of nodes {vi, vj} belong to the same cluster or not.

For a hyperedge pair-level task, PCL first creates hyperedge features by aggregating
node representations that belong to the corresponding hyperedge. Formally, hyperedge
features Pe ∈ ℝ

|E|×F� (or Pe ∈ ℝ
|E�|×F� in our hyperedge disambiguation task) are com-

puted as follows:

Although we have adopted a summation for the aggregation function, other
permutation invariant functions (e.g., average and maximum) can also be uti-
lized. To make a prediction for a pair of hyperedges {ei, ej} , PCL uses a classifier
he ∶ (ℝF�

×ℝ
F�

) ↦ [0, 1] . Specifically, he is structured as follows:

(13)P̃ =
{

P̃k =
(

P̃
V

k
, P̃

E

k

)

∶ k ∈ {1,⋯ ,K}
}

,

(14)hv(pv,i, pv,j) = 𝜎(W12(R(W11pv,i + b11)⊗ R(W11pv,j + b11)) + b12),

(15)pe,i =
∑

vk∈ei

pv,k, ∀ei ∈ E (or ∀ei ∈ E
� in hyperedge disambiguation).

(16)he(pe,i, pe,j) = 𝜎(W22(R(W21pe,i + b21)⊗ R(W21pe,j + b21)) + b22),

2236 S. Kim et al.

1 3

where ⊗ denotes an element-wise product; � denotes the sigmoid function; R
denotes the ReLU activation function (Nair and Hinton 2010), W21 and W22 are
learnable weight matrices; and b21 and b22 are learnable bias matrices. All param-
eters (W21 , W22 , b21 , and b22) are updated using a classification loss. Note that in the
proposed hyperedge disambiguation task, this prediction is used to identify whether
a given pair of hyperedges {ei, ej} are in fact split from one hyperedge.

When training the classifiers hv and he , we freeze the parameters of the hyper-
graph encoder Enc� , and thus the node representations Pv and hyperedge repre-
sentations Pe are also frozen. However, it is also possible to fine-tune Enc� while
training the hv and he for downstream tasks.

5.3 Complexity analysis

We examine the time complexity and memory requirement of PCL, focusing on
a forward pass of Basic PCL. Note that obtaining node embeddings with a hyper-
graph neural network incurs time complexity of O(�V� +

∑
ei∈E

�ei�) , as outlined in
Eqs. (1) and (2).

We first present the time complexity of a forward pass of the HCL (hypergraph
contrastive learning), a contrastive learning framework based on the entire hyper-
graph dataset. As stated above, the time complexity of obtaining node embed-
dings of two views using a hypergraph encoder is O(�V� +

∑
ei∈E

�ei�) . After this,
node embeddings of two views are fed into a projection head, which takes O(|V|)
time. At last, it computes the contrastive loss between each node and negative
samples, whose time complexity is O(|V|N) where N is the number of negative
samples. The overall time complexity of a forward pass of HCL becomes

A forward pass of HCL requires O(�V� +
∑

ei∈E
�ei�) (GPU) memory space for stor-

ing the entire input hypergraph and (intermediate) embeddings.
Now, we elaborate on the complexity of our proposed method, Basic PCL.

The time complexity in Eq. (17) is applied to each partition (instead of the entire
hypergraph), and as a result, the overall time complexity of a forward pass of
Basic PCL becomes

which is equivalent to the time complexity of HCL.
The (GPU) memory requirement of Basic PCL differs from that of HCL. Since

Basic PCL loads only one partition into (GPU) memory at a time, the amount of
(GPU) memory required becomes

(17)O

(

(|V| +
∑

ei∈E

|ei|) + |V| + |V|N

)

= O

(

|V| +
∑

ei∈E

|ei|

)

.

(18)O

⎛
⎜
⎜
⎝

�K��

k=1

�PV

k
� +

�K��

k=1

�

e�
i
∈PE

k

�e�
i
�

⎞
⎟
⎟
⎠

= O

�

�V� +
�

ei∈E

�ei�

�

,

2237

1 3

Datasets, tasks, and training methods for large-scale hypergraph learning...

which indicates that the (GPU) memory requirement of Basic PCL is less than or
equal to that of the HCL. This fact is also further supported by experiments, where
HCL encounters out-of-memory issues when dealing with large-scale datasets,
whereas PCL is not susceptible to such problems (see Tables 3 and 4). Regarding
speed, empirical observations indicate that HCL is faster in certain real-world data-
sets. This is because HCL requires less time to load datasets into (GPU) memory
compared to PCL, which necessitates additional time for loading and unloading
each partition into (GPU) memory.

6 Experiments

In this section, we review our experiments to answer the following questions:

• RQ1: How accurate is PCL for the proposed pair-level tasks?
• RQ2: How effective is PinS?
• RQ3: How much GPU memory is required by PCL with and without PinS?
• RQ4: How effective is P-iOS?
• RQ5: How does the performance of PCL (+ PinS) depend on the number (or

size) of partitions?

We first describe the problem settings for the proposed pair-level prediction tasks.
Then, we provide details of experimental settings and datasets. Lastly, we provide
answers to the above questions based on our experimental results.

6.1 Problem settings

In this subsection, we introduce how we compose train and test pairs for the two
pair-level prediction tasks described in Sect. 3.

6.1.1 Hyperedge disambiguation (Task‑I)

Given an original hypergraph H = (V, E,X) , we split hyperedges in a dis-
joint way. Let ES ⊆ E be the subset of the original hyperedge set that con-
sists of all hyperedges of sizes greater than 10 (i.e., ES = {e ∈ E ∶ |e| > 10}).
We randomly split every hyperedge ei in ES into two sub-hyperedges {ei1, ei2} ,
under a constraint that the size of both sub-hyperedges should be at least 5 (i.e.,
ei1 ∩ ei2 = �, ei1 ∪ ei2 = ei, and min(|ei1|, |ei2|) ≥ 5). Then, we create a new hyper-
graph H′ whose hyperedge set E′ is defined as:

(19)O

⎛
⎜
⎜
⎝

max
Pk∈P

⎛
⎜
⎜
⎝

�PV

k
� +

�

e�
i
∈PE

k

�e�
i
�

⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠

,

2238 S. Kim et al.

1 3

Ta
bl

e
3

 T
as

k-
I:

O
n

th
e

hy
pe

re
dg

e
di

sa
m

bi
gu

at
io

n
ta

sk
, B

as
ic

 P
C

L
(p

ro
po

se
d)

 is
 c

om
pa

ra
bl

e
to

 a
nd

 o
fte

n
be

tte
r t

ha
n

se
ve

ra
l b

as
el

in
e

m
et

ho
ds

, i
nc

lu
di

ng
 th

os
e

re
qu

iri
ng

th

e
fu

ll
da

ta
 to

 b
e

lo
ad

ed
 in

 m
em

or
y

fo
r t

ra
in

in
g.

 W
e

re
po

rt
th

e
av

er
ag

e
an

d
st

an
da

rd
 d

ev
ia

tio
n

of
 e

ac
h

m
et

ric
 o

n
10

 ra
nd

om
 d

at
a

sp
lit

s.
Th

e
be

st
pe

rfo
rm

an
ce

 in
 e

ac
h

se
t-

tin
g

is
 h

ig
hl

ig
ht

ed
 in

 b
ol

d,
 a

nd
 th

e
se

co
nd

 b
es

t p
er

fo
rm

an
ce

 is
 h

ig
hl

ig
ht

ed
 in

 u
nd

er
lin

e.
 O

O
M

 in
di

ca
te

s “
ou

t o
f m

em
or

y”

D
B

LP
Tr

iv
ag

o
O

G
B

N
-M

A
G

A
M

in
er

M
A

G
A

vg

D
at

a
ty

pe
M

et
ho

ds
A

P
A

U
RO

C
A

P
A

U
RO

C
A

P
A

U
RO

C
A

P
A

U
RO

C
A

P
A

U
RO

C
R

an
k

O
nl

y
X

M
LP

65
.2

 ±
 3

.4
62

.2
 ±

 3
.4

60
.2

 ±
 1

.6
60

.7
 ±

 2
.5

73
.1

 ±
 2

.6
71

.9
 ±

 2
.8

91
.7

 ±
 0

.3
9
2
.9
±
0
.3

9
1
.2
±
0
.6

9
2
.6
±
0
.6

9.
8

Fu
ll

gr
ap

h
G

C
N

83
.6

 ±
 1

.2
84

.6
 ±

 1
.5

61
.6

 ±
 0

.8
58

.1
 ±

 2
.4

80
.1

 ±
 1

.7
79

.8
 ±

 2
.0

O
O

M
O

O
M

O
O

M
O

O
M

9.
7

G
A

T
83

.5
 ±

 1
.0

84
.6

 ±
 1

.0
61

.6
 ±

 0
.5

60
.0

 ±
 2

.7
76

.5
 ±

 2
.3

75
.7

 ±
 3

.0
O

O
M

O
O

M
O

O
M

O
O

M
10

.3
B

G
R

L
84

.5
 ±

 1
.2

84
.3

 ±
 1

.7
72

.0
 ±

 1
.8

72
.2

 ±
 2

.2
83

.1
 ±

 0
.6

83
.9

 ±
 0

.5
O

O
M

O
O

M
O

O
M

O
O

M
8

G
G

D
80

.9
 ±

 1
.6

80
.6

 ±
 2

.1
71

.8
 ±

 0
.9

72
.5

 ±
 1

.6
76

.1
 ±

 1
.1

76
.1

 ±
 1

.3
O

O
M

O
O

M
O

O
M

O
O

M
9.

