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Abstract
Relations among multiple entities are prevalent in many fields, and hypergraphs are 
widely used to represent such group relations. Hence, machine learning on hyper-
graphs has received considerable attention, and especially much effort has been 
made in neural network architectures for hypergraphs (a.k.a., hypergraph neural net-
works). However, existing studies mostly focused on small datasets for a few single-
entity-level downstream tasks and overlooked scalability issues, although most real-
world group relations are large-scale. In this work, we propose new tasks, datasets, 
and scalable training methods for addressing these limitations. First, we introduce 
two pair-level hypergraph-learning tasks to formulate a wide range of real-world 
problems. Then, we build and publicly release two large-scale hypergraph datasets 
with tens of millions of nodes, rich features, and labels. After that, we propose PCL, 
a scalable learning method for hypergraph neural networks. To tackle scalability 
issues, PCL splits a given hypergraph into partitions and trains a neural network via 
contrastive learning. Our extensive experiments demonstrate that hypergraph neural 
networks can be trained for large-scale hypergraphs by PCL while outperforming 16 
baseline models. Specifically, the performance is comparable, or surprisingly even 
better than that achieved by training hypergraph neural networks on the entire hyper-
graphs without partitioning.
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1 Introduction

Beyond pairwise relations among entities, understanding and modeling higher-
order relations have received considerable attention  (Benson et  al. 2018; Lee 
et al. 2021; Ko et al. 2022; Luo et al. 2021; Torres et al. 2021; Yin et al. 2022; Li 
et al. 2022; Kim et al. 2022). A hypergraph, which generalizes a graph, is a data 
structure that is commonly used to model such higher-order relations (Konstanti-
nova and Skorobogatov 2001; Klamt et al. 2009; Qu et al. 2018). While an edge 
in a graph joins only two entities, a hyperedge joins an arbitrary number of enti-
ties, which makes a hypergraph, which is a pair of a node set and a hyperedge set, 
inherently capable of capturing high-order relations.

Due to the omnipresence of hypergraphs, a number of machine learning tasks, 
such as node classification (Huang and Yang 2021; Yadati et al. 2019; Chien et al. 
2021; Lee and Shin 2023) and hyperedge prediction (Yadati et al. 2020; Hwang 
et al. 2022; Zhang et al. 2020b), have been considered for hypergraph-structured 
data. One possible approach to tackle such tasks is to transform hypergraphs into 
ordinary graphs and apply existing graph representation models (e.g., graph neu-
ral networks) (Kipf and Welling 2017; Hamilton et  al. 2017; Veličković et  al. 
2018). On the other hand, previous studies have shown that this transition can 
result in the loss of significant higher-order information, causing performance 
degradation in machine learning tasks (Dong et al. 2020; Feng et al. 2019; Yadati 
et al. 2020; Zhang et al. 2020b). These studies highlight the need for specialized 
representation models specifically designed for hypergraphs.

Numerous hypergraph neural network models (e.g., HGNN (Feng et al. 2019), 
NHP (Yadati et al. 2020), UniGCNII (Huang and Yang 2021), and AllSet (Chien 
et  al. 2021)) have been developed in recent years. Despite these advancements, 
the evaluation of these models has been limited to small datasets, usually con-
sisting of tens of thousands of nodes and a few single-entity level downstream 
tasks. Moreover, scalability for large-scale datasets has been overlooked in prior 
research, with the majority of studies focusing on enhancing the expressive power 
of these networks.

However, many real-world applications require predicting properties beyond 
the single-entity level, such as pairs or groups of entities. Examples include 
detecting collusion among users in peer review (Jecmen et al. 2023), recommend-
ing products to users  (Koren et  al. 2009), identifying the same users on online 
social networks (Zhang and Tong 2016), and predicting pairwise differences for 
chemical discovery  (Tynes et  al. 2021), to name a few. In addition, a massive 
number of group relations can be found across various domains, including over 
200 million co-authorship relations in research papers  (Zhang et  al. 2019), co-
appearances of hashtags in over 500 million posts on social media  (Yang and 
Leskovec 2011), and over 10 million group discussions on an online Q &A plat-
form (Benson et al. 2018).

To bridge the apparent gap between previous studies and practical applications, 
we present new tasks, datasets, and scalable training methods for large-scale hyper-
graph learning. Our contributions toward these goals are summarized as follows:
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• Novel Pair-level Tasks: We present two new pair-level prediction tasks, hyper-
edge disambiguation and local clustering, and demonstrate that they can be used 
to address various real-world problems.

• Large-scale Datasets: We construct and publicly release two large-scale hyper-
graph-structured datasets: AMiner and MAG, which contain 10 million nodes 
and 20 million nodes respectively. These datasets are equipped with rich features 
and labels.

• Scalable Training Schemes: We propose PCL (Partitioning-based Contrastive 
Learning), a scalable learning method for hypergraph neural networks (HNNs).

  In a nutshell, PCL partitions the input hypergraph and trains HNNs via con-
trastive learning while loading only one partition into memory at a time. PCL is 
also equipped with additional techniques to reduce information loss due to par-
titioning, and as a result, HNNs trained by PCL show surprisingly good perfor-
mance in our experiments. Specifically, the performance is comparable to and 
often even better than that achieved by training HNNs on entire hypergraphs 
without partitioning, which is not scalable to large-scale datasets.

The structure of this paper is as follows. In Sect. 2, we provide some preliminaries 
and related work. In Sect. 3, we propose two pair-level prediction tasks with their 
mathematical formulation and real-world applications. In Sect.  4, we describe the 
two large-scale hypergraph datasets that we build. In Sect. 5, we present PCL, our 
scalable learning method for hypergraph neural networks. Using all the above, we 
perform experiments and report the results in Sect. 6. In Sect. 7, we offer a conclu-
sion of our work.

2  Preliminaries and related work

2.1  Preliminaries

We first give some preliminaries on hypergraphs and hypergraph neural networks. 
See Table 1 for a list of the frequently-used symbols.

2.1.1  Hypergraphs and notations

A hypergraph generalizes a graph by allowing edges to join an arbitrary number of 
nodes. Consider a hypergraph H = (V, E,X) where V = {v1, v2,… , v∣V∣} is the set 
of nodes, E = {e1, e2,… , e∣E∣} is the set of hyperedges, and X ∈ ℝ

∣V∣×F is the node 
feature matrix. Each hyperedge e ∈ E is a non-empty subset of V (i.e., e ⊆ V and 
e ≠ ∅ ), and we use xi = X[i, ∶]T ∈ ℝ

F to denote the feature vector of the node vi . 
The topological information in a hypergraph can also be represented in the form 
of a matrix called an incidence matrix. In the incidence matrix H ∈ {0, 1}∣V∣×∣E∣ 
of H , each (i,  j)-th entry has a value of 1 if a node vi is incident to a hyperedge 
ej (i.e., hij = 1 if vi ∈ ej ), or has a value of zero (i.e., hij = 0 ) otherwise. That is, 
H = (V, E,X) can be denoted equivalently by H = (X,H).
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2.1.2  Hypergraph neural networks (HNNs)

Hypergraph neural networks (HNNs) use the hypergraph structure H , node features 
X , and (optionally) hyperedge features Y to learn representations of nodes P and/or 
of hyperedges Q . Most of the modern HNNs (Feng et al. 2019; Yadati et al. 2019; Bai 
et al. 2021; Dong et al. 2020; Arya et al. 2020; Chien et al. 2021) follow a two-stage 
message aggregation strategy: node-to-hyperedge and hyperedge-to-node message 
aggregation. They iteratively update (a) The representation of a hyperedge by aggregat-
ing messages from its incident nodes and (b) The representation of a node by aggregat-
ing messages from its incident hyperedges. Let P(k) ∈ ℝ

∣V∣×F� and Q(k) ∈ ℝ
∣E∣×F�� be the 

hidden representations of the nodes and hyperedges at the kth layer, respectively. For-
mally, the k-th layer of HNNs uses the following update rules:

where fV→E(⋅) and fE→V(⋅) are the message aggregation functions, and the initial 
node representation is identical to the node feature vector (i.e., for a node vi , z

(0)

i
= xi 

holds). Throughout this paper, we use HGNN  (Feng et  al. 2019) whose message 
aggregation strategies are as follows:

where (a) �(k) is a learnable weight matrix, (b) b(k) is a learnable bias, (c) di and �j 
are the degrees of each node vi and hyperedge ej , respectively, and (d) wj is a positive 
weight assigned to each hyperedge ej ∈ E . For each node vi ∈ V , its degree is 
defined as di =
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Table 1  Frequently used symbols

Notation Definition

H = (V, E,X) Hypergraph with nodes V , hyperedges E , and node features X
H = (X,H) Hypergraph with node features X and the incidence matrix H
vi ∈ V, ej ∈ E Node and hyperedge
X ∈ ℝ

∣V∣×F Node feature matrix

H ∈ {0, 1}∣V∣×∣E∣ Incidence matrix of H
Enc�(⋅) Hypergraph encoder
Ck ⊆ V Cluster of nodes

Pk = (PV

k
,P

E

k
) Partition with nodes PV

k
 and hyperedges PE

k

Pk = (PX

k
,P

H

k
) Partition with node features PX

k
 and the incidence matrix PH

k

|A| Cardinality (i.e., number of elements) of a set A
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�j =
∑∣V∣

i=1
hij . In this work, wj is fixed to 1 for simplicity. In general, node and 

hyperedge representations at the last K-th layer are considered as final representations 
used for downstream tasks.