7
Fu

ll
hy

pe
rg

ra
ph

H
G

N
N

77
.3

 ±
 2

.5
80

.0
 ±

 3
.1

72
.1

 ±
 5

.1
76

.6
 ±

 1
.4

91
.2

 ±
 0

.7
92

.9
 ±

 0
.6

O
O

M
O

O
M

O
O

M
O

O
M

7.
7

U
ni

G
C

N
II

78
.1

 ±
 3

.4
77

.1
 ±

 3
.9

71
.8

 ±
 1

.5
75

.6
 ±

 2
.3

86
.9

 ±
 5

.6
88

.3
 ±

 6
.7

O
O

M
O

O
M

O
O

M
O

O
M

8.
7

A
LL

SE
T

53
.1

 ±
 1

.2
55

.8
 ±

 2
.2

53
.7

 ±
 1

.2
56

.8
 ±

 2
.2

65
.3

 ±
 1

.4
73

.4
 ±

 1
.6

O
O

M
O

O
M

O
O

M
O

O
M

13
.1

H
C

L
91

.0
 ±

 1
.7

92
.6

 ±
 2

.1
73

.7
 ±

 0
.7

78
.8

 ±
 1

.1
94

.2
 ±

 0
.4

95
.5

 ±
 0

.3
O

O
M

O
O

M
O

O
M

O
O

M
4.

5
Pa

rti
tio

ne
d

gr
ap

h
G

C
N

84
.5

 ±
 1

.6
85

.9
 ±

 1
.6

65
.9

 ±
 1

.9
66

.7
 ±

 2
.0

82
.3

 ±
 2

.6
83

.4
 ±

 2
.8

81
.2

 ±
 0

.6
81

.5
 ±

 0
.6

O
O

M
O

O
M

7.
9

G
A

T
84

.7
 ±

 1
.3

86
.4

 ±
 1

.2
62

.2
 ±

 3
.1

62
.5

 ±
 4

.6
78

.0
 ±

 1
.8

79
.6

 ±
 1

.8
81

.3
 ±

 0
.5

81
.0

 ±
 0

.6
O

O
M

O
O

M
8.

2
B

G
R

L
85

.8
 ±

 1
.7

85
.6

 ±
 1

.7
8
2
.4
±
2
.2

8
3
.5
±
2
.1

91
.4

 ±
 0

.5
92

.8
 ±

 0
.5

90
.1

 ±
 0

.8
90

.9
 ±

 0
.8

89
.7

 ±
 0

.7
90

.8
 ±

 0
.9

3.
9

G
G

D
80

.1
 ±

 2
.4

80
.8

 ±
 2

.3
76

.9
 ±

 1
.6

78
.3

 ±
 1

.5
88

.7
 ±

 1
.0

90
.2

 ±
 0

.9
82

.5
 ±

 1
.2

83
.6

 ±
 1

.5
80

.1
 ±

 1
.3

81
.2

 ±
 1

.4
6.

2
Pa

rti
tio

ne
d

hy
pe

r-
gr

ap
h

H
G

N
N

84
.1

 ±
 2

.0
86

.2
 ±

 1
.8

71
.8

 ±
 0

.8
75

.8
 ±

 1
.0

85
.9

 ±
 1

.1
88

.1
 ±

 1
.0

91
.3

 ±
 0

.3
92

.5
 ±

 0
.3

89
.2

 ±
 0

.7
91

.6
 ±

 0
.5

5.
4

U
ni

G
C

N
II

79
.9

 ±
 1

.8
80

.0
 ±

 1
.8

71
.5

 ±
 2

.6
74

.2
 ±

 3
.5

77
.4

 ±
 0

.9
75

.7
 ±

 1
.2

9
1
.8
±
0
.5

92
.1

 ±
 0

.5
90

.4
 ±

 0
.4

91
.9

 ±
 0

.1
7.

9
A

LL
SE

T
54

.2
 ±

 1
.6

57
.6

 ±
 2

.7
53

.6
 ±

 1
.2

56
.7

 ±
 2

.0
59

.3
 ±

 1
.6

65
.6

 ±
 2

.4
61

.5
 ±

 1
.8

68
.6

 ±
 2

.5
O

O
M

O
O

M
13

.2
Pa

rti
tio

ne
d

hy
pe

r-
gr

ap
h

Ba
sic

 P
C

L
 (p

ro
-

po
se

d)
8
7
.1
±
1
.9

8
8
.3
±
2
.0

88
.2

 ±
 0

.9
88

.9
 ±

 0
.7

9
4
.1
±
0
.4

9
5
.1
±
0
.3

95
.5

 ±
 0

.7
96

.0
 ±

 0
.8

96
.2

 ±
 0

.3
96

.9
 ±

 0
.3

1.
4

2239

1 3

Datasets, tasks, and training methods for large-scale hypergraph learning...

Ta
bl

e
4

 T
as

k-
II

: O
n

th
e

lo
ca

l c
lu

ste
rin

g
ta

sk
, P

C
L+

Pi
n

S
(p

ro
po

se
d)

 is
 c

om
pa

ra
bl

e
to

 a
nd

 o
fte

n
be

tte
r t

ha
n

se
ve

ra
l b

as
el

in
e

m
et

ho
ds

, i
nc

lu
di

ng
 th

os
e

re
qu

iri
ng

 th
e

fu
ll

da
ta

 to
 b

e
lo

ad
ed

 in
 m

em
or

y
fo

r t
ra

in
in

g.
 W

e
re

po
rt

th
e

av
er

ag
e

an
d

st
an

da
rd

 d
ev

ia
tio

n
of

 e
ac

h
m

et
ric

 o
n

10
 ra

nd
om

 d
at

a
sp

lit
s.

Th
e

be
st

pe
rfo

rm
an

ce
 in

 e
ac

h
se

tti
ng

 is

hi
gh

lig
ht

ed
 in

 b
ol

d,
 a

nd
 th

e
se

co
nd

 b
es

t p
er

fo
rm

an
ce

 is
 h

ig
hl

ig
ht

ed
 in

 u
nd

er
lin

e.
 O

O
M

 in
di

ca
te

s “
ou

t o
f m

em
or

y”

D
B

LP
Tr

iv
ag

o
O

G
B

N
-M

A
G

A
M

in
er

M
A

G
A

vg
.

D
at

a
ty

pe
M

et
ho

ds
A

P
A

U
RO

C
A

P
A

U
RO

C
A

P
A

U
RO

C
A

P
A

U
RO

C
A

P
A

U
RO

C
R

an
k

O
nl

y
X

M
LP

52
.2

 ±
 2

.3
51

.3
 ±

 3
.5

50
.6

 ±
 0

.4
50

.9
 ±

 0
.7

72
.1

 ±
 1

.0
73

.9
 ±

 0
.8

7
0
.5
±
0
.9

7
2
.9
±
0
.8

7
6
.2
±
1
.3

7
9
.4
±
0
.9

7.
1

Fu
ll

gr
ap

h
G

C
N

54
.6

 ±
 4

.0
54

.1
 ±

 4
.7

50
.1

 ±
 0

.2
50

.2
 ±

 0
.1

53
.5

 ±
 0

.3
53

.8
 ±

 0
.4

O
O

M
O

O
M

O
O

M
O

O
M

11
.1

G
A

T
55

.1
 ±

 4
.2

55
.3

 ±
 5

.9
50

.1
 ±

 0
.0

50
.0

 ±
 0

.0
O

O
M

O
O

M
O

O
M

O
O

M
O

O
M

O
O

M
11

.6
B

G
R

L
55

.1
 ±

 5
.8

52
.9

 ±
 3

.1
50

.3
 ±

 0
.2

50
.4

 ±
 0

.2
53

.2
 ±

 0
.3

53
.3

 ±
 0

.3
O

O
M

O
O

M
O

O
M

O
O

M
10

.9
G

G
D

58
.6

 ±
 9

.5
56

.0
 ±

 8
.6

50
.3

 ±
 0

.2
50

.3
 ±

 0
.2

53
.0

 ±
 0

.3
53

.1
 ±

 0
.3

O
O

M
O

O
M

O
O

M
O

O
M

10
.1

Fu
ll

hy
pe

rg
ra

ph
H

G
N

N
56

.9
 ±

 5
.3

54
.9

 ±
 6

.3
54

.8
 ±

 3
.7

54
.8

 ±
 3

.6
7
8
.2
±
1
.0

8
0
.1
±
0
.7

O
O

M
O

O
M

O
O

M
O

O
M

6.
3

U
ni

G
C

N
II

55
.2

 ±
 4

.6
52

.9
 ±

 4
.5

51
.6

 ±
 1

.0
51

.1
 ±

 0
.9

76
.7

 ±
 1

.2
79

.0
 ±

 1
.1

O
O

M
O

O
M

O
O

M
O

O
M

7.
8

A
LL

SE
T

54
.2

 ±
 4

.1
56

.1
 ±

 5
.4

51
.0

 ±
 0

.7
51

.7
 ±

 0
.7

60
.0

 ±
 2

.2
61

.8
 ±

 2
.5

O
O

M
O

O
M

O
O

M
O

O
M

8.
6

H
C

L
6
3
.6
±
6
.9

61
.4

 ±
 7

.9
58

.6
 ±

 2
.6

58
.8

 ±
 4

.2
78

.5
 ±

 1
.0

80
.9

 ±
 0

.7
O

O
M

O
O

M
O

O
M

O
O

M
4.

8
Pa

rti
tio

ne
d

gr
ap

h
G

C
N

51
.9

 ±
 0

.4
52

.2
 ±

 0
.4

50
.1

 ±
 0

.0
50

.1
 ±

 0
.0

51
.6

 ±
 0

.4
51

.7
 ±

 0
.4

54
.9

 ±
 0

.7
54

.3
 ±

 0
.7

O
O

M
O

O
M

12
.7

G
A

T
52

.4
 ±

 0
.6

53
.1

 ±
 0

.6
50

.4
 ±

 0
.7

50
.5

 ±
 1

.0
54

.1
 ±

 0
.7

54
.3

 ±
 0

.8
55

.2
 ±

 0
.4

54
.6

 ±
 0

.4
O

O
M

O
O

M
10

.3
B

G
R

L
58

.8
 ±

 7
.7

56
.8

 ±
 5

.6
61

.2
 ±

 3
.9

61
.4

 ±
 3

.9
65

.6
 ±

 1
.0

66
.4

 ±
 0

.8
65

.8
 ±

 0
.5

67
.1

 ±
 0

.6
71

.0
 ±

 1
.0

72
.7

 ±
 0

.9
3.

6
G

G
D

67
.7

 ±
 1

2.
7

67
.2

 ±
 1

3.
3

5
9
.4
±
3
.8

5
9
.4
±
3
.5

64
.8

 ±
 1

.0
65

.5
 ±

 0
.6

62
.8

 ±
 0

.8
64

.3
 ±

 0
.8

68
.5

 ±
 0

.9
70

.5
 ±

 0
.9

3.
8

Pa
rti

tio
ne

d
H

yp
er

gr
ap

h
H

G
N

N
55

.2
 ±

 6
.5

55
.2

 ±
 7

.3
52

.0
 ±

 1
.0

52
.4

 ±
 2

.0
68

.8
 ±

 1
.3

69
.9

 ±
 1

.6
57

.6
 ±

 1
.6

57
.5

 ±
 2

.1
62

.8
 ±

 3
.0

62
.5

 ±
 3

.6
6.

6
U

ni
G

C
N

II
52

.6
 ±

 1
.7

52
.3

 ±
 0

.9
50

.4
 ±

 0
.3

50
.1

 ±
 0

.2
54

.9
 ±

 0
.6

54
.6

 ±
 0

.5
59

.9
 ±

 1
.2

59
.6

 ±
 1

.3
65

.9
 ±

 2
.2

66
.0

 ±
 2

.2
9.

8
A

LL
SE

T
53

.2
 ±

 1
.6

54
.6

 ±
 2

.1
51

.5
 ±

 0
.3

52
.5

 ±
 0

.5
57

.5
 ±

 1
.9

59
.2

 ±
 2

.8
58

.1
 ±

 1
.1

60
.9

 ±
 1

.4
O

O
M

O
O

M
8.

2
Pa

rti
tio

ne
d

hy
pe

rg
ra

ph
PC

L+
Pi

n
S

(p
ro

-
po

se
d)

63
.2

 ±
 1

0.
6

6
4
.0
±
1
1
.5

58
.6

 ±
 1

.0
59

.2
 ±

 1
.3

77
.6

 ±
 0

.8
79

.8
 ±

 0
.6

80
.2

 ±
 1

.7
81

.6
 ±

 0
.8

83
.1

 ±
 1

.4
86

.1
 ±

 1
.5

2.
1

2240 S. Kim et al.

1 3

We denote the set of ground-truth split hyperedge pairs as GS = {{ei1, ei2} ∶ ei ∈ ES} .
We use a subset G′

S
 of GS as a train positive pair set, and the others (i.e., GS ⧵ G

′
S
) as

a test positive pair set.
For training and testing of classifiers of this task, we also create a negative-

pair set. We constrain the size of hyperedges in negative pairs since all posi-
tive pairs consist of hyperedges of size at least 5. Specifically, we use the set
E
�
5
= {e ∈ E

� ∶ |e| ≥ 5} of hyperedges whose size is at least 5. We compose a nega-
tive pair set with pairs of hyperedges in E′

5
 , ensuring that these negative pairs are not

included in Gs . Specifically, the train negative pair set is the set of pairs of hyper-
edges {ei, ej} that satisfy at least one of the two following conditions:

• Condition 1:
�

ei, ej ∈
⋃

gs∈G
�
S

gs

�

∧ ({ei, ej} ∉ G�
S
),

• Condition 2:
�

ei ∈
⋃

gs∈G
�
S

gs

�

∧
�

ej ∉
⋃

gs∈G
�
S

gs

�

.

The test negative pair set is the set of pairs {ei, ej} of hyperedges from E′
5
 that satisfy

the following condition:

Since the number of possible negative pairs is vast, instead of considering them all,
we sample some of them so that (1) the number of train negative pairs matches that
of train positive pairs, and (2) the number of test negative pairs matches that of test
positive pairs.

6.1.2 Local clustering (Task‑II)

In our setting, the clusters are formed in a disjoint way. From the entire set of clusters
C = {C1,C2,⋯ ,C|C|} , a subset C≃ ⊊ C is given for training. The train positive pair
set is defined as the set of node pairs that belong together to a known ground-truth
cluster, formally,

The test positive pair set is defined as the set of node pairs that belong together to an
unknown ground-truth cluster, formally

(20)H
� = (V, E�), where E� = (E ⧵ ES) ∪

⋃

ei∈ES

{ei1, ei2}.

(21)
⎛
⎜
⎜
⎝

ei, ej ∉
�

gs∈G
�
S

gs

⎞
⎟
⎟
⎠

∧
�
{ei, ej} ∉ Gs

�
.

(22)
{

{vi, vj} ∈

(
V

2

)

∶ vi, vj ∈ C�,C� ∈ C≃

}

.

(23)
{

{vi, vj} ∈

(
V

2

)

∶ vi, vj ∈ C�,C� ∈ (C ⧵ C≃)

}

.

2241

1 3

Datasets, tasks, and training methods for large-scale hypergraph learning...

Instead of using all possible positive pairs within each cluster, we sample a certain
portion of node pairs from each cluster.

We define the train node set as VTR =
⋃

C�∈C≃ C� and the test node set as VTE =
⋃

C�∈(C⧵C≃) C
� . Then, the train negative pair set is defined as the node pairs from VTR

that are not included in the train positive pair set. Similarly, we define the test nega-
tive pair set as the node pairs from VTE , except for the pairs that belong to the test
positive pairs. As in the previous task, instead of using all negative pairs, we sample
some of them so that (1) the number of train negative pairs matches that of train
positive pairs, and (2) the number of test negative pairs matches that of test positive
pairs. Throughout the experiments, in each dataset, we use the labels of nodes as the
ground-truth clusters of the nodes.

6.2 Experimental settings

In this section, we provide an overview of the experimental setup for our study.

6.2.1 Baseline methods

We compare the proposed methods against 16 baseline methods in the two proposed
tasks (Task-I and Task-II), which include Multi-Layer Perceptron (MLP) (Rumelhart
et al. 1986), graph encoders trained via supervised learning or self-supervised learn-
ing9, and hypergraph encoders trained via supervised learning and (full-batch) self-
supervised learning. These baseline methods serve as a means to assess the effec-
tiveness of several ideas behind the proposed methods for Task-I and Task-II: the
ideas are (1) hypergraph data modeling (2) self-supervised learning strategy, and (3)
partitioning.

For graph encoders trained via supervised learning, we use GCN (Kipf and
Welling 2017) and GAT (Veličković et al. 2018), and for self-supervised learning
methods, we use GCN trained by BGRL (Addanki et al. 2021) or GGD (Zheng
et al. 2022b). For hypergraph encoders trained via supervised learning, we use
HGNN (Feng et al. 2019), UniGCNII (Huang and Yang 2021), and AllSet (Chien
et al. 2021). All the above methods are trained and evaluated on both entire and par-
titioned (hyper)graphs. Lastly, we use HGNN trained via self-supervised learning on
the entire hypergraph, which we call Hypergraph Contrastive Learning (HCL), as an
additional baseline method.

6.2.2 Implementations

We implement our methods and HCL using PyTorch 1.11.0 (Paszke et al. 2019) and
PyTorch Geometric 2.0.4 (Fey and Lenssen 2019), and for all other baseline meth-
ods, we use their official code.

9 Since graph encoders require a graph topology as an input, we convert original hypergraphs into
graphs by Clique Expansion, described in Appendix A.2.

2242 S. Kim et al.

1 3

6.2.3 Machine specification

All experiments are conducted on a machine with NVIDIA RTX 8000 D6 GPUs
(48GB memory) and two Intel Xeon Silver 4214R Processors.

6.2.4 Datasets

We conduct experiments on five real-world hypergraph datasets: two existing
small-scale datasets (DBLP (Rossi and Ahmed 2015) and Trivago (Chodrow et al.
2021)), one medium-scale hypergraph dataset transformed from a heterogeneous
graph (OGBN-MAG (Wang et al. 2020)), and the two proposed large-scale hyper-
graph datasets (AMiner and MAG). Some statistics of these datasets are reported
in Table 2. Details regarding nodes, hyperedges, and labels of these datasets are
described in Appendix A.1.

6.2.5 Experimental set‑ups

We use the average precision score (AP) and the area under the ROC curve score
(AUROC) as two quantitative evaluation metrics since the proposed tasks are
sort of binary classification tasks. For each dataset and for each task, we evaluate
each model using 10 data splits. Specifically, we measure average AP and average
AUROC together with their standard deviations over 10 splits.

For Task-I, we split the ground-truth hyperedge pairs into 10 and 90% and use
them as the positive train pairs and positive test pairs, respectively. In addition, we
use half of the positive train pairs for validation and use the remaining half for train-
ing. By following the procedures described in Sect. 6.1, we create the same number
of negative train/validation/test pairs.

Similarly for Task-II, we split the ground-truth clusters (i.e., classes) into 10 and
90% and use them as known and unknown ground-truth clusters, respectively. Here
also, we use half of the known clusters for validation and use the remaining half for
training. Since the DBLP dataset has only six clusters, we use four of them (spe-
cifically, two for training and two for validation) as known ground-truth clusters,
which results in a 66/34% split for Task-II. Based on the clusters, by following the
procedures described in Sect. 6.1, we create positive and negative train/validation/
test pairs. Specifically, for each cluster, we randomly sample the following number
of positive pairs from all possible positive pairs that can be created from the corre-
sponding cluster (and use the same number of negative pairs) in each dataset: 10000
in DBLP and Trivago and 50000 in OGBN-MAG, AMiner, and MAG.

For all partition-based methods, the number of partitions (i.e., |P|) is set to 4
for DBLP, 32 for Trivago, 128 for OGBN-MAG, and 256 for AMiner and MAG,
unless otherwise stated. The effect of the number of partitions is also explored in
Sect. 6.3.5. For all cases, we utilize the Adam optimizer (Kingma and Ba 2015)

2243

1 3

Datasets, tasks, and training methods for large-scale hypergraph learning...

with a fixed weight decay scalar of 10−6 . The learning rate for each case is tuned as
a hyperparameter. The specific hyperparameters for the proposed methods and all
baseline methods are described in Appendix A.3. For PCL, unless otherwise stated,
PinS is used for Task-II but not for Task-I, and P-iOS is not used for both tasks.
This is because PinS does not lead to accuracy gains in most cases for Task-I, and
P-iOS limits the scalability of PCL. PinS, however, is helpful for prediction accu-
racy, as shown in Sect. 6.3.4.