2.2  Related work

In this subsection, we review previous studies on hypergraph neural networks, scal-
able (hyper)graph learning, contrastive learning, and (hyper)graph partitioning, all 
of which are closely related to our work.

2.2.1  Hypergraph neural networks

There has been intense attention on designing message aggregation rules of hyper-
graph neural networks (HNN): fV→E(⋅) and fE→V(⋅) (see Eq. (1)). Many recent stud-
ies have focused on extending the applicability of graph neural networks (GNNs) to 
hypergraphs. Some approaches (Feng et al. 2019; Bai et al. 2021; Yadati et al. 2020) 
replace each hyperedge by a clique composed of its constituent nodes (i.e., clique-
expansion) and employ GNN-based message passing on the resulting graph, which 
is called the clique-expanded graph. While these models are simple and effective, 
they suffer from undesired information loss due to structural distortion caused by 
clique expansion (Hein et al. 2013; Li and Milenkovic 2018; Dong et al. 2020). To 
mitigate such information loss, HNHN (Dong et al. 2020) utilizes an approach based 
on star-expansion, which does not lead to any information loss, with two different 
weight matrices for node- and hyperedge-side message aggregations. Several studies 
attempt to generalize the message-passing process in GNNs and HNNs in a unified 
form (Huang and Yang 2021; Zhang et  al. 2022), and AllSet   (Chien et  al. 2021) 
generalizes message aggregation methods as multiset functions that are learned by 
DeepSets (Zaheer et al. 2017) or Set Transformer (Lee et al. 2019).

While many HNN models have been developed, the evaluation of their perfor-
mance in most studies has primarily focused on single-entity-level prediction tasks, 
such as node classification  (Feng et  al. 2019; Huang and Yang 2021; Chien et  al. 
2021; Lee and Shin 2023), hyperedge classification (Dong et al. 2020), and hyper-
edge prediction  (Yadati et  al. 2020; Hwang et  al. 2022). Although these tasks are 
commonly used as benchmarks for machine-learning models, it is important to 
note that many real-world applications may not inherently align with these tasks, as 
explained in greater detail in Sect. 3.3.

2.2.2  Scalable (Hyper)graph learning

As real-world graphs grow larger, many studies have been conducted to scale graph 
neural networks (GNNs) to large graphs through parallelism  (Zhang et  al. 2020a; 
Zheng et al. 2020, 2022a), graph sampling (Hamilton et al. 2017; Chen et al. 2018a, 
b; Huang et al. 2018; Chiang et al. 2019; Zeng et al. 2019), and pre-computed convo-
lutional filters (Wu et al. 2019; Rossi et al. 2020). Here, we focus on sampling-based 
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approaches. Graph sampling, which approximates local graph structures by subsam-
pled ones suitable for computation, has been demonstrated to be effective for scala-
ble graph learning. For instance, GraphSAGE (Hamilton et al. 2017) utilizes uniform 
sampling of a fixed-size set of neighboring nodes to approximate local connectivity. 
Similarly, FastGCN (Chen et al. 2018a) conducts node-level sampling independently 
for each layer while incorporating importance sampling to reduce variance. Instead 
of node-wise sampling, some works build mini-batches by graph-level sampling. 
In ClusterGCN (Chiang et al. 2019), non-overlapping clusters are computed at the 
pre-processing phase and form mini-batches cluster by cluster. Inter-cluster edges 
are simply disregarded, and this process enables ClusterGCN to avoid the “neigh-
borhood expansion” problem (Chiang et al. 2019). GraphSAINT (Zeng et al. 2019) 
adopts a graph sampling approach, and specifically, it uses sampling algorithms for 
variance reduction with an additional normalization technique for unbiasedness.

The representation learning method for large hypergraphs remains largely under-
explored. HyperNetVec, a scalable unsupervised hypergraph embedding method 
proposed by Maleki et  al. (2022) leverages multi-level (hierarchical) embedding 
approaches that adopt existing graph embedding methods  (Grover and Leskovec 
2016; Hamilton et  al. 2017) on a coarsened hypergraph. While HyperNetVec can 
handle hypergraphs with millions of hyperedges, it is a transductive embedding 
method. That is, it directly learns node embeddings and cannot be directly utilized 
for training HNNs. To the best of our knowledge, our study is the first to propose 
a scalable training approach for HNNs applicable to hypergraphs with millions of 
nodes and hyperedges. It should be noticed that our approach is scalable enough to 
be used with hypergraphs with tens of millions of nodes and hyperedges.

2.2.3  Contrastive learning (CL)

Due to its effectiveness and generality, contrastive learning (CL) has emerged as a 
novel solution for alleviating the label-scarcity issue in representation learning in 
various domains, including computer vision (Chen et al. 2020; He et al. 2020), natu-
ral language processing  (Gao et  al. 2021), graph learning  (Veličković et  al. 2018; 
You et al. 2020; Zhu et al. 2020, 2021; Hassani and Khasahmadi 2020; Luo et al. 
2022), and hypergraph learning (Zhang et al. 2021; Xia et al. 2021; Yu et al. 2021; 
Lee and Shin 2023). The basic concept of CL is to (a) create two augmented views 
from the input data and (b) learn an encoder to maximize the agreement between 
the two views. That is, CL approaches aim to minimize (maximize) the distance 
between positive (negative) pairs. The learned representations can be utilized for 
various downstream tasks, such as node classification (Veličković et al. 2018; Zhu 
et  al. 2020; Lee and Shin 2023) and recommendation  (Liu et  al. 2021; Xie et  al. 
2022).

Among contrastive learning for hypergraphs (Zhang et al. 2021; Xia et al. 2021; Yu 
et al. 2021; Lee and Shin 2023). S 2-HHGR  (Zhang et al. 2021) uses a coarse- and fine-
grained node dropout for hypergraph augmentation, and it remedies a data sparsity issue 
for group recommendation. DHCN (Xia et al. 2021) employs session-level contrast for 
session recommendation. TriCL  (Lee and Shin 2023) uses a tri-directional contrastive 
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loss, which combines node-, group-, and membership-level contrastive losses, resulting 
in better performance on several downstream tasks, compared to employing simply a 
node-level contrastive loss.

2.2.4  (Hyper)graph partitioning

(Hyper)graph partitioning is a fundamental task where the objective is to divide nodes 
into multiple groups (Girvan and Newman 2002; Çatalyürek and Aykanat 2011; Tsitsu-
lin et al. 2020) to minimize the connectivity between groups, and it has extensive appli-
cations, including anomaly detection (Ahmed et al. 2021), molecular mining (Grunig 
et al. 2022), and face analysis (Wang et al. 2019).

Especially for hypergraph partitioning, multi-level approaches have received inten-
sive attention (Çatalyürek and Aykanat 2011; Karypis et al. 1997; Schlag et al. 2023). 
A multi-level hypergraph partitioning algorithm consists of three phases: coarsening, 
initial partitioning, and uncoarsening. (a) Coarsening: A coarsened hypergraph H(c) 
is formed by merging pairs of nodes in the input hypergraph H . This procedure is 
recursively applied to the coarsened hypergraph. The final hypergraph is the coarsest 
one that meets predefined termination criteria. (b) Initial partitioning: The coarsest 
hypergraph is partitioned using any partitioning rules. (c) Uncoarsening: Partitions 
found in the second phase are successively projected back towards the original hyper-
graph H . In this paper, we adopt PaToH (Çatalyürek and Aykanat 2011) for hyper-
graph partitioning due to its high-scalability. However, other approaches  (Karypis 
et  al. 1997; Schlag et  al. 2023; Caldwell et  al. 2000; Mayer et  al. 2018) can be 
employed instead.

While the above hypergraph partitioning (clustering) studies make assump-
tions about static input hypergraphs and disjoint partitions, there have been efforts 
to relax these assumptions in ordinary graphs. Refer to (Xie et al. 2013; Rossetti 
and Cazabet 2018) for surveys on this topic. Notably, such extensions include 
overlapping clustering, which allows entities to belong to multiple clusters (Yang 
and Leskovec 2013; Shchur and Günnemann 2019), clustering in time-varying 
graphs (Ruan et al. 2021), and overlapping clustering in time-varying graphs (Mut-
takin et al. 2022). Recently, overlapping clustering is addressed using graph neural 
networks (Shchur and Günnemann 2019) and also considered in hypergraphs (Con-
tisciani et al. 2022).

3  Proposed hypergraph learning tasks

In this section, we propose two new hypergraph learning tasks: hyperedge disambigua-
tion and local clustering. For each task, we first provide its mathematical formulation 
and then discuss its application to real-world problems. Lastly, we describe how our 
proposed tasks differ from commonly considered benchmark tasks, with a focus on 
advantages in addressing potential issues in practice.
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3.1  Hyperedge disambiguation

3.1.1  Mathematical description

Consider a hypergraph H = (V, E,X) and a subset S ⊆ E of hyperedges. Every 
hyperedge ei ∈ S is split (disjointly or with partial overlap) into two hyperedges ei1 
and ei2 so that ei1 ∪ ei2 = ei holds. The hyperedges in S are replaced by these split 
hyperedges, which results in a new hypergraph H� = (V, E�) where

Based on this setting, hyperedge disambiguation is defined as to predict whether 
a given pair of hyperedges in the given hypergraph H� = (V, E�,X) are split hyper-
edges or not. Formally,

where ei, ej ∈ E
� . The goal of this task is to learn a function f ∶

(
E
�

2

)

↦ ℝ ∈ [0, 1] 

to approximate Y(⋅) in Eq.  (4). In this paper, we consider this task in a semi-
supervised setting where a small amount of the ground-truth split pairs of 
hyperedges are given. However, this problem can also be considered in other 
settings.1

3.1.2  Real‑world applications

The hyperedge disambiguation task can be applied to many real-world applica-
tions. Below, we introduce two examples: researcher disambiguation and user 
identification.