6.3 Experimental results

6.3.1 RQ1. Overall performance on downstream tasks

As shown in Tables 3 and 4, PCL achieves overall the best AP and AUROC scores
among all the considered methods (i.e., best in terms of average rank) on both tasks.
There are two notable observations, which we describe below.

First, in the two proposed large-scale hypergraphs AMiner and MAG, PCL shows
the best performance with a significant gap from the second best model (spec., 3.7%
higher AP on Task-I and 9.7% higher AP on Task-II in AMiner dataset). This result
demonstrates the effectiveness of PCL in pair-level tasks on large-scale hypergraph
datasets. Note that the graph representation methods operating on clique-expanded
graphs show poor performance on both tasks in large-scale datasets. This result
highlights the effectiveness of the hypergraph modeling of large-scale group interac-
tions when tackling pair-level tasks.

Second, although PCL is trained on partitioned hypergraphs, surprisingly, it
shows performance comparable to or even better than that of HCL, which uses entire
hypergraphs, without partitioning, for contrastive learning. That is, the topological
information loss due to partitioning is not severe enough to harm the overall perfor-
mance of models, and sometimes it is even helpful. We suspect that partitioning may
increase the hardness of negative samples that are used during contrastive learning,
which may lead to performance improvement. Specifically, when selecting negative
samples for contrastive learning, there is inherent randomness in the choice of which
negative samples. If we choose negative samples from the entire hypergraph (as in
HCL), it is likely that distant nodes are chosen. In this case, representations of dif-
ferent nodes can easily be dissimilar, since it is likely that distant nodes have dif-
ferent neighbors. However, if we select negative samples within a partition (as in
PCL), it is relatively more likely that nodes sharing many neighbors are chosen10,
and this makes the encoder hard to maximize the dissimilarity between representa-
tions of such nodes. As a result, the hardness of negative samples increases in PCL,
and learning to distinguish hard negative samples from positive samples potentially
enhances the quality of the trained encoder’s output representation (Robinson et al.
2021; Hassani and Khasahmadi 2020).

10 This is because partitioning algorithms generally assign such nodes in the same partition.

2244 S. Kim et al.

1 3

6.3.2 RQ2. Effectiveness of PINS

We demonstrate the effectiveness of PinS on Task-II by comparing the perfor-
mances of PCL w/O PinS (Basic PCL) and PCL+PinS. As shown in Table 5,
PCL+PinS outperforms PCL w/O PinS in four out of five datasets. The perfor-
mance gain by PinS is up to +2.9% (AUROC on DBLP), while the performance
degradation is up to -0.2% (AUROC on MAG). Thus, we conclude that PinS is
effective on Task-II. However, in our preliminary study, PinS does not increase the
performance on Task-I.

6.3.3 RQ3. Efficiency of PINS

Despite the effectiveness of PinS on Task-II, one may concern with additional com-
putational and memory costs caused by PinS. Regarding the concern, we compare
the average running time per epoch of PCL+PinS and PCL w/O PinS (Basic PCL),
and we also measure their average GPU memory usage during the contrastive learn-
ing process11.

As reported in Table 7, the average running time of PCL+PinS is 20, 32, and
23% longer than that of PCL w/O PinS on OGBN-MAG, AMiner, and MAG,
respectively12. Moreover, it uses 0.1, 0.01, and 0.01% more average GPU memory,
compared to PCL w/O PinS, for the above three datasets. Therefore, the additional
cost due to PinS is not substantial.

Table 5 Effectiveness of
PinS on Task-II. PCL+PinS
outperforms PCL w/O PinS in
most datasets

Data Metric PCL w/O PinS PCL+PinS

DBLP AP 62.4 ± 11.5 63.2 ± 10.6
AUROC 61.1 ± 9.9 64.0 ± 11.5

Trivago AP 58.6 ± 1.0 58.6 ± 1.0
AUROC 58.7 ± 1.0 59.2 ± 1.3

OGBN-MAG AP 77.3 ± 0.7 77.6 ± 0.8
AUROC 79.6 ± 0.3 79.8 ± 0.6

AMiner AP 78.6 ± 1.3 80.2 ± 1.7
AUROC 81.3 ± 1.2 81.6 ± 0.8

MAG AP 83.3 ± 1.1 83.1 ± 1.4
AUROC 86.3 ± 0.7 86.1 ± 1.5

11 At each mini-batch (partition) of contrastive learning, we record the GPU memory usage after com-
pleting the gradient computation (spec., execute loss.backward() and check the current GPU mem-
ory allocation using torch.cuda.memory_allocated(device)). After training an encoder in
every mini-batch, we calculate the average GPU memory usage for the current epoch by averaging the
usage across all partitions. Finally, we compute the average GPU memory usage across all epochs.
12 The total contrastive training epochs are 50.

2245

1 3

Datasets, tasks, and training methods for large-scale hypergraph learning...

6.3.4 RQ4. Effectiveness of P‑IOS

To demonstrate the effectiveness of P-iOS, we compare PCL w/O P-iOS (Basic PCL)
with PCL+P-iOS on both Task-I and Task-II in the DBLP, Trivago, and OGBN-
MAG datasets. As shown in Table 6, the prediction performance is improved with
P-iOS in all the settings. This result is intuitive since P-iOS mitigates information
loss caused by partitioning via restoring each hyperedge. However, PCL+P-iOS is
not applicable to large-scale hypergraphs since with P-iOS, resulting partitions are
too large, causing an out-of-memory error.

6.3.5 RQ5. Tendency of PCL+PINS with Respect to the Number (or Size) of Partitions

At last, we investigate how the performance of PCL+PinS changes with respect to
the number (or size) of partitions on both tasks. Note that the number of partitions
and the size of each partition (i.e., number of nodes and number of hyperedges) is
in inverse proportion (see Table 8). To this end, for each partition size, we show the
AP score distribution of PCL+PinS over 10 data splits of each dataset. As shown
in Fig. 5, there is no clear tendency between the number of partitions (or the size of

Table 6 Effectiveness of P-iOS.
PCL+P-iOS outperforms PCL
w/O P-iOS in all cases

Task Data Metric PCL w/O P-iOS PCL+P-iOS

Task-I DBLP AP 87.1 ± 1.9 90.8 ± 1.8
AUROC 88.3 ± 2.0 92.9 ± 1.2

Trivago AP 88.2 ± 0.9 89.4 ± 1.2
AUROC 88.9 ± 0.7 89.5 ± 0.9

*OGBN-MAG AP 94.1 ± 0.4 94.8 ± 0.4
AUROC 95.1 ± 0.2 96.2 ± 0.2

Task-II DBLP AP 62.4 ± 11.5 64.7 ± 11.5
AUROC 61.1 ± 9.9 62.3 ± 12.3

Trivago AP 58.6 ± 1.0 59.2 ± 1.0
AUROC 58.7 ± 1.0 59.3 ± 1.0

OGBN-MAG AP 77.3 ± 0.7 78.8 ± 0.9
AUROC 79.6 ± 0.3 80.9 ± 0.7

Table 7 Cost of PinS. The
additional cost due to PinS is
not large in terms of time and
marginal in terms of memory
requirements

Method OGBN-MAG AMiner MAG

Average
Running
Time Per
Epoch

PCL w/O PinS 20.102 89.505 103.450

(Sec) PCL+PinS 24.025 118.338 133.739
Average

GPU
Memory
Usage

PCL w/O PinS 2.344 10.573 23.942

(GB) PCL+PinS 2.347 10.575 23.945

2246 S. Kim et al.

1 3

partitions) and the performance of PCL+PinS, and especially in AMiner, there is
no clear difference in the distributions depending on the size of partitions.

7 Conclusion

In this work, in order to bridge the gap between previous studies and real-world
applications of hypergraph learning, we make three contributions that are summa-
rized as follows:

• In terms of tasks, we provide two novel pair-level hypergraph-learning tasks
(hyperedge disambiguation and local clustering) that can be used for formulating
various real-world problems.

• In terms of datasets, we propose two large-scale hypergraph datasets (AMiner
and MAG) that enable the evaluation of hypergraph neural networks at scale.

• In terms of training methods, we suggest PCL, a scalable hypergraph learn-
ing method. PCL is based on hypergraph partitioning and contrastive learning,
equipped with two additional techniques (PinS and P-iOS) for reducing infor-

Table 8 Detailed statistics regarding partitions. |P| indicates the number of partitions, |PV

i
| indicates the

average number of nodes in each partition, |PE

i
| indicates the average number of hyperedges in each par-

tition, and sd(|PV

i
|) and sd(|PE

i
|) indicate the standard deviations of the numbers of nodes and hyper-

edges, respectively, in each partition

OGBN-MAG AMiner MAG

Large Medium Small Large Medium Small Large Medium Small

|P| 32 64 128 256 512 1024 256 512 1024

|PV

i
| 23012.2 11506.1 5753.0 51806.9 25903.5 12951.7 106720.2 53360.1 26680.1

|PE

i
| 45454.3 24265.5 12659.5 122358.5 62491.5 31772.9 205835.5 108065.1 56134.2

sd(|PV

i
|) 72.8 25.7 20.1 190.9 78.3 41.0 334.4 174.3 51.6

sd(|PE

i
|) 15408.3 7765.6 5984.1 45433.8 25306.5 11955.4 37684.6 21684.5 12252.0

Fig. 5 Performance tendency of PCL+PinS with respect to the size of partitions. The boxplot describes
the test AP score distribution over 10 data splits. For each dataset, boxplots are arranged in order of
Large, Medium, and Small sizes. No clear tendency exists between the number/size of the partition and
the performance of PCL+PinS

2247

1 3

Datasets, tasks, and training methods for large-scale hypergraph learning...

mation loss caused by partitioning. We experimentally verify the superiority of
PCL over 16 baseline methods on the proposed pairwise prediction tasks and the
effectiveness of PCL+PinS and PCL+P-iOS.

For reproducibility, we make the source code and datasets used in the paper avail-
able at https:// github. com/ kswoo 97/ pcl.

Appendix: Additional experimental settings

Details of datasets

DBLP is a co-authorship hypergraph where nodes and hyperedges correspond to
publications and authors, respectively. Each publication’s class is labeled according
to its field of study. Trivago is a hotel-web search hypergraph where each node indi-
cates each hotel and each hyperedge corresponds to a user. If a user (hyperedge) has
visited the website of a particular hotel (node), the corresponding node is added to
the respective user hyperedge. Furthermore, each hotel’s class is labeled based on
the country in which it is located. OGBN-MAG is originally a heterogeneous graph
that contains comprehensive academic information including venue, author, pub-
lication, and affiliation information. We transform this heterogeneous graph into a
hypergraph as described in Sect. 4, while a label of each node (publication) indicates
a published venue of the corresponding publication.

Details of graph‑based baseline methods

Since graph representation models (Kipf and Welling 2017; Veličković et al. 2018)
require ordinary graph structure as an input, we transform original hypergraph datasets
into ordinary graph datasets by using clique expansion, where each hyperedge is
replaced with a clique in the resulting graph. Formally, the clique expansion is a trans-

formation of a given hyperedge set E to a clique expanded edge set EG =
⋃

e∈E

�
e

2

�

.

https://github.com/kswoo97/pcl

2248 S. Kim et al.

1 3

Specifically, for full-graph datasets of DBLP and Trivago, we directly obtain
EG from E , the entire hyperedge set. For full-graph datasets of OGBN-MAG, the
size of the resulting clique expanded edges is too large to be loaded into the main
memory. To reduce its scale, we additionally employ sampling, as described in
Algorithm 2. Specifically, for each hyperedge e′ whose size is greater than k and for
each constituent node v ∈ e� , we uniformly sample k other nodes from e′ (line 7) and
create k edges joining v and each of the k sampled nodes. Here, we set k = 10 for
the OGBN-MAG dataset. We fail to create full-graph datasets of AMiner and MAG
since clique expansion runs out of memory even with small k around 3, and thus we
cannot perform experiments on them.

For partitioned-graph datasets of DBLP, Trivago, and OGBN-MAG, we apply
clique expansion to the hyperedge set in each partition and use the resulting clique-
expanded edge set as that of the corresponding partition. For partitioned-graph data-
sets of AMiner and MAG, due to the scalability issue, we apply the sampling strat-
egy described in Algorithm 2 to each partition Pi of P (i.e., the input is PE

i
 instead

of E) and treat the resulting edge set as the edge set of the corresponding partition.
Here, we set k to 10.

Details of hyperaprameter settings

We now provide detailed hyperparameter settings of representation models and
training methods. The number of layers and hidden dimension of all representation
models are fixed to 2 and 128, respectively.

For representation models that are trained via supervised learning methods, we
train each model for 100 epochs. We tune a learning rate of each model within
{0.01, 0.001, 0.0001} . For every 10 epochs, we measure the validation AP score and
save the model parameters. Then, we designate the checkpoint with the highest vali-
dation AP score as the final model parameters.

For representation models that are trained via all versions of PCL, we tune the
number of self-supervised learning epochs within {25, 50} , while we set a broader
search space, specifically {20, 40, 60, 80, 100} , for that of other self-supervised
learning methods. We tune the learning rate of the self-supervised learning within
{0.001, 0.0001} for all self-supervised learning methods. In addition, for methods
that require augmentation steps, we tune the extent of node feature augmentation
pv within {0.3, 0.4} , and the extent of topological augmentation pe within {0.3, 0.4} .
Furthermore, for methods that require negative samples for contrastive learning, we
tune the number of negative samples N within {1, 2} . The temperature parameter �
for all self-supervised learning methods, and the scalar � that controls the strength
of inter-partition loss in PCL+PinS are both fixed to 0.5. Lastly, we train down-
stream task classifiers of all self-supervised learning methods with a learning rate of
0.001. We train the classifiers for 100 epochs, and for every 10 epochs, we measure
the validation AP score and save the classifier parameters. Then, we designate the
checkpoint with the highest validation AP score as the final classifier parameters.

2249

1 3

Datasets, tasks, and training methods for large-scale hypergraph learning...

Funding This work was supported by Samsung Electronics Co., Ltd., National Research Foundation of
Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2020R1C1C1008296), and Insti-
tute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the
Korea government (MSIT) (No. 2022-0-00157, Robust, Fair, Extensible Data-Centric Continual Learn-
ing) (No. 2019-0-00075, Artificial Intelligence Graduate School Program (KAIST)).

Code and Data Availability The source code used in this paper and the large-scale hypergraph datasets
that we build are publicly available at https:// github. com/ kswoo 97/ pcl for reproducibility.

Declarations

Conflict of interest The authors have no relevant financial or non-financial interests to disclose.

References

Addanki R, Battaglia P, Budden D, et al (2021) Large-scale graph representation learning with very deep
GNNs and self-supervision. arXiv: 2107. 09422, https:// doi. org/ 10. 48550/ arXiv. 2107. 09422

Ahmed I, Galoppo T, Hu X et al (2021) Graph regularized autoencoder and its application in unsuper-
vised anomaly detection. IEEE Trans Pattern Anal Mach Intell (TPAMI) 44(8):4110–4124. https://
doi. org/ 10. 1109/ TPAMI. 2021. 30661 11

Arya D, Gupta DK, Rudinac S, et al (2020) HyperSAGE: Generalizing inductive representation learning
on hypergraphs. arXiv: 2010. 04558, https:// doi. org/ 10. 48550/ arXiv. 2010. 04558

Bai S, Zhang F, Torr PH (2021) Hypergraph convolution and hypergraph attention. Pattern Recogn
110(107):637. https:// doi. org/ 10. 1016/j. patcog. 2020. 107637

Benson AR, Abebe R, Schaub MT et al (2018) Simplicial closure and higher-order link prediction. Pro-
ceed Nat Acad Sci 115(48):E11221–E11230. https:// doi. org/ 10. 1073/ pnas. 18006 83115

Caldwell AE, Kahng AB, Markov IL (2000) Improved algorithms for hypergraph bipartitioning. In: Pro-
ceedings of the 2000 Asia and South pacific design automation conference (ASP-DAC), pp 661–
666, https:// doi. org/ 10. 1109/ ASPDAC. 2000. 835182

Caron E, van Eck NJ (2014) Large scale author name disambiguation using rule-based scoring and clus-
tering. In: Proceedings of the 19th international conference on science and technology indicators
(STI), pp 79–86, https:// doi. org/ 10. 1007/ 978- 981- 32- 9298-7_ 12

Çatalyürek ÜV, Aykanat C (2011) PaToH (partitioning tool for hypergraphs). In: Encyclopedia of parallel
computing. Springer, pp 1479–1487, https:// doi. org/ 10. 1007/ 978-0- 387- 09766-4_ 93

Chen J, Ma T, Xiao C (2018a) FastGCN: Fast learning with graph convolutional networks via impor-
tance sampling. In: International conference on learning representations (ICLR), https:// doi. org/ 10.
48550/ arXiv. 1801. 10247

Chen J, Zhu J, Song L (2018b) Stochastic training of graph convolutional networks with variance reduc-
tion. In: International conference on machine learning (ICML), pp 942–950, https:// doi. org/ 10.
48550/ arXiv. 1710. 10568

Chen T, Kornblith S, Norouzi M, et al. (2020) A simple framework for contrastive learning of visual rep-
resentations. In: International conference on machine learning (ICML), pp 1597–1607, https:// doi.
org/ 10. 48550/ arXiv. 2002. 05709

Chiang WL, Liu X, Si S, et al (2019) Cluster-GCN: An efficient algorithm for training deep and large
graph convolutional networks. In: Proceedings of the 25th ACM SIGKDD international confer-
ence on knowledge discovery & data mining (KDD), pp 257–266, https:// doi. org/ 10. 1145/ 32925
00. 33309 25

Chien E, Pan C, Peng J, et al (2021) You are AllSet: A multiset function framework for hypergraph neu-
ral networks. In: International conference on learning representations (ICLR), https:// doi. org/ 10.
48550/ arXiv. 2106. 13264

Chodrow PS, Veldt N, Benson AR (2021) Generative hypergraph clustering: from blockmodels to modu-
larity. Sci Adv 28:eabh1303. https:// doi. org/ 10. 1126/ sciadv. abh13 03

Contisciani M, Battiston F, De Bacco C (2022) Inference of hyperedges and overlapping communities in
hypergraphs. Nat Commun 13(1):7229. https:// doi. org/ 10. 1038/ s41467- 022- 34714-7

https://github.com/kswoo97/pcl
http://arxiv.org/abs/2107.09422
https://doi.org/10.48550/arXiv.2107.09422
https://doi.org/10.1109/TPAMI.2021.3066111
https://doi.org/10.1109/TPAMI.2021.3066111
http://arxiv.org/abs/2010.04558
https://doi.org/10.48550/arXiv.2010.04558
https://doi.org/10.1016/j.patcog.2020.107637
https://doi.org/10.1073/pnas.1800683115
https://doi.org/10.1109/ASPDAC.2000.835182
https://doi.org/10.1007/978-981-32-9298-7_12
https://doi.org/10.1007/978-0-387-09766-4_93
https://doi.org/10.48550/arXiv.1801.10247
https://doi.org/10.48550/arXiv.1801.10247
https://doi.org/10.48550/arXiv.1710.10568
https://doi.org/10.48550/arXiv.1710.10568
https://doi.org/10.48550/arXiv.2002.05709
https://doi.org/10.48550/arXiv.2002.05709
https://doi.org/10.1145/3292500.3330925
https://doi.org/10.1145/3292500.3330925
https://doi.org/10.48550/arXiv.2106.13264
https://doi.org/10.48550/arXiv.2106.13264
https://doi.org/10.1126/sciadv.abh1303
https://doi.org/10.1038/s41467-022-34714-7