Researcher disambiguation is a task to identify whether a given pair of research-
ers are in fact the same researcher or not. Due to namesakes and other reasons, one 
researcher can be represented as multiple individuals in a system, which compli-
cates searching for experts, surveying related papers, and recommending scholarly 
papers (Milojević 2013; Caron and van Eck 2014; Sanyal et al. 2021). This problem 
can naturally be formulated as a hyperedge disambiguation task on a publication-
author hypergraph where nodes denote publications and each hyperedge represents a 
(potentially partial) set of publications authored by one researcher. Then, predicting 
whether a given pair of hyperedges are split ones or not corresponds to predicting 
whether the two sets of publications are authored in fact by the same researcher or 
not, as visually depicted in Fig. 1a.

(3)E
� = (E ⧵ S) ∪

⋃

ei∈S

{ei1, ei2}.

(4)Y({ei, ej}) =

{
1 ei ∪ ej ∈ S

0 otherwise
,

1 For example, in an unsupervised setting without any given positive example pairs, one can additionally 
split edges in E′ to use them as positive example pairs for training.
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The second task is user identification, which is to identify whether a given pair 
of electronic devices (or accounts for a web service) are owned by the same user 
(Deng et al. 2019; Malatras et al. 2017). If such a pair can be identified, the data 
(e.g., behavior log) from both can be used together to improve the quality of services 
(e.g., personalization and recommendation). To handle this problem, we can build 
a hypergraph where nodes denote devices (or accounts) and each hyperedge repre-
sents the set of devices (or accounts) that each device (or account) communicates 
with. Then, predicting whether a given pair of hyperedges are split ones or not cor-
responds to predicting whether the two devices (or accounts) are owned by the same 
user or not.

3.2  Local clustering

3.2.1  Mathematical description

Consider a hypergraph H = (V, E,X) and (disjoint or partially overlapping) clus-
ters of nodes C = {C1,C2,⋯ ,C|C|} where each cluster is a subset of nodes (i.e., 
Ck ⊆ V, ∀Ck ∈ C ). Based on this setting, local clustering is defined as to predict 
whether a given pair of nodes in a given hypergraph H belongs together to the same 
cluster or not. Formally,

where vi, vj ∈ V . The goal of this task is to find a function f ∶
(
V

2

)

↦ ℝ ∈ [0, 1] 

to approximate Y(⋅) in Eq. (5). In this paper, we consider this task in a semi-super-
vised setting where the members of a few clusters are given, while any information 
about the other clusters (e.g., the number of them) is not provided. However, this 
problem can also be considered in other settings.2

(5)Y({vi, vj}) =

{
1 ∃Ck ∈ C such that {vi, vj} ⊆ Ck

0 otherwise
,

Fig. 1  Example applications of the proposed tasks. a In a researcher disambiguation task, we aim to pre-
dict whether a given pair of researchers (modeled as hyperedges) are identical or not. b In a household 
matching task, we aim to predict whether a given pair of devices (modeled as nodes) are owned by peo-
ple in the same household or not

2 For example, it can be considered in unsupervised settings especially when the clustering membership 
is strongly correlated with node features and/or topological information.
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3.2.2  Real‑world applications

The local clustering task can be used to formulate a wide range of real-world prob-
lems. Here, we provide two examples: sub-field detection and household matching.

The first task is sub-field detection, which is to classify whether a given pair of 
publications belong to the same sub-field or not. Note that the boundary of a sub-
field is often unclear, and thus a single publication may belong to multiple sub-
fields. This problem is formulated as a local clustering task on hypergraphs where 
a node denotes a publication, a hyperedge represents the set of publications that are 
co-cited by one publication, and clusters indicate sub-fields.

The second task is household matching, a task to predict whether a given pair 
of electronic devices are owned by people in the same household or not. By group-
ing devices from the same households, recommendations and advertisements can 
be better personalized. For example, consider a hypergraph where nodes denote 
devices and each hyperedge indicates the set of devices access to the same IP within 
a specific time interval (e.g., set of devices access to IP 123.456.789 between 9 and 
10 AM on May 16, 2023). If each cluster is formed by the devices from the same 
household, inferring whether two nodes belong to the same cluster or not corre-
sponds to inferring whether two devices are from the same household or not, as vis-
ually depicted in Fig. 1b. Note that household matching is not formulated accurately 
as an entity classification task, since (1) It is hard to know in advance the number 
of households, which is required and fixed in entity classification tasks, and (2) The 
number of households changes over time.

3.3  Differences from existing tasks

In this subsection, we discuss some difficulties when formulating the aforemen-
tioned real-world applications as commonly-used single-entity-level tasks (e.g. node 
classification). Note that our proposed pair-level tasks mitigate such difficulties.

3.3.1  Entity classification

One may suspect that the aforementioned applications can also be formulated as 
single-entity-level tasks. However, formulating these applications as our tasks offer 
several advantages over formulating them as an entity classification task: (1) Our 
tasks do not require the number of labels. which is equivalent to the number of split 
hyperedges and the number of clusters in our tasks, in advance, and (2) A model for 
our tasks does not need to be retrained whenever the number of labels changes in 
time-evolving data.

For example, one may consider formulating the household matching problem 
as a node classification problem where each class indicates a household. Here, it is 
important to note that the number of such classes is typically impossible to know in 
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advance, and it also changes ceaselessly over time. Moreover, no example can be 
provided for some classes during training. However, in node-classification formula-
tion, the output dimension of classifiers should be predetermined by the number of 
classes, and they cannot output classes that are not observed during training.

On the other hand, our formulation as the local clustering task is free from such 
unrealistic requirements. That is, we do not require the number of households in 
advance and require only some pairs of devices from some households. Moreover, 
machine learning models trained for the local clustering task can naturally be gener-
alized to households unseen during training.

Formulating the researcher disambiguation problem as a hyperedge classification 
task also encounters the same issues above. The number of real identities, which 
change over time, is impossible to know in advance. However, considering the 
researcher disambiguation problem as a hyperedge disambiguation task is free from 
the above-mentioned issues.

3.3.2  Overlapping clustering

The proposed local clustering problem is also closely related to the overlapping 
clustering problem, whose goal is to identify clusters where an object (e.g., a node) 
can belong to multiple clusters (see Sect. 2.2.4). The problem has been considered 
mostly in ordinary graphs and more importantly in transductive settings. That is, 
clusters are identified based on the current state of a graph, and once the graph 
changes, one needs to re-run the entire clustering process from scratch. Thus, the 
task is not proper to be used for evaluating HNNs (especially their generalization 
capabilities), which are particularly useful in inductive settings. Moreover, in many 
cases, the number of ground truth clusters is required, while it is unavailable in 
many realistic settings.

4  Proposed large‑scale hypergraph datasets

In this section, we introduce two large-scale hypergraph-structured datasets. We 
build them by processing raw data from AMiner   (Tang et  al. 2008) and Micro-
soft Academic Graph (MAG) (Sinha et al. 2015). First, we describe how the node 
features and labels are obtained from the raw data, and then we present how the 
hypergraph topologies are constructed. Figure 2 provides a visual description of the 
hypergraph construction process.

4.1  Extracting basic information

The source of the datasets is Open Academic Graph3 (Zhang et al. 2019), and it provides 
two large academic bibliographic datasets: AMiner and MAG. These bibliographic 

3 Available at https:// www. aminer. cn/ oag-2-1.

https://www.aminer.cn/oag-2-1
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datasets consist of huge raw text data containing information about over 100 million 
authors and publications. From this raw data, we first extract the (a) publication ID, (b) 
author IDs, (c) the title, (d) keywords, and (e) the venue ID of each publication.

4.2  Building node features

We construct a 300-dimensional feature vector for each publication, which corre-
sponds to a node. To this end, we average the embeddings of all the words appearing 
in its title and keywords, where the word embeddings are obtained by the pre-trained 
GloVe (Pennington et al. 2014) model4. The node features are created separately for 
AMiner and MAG.

4.3  Building node labels

We classify publications based on the academic fields they belong to. Since the origi-
nal raw data does not contain any information about the publications’ academic fields, 
we utilize the venue name (e.g., conference and journal) of each publication to infer 
its field. Specifically, we use the category hierarchy provided by Google Scholar5 
for mapping venue names to academic fields. The hierarchy consists of three levels: 
fields, sub-fields, and venues. For example, the journal Data Mining and Knowledge 
Discovery (DAMI) belongs to the sub-field Data Mining & Analysis, which in turn 
belongs to the field Engineering & Computer Science. We label each publication 

Fig. 2  Examples for the construction process of the AMiner and MAG datasets. (Left) From raw text 
data, we extract the a publication ID, b author IDs, c title, d keywords, and e venue ID of each publica-
tion. (Middle) We obtain the 300-dimensional features for each publication by averaging the embeddings 
of all words in its title and keywords. Each publication is labelled based on the sub-field it belongs to. 
(Right) We create nodes corresponding to publications and hyperedges corresponding to authors

4 Available at https:// github. com/ UKPLab/ sente nce- trans forme rs.
5 Available at https:// schol ar. google. com/ citat ions? view_ op= top_ venue s & hl= en & vq= eng. In this tax-
onomy, a single venue is associated with a single sub-field.

https://github.com/UKPLab/sentence-transformers
https://scholar.google.com/citations?view_op=top_venues%20&hl=en%20&vq=eng
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based on the sub-field (i.e., the middle level) it belongs to. Note that, in the category 
that we use, each venue (node) is matched with exactly one sub-field (label).

4.4  Building hypergraph structures

The raw data are far from complete with many missing values (e.g., missing authors) 
and meaningless information (e.g., incomprehensible words). For the quality of the 
created hypergraphs, we first filter out all publications that satisfy at least one of the 
following three conditions:

• It does not have author information (i.e., names or IDs),
• Its title and keywords consist of less than three words,
• It is not matched with any academic field.

Then, we build hypergraphs using the remaining publications.
As mentioned in Sect. 4.2, publications and authors are represented by nodes and 

hyperedges, respectively. To be specific, for each author ID, the publications that 
contain the ID as an author form a hyperedge. In this way, we create two co-author-
ship hypergraphs, AMiner and MAG, which contain over 20 million hyperedges and 
30 million hyperedges, respectively. Numerically, the MAG dataset contains 158× 
more nodes and 129× more hyperedges than the Trivago dataset, one of the com-
monly used hypergraph datasets. Table  2 compares the statistics of the proposed 
datasets and some existing datasets. Note that, the AMiner and MAG datasets can 
be used not only for the proposed pair-level tasks but also for common downstream 
tasks, such as node classification, hyperedge prediction, and clustering.

5  Proposed scalable hypergraph learning method

In this section, we introduce PCL (Partitioning-based Contrastive Learning), a scal-
able hypergraph learning algorithm for pair-level tasks. We first provide an overview 
of PCL together with the rationale of its components. Next, we describe the details 
of PCL. At last, we give the complexity analysis of PCL. A pictorial description of 
PCL is provided in Fig. 3.

5.1  Challenges and main ideas

We analyze two challenges encountered in training representation learning models 
for pair-level downstream tasks on large-scale hypergraphs. Then, we present our 
proposed solutions for overcoming these problems.



2229

1 3

Datasets, tasks, and training methods for large-scale hypergraph learning...

Challenge 1. Considerable Time and Space Cost: How can we train hypergraph 
neural network models on large-scale hypergraph datasets? The commonly-used full-
batch training is typically not possible, since such hypergraphs cannot be entirely 
loaded into GPU memory, and this causes the out-of-memory problem. To miti-
gate this issue, a mini-batch training method (Hamilton et al. 2017) loads only the 
subgraph from which each node aggregates messages into GPU memory at a time. 
Although it reduces memory requirements, it introduces significant computational 

Table 2  Statistics of five real-world hypergraph datasets. MAG has 158× more nodes and 129× more 
hyperedges than Trivago, a commonly used hypergraph dataset

* In the Trivago dataset, we use the first 300 left singular vectors of the incidence matrix as the node 
features.
** Transformed from a heterogeneous graph

Source Dataset |V| |E| # features # classes

Existing DBLP 41,302 22,363 1,425 6
Trivago* 172,738 233,202 300 160

Transformed** OGBN-MAG 736,389 1,134,649 128 349
Proposal AMiner 13,262,573 22,552,647 300 257

MAG 27,320,375 30,175,013 300 257

Fig. 3  Overview of Basic PCL and PCL+PinS, the proposed large-scale hypergraph learning methods. 
We consider each partition ( Pi and Pj in the example) as a mini-batch and perform contrastive learning 
on each mini-batch. In Basic PCL, after a single contrastive learning iteration is done on a partition ( Pi ), 
it moves to another partition ( Pj ) and starts the next iteration. In PCL+PinS, after a model is updated on 
a partition ( Pi ), PCL+PinS extracts the node embeddings of Pi ’s two views ( Zi1 and Zi2 in our example) 
and uses Zi1 and Zi2 to compute inter-partition CL loss in the next partition Pj
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overhead to extract such subhypergraphs for each node and load them repeatedly 
into GPU memory. Even worse, such subhypergraphs are often large since real-
world hypergraphs tend to have a small diameter (Do et al. 2020; Ko et al. 2022).

Solution 1: Our solution to the scalability issue in large-scale hypergraph rep-
resentation learning is partitioning (or equivalently node clustering). The process 
involves dividing the input hypergraph into smaller partitions, treating each parti-
tion as a distinct mini-batch. Partitioning-based approaches have proved efficient 
in training models (i.e., graph neural networks) for representation learning in ordi-
nary graphs, mitigating the neighborhood expansion problem (Chiang et al. 2019). 
Despite their efficiency, partitioning-based approaches have not been considered 
for training HNNs on large-scale hypergraphs. Motivated by this efficiency, we 
split the entire hypergraph into K partitions. Here, we use a well-known hypergraph 
partitioning algorithm PaToH6 (Çatalyürek and Aykanat 2011), while any partition-
ing method can be used instead. We load a single partition into GPU memory at a 
time, which requires K times more processes of loading and unloading partitions 
into GPU memory. Alternatively, one can put two different partitions into GPU 
memory, but it requires at most K(K − 1)∕2 times more processes, which are com-
putationally too costly for large K.

Challenge 2. Information Loss Caused by Partitioning: Although the partitioning 
approach can mitigate the scalability issues, it has several limitations in handling 
pair-level downstream tasks presented in Sect. 3.

• Some hyperedges do not exist in any partitioned hypergraph if their constituent 
nodes belong to different partitions, and thus such hyperedges cannot be utilized 
in the training phase (see e1 of Fig. 4a).

• Certain node pairs and hyperedge pairs that are given as labeled pairs may be split 
into different partitions (see {v1, v5} of Fig. 4a). In such scenarios, these divided pairs 
cannot be used as labeled pairs for the partitioning-based approach to train HNNs.

• A single partition may not represent the entire hypergraph adequately since 
partitioning algorithms tend to group similar nodes together in the same parti-
tion  (Chiang et  al. 2019; Guo et  al. 2021). In other words, each partition may 
exhibit bias.

Solution 2: Our countermeasure for the second challenge is three-fold.

• The first one is to leverage a contrastive learning (CL) framework (Chen et al. 
2020; Lee and Shin 2023) to train hypergraph encoders (i.e., HNNs) on parti-
tioned hypergraphs. The basic concept of CL is to train a hypergraph encoder by 

6 PaToH is a balanced partitioning method. It ensures that all generated partitions are of similar 
sizes (Çatalyürek and Aykanat 2011), specifically satisfying �PV

k
� ≤

(1+�)

�P�

∑�P�

i=1
�PV

i
�, ∀k = 1,⋯ , �P� . As 

shown in Table 8 in Sect. 6.3.5, partitions obtained by PaToH from real-world hypergraphs are well bal-
anced. Specifically, the standard deviation of the number of nodes in each partition is less than 0.5% of 
the average number of nodes per partition.
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(a) creating two augmented views from the input data and (b) letting the encoder 
maximize the agreement between the two views. Note that CL does not require 
any label supervision, and this characteristic ensures that the encoder is properly 
trained even in the case where labeled pairs are split or lost.

• The second one is PINS, which mitigates the bias problem caused by hyper-
graph partitioning. Since it processes a single partition as a mini-batch, a 
hypergraph encoder has limited exposure to the differences between nodes in 
different partitions. To enable the hypergraph encoder to incorporate informa-
tion from other partitions, PINS utilizes the node representations from the pre-
vious partition.

• The last one is P-IOS, restores each hyperedge by adding its missing nodes back 
to the hyperedge, to alleviate information loss caused by partitioning.

5.2  Details of proposed methods

In this subsection, we explain the details of the three proposed solutions discussed 
in the previous subsection. We first introduce Basic PCL, a contrastive learning 
(CL) framework with partitioned hypergraphs. Then, we introduce PCL+PinS, a 
method that uses the embeddings of the previous partitions as negative samples. In 
addition, we provide PCL+P-iOS , a method that augments each partition without 
additional hyperedges. Lastly, we describe how a classifier of downstream tasks is 
trained with pre-trained hypergraph encoders.