2250 S. Kim et al.

1 3

Deng K, Xing L, Zheng L et al (2019) A user identification algorithm based on user behavior analysis
in social networks. IEEE Access 7:47114–47123. https:// doi. org/ 10. 1109/ ACCESS. 2019. 29090 89

Do MT, Yoon Se, Hooi B, et al (2020) Structural patterns and generative models of real-world hyper-
graphs. In: Proceedings of the 26th ACM SIGKDD international conference on knowledge discov-
ery & data mining (KDD), pp 176–186, https:// doi. org/ 10. 1145/ 33944 86. 34030 60

Dong Y, Sawin W, Bengio Y (2020) HNHN: hypergraph networks with hyperedge neurons. arXiv: 2006.
12278, https:// doi. org/ 10. 48550/ arXiv. 2006. 12278

Feng Y, You H, Zhang Z, et al (2019) Hypergraph neural networks. In: Proceedings of the AAAI confer-
ence on artificial intelligence (AAAI), pp 3558–3565, https:// doi. org/ 10. 1609/ aaai. v33i01. 33013
558

Fey M, Lenssen JE (2019) Fast graph representation learning with pytorch geometric. arXiv: 1903. 02428,
https:// doi. org/ 10. 48550/ arXiv. 1903. 02428

Gao T, Yao X, Chen D (2021) SimCSE: Simple contrastive learning of sentence embeddings. In: Pro-
ceedings of the 2021 conference on empirical methods in natural language processing (EMNLP),
pp 6894–6910, https:// doi. org/ 10. 18653/ v1/ 2021. emnlp- main. 552

Girvan M, Newman ME (2002) Community structure in social and biological networks. Proc Natl Acad
Sci 99(12):7821–7826. https:// doi. org/ 10. 1073/ pnas. 12265 3799

Grover A, Leskovec J (2016) Node2vec: scalable feature learning for networks. In: Proceedings of the
22nd ACM SIGKDD international conference on Knowledge discovery and data mining (KDD),
pp 855–864, https:// doi. org/ 10. 1145/ 29396 72. 29397 54

Grunig G, Durmus N, Zhang Y et al (2022) Molecular clustering analysis of blood biomarkers in world
trade center exposed community members with persistent lower respiratory symptoms. Int J Envi-
ron Res Public Health 19(13):8102. https:// doi. org/ 10. 3390/ ijerp h1913 8102

Guo M, Yi T, Zhu Y, et al (2021) JITuNE: Just-in-time hyperparameter tuning for network embedding
algorithms. arXiv: 2101. 06427, https:// doi. org/ 10. 48550/ arXiv. 2101. 06427

Hamilton WL, Ying R, Leskovec J (2017) Inductive representation learning on large graphs. In: Advances
in neural information processing systems (NeurIPS), https:// doi. org/ 10. 48550/ arXiv. 1706. 02216

Hassani K, Khasahmadi AH (2020) Contrastive multi-view representation learning on graphs. In: Inter-
national conference on machine learning (ICML), pp 4116–4126, https:// doi. org/ 10. 48550/ arXiv.
2006. 05582

He K, Fan H, Wu Y, et al (2020) Momentum contrast for unsupervised visual representation learning. In:
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp
9729–9738, https:// doi. org/ 10. 48550/ arXiv. 1911. 05722

Hein M, Setzer S, Jost L, et al (2013) The total variation on hypergraphs-learning on hypergraphs revis-
ited. In: Advances in neural information processing systems (NeurIPS), https:// doi. org/ 10. 48550/
arXiv. 1312. 5179

Huang J, Yang J (2021) UniGNN: A unified framework for graph and hypergraph neural networks. In:
Proceedings of the Thirtieth international joint conference on artificial intelligence (IJCAI), pp
2563–2569, https:// doi. org/ 10. 24963/ ijcai. 2021/ 353

Huang W, Zhang T, Rong Y, et al (2018) Adaptive sampling towards fast graph representation learn-
ing. In: Advances in neural information processing systems (NeurIPS), https:// doi. org/ 10.
48550/ arXiv. 1809. 05343

Hwang H, Lee S, Park C, et al (2022) AHP: learning to negative sample for hyperedge prediction. In:
Proceedings of the 45th International ACM SIGIR conference on research and development in
information retrieval (SIGIR), pp 2237–2242, https:// doi. org/ 10. 1145/ 34774 95. 35318 36

Jecmen S, Yoon M, Conitzer V, et al (2023) A dataset on malicious paper bidding in peer review.
In: Proceedings of the ACM web conference 2023 (WWW), pp 3816–3826, https:// doi. org/ 10.
1145/ 35435 07. 35834 24

Karypis G, Aggarwal R, Kumar V, et al (1997) Multilevel hypergraph partitioning: Application in
VLSI domain. In: Proceedings of the 34th annual Design Automation Conference (DAC), pp
526–529, https:// doi. org/ 10. 1145/ 266021. 266273

Kim S, Choe M, Yoo J, et al (2022) Reciprocity in directed hypergraphs: measures, findings, and
generators. In: IEEE International conference on data mining (ICDM), https:// doi. org/ 10. 1109/
ICDM5 4844. 2022. 00122

Kingma DP, Ba J (2015) Adam: a method for stochastic optimization. In: International conference on
learning representations (ICLR), https:// doi. org/ 10. 48550/ arXiv. 1412. 6980

https://doi.org/10.1109/ACCESS.2019.2909089
https://doi.org/10.1145/3394486.3403060
http://arxiv.org/abs/2006.12278
http://arxiv.org/abs/2006.12278
https://doi.org/10.48550/arXiv.2006.12278
https://doi.org/10.1609/aaai.v33i01.33013558
https://doi.org/10.1609/aaai.v33i01.33013558
http://arxiv.org/abs/1903.02428
https://doi.org/10.48550/arXiv.1903.02428
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.3390/ijerph19138102
http://arxiv.org/abs/2101.06427
https://doi.org/10.48550/arXiv.2101.06427
https://doi.org/10.48550/arXiv.1706.02216
https://doi.org/10.48550/arXiv.2006.05582
https://doi.org/10.48550/arXiv.2006.05582
https://doi.org/10.48550/arXiv.1911.05722
https://doi.org/10.48550/arXiv.1312.5179
https://doi.org/10.48550/arXiv.1312.5179
https://doi.org/10.24963/ijcai.2021/353
https://doi.org/10.48550/arXiv.1809.05343
https://doi.org/10.48550/arXiv.1809.05343
https://doi.org/10.1145/3477495.3531836
https://doi.org/10.1145/3543507.3583424
https://doi.org/10.1145/3543507.3583424
https://doi.org/10.1145/266021.266273
https://doi.org/10.1109/ICDM54844.2022.00122
https://doi.org/10.1109/ICDM54844.2022.00122
https://doi.org/10.48550/arXiv.1412.6980

2251

1 3

Datasets, tasks, and training methods for large-scale hypergraph learning...

Kipf TN, Welling M (2017) Semi-supervised classification with graph convolutional networks. In:
International conference on learning representations (ICLR), https:// doi. org/ 10. 48550/ arXiv.
1609. 02907

Klamt S, Haus UU, Theis F (2009) Hypergraphs and cellular networks. PLoS Comput Biol
5(5):e1000385. https:// doi. org/ 10. 1371/ journ al. pcbi. 10003 85

Ko J, Kook Y, Shin K (2022) Growth patterns and models of real-world hypergraphs. Knowl Inf Syst
64(11):2883–2920. https:// doi. org/ 10. 1007/ s10115- 022- 01739-9

Konstantinova EV, Skorobogatov VA (2001) Application of hypergraph theory in chemistry. Discret
Math 235(1–3):365–383. https:// doi. org/ 10. 1016/ S0012- 365X(00) 00290-9

Koren Y, Bell R, Volinsky C (2009) Matrix factorization techniques for recommender systems. Com-
puter 42(8):30–37. https:// doi. org/ 10. 1109/ MC. 2009. 263

Lee D, Shin K (2023) I’m me, we’re us, and i’m us: Tri-directional contrastive learning on hyper-
graphs. In: Proceedings of the AAAI conference on artificial intelligence (AAAI), https:// doi.
org/ 10. 48550/ arXiv. 2206. 04739

Lee G, Choe M, Shin K (2021) How do hyperedges overlap in real-world hypergraphs?-patterns,
measures, and generators. In: Proceedings of the web conference 2021 (WWW), pp 3396–3407,
https:// doi. org/ 10. 1145/ 34423 81. 34500 10

Lee J, Lee Y, Kim J, et al (2019) Set transformer: a framework for attention-based permutation-invar-
iant neural networks. In: International conference on machine learning (ICML), pp 3744–3753,
https:// doi. org/ 10. 48550/ arXiv. 1810. 00825

Li P, Milenkovic O (2018) Submodular hypergraphs: p-laplacians, cheeger inequalities and spectral
clustering. In: International conference on machine learning (ICML), pp 3014–3023, https://
doi. org/ 10. 48550/ arXiv. 1803. 03833

Li Z, Huang C, Xia L, et al (2022) Spatial-temporal hypergraph self-supervised learning for crime
prediction. In: IEEE 38th international conference on data engineering (ICDE), pp 2984–2996,
https:// doi. org/ 10. 1109/ ICDE5 3745. 2022. 00269

Liu Z, Ma Y, Ouyang Y, et al (2021) Contrastive learning for recommender system. arXiv: 2101.
01317, https:// doi. org/ 10. 48550/ arXiv. 2101. 01317

Luo Q, Yu D, Cai Z, et al (2021) Hypercore maintenance in dynamic hypergraphs. In: IEEE 37th
international conference on data engineering (ICDE), pp 2051–2056, https:// doi. org/ 10. 1109/
ICDE5 1399. 2021. 00199

Luo X, Ju W, Qu M, et al (2022) DualGraph: Improving semi-supervised graph classification via dual
contrastive learning. In: IEEE 38th international conference on data engineering (ICDE), pp
699–712, https:// doi. org/ 10. 1109/ ICDE5 3745. 2022. 00057

Malatras A, Geneiatakis D, Vakalis I (2017) On the efficiency of user identification: a system-based
approach. Int J Inf Secur 16(6):653–671. https:// doi. org/ 10. 1007/ s10207- 016- 0340-2

Maleki S, Saless D, Wall DP, et al (2022) HyperNetVec: Fast and scalable hierarchical embedding for
hypergraphs. In: Network Science (NetSci), Springer, pp 169–183, https:// doi. org/ 10. 1007/ 978-
3- 030- 97240-0_ 13

Mayer C, Mayer R, Bhowmik S, et al (2018) HYPE: Massive hypergraph partitioning with neighborhood
expansion. In: IEEE International conference on big data (Big Data), pp 458–467, https:// doi. org/
10. 1109/ BigDa ta. 2018. 86219 68

Milojević S (2013) Accuracy of simple, initials-based methods for author name disambiguation. J
Informet 7(4):767–773. https:// doi. org/ 10. 1016/j. joi. 2013. 06. 006

Muttakin MN, Hossain MI, Rahman MS (2022) Overlapping community detection using dynamic dilated
aggregation in deep residual GCN. arXiv: 2210. 11174, https:// doi. org/ 10. 48550/ arXiv. 2210. 11174

Nair V, Hinton GE (2010) Rectified linear units improve restricted boltzmann machines. In: Proceedings
of the 27th international conference on machine learning (ICML-10), pp 807–814

Oord Avd, Li Y, Vinyals O (2018) Representation learning with contrastive predictive coding. arXiv:
1807. 03748, https:// doi. org/ 10. 48550/ arXiv. 1807. 03748

Paszke A, Gross S, Massa F, et al (2019) PyTorch: An imperative style, high-performance deep learn-
ing library. In: Advances in Neural information processing systems (NeurIPS), https:// doi. org/ 10.
48550/ arXiv. 1912. 01703

Pennington J, Socher R, Manning CD (2014) GloVe: Global vectors for word representation. In: Proceed-
ings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp
1532–1543, https:// doi. org/ 10. 3115/ v1/ D14- 1162

Qu C, Tao M, Yuan R (2018) A hypergraph-based blockchain model and application in internet of things-
enabled smart homes. Sensors 18(9):2784. https:// doi. org/ 10. 3390/ s1809 2784

https://doi.org/10.48550/arXiv.1609.02907
https://doi.org/10.48550/arXiv.1609.02907
https://doi.org/10.1371/journal.pcbi.1000385
https://doi.org/10.1007/s10115-022-01739-9
https://doi.org/10.1016/S0012-365X(00)00290-9
https://doi.org/10.1109/MC.2009.263
https://doi.org/10.48550/arXiv.2206.04739
https://doi.org/10.48550/arXiv.2206.04739
https://doi.org/10.1145/3442381.3450010
https://doi.org/10.48550/arXiv.1810.00825
https://doi.org/10.48550/arXiv.1803.03833
https://doi.org/10.48550/arXiv.1803.03833
https://doi.org/10.1109/ICDE53745.2022.00269
http://arxiv.org/abs/2101.01317
http://arxiv.org/abs/2101.01317
https://doi.org/10.48550/arXiv.2101.01317
https://doi.org/10.1109/ICDE51399.2021.00199
https://doi.org/10.1109/ICDE51399.2021.00199
https://doi.org/10.1109/ICDE53745.2022.00057
https://doi.org/10.1007/s10207-016-0340-2
https://doi.org/10.1007/978-3-030-97240-0_13
https://doi.org/10.1007/978-3-030-97240-0_13
https://doi.org/10.1109/BigData.2018.8621968
https://doi.org/10.1109/BigData.2018.8621968
https://doi.org/10.1016/j.joi.2013.06.006
http://arxiv.org/abs/2210.11174
https://doi.org/10.48550/arXiv.2210.11174
http://arxiv.org/abs/1807.03748
http://arxiv.org/abs/1807.03748
https://doi.org/10.48550/arXiv.1807.03748
https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3390/s18092784

2252 S. Kim et al.

1 3

Robinson J, Chuang CY, Sra S, et al (2021) Contrastive learning with hard negative samples. In: Interna-
tional conference on learning representations (ICLR), https:// doi. org/ 10. 48550/ arXiv. 2010. 04592

Rossetti G, Cazabet R (2018) Community discovery in dynamic networks: a survey. ACM Comput Surv
51(2):1–37. https:// doi. org/ 10. 1145/ 31728 67

Rossi E, Frasca F, Chamberlain B, et al (2020) SIGN: scalable inception graph neural networks. arXiv:
2004. 11198, https:// doi. org/ 10. 48550/ arXiv. 2004. 11198

Rossi R, Ahmed N (2015) The network data repository with interactive graph analytics and visualization.
In: Proceedings of the AAAI conference on artificial intelligence (AAAI), https:// doi. org/ 10. 1609/
aaai. v29i1. 9277

Ruan B, Gan J, Wu H, et al (2021) Dynamic structural clustering on graphs. In: Proceedings of the 2021
international conference on management of data (SIGMOD), pp 1491–1503, https:// doi. org/ 10.
1145/ 34480 16. 34528 28

Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors.
Nature 323(6088):533–536. https:// doi. org/ 10. 1038/ 32353 3a0

Sanyal DK, Bhowmick PK, Das PP (2021) A review of author name disambiguation techniques for the
PubMed bibliographic database. J Inf Sci 47(2):227–254. https:// doi. org/ 10. 1177/ 01655 51519
888605

Schlag S, Heuer T, Gottesbüren L et al (2023) High-quality hypergraph partitioning. ACM J Exp Algo-
rithmics 27:1–39. https:// doi. org/ 10. 1145/ 35290 90

Shchur O, Günnemann S (2019) Overlapping community detection with graph neural networks. arXiv:
1909. 12201, https:// doi. org/ 10. 48550/ arXiv. 1909. 12201

Sinha A, Shen Z, Song Y, et al (2015) An overview of microsoft academic service (MAS) and applica-
tions. In: Proceedings of the 24th international conference on world wide web (WWW), pp 243–
246, https:// doi. org/ 10. 1145/ 27409 08. 27428 39

Tang J, Zhang J, Yao L, et al (2008) ArnetMiner: Extraction and mining of academic social networks. In:
Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data
mining (KDD), pp 990–998, https:// doi. org/ 10. 1145/ 14018 90. 14020 08

Torres L, Blevins AS, Bassett D et al (2021) The why, how, and when of representations for complex
systems. SIAM Rev 63(3):435–485. https:// doi. org/ 10. 1137/ 20M13 55896

Tsitsulin A, Palowitch J, Perozzi B, et al (2020) Graph clustering with graph neural networks. arXiv:
2006. 16904, https:// doi. org/ 10. 48550/ arXiv. 2006. 16904

Tynes M, Gao W, Burrill DJ et al (2021) Pairwise difference regression: a machine learning meta-algo-
rithm for improved prediction and uncertainty quantification in chemical search. J Chem Inf Model
61(8):3846–3857. https:// doi. org/ 10. 1021/ acs. jcim. 1c006 70

Veličković P, Fedus W, Hamilton WL, et al (2018) Deep graph infomax. In: International conference on
learning representations (ICLR), https:// doi. org/ 10. 48550/ arXiv. 1809. 10341

Wang K, Shen Z, Huang C et al (2020) Microsoft academic graph: when experts are not enough. Quant
Sci Stud 1(1):396–413. https:// doi. org/ 10. 1162/ qss_a_ 00021

Wang Z, Zheng L, Li Y, et al (2019) Linkage based face clustering via graph convolution network. In:
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp
1117–1125, https:// doi. org/ 10. 1109/ CVPR. 2019. 00121

Wu F, Souza A, Zhang T, et al (2019) Simplifying graph convolutional networks. In: International confer-
ence on machine learning (ICML), pp 6861–6871, https:// doi. org/ 10. 48550/ arXiv. 1902. 07153

Xia X, Yin H, Yu J, et al (2021) Self-supervised hypergraph convolutional networks for session-based
recommendation. In: Proceedings of the AAAI conference on artificial intelligence (AAAI), pp
4503–4511, https:// doi. org/ 10. 1609/ aaai. v35i5. 16578

Xie J, Kelley S, Szymanski BK (2013) Overlapping community detection in networks: the state-of-the-art
and comparative study. ACM Comput Surv 45(4):1–35. https:// doi. org/ 10. 1145/ 25016 54. 25016 57

Xie X, Sun F, Liu Z, et al (2022) Contrastive learning for sequential recommendation. In: IEEE 38th
International conference on data engineering (ICDE), pp 1259–1273, https:// doi. org/ 10. 1109/
ICDE5 3745. 2022. 00099

Yadati N, Nimishakavi M, Yadav P, et al (2019) HyperGCN: a new method of training graph convolu-
tional networks on hypergraphs. In: Advances in neural information processing systems (NeurIPS),
pp 1509–1520, https:// doi. org/ 10. 48550/ arXiv. 1809. 02589

Yadati N, Nitin V, Nimishakavi M, et al (2020) NHP: neural hypergraph link prediction. In: Proceedings
of the 29th ACM international conference on information & knowledge management (CIKM), pp
1705–1714, https:// doi. org/ 10. 1145/ 33405 31. 34118 70

https://doi.org/10.48550/arXiv.2010.04592
https://doi.org/10.1145/3172867
http://arxiv.org/abs/2004.11198
http://arxiv.org/abs/2004.11198
https://doi.org/10.48550/arXiv.2004.11198
https://doi.org/10.1609/aaai.v29i1.9277
https://doi.org/10.1609/aaai.v29i1.9277
https://doi.org/10.1145/3448016.3452828
https://doi.org/10.1145/3448016.3452828
https://doi.org/10.1038/323533a0
https://doi.org/10.1177/0165551519888605
https://doi.org/10.1177/0165551519888605
https://doi.org/10.1145/3529090
http://arxiv.org/abs/1909.12201
http://arxiv.org/abs/1909.12201
https://doi.org/10.48550/arXiv.1909.12201
https://doi.org/10.1145/2740908.2742839
https://doi.org/10.1145/1401890.1402008
https://doi.org/10.1137/20M1355896
http://arxiv.org/abs/2006.16904
http://arxiv.org/abs/2006.16904
https://doi.org/10.48550/arXiv.2006.16904
https://doi.org/10.1021/acs.jcim.1c00670
https://doi.org/10.48550/arXiv.1809.10341
https://doi.org/10.1162/qss_a_00021
https://doi.org/10.1109/CVPR.2019.00121
https://doi.org/10.48550/arXiv.1902.07153
https://doi.org/10.1609/aaai.v35i5.16578
https://doi.org/10.1145/2501654.2501657
https://doi.org/10.1109/ICDE53745.2022.00099
https://doi.org/10.1109/ICDE53745.2022.00099
https://doi.org/10.48550/arXiv.1809.02589
https://doi.org/10.1145/3340531.3411870

2253

1 3

Datasets, tasks, and training methods for large-scale hypergraph learning...