Fig. 4  (a) Assume the two nodes v1 and v5 belong to the same cluster, and the two hyperedges e1 and e2 
are split from one original hyperedge. Note that v1 and v5 belong to different partitions, and e1 = {v2, v5} 
does not even exist in any partitioned hypergraph since v2 ∈ P

V

1
 and v5 ∈ P

V

2
 . Thus, {v1, v5} and {e1, e2} 

cannot be used as labeled pairs when one trains a model on partitioned hypergraphs in a supervised man-
ner. (b) In order to mitigate information loss caused by partitioning, P-iOS restores each hyperedge by 
adding its missing nodes back to the hyperedge
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5.2.1  Basic PCL

Basic PCL (Partitioning-based Contrastive Learning) is a contrastive learning 
framework that trains HNNs on partitioned hypergraphs. An example of Basic PCL 
is illustrated in Fig. 3, and its pseudocode is provided in Algorithm 1. We denote 
the set of all partitions as P = {P1,⋯ ,PK} , where each partition is defined as 
Pk = (PV

k
,PE

k
) , where PV

k
⊆ V and PE

k
= {e ∩ P

V

k
∶ e ∈ E, e ∩ P

V

k
≠ �} . Here, K 

denotes the number of partitions7. Note that Pk can also be expressed as (PX

k
,PH

k
) , 

where PX

k
 denotes the node features of PV

k
 , and PH

k
 denotes the incidence matrix of 

Pk.
In a nutshell, Basic PCL receives a set of partitions P as an input and treats each 

partition Pk ∈ P as a mini-batch (line 3) for contrastive learning. It trains a hyper-
graph encoder (i.e., hypergraph neural network) aiming to minimize a contrastive 
learning loss, which will be further elaborated. Details are as follows:

First, Basic PCL creates two augmented views of an input partition Pk (line 4). It 
mainly utilizes a masking-based augmentation strategy (Lee and Shin 2023), which 

7 One can set K based on the available amount of space (low K takes more memory consumption in gen-
eral). Note that the performance of the proposed method is not significantly affected by K, which will be 
demonstrated in Sect. 6.3.5.
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corrupts node features and membership (each group and its members). For node 
feature augmentation, Basic PCL employs a single random binary mask, with each 
entry sampled from a Bernoulli distribution B(1 − pv) . This mask is utilized to set 
certain columns of PX

k
 , which is a feature matrix of the current partition, to zero vec-

tors. Similarly, for membership augmentation, Basic PCL randomly removes nodes 
from the hyperedges that they belong to. Specifically, Basic PCL generates a binary 
mask of size nnz(PH

k
) (i.e., the number of nonzero entries of an incidence matrix 

P
H

k
 of the current partition) with each entry sampled from a Bernoulli distribution 

B(1 − pe) . This mask is leveraged to remove certain node-hyperedge memberships. 
We use P′

k1
 and P′

k2
 to denote the two resulting views created through this process, 

as in Eq. (6):

where Au denotes the augmentation process described above.
Then, Basic PCL obtains node representations of the two views by sequen-

tially passing the two views through a hypergraph encoder Enc� (see Sect. 2.1.2 for 
details) and a projection head ProjΘ (line 5-6):

where ProjΘ is a one-layer MLP with the ReLU (Nair and Hinton 2010) activation 
function. Lastly, PCL employs the InfoNCE loss  (Oord et  al. 2018) for parameter 
updates to make the representations of the corresponding nodes in the two views 
similar and those of different nodes dissimilar8:

where zka,i is a ith row vector of Zka , � is a temperature parameter, and s is a simi-
larity function. As the similarity function s, we use the consine similarity, i.e., 
s(u, v) = (uTv)∕(‖u‖ ⋅ ‖v‖) ). As shown in the denominator of Eq. (8), for each node, 
its similarity with all other nodes of PV

k
 is computed. For computational efficiency, 

instead of using the entire PV

k
 , we obtain a uniform sample P�V

k
⊂ (PV

k
⧵ {vi}) , where 

|P�V
k
| = min(|PV

k
|,N) and N is a hyperparameter, and use it as negative samples. That 

is,

In practice, we symmetrize Eq. (8) so that the final CL loss (line 7) becomes:

(6)P
�
k1

= (P�X
k1
,P�H

k1
) ← Au(Pk, pv, pe);P

�
k2

= (P�X
k2
,P�H

k2
) ← Au(Pk, pv, pe),

(7)Zk1 = ProjΘ(Enc�(P
�
k1
)));Zk2 = ProjΘ(Enc�(P

�
k2
))),

(8)�(zk1,i, zk2,i) = − log
exp (s(zk1,i, zk2,i)∕�)

∑�PV

k
�

t=1
exp (s(zk1,i, zk2,t)∕�)

,

(9)�(zk1,i, zk2,i) = − log
exp (s(zk1,i, zk2,i)∕�)

exp (s(zk1,i, zk2,i)∕�) +
∑

vt∈P
�V
k
exp (s(zk1,i, zk2,t)∕�)

.

8 Note that other self-supervised losses (e.g., (Addanki et al. 2021)) can be used alternatively.
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By using Eq. (10), Basic PCL updates Enc� and ProjΘ via gradient descent.

5.2.2  PCL+PINS

PCL+PinS (Previous partItion’s Negative Samples) encourages a hypergraph 
encoder Enc� to learn dissimilarity between nodes at different partitions (see 
Fig.  3). A pseudocode of PCL+PinS is provided in Algorithm  1. As Basic PCL 
does, PCL+PinS treats each partition as a mini-batch for contrastive learning. How-
ever, while Basic PCL only utilizes contrastive loss obtained within each partition, 
PCL+PinS incorporates information from other partitions.

In PCL+PinS, before moving to the next partition (after updating the encoder 
in the current partition), the encoder extracts node embeddings of two augmented 
views of the current partition Pk (denoted by Zk1 and Zk2 ) (line 12). For the next 
partition Pt , PCL+PinS uses not only the CL loss in Eq.  (10), which is obtained 
within a partition Pt , but also an inter-partition CL loss to maximize the dissimilar-
ity between the node embeddings from a view of Pt and those from a view of Pk . 
Specifically, the inter-partition CL loss between a view P′

t1
 of Pt and a view P′

k1
 of 

Pk is defined as:

where PV

k,s
⊂ P

V

k
 are sampled nodes from Pk for negative samples. We consider all 

possible pairs of a view from Pt and a view from Pt , and based on them we define 
LI,t(1, 1) , LI,t(1, 2) , LI,t(2, 1) , and LI,t(2, 2) , accordingly. Then, the final loss of 
PCL+PinS for each partition Pt is defined as:

where LCL,t is the loss within Pt in Eq. (10), and � is a hyperparameter that controls 
the strength of the inter-partition CL loss.

In summary, PCL+PinS uses node embeddings from the previous partitions as 
negative samples for the current partition. It is important to note that Zk1 and Zk2 are 
obtained from a partition already residing in GPU memory, and does not require any 
additional data loading process. In addition, Zk1 and Zk2 are not outdated since they 
are extracted after updating the encoder.

5.2.3  PCL+P‑IOS

PCL+P-iOS (Partitions with the Inclusion of Outsider Set) restores each hyperedge 
by adding its constituent nodes missed during partitioning back to the hyperedge, to 

(10)LCL,k =
1

2|PV

k
|

|PV

k
|

∑

i=1

(
�(zk1,i, zk2,i) + �(zk2,i, zk1,i)

)
.

(11)LI,t(1, 1) =
1

�PV

t
�

�PV

t
�

�

i=1

log

⎛
⎜
⎜
⎝

�

j∈PV

k,s

exp

�
s(zt1,i, zk1,j)

�

�⎞
⎟
⎟
⎠

,

(12)L = LCL,t + �
(
LI,t(1, 1) + LI,t(1, 2) + LI,t(2, 1) + LI,t(2, 2)

)
,
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mitigate information loss caused by partitioning. An example of P-iOS is illustrated in 
Fig. 4b.

Formally, for a given set of hypergraph partitions P , PCL+P-iOS builds a new 
hypergraph partition set P̃ , which is defined as:

where P̃E

k
= {e ∈ E ∶ e ∩ Pk ≠ �} , and P̃V

k
=
⋃

e∈P̃
E

k

e . The training strategy of 
PCL+P-iOS is the same as that of Basic PCL except that PCL+P-iOS uses P̃ , as 
input hypergraph partitions, instead of P.

5.2.4  Classifier for pair‑level downstream tasks

Note that the proposed methods (Basic PCL, PCL+PinS, and PCL+P-iOS) are for 
obtaining representations of nodes. Lastly, we present how PCL makes predictions for 
node-pair-level tasks and hyperedge-pair-level tasks with acquired representations. We 
denote node representations obtained by a hypergraph encoder (trained by one of the 
proposed methods) by Pv ∈ ℝ

|V|×F� . It should be noticed that the representations are 
the output of the hypergraph encoder Enc� not the projection head ProjΘ , which is used 
only for contrastive learning.

For a node pair-level task, PCL directly uses Pv as node features. To make a predic-
tion for a pair of nodes {vi, vj} , PCL uses a classifier hv ∶ (ℝF�

×ℝ
F�

) ↦ [0, 1] . Spe-
cifically, hv is structured as follows:

where ⊗ denotes the element-wise product; � denotes the sigmoid function; R 
denotes the ReLU activation function  (Nair and Hinton 2010); W11 and W12 are 
learnable weight matrices; and b11 and b12 are learnable bias matrices. All param-
eters (i.e., W11 , W12 , b11 , and b12 ) are updated using a classification loss. Note that in 
the proposed local clustering task, this prediction is used to identify whether the pair 
of nodes {vi, vj} belong to the same cluster or not.

For a hyperedge pair-level task, PCL first creates hyperedge features by aggregating 
node representations that belong to the corresponding hyperedge. Formally, hyperedge 
features Pe ∈ ℝ

|E|×F� (or Pe ∈ ℝ
|E�|×F� in our hyperedge disambiguation task) are com-

puted as follows:

Although we have adopted a summation for the aggregation function, other 
permutation invariant functions (e.g., average and maximum) can also be uti-
lized. To make a prediction for a pair of hyperedges {ei, ej} , PCL uses a classifier 
he ∶ (ℝF�

×ℝ
F�

) ↦ [0, 1] . Specifically, he is structured as follows:

(13)P̃ =
{

P̃k =
(

P̃
V

k
, P̃

E

k

)

∶ k ∈ {1,⋯ ,K}
}

,

(14)hv(pv,i, pv,j) = 𝜎(W12(R(W11pv,i + b11)⊗ R(W11pv,j + b11)) + b12),

(15)pe,i =
∑

vk∈ei

pv,k, ∀ei ∈ E (or ∀ei ∈ E
� in hyperedge disambiguation).

(16)he(pe,i, pe,j) = 𝜎(W22(R(W21pe,i + b21)⊗ R(W21pe,j + b21)) + b22),
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where ⊗ denotes an element-wise product; � denotes the sigmoid function; R 
denotes the ReLU activation function  (Nair and Hinton 2010), W21 and W22 are 
learnable weight matrices; and b21 and b22 are learnable bias matrices. All param-
eters ( W21 , W22 , b21 , and b22 ) are updated using a classification loss. Note that in the 
proposed hyperedge disambiguation task, this prediction is used to identify whether 
a given pair of hyperedges {ei, ej} are in fact split from one hyperedge.

When training the classifiers hv and he , we freeze the parameters of the hyper-
graph encoder Enc� , and thus the node representations Pv and hyperedge repre-
sentations Pe are also frozen. However, it is also possible to fine-tune Enc� while 
training the hv and he for downstream tasks.

5.3  Complexity analysis

We examine the time complexity and memory requirement of PCL, focusing on 
a forward pass of Basic PCL. Note that obtaining node embeddings with a hyper-
graph neural network incurs time complexity of O(�V� +

∑
ei∈E

�ei�) , as outlined in 
Eqs. (1) and (2).

We first present the time complexity of a forward pass of the HCL (hypergraph 
contrastive learning), a contrastive learning framework based on the entire hyper-
graph dataset. As stated above, the time complexity of obtaining node embed-
dings of two views using a hypergraph encoder is O(�V� +

∑
ei∈E

�ei�) . After this, 
node embeddings of two views are fed into a projection head, which takes O(|V|) 
time. At last, it computes the contrastive loss between each node and negative 
samples, whose time complexity is O(|V|N) where N is the number of negative 
samples. The overall time complexity of a forward pass of HCL becomes

A forward pass of HCL requires O(�V� +
∑

ei∈E
�ei�) (GPU) memory space for stor-

ing the entire input hypergraph and (intermediate) embeddings.
Now, we elaborate on the complexity of our proposed method, Basic PCL. 

The time complexity in Eq. (17) is applied to each partition (instead of the entire 
hypergraph), and as a result, the overall time complexity of a forward pass of 
Basic PCL becomes

which is equivalent to the time complexity of HCL.
The (GPU) memory requirement of Basic PCL differs from that of HCL. Since 

Basic PCL loads only one partition into (GPU) memory at a time, the amount of 
(GPU) memory required becomes

(17)O

(

(|V| +
∑

ei∈E

|ei|) + |V| + |V|N

)

= O

(

|V| +
∑

ei∈E

|ei|

)

.

(18)O

⎛
⎜
⎜
⎝

�K��

k=1

�PV

k
� +

�K��

k=1

�

e�
i
∈PE

k

�e�
i
�

⎞
⎟
⎟
⎠

= O

�

�V� +
�

ei∈E

�ei�

�

,
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which indicates that the (GPU) memory requirement of Basic PCL is less than or 
equal to that of the HCL. This fact is also further supported by experiments, where 
HCL encounters out-of-memory issues when dealing with large-scale datasets, 
whereas PCL is not susceptible to such problems (see Tables 3 and 4). Regarding 
speed, empirical observations indicate that HCL is faster in certain real-world data-
sets. This is because HCL requires less time to load datasets into (GPU) memory 
compared to PCL, which necessitates additional time for loading and unloading 
each partition into (GPU) memory.

6  Experiments

In this section, we review our experiments to answer the following questions:

• RQ1: How accurate is PCL for the proposed pair-level tasks?
• RQ2: How effective is PinS?
• RQ3: How much GPU memory is required by PCL with and without PinS?
• RQ4: How effective is P-iOS?
• RQ5: How does the performance of PCL (+ PinS) depend on the number (or 

size) of partitions?

We first describe the problem settings for the proposed pair-level prediction tasks. 
Then, we provide details of experimental settings and datasets. Lastly, we provide 
answers to the above questions based on our experimental results.

6.1  Problem settings

In this subsection, we introduce how we compose train and test pairs for the two 
pair-level prediction tasks described in Sect. 3.

6.1.1  Hyperedge disambiguation (Task‑I)

Given an original hypergraph H = (V, E,X) , we split hyperedges in a dis-
joint way. Let ES ⊆ E be the subset of the original hyperedge set that con-
sists of all hyperedges of sizes greater than 10 (i.e., ES = {e ∈ E ∶ |e| > 10} ). 
We randomly split every hyperedge ei in ES into two sub-hyperedges {ei1, ei2} , 
under a constraint that the size of both sub-hyperedges should be at least 5 (i.e., 
ei1 ∩ ei2 = �, ei1 ∪ ei2 = ei, and min(|ei1|, |ei2|) ≥ 5 ). Then, we create a new hyper-
graph H′ whose hyperedge set E′ is defined as:

(19)O

⎛
⎜
⎜
⎝

max
Pk∈P

⎛
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⎝

�PV

k
� +

�
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i
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We denote the set of ground-truth split hyperedge pairs as GS = {{ei1, ei2} ∶ ei ∈ ES} . 
We use a subset G′

S
 of GS as a train positive pair set, and the others (i.e., GS ⧵ G

′
S
 ) as 

a test positive pair set.
For training and testing of classifiers of this task, we also create a negative-

pair set. We constrain the size of hyperedges in negative pairs since all posi-
tive pairs consist of hyperedges of size at least 5. Specifically, we use the set 
E
�
5
= {e ∈ E

� ∶ |e| ≥ 5} of hyperedges whose size is at least 5. We compose a nega-
tive pair set with pairs of hyperedges in E′

5
 , ensuring that these negative pairs are not 

included in Gs . Specifically, the train negative pair set is the set of pairs of hyper-
edges {ei, ej} that satisfy at least one of the two following conditions:

• Condition 1:  
�

ei, ej ∈
⋃

gs∈G
�
S

gs

�

∧ ({ei, ej} ∉ G�
S
),

• Condition 2:  
�

ei ∈
⋃

gs∈G
�
S

gs

�

∧
�

ej ∉
⋃

gs∈G
�
S

gs

�

.

The test negative pair set is the set of pairs {ei, ej} of hyperedges from E′
5
 that satisfy 

the following condition:

Since the number of possible negative pairs is vast, instead of considering them all, 
we sample some of them so that (1) the number of train negative pairs matches that 
of train positive pairs, and (2) the number of test negative pairs matches that of test 
positive pairs.

6.1.2  Local clustering (Task‑II)

In our setting, the clusters are formed in a disjoint way. From the entire set of clusters 
C = {C1,C2,⋯ ,C|C|} , a subset C≃ ⊊ C is given for training. The train positive pair 
set is defined as the set of node pairs that belong together to a known ground-truth 
cluster, formally,

The test positive pair set is defined as the set of node pairs that belong together to an 
unknown ground-truth cluster, formally

(20)H
� = (V, E�), where E� = (E ⧵ ES) ∪

⋃

ei∈ES

{ei1, ei2}.

(21)
⎛
⎜
⎜
⎝

ei, ej ∉
�

gs∈G
�
S

gs

⎞
⎟
⎟
⎠

∧
�
{ei, ej} ∉ Gs

�
.

(22)
{

{vi, vj} ∈

(
V

2

)

∶ vi, vj ∈ C�,C� ∈ C≃

}

.

(23)
{

{vi, vj} ∈

(
V

2

)

∶ vi, vj ∈ C�,C� ∈ (C ⧵ C≃)

}

.
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Instead of using all possible positive pairs within each cluster, we sample a certain 
portion of node pairs from each cluster.

We define the train node set as VTR = 
⋃

C�∈C≃ C� and the test node set as VTE = 
⋃

C�∈(C⧵C≃) C
� . Then, the train negative pair set is defined as the node pairs from VTR 

that are not included in the train positive pair set. Similarly, we define the test nega-
tive pair set as the node pairs from VTE , except for the pairs that belong to the test 
positive pairs. As in the previous task, instead of using all negative pairs, we sample 
some of them so that (1) the number of train negative pairs matches that of train 
positive pairs, and (2) the number of test negative pairs matches that of test positive 
pairs. Throughout the experiments, in each dataset, we use the labels of nodes as the 
ground-truth clusters of the nodes.

6.2  Experimental settings

In this section, we provide an overview of the experimental setup for our study.