Yang J, Leskovec J (2011) Patterns of temporal variation in online media. In: Proceedings of the fourth
ACM international conference on Web search and data mining (WSDM), pp 177–186, https:// doi.
org/ 10. 1145/ 19358 26. 19358 63

Yang J, Leskovec J (2013) Overlapping community detection at scale: a nonnegative matrix factorization
approach. In: Proceedings of the sixth ACM international conference on Web search and data min-
ing (WSDM), pp 587–596, https:// doi. org/ 10. 1145/ 24333 96. 24334 71

Yin N, Feng F, Luo Z, et al (2022) Dynamic hypergraph convolutional network. In: IEEE 38th interna-
tional conference on data engineering (ICDE), pp 1621–1634, https:// doi. org/ 10. 1109/ ICDE5 3745.
2022. 00167

You Y, Chen T, Sui Y, et al (2020) Graph contrastive learning with augmentations. In: Advances in neu-
ral information processing systems (NeurIPS), pp 5812–5823, https:// doi. org/ 10. 48550/ arXiv. 2010.
13902

Yu J, Yin H, Li J, et al (2021) Self-supervised multi-channel hypergraph convolutional network for social
recommendation. In: Proceedings of the web conference 2021 (WWW), pp 413–424, https:// doi.
org/ 10. 1145/ 34423 81. 34498 44

Zaheer M, Kottur S, Ravanbhakhsh S, et al (2017) Deep sets. In: Advances in neural information process-
ing systems (NeurIPS), https:// doi. org/ 10. 48550/ arXiv. 1703. 06114

Zeng H, Zhou H, Srivastava A, et al (2019) GraphSAINT: Graph sampling based inductive learning
method. In: International conference on learning representations (ICLR), https:// doi. org/ 10. 48550/
arXiv. 1907. 04931

Zhang D, Huang X, Liu Z, et al (2020a) AGL: A scalable system for industrial-purpose graph machine
learning. Proc VLDB Endow (PVLDB) 13(12): 3125–3137. https:// doi. org/ 10. 14778/ 34154 78.
34155 39

Zhang F, Liu X, Tang J, et al (2019) OAG: Toward linking large-scale heterogeneous entity graphs. In:
Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data
mining (KDD), pp 2585–2595, https:// doi. org/ 10. 1145/ 32925 00. 33307 85

Zhang J, Gao M, Yu J, et al (2021) Double-scale self-supervised hypergraph learning for group recom-
mendation. In: Proceedings of the 30th ACM international conference on information & knowl-
edge management (CIKM), pp 2557–2567, https:// doi. org/ 10. 1145/ 34596 37. 34824 26

Zhang J, Li F, Xiao X, et al (2022) Hypergraph convolutional networks via equivalency between hyper-
graphs and undirected graphs. arXiv: 2203. 16939, https:// doi. org/ 10. 48550/ arXiv. 2203. 16939

Zhang R, Zou Y, Ma J (2020b) Hyper-SAGNN: a self-attention based graph neural network for hyper-
graphs. In: International conference on learning representations (ICLR), https:// doi. org/ 10. 48550/
arXiv. 1911. 02613

Zhang S, Tong H (2016) FINAL: Fast attributed network alignment. In: Proceedings of the 22nd ACM
SIGKDD international conference on knowledge discovery and data (KDD), pp 1345–1354,
https:// doi. org/ 10. 1145/ 29396 72. 29397 66

Zheng C, Chen H, Cheng Y, et al. (2022a) ByteGNN: efficient graph neural network training at large
scale. Proc VLDB Endow (PVLDB) 15(6):1228–1242.https:// doi. org/ 10. 14778/ 35140 61. 35140 69

Zheng D, Ma C, Wang M, et al (2020) DistDGL: Distributed graph neural network training for billion-
scale graphs. In: IEEE/ACM 10th workshop on irregular applications: architectures and algorithms
(IA3), pp 36–44, https:// doi. org/ 10. 1109/ IA351 965. 2020. 00011

Zheng Y, Pan S, Lee VC, et al (2022b) Rethinking and scaling up graph contrastive learning: an extremely
efficient approach with group discrimination. In: Advances in neural information processing sys-
tems (NeurIPS), pp 10809–10820, https:// doi. org/ 10. 48550/ arXiv. 2206. 01535

Zhu Y, Xu Y, Yu F, et al (2020) Deep graph contrastive representation learning. arXiv: 2006. 04131,
https:// doi. org/ 10. 48550/ arXiv. 2006. 04131

Zhu Y, Xu Y, Yu F, et al (2021) Graph contrastive learning with adaptive augmentation. In: Proceedings
of the web conference 2021 (WWW), pp 2069–2080, https:// doi. org/ 10. 1145/ 34423 81. 34498 02

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

https://doi.org/10.1145/1935826.1935863
https://doi.org/10.1145/1935826.1935863
https://doi.org/10.1145/2433396.2433471
https://doi.org/10.1109/ICDE53745.2022.00167
https://doi.org/10.1109/ICDE53745.2022.00167
https://doi.org/10.48550/arXiv.2010.13902
https://doi.org/10.48550/arXiv.2010.13902
https://doi.org/10.1145/3442381.3449844
https://doi.org/10.1145/3442381.3449844
https://doi.org/10.48550/arXiv.1703.06114
https://doi.org/10.48550/arXiv.1907.04931
https://doi.org/10.48550/arXiv.1907.04931
https://doi.org/10.14778/3415478.3415539
https://doi.org/10.14778/3415478.3415539
https://doi.org/10.1145/3292500.3330785
https://doi.org/10.1145/3459637.3482426
http://arxiv.org/abs/2203.16939
https://doi.org/10.48550/arXiv.2203.16939
https://doi.org/10.48550/arXiv.1911.02613
https://doi.org/10.48550/arXiv.1911.02613
https://doi.org/10.1145/2939672.2939766
https://doi.org/10.14778/3514061.3514069
https://doi.org/10.1109/IA351965.2020.00011
https://doi.org/10.48550/arXiv.2206.01535
http://arxiv.org/abs/2006.04131
https://doi.org/10.48550/arXiv.2006.04131
https://doi.org/10.1145/3442381.3449802

2254 S. Kim et al.

1 3

Authors and Affiliations

Sunwoo Kim1 · Dongjin Lee2 · Yul Kim3 · Jungho Park3 · Taeho Hwang3 ·
Kijung Shin1,2

 * Kijung Shin
 kijungs@kaist.ac.kr

 Sunwoo Kim
 kswoo97@kaist.ac.kr

 Dongjin Lee
 dongjin.lee@kaist.ac.kr

 Yul Kim
 yul5.kim@samsung.com

 Jungho Park
 j0106.park@samsung.com

 Taeho Hwang
 taeho.hwang@samsung.com

1 Kim Jaechul Graduate School of AI, KAIST, Seoul, South Korea
2 School of Electrical Engineering, KAIST, Daejeon, South Korea
3 Samsung Research, Seoul, South Korea

http://orcid.org/0000-0002-2872-1526

	Datasets, tasks, and training methods for large-scale hypergraph learning
	Abstract
	1 Introduction
	2 Preliminaries and related work
	2.1 Preliminaries
	2.1.1 Hypergraphs and notations
	2.1.2 Hypergraph neural networks (HNNs)

	2.2 Related work
	2.2.1 Hypergraph neural networks
	2.2.2 Scalable (Hyper)graph learning
	2.2.3 Contrastive learning (CL)
	2.2.4 (Hyper)graph partitioning

	3 Proposed hypergraph learning tasks
	3.1 Hyperedge disambiguation
	3.1.1 Mathematical description
	3.1.2 Real-world applications

	3.2 Local clustering
	3.2.1 Mathematical description
	3.2.2 Real-world applications

	3.3 Differences from existing tasks
	3.3.1 Entity classification
	3.3.2 Overlapping clustering

	4 Proposed large-scale hypergraph datasets
	4.1 Extracting basic information
	4.2 Building node features
	4.3 Building node labels
	4.4 Building hypergraph structures

	5 Proposed scalable hypergraph learning method
	5.1 Challenges and main ideas
	5.2 Details of proposed methods
	5.2.1 Basic PCL
	5.2.2 PCL+PINS
	5.2.3 PCL+P-IOS
	5.2.4 Classifier for pair-level downstream tasks

	5.3 Complexity analysis

	6 Experiments
	6.1 Problem settings
	6.1.1 Hyperedge disambiguation (Task-I)
	6.1.2 Local clustering (Task-II)

	6.2 Experimental settings
	6.2.1 Baseline methods
	6.2.2 Implementations
	6.2.3 Machine specification
	6.2.4 Datasets
	6.2.5 Experimental set-ups

	6.3 Experimental results
	6.3.1 RQ1. Overall performance on downstream tasks
	6.3.2 RQ2. Effectiveness of PINS
	6.3.3 RQ3. Efficiency of PINS
	6.3.4 RQ4. Effectiveness of P-IOS
	6.3.5 RQ5. Tendency of PCL+PINS with Respect to the Number (or Size) of Partitions

	7 Conclusion
	Appendix: Additional experimental settings
	Details of datasets
	Details of graph-based baseline methods
	Details of hyperaprameter settings

	References