6.2.1  Baseline methods

We compare the proposed methods against 16 baseline methods in the two proposed 
tasks (Task-I and Task-II), which include Multi-Layer Perceptron (MLP) (Rumelhart 
et al. 1986), graph encoders trained via supervised learning or self-supervised learn-
ing9, and hypergraph encoders trained via supervised learning and (full-batch) self-
supervised learning. These baseline methods serve as a means to assess the effec-
tiveness of several ideas behind the proposed methods for Task-I and Task-II: the 
ideas are (1) hypergraph data modeling (2) self-supervised learning strategy, and (3) 
partitioning.

For graph encoders trained via supervised learning, we use GCN  (Kipf and 
Welling 2017) and GAT (Veličković et  al. 2018), and for self-supervised learning 
methods, we use GCN trained by BGRL  (Addanki et  al. 2021) or GGD  (Zheng 
et  al. 2022b). For hypergraph encoders trained via supervised learning, we use 
HGNN (Feng et al. 2019), UniGCNII (Huang and Yang 2021), and AllSet  (Chien 
et al. 2021). All the above methods are trained and evaluated on both entire and par-
titioned (hyper)graphs. Lastly, we use HGNN trained via self-supervised learning on 
the entire hypergraph, which we call Hypergraph Contrastive Learning (HCL), as an 
additional baseline method.

6.2.2  Implementations

We implement our methods and HCL using PyTorch 1.11.0 (Paszke et al. 2019) and 
PyTorch Geometric 2.0.4 (Fey and Lenssen 2019), and for all other baseline meth-
ods, we use their official code.

9 Since graph encoders require a graph topology as an input, we convert original hypergraphs into 
graphs by Clique Expansion, described in Appendix A.2.
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6.2.3  Machine specification

All experiments are conducted on a machine with NVIDIA RTX 8000 D6 GPUs 
(48GB memory) and two Intel Xeon Silver 4214R Processors.

6.2.4  Datasets

We conduct experiments on five real-world hypergraph datasets: two existing 
small-scale datasets (DBLP (Rossi and Ahmed 2015) and Trivago (Chodrow et al. 
2021)), one medium-scale hypergraph dataset transformed from a heterogeneous 
graph (OGBN-MAG (Wang et al. 2020)), and the two proposed large-scale hyper-
graph datasets (AMiner and MAG). Some statistics of these datasets are reported 
in Table  2. Details regarding nodes, hyperedges, and labels of these datasets are 
described in Appendix A.1.

6.2.5  Experimental set‑ups

We use the average precision score (AP) and the area under the ROC curve score 
(AUROC) as two quantitative evaluation metrics since the proposed tasks are 
sort of binary classification tasks. For each dataset and for each task, we evaluate 
each model using 10 data splits. Specifically, we measure average AP and average 
AUROC together with their standard deviations over 10 splits.

For Task-I, we split the ground-truth hyperedge pairs into 10 and 90% and use 
them as the positive train pairs and positive test pairs, respectively. In addition, we 
use half of the positive train pairs for validation and use the remaining half for train-
ing. By following the procedures described in Sect. 6.1, we create the same number 
of negative train/validation/test pairs.

Similarly for Task-II, we split the ground-truth clusters (i.e., classes) into 10 and 
90% and use them as known and unknown ground-truth clusters, respectively. Here 
also, we use half of the known clusters for validation and use the remaining half for 
training. Since the DBLP dataset has only six clusters, we use four of them (spe-
cifically, two for training and two for validation) as known ground-truth clusters, 
which results in a 66/34% split for Task-II. Based on the clusters, by following the 
procedures described in Sect. 6.1, we create positive and negative train/validation/
test pairs. Specifically, for each cluster, we randomly sample the following number 
of positive pairs from all possible positive pairs that can be created from the corre-
sponding cluster (and use the same number of negative pairs) in each dataset: 10000 
in DBLP and Trivago and 50000 in OGBN-MAG, AMiner, and MAG.

For all partition-based methods, the number of partitions (i.e., |P| ) is set to 4 
for DBLP, 32 for Trivago, 128 for OGBN-MAG, and 256 for AMiner and MAG, 
unless otherwise stated. The effect of the number of partitions is also explored in 
Sect.  6.3.5. For all cases, we utilize the Adam optimizer (Kingma and Ba 2015) 
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with a fixed weight decay scalar of 10−6 . The learning rate for each case is tuned as 
a hyperparameter. The specific hyperparameters for the proposed methods and all 
baseline methods are described in Appendix A.3. For PCL, unless otherwise stated, 
PinS is used for Task-II but not for Task-I, and P-iOS is not used for both tasks. 
This is because PinS does not lead to accuracy gains in most cases for Task-I, and 
P-iOS limits the scalability of PCL. PinS, however, is helpful for prediction accu-
racy, as shown in Sect. 6.3.4.

6.3  Experimental results

6.3.1  RQ1. Overall performance on downstream tasks

As shown in Tables 3 and 4, PCL achieves overall the best AP and AUROC scores 
among all the considered methods (i.e., best in terms of average rank) on both tasks. 
There are two notable observations, which we describe below.

First, in the two proposed large-scale hypergraphs AMiner and MAG, PCL shows 
the best performance with a significant gap from the second best model (spec., 3.7% 
higher AP on Task-I and 9.7% higher AP on Task-II in AMiner dataset). This result 
demonstrates the effectiveness of PCL in pair-level tasks on large-scale hypergraph 
datasets. Note that the graph representation methods operating on clique-expanded 
graphs show poor performance on both tasks in large-scale datasets. This result 
highlights the effectiveness of the hypergraph modeling of large-scale group interac-
tions when tackling pair-level tasks.

Second, although PCL is trained on partitioned hypergraphs, surprisingly, it 
shows performance comparable to or even better than that of HCL, which uses entire 
hypergraphs, without partitioning, for contrastive learning. That is, the topological 
information loss due to partitioning is not severe enough to harm the overall perfor-
mance of models, and sometimes it is even helpful. We suspect that partitioning may 
increase the hardness of negative samples that are used during contrastive learning, 
which may lead to performance improvement. Specifically, when selecting negative 
samples for contrastive learning, there is inherent randomness in the choice of which 
negative samples. If we choose negative samples from the entire hypergraph (as in 
HCL), it is likely that distant nodes are chosen. In this case, representations of dif-
ferent nodes can easily be dissimilar, since it is likely that distant nodes have dif-
ferent neighbors. However, if we select negative samples within a partition (as in 
PCL), it is relatively more likely that nodes sharing many neighbors are chosen10, 
and this makes the encoder hard to maximize the dissimilarity between representa-
tions of such nodes. As a result, the hardness of negative samples increases in PCL, 
and learning to distinguish hard negative samples from positive samples potentially 
enhances the quality of the trained encoder’s output representation (Robinson et al. 
2021; Hassani and Khasahmadi 2020).

10 This is because partitioning algorithms generally assign such nodes in the same partition.
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6.3.2  RQ2. Effectiveness of PINS

We demonstrate the effectiveness of PinS on Task-II by comparing the perfor-
mances of PCL w/O PinS (Basic PCL) and PCL+PinS. As shown in Table  5, 
PCL+PinS outperforms PCL w/O PinS in four out of five datasets. The perfor-
mance gain by PinS is up to +2.9% (AUROC on DBLP), while the performance 
degradation is up to -0.2% (AUROC on MAG). Thus, we conclude that PinS is 
effective on Task-II. However, in our preliminary study, PinS does not increase the 
performance on Task-I.

6.3.3  RQ3. Efficiency of PINS

Despite the effectiveness of PinS on Task-II, one may concern with additional com-
putational and memory costs caused by PinS. Regarding the concern, we compare 
the average running time per epoch of PCL+PinS and PCL w/O PinS (Basic PCL), 
and we also measure their average GPU memory usage during the contrastive learn-
ing process11.

As reported in Table 7, the average running time of PCL+PinS is 20, 32, and 
23% longer than that of PCL w/O PinS on OGBN-MAG, AMiner, and MAG, 
respectively12. Moreover, it uses 0.1, 0.01, and 0.01% more average GPU memory, 
compared to PCL w/O PinS, for the above three datasets. Therefore, the additional 
cost due to PinS is not substantial.

Table 5  Effectiveness of 
PinS on Task-II. PCL+PinS 
outperforms PCL w/O PinS in 
most datasets

Data Metric PCL w/O PinS PCL+PinS

DBLP AP 62.4 ± 11.5 63.2 ± 10.6
AUROC 61.1 ± 9.9 64.0 ± 11.5

Trivago AP 58.6 ± 1.0 58.6 ± 1.0
AUROC 58.7 ± 1.0 59.2 ± 1.3

OGBN-MAG AP 77.3 ± 0.7 77.6 ± 0.8
AUROC 79.6 ± 0.3 79.8 ± 0.6

AMiner AP 78.6 ± 1.3 80.2 ± 1.7
AUROC 81.3 ± 1.2 81.6 ± 0.8

MAG AP 83.3 ± 1.1 83.1 ± 1.4
AUROC 86.3 ± 0.7 86.1 ± 1.5

11 At each mini-batch (partition) of contrastive learning, we record the GPU memory usage after com-
pleting the gradient computation (spec., execute loss.backward() and check the current GPU mem-
ory allocation using torch.cuda.memory_allocated(device)). After training an encoder in 
every mini-batch, we calculate the average GPU memory usage for the current epoch by averaging the 
usage across all partitions. Finally, we compute the average GPU memory usage across all epochs.
12 The total contrastive training epochs are 50.
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6.3.4  RQ4. Effectiveness of P‑IOS

To demonstrate the effectiveness of P-iOS, we compare PCL w/O P-iOS (Basic PCL) 
with PCL+P-iOS on both Task-I and Task-II in the DBLP, Trivago, and OGBN-
MAG datasets. As shown in Table 6, the prediction performance is improved with 
P-iOS in all the settings. This result is intuitive since P-iOS mitigates information 
loss caused by partitioning via restoring each hyperedge. However, PCL+P-iOS is 
not applicable to large-scale hypergraphs since with P-iOS, resulting partitions are 
too large, causing an out-of-memory error.

6.3.5  RQ5. Tendency of PCL+PINS with Respect to the Number (or Size) of Partitions

At last, we investigate how the performance of PCL+PinS changes with respect to 
the number (or size) of partitions on both tasks. Note that the number of partitions 
and the size of each partition (i.e., number of nodes and number of hyperedges) is 
in inverse proportion (see Table 8). To this end, for each partition size, we show the 
AP score distribution of PCL+PinS over 10 data splits of each dataset. As shown 
in Fig. 5, there is no clear tendency between the number of partitions (or the size of 

Table 6  Effectiveness of P-iOS. 
PCL+P-iOS outperforms PCL 
w/O P-iOS in all cases

Task Data Metric PCL w/O P-iOS PCL+P-iOS

Task-I DBLP AP 87.1 ± 1.9 90.8 ± 1.8
AUROC 88.3 ± 2.0 92.9 ± 1.2

Trivago AP 88.2 ± 0.9 89.4 ± 1.2
AUROC 88.9 ± 0.7 89.5 ± 0.9

*OGBN-MAG AP 94.1 ± 0.4 94.8 ± 0.4
AUROC 95.1 ± 0.2 96.2 ± 0.2

Task-II DBLP AP 62.4 ± 11.5 64.7 ± 11.5
AUROC 61.1 ± 9.9 62.3 ± 12.3

Trivago AP 58.6 ± 1.0 59.2 ± 1.0
AUROC 58.7 ± 1.0 59.3 ± 1.0

OGBN-MAG AP 77.3 ± 0.7 78.8 ± 0.9
AUROC 79.6 ± 0.3 80.9 ± 0.7

Table 7  Cost of PinS. The 
additional cost due to PinS is 
not large in terms of time and 
marginal in terms of memory 
requirements

Method OGBN-MAG AMiner MAG

Average 
Running 
Time Per 
Epoch

PCL w/O PinS 20.102 89.505 103.450

(Sec) PCL+PinS 24.025 118.338 133.739
Average 

GPU 
Memory 
Usage

PCL w/O PinS 2.344 10.573 23.942

(GB) PCL+PinS 2.347 10.575 23.945
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partitions) and the performance of PCL+PinS, and especially in AMiner, there is 
no clear difference in the distributions depending on the size of partitions.

7  Conclusion

In this work, in order to bridge the gap between previous studies and real-world 
applications of hypergraph learning, we make three contributions that are summa-
rized as follows:

• In terms of tasks, we provide two novel pair-level hypergraph-learning tasks 
(hyperedge disambiguation and local clustering) that can be used for formulating 
various real-world problems.

• In terms of datasets, we propose two large-scale hypergraph datasets (AMiner 
and MAG) that enable the evaluation of hypergraph neural networks at scale.

• In terms of training methods, we suggest PCL, a scalable hypergraph learn-
ing method. PCL is based on hypergraph partitioning and contrastive learning, 
equipped with two additional techniques (PinS and P-iOS) for reducing infor-

Table 8  Detailed statistics regarding partitions. |P| indicates the number of partitions, |PV

i
| indicates the 

average number of nodes in each partition, |PE

i
| indicates the average number of hyperedges in each par-

tition, and sd(|PV

i
|) and sd(|PE

i
|) indicate the standard deviations of the numbers of nodes and hyper-

edges, respectively, in each partition

OGBN-MAG AMiner MAG

Large Medium Small Large Medium Small Large Medium Small

|P| 32 64 128 256 512 1024 256 512 1024

|PV

i
| 23012.2 11506.1 5753.0 51806.9 25903.5 12951.7 106720.2 53360.1 26680.1

|PE

i
| 45454.3 24265.5 12659.5 122358.5 62491.5 31772.9 205835.5 108065.1 56134.2

sd(|PV

i
|) 72.8 25.7 20.1 190.9 78.3 41.0 334.4 174.3 51.6

sd(|PE

i
|) 15408.3 7765.6 5984.1 45433.8 25306.5 11955.4 37684.6 21684.5 12252.0

Fig. 5  Performance tendency of PCL+PinS with respect to the size of partitions. The boxplot describes 
the test AP score distribution over 10 data splits. For each dataset, boxplots are arranged in order of 
Large, Medium, and Small sizes. No clear tendency exists between the number/size of the partition and 
the performance of PCL+PinS 
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mation loss caused by partitioning. We experimentally verify the superiority of 
PCL over 16 baseline methods on the proposed pairwise prediction tasks and the 
effectiveness of PCL+PinS and PCL+P-iOS.

For reproducibility, we make the source code and datasets used in the paper avail-
able at https:// github. com/ kswoo 97/ pcl.

Appendix: Additional experimental settings

Details of datasets

DBLP is a co-authorship hypergraph where nodes and hyperedges correspond to 
publications and authors, respectively. Each publication’s class is labeled according 
to its field of study. Trivago is a hotel-web search hypergraph where each node indi-
cates each hotel and each hyperedge corresponds to a user. If a user (hyperedge) has 
visited the website of a particular hotel (node), the corresponding node is added to 
the respective user hyperedge. Furthermore, each hotel’s class is labeled based on 
the country in which it is located. OGBN-MAG is originally a heterogeneous graph 
that contains comprehensive academic information including venue, author, pub-
lication, and affiliation information. We transform this heterogeneous graph into a 
hypergraph as described in Sect. 4, while a label of each node (publication) indicates 
a published venue of the corresponding publication.

Details of graph‑based baseline methods

Since graph representation models  (Kipf and Welling 2017; Veličković et  al. 2018) 
require ordinary graph structure as an input, we transform original hypergraph datasets 
into ordinary graph datasets by using clique expansion, where each hyperedge is 
replaced with a clique in the resulting graph. Formally, the clique expansion is a trans-

formation of a given hyperedge set E to a clique expanded edge set EG =
⋃

e∈E

�
e

2

�

.

https://github.com/kswoo97/pcl
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Specifically, for full-graph datasets of DBLP and Trivago, we directly obtain 
EG from E , the entire hyperedge set. For full-graph datasets of OGBN-MAG, the 
size of the resulting clique expanded edges is too large to be loaded into the main 
memory. To reduce its scale, we additionally employ sampling, as described in 
Algorithm 2. Specifically, for each hyperedge e′ whose size is greater than k and for 
each constituent node v ∈ e� , we uniformly sample k other nodes from e′ (line 7) and 
create k edges joining v and each of the k sampled nodes. Here, we set k = 10 for 
the OGBN-MAG dataset. We fail to create full-graph datasets of AMiner and MAG 
since clique expansion runs out of memory even with small k around 3, and thus we 
cannot perform experiments on them.

For partitioned-graph datasets of DBLP, Trivago, and OGBN-MAG, we apply 
clique expansion to the hyperedge set in each partition and use the resulting clique-
expanded edge set as that of the corresponding partition. For partitioned-graph data-
sets of AMiner and MAG, due to the scalability issue, we apply the sampling strat-
egy described in Algorithm 2 to each partition Pi of P (i.e., the input is PE

i
 instead 

of E ) and treat the resulting edge set as the edge set of the corresponding partition. 
Here, we set k to 10.

Details of hyperaprameter settings

We now provide detailed hyperparameter settings of representation models and 
training methods. The number of layers and hidden dimension of all representation 
models are fixed to 2 and 128, respectively.

For representation models that are trained via supervised learning methods, we 
train each model for 100 epochs. We tune a learning rate of each model within 
{0.01, 0.001, 0.0001} . For every 10 epochs, we measure the validation AP score and 
save the model parameters. Then, we designate the checkpoint with the highest vali-
dation AP score as the final model parameters.

For representation models that are trained via all versions of PCL, we tune the 
number of self-supervised learning epochs within {25, 50} , while we set a broader 
search space, specifically {20, 40, 60, 80, 100} , for that of other self-supervised 
learning methods. We tune the learning rate of the self-supervised learning within 
{0.001, 0.0001} for all self-supervised learning methods. In addition, for methods 
that require augmentation steps, we tune the extent of node feature augmentation 
pv within {0.3, 0.4} , and the extent of topological augmentation pe within {0.3, 0.4} . 
Furthermore, for methods that require negative samples for contrastive learning, we 
tune the number of negative samples N within {1, 2} . The temperature parameter � 
for all self-supervised learning methods, and the scalar � that controls the strength 
of inter-partition loss in PCL+PinS are both fixed to 0.5. Lastly, we train down-
stream task classifiers of all self-supervised learning methods with a learning rate of 
0.001. We train the classifiers for 100 epochs, and for every 10 epochs, we measure 
the validation AP score and save the classifier parameters. Then, we designate the 
checkpoint with the highest validation AP score as the final classifier parameters.
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