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Abstract
Machine learning algorithms often require large training sets to perform well, but 
labeling such large amounts of data is not always feasible, as in many applications, 
substantial human effort and material cost is needed. Finding effective ways to 
reduce the size of training sets while maintaining the same performance is then 
crucial: one wants to choose the best sample of fixed size to be labeled among a 
given population, aiming at an accurate prediction of the response. This challenge 
has been studied in detail in classification, but not deeply enough in regression, 
which is known to be a more difficult task for active learning despite its need in 
practice. Few model-free active learning methods have been proposed that detect 
the new samples to be labeled using unlabeled data, but they lack the information 
of the conditional distribution between the response and the features. In this paper, 
we propose a standard regression tree-based active learning method for regression 
that improves significantly upon existing active learning approaches. It provides 
impressive results for small and large training sets and an appreciably low variance 
within several runs. We also exploit model-free approaches, and adapt them to our 
algorithm to utilize maximum information. Through experiments on numerous 
benchmark datasets, we demonstrate that our framework improves existing methods 
and is effective in learning a regression model from a very limited labeled dataset, 
reducing the sample size for a fixed level of performance, even with many features.

Keywords Active learning · Non-parametric regression · Standard regression trees · 
Query-based learning

1 Introduction

In many applications, for example in physics and chemistry, machine learning 
algorithms are used to predict properties, typically labels, given available informa-
tion (referred to as input features). Machine learning approaches usually give good 
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results to prediction problems when large training data sets are available. However, 
when some properties of interest are expensive to compute, the labeling process 
required for a supervised machine learning approach becomes difficult. It is then 
necessary to limit the number of samples in the training set. For example, supercon-
ductors are materials that conduct current with zero resistance below the super-con-
ducting critical temperature, T c , thus allowing very efficient energy transport. Yet 
most superconductors exhibit a T c well below room temperature, which limits their 
range of applicability (Kaur et al. 2021). The development of novel materials with 
high T c is an extremely active field of research, however, predicting T c is still com-
putationally challenging. For such problems, where samples are difficult to label, 
it is of utmost importance to build the training set that brings the most information 
about the relation between the features and the label, at a constant labeling cost.

Passive learning, that involves constructing the training set via Random 
Sampling (RS), is a common and simple approach. However, it does not exploit any 
knowledge of the available dataset. Thus, if the target sample size is small, there is a 
significant risk that samples selected by passive learning do not provide meaningful 
information. In such cases, active learning (AL) techniques are more appropriate: 
they add samples step by step taking advantage of the available knowledge of the 
structure of the dataset. For example, if at each step new samples have been labeled, 
they can use these labels to drive the sampling process. In the sequel, we distinguish 
between model-free AL, where only the features are used, and model-based AL, 
when the response is also used to construct the training set.

Many approaches have been proposed to construct optimal training sets for 
classification problems (Luo and Hauskrecht 2019; Xue and Hauskrecht 2017, 
2019), but efficient methods that significantly outperform RS are scarce for 
regression. Here optimality means that we select the sample (of a given size) that 
leads to the lowest prediction error for the regression function learned on the sample. 
Moreover, most of the methods that exist for regression tasks focus on model-
free AL i.e. using only the knowledge of the features to choose the samples to be 
labeled. Some promising results have been shown for methods that exploit diversity 
(Wu et al. 2019) and representativeness (Liu et al. 2021) in the input feature space. 
However, such approaches may not have enough diversity in the response space, 
thus resulting in potentially inefficient predictions. It is intuitive that adding some 
knowledge of the response should help in understanding the conditional distribution 
between the features and the response, resulting in the selection of better samples 
to be labeled in a prediction objective. Model-based AL schemes accomplish this 
task by defining a sampling criterion based on the knowledge of the samples already 
labeled. Good rates of convergence for the regression error have previously been 
established under strong modeling assumptions when the size of the labeled sample 
increases, but to our knowledge, no general, assumption-free method has been put 
forward for efficient model-based AL in regression yet.

In this paper, we propose a model-based AL approach for non-linear regression 
based on regression trees, with a focus on constructing an optimal training set of 
small size, especially suitable for practical applications where labeling data is 
expensive. Decision trees and their ensemble extensions form an excellent group 
of predictors as they are simple yet robust, fast, interpretable and easy to use. A 
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regression tree splits the descriptor space into regions homogeneous for the response 
and the partitions are used to select the set of samples to be labeled. We demonstrate 
how a regression tree in the joint feature-response space can substantially detect 
interesting samples to enhance the performance of the learned regression model, as 
it simultaneously takes the response into account. Moreover, most of the existing 
model-based methods are based on a first sample that is drawn randomly, thus not 
initializing well, and we prove that smartly mixing the advantages of model-free 
and model-based methods by adapting model-free methods in our regression tree 
outperforms other methods. The main contributions of our work are summarised as 
follows:

• We propose a model-based AL approach for non-linear regression based on 
regression trees.

• We demonstrate, with experiments on various benchmark datasets, how a 
regression tree in the joint feature-response space can substantially detect 
interesting samples to enhance the performance of the learned regression model, 
as it simultaneously takes the response into account.

• We show that smartly mixing the advantages of model-free and model-based 
methods by adapting model-free methods in our regression tree outperforms 
other existing methods.

The above claims are supported via numerous experiments and analysis for several 
benchmark datasets in Sect.  4. We succeed to perform the best consistently over 
datasets of various sizes and dimensions and show that our model has the lowest 
variance, a factor very important in the low data regime.

The remainder of the paper is organized as follows. In Sect. 2, we describe the 
related work. We introduce our method in Sect. 3, and illustrate it in Sect. 4. We first 
evaluate our method on several benchmark data sets and show that it outperforms the 
state-of-the-art methods. We then focus on the superconductivity dataset to illustrate 
the performance of our method in detail. Finally, Sect. 5 concludes the paper.

2  Related work

Active learning has been studied in several areas of research, that we introduce in 
detail in this section. Broadly speaking, AL methods can be categorised based on 
their query criteria into model-free and model-based methods (O’Neill et al. 2017). 
Model-free methods exploit only the feature space information, to construct the 
most informative training set, while model-based methods use response information 
through regression functions trained on previously labeled samples. This has been 
detailed as a flowchart in Fig. 1.

The model-free approaches lack the information of the response and one can hope 
to obtain a sample which allows a better description of the joint feature-response 
distribution. This is where model-based AL has an upper hand. Willett et al. (2005) 
provide a theoretical understanding of when model-based AL achieves better rates 
of convergence than passive/model-free methods. Their result is rather pessimistic, 
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concluding that most of the time, passive learning/model-free AL is the best that 
one can do. This is why an efficient model-based AL mechanism is still a challenge 
for regression tasks in practice. However, we argue that model-based AL methods 
are crucial for optimal sampling, especially when labeling is expensive, as these 
methods take into account the information of the response as well, and are thus more 
complete.

For sake of completeness and comparison, we list seminal works in both model 
free and model-based AL for regression below.

2.1  Model‑free active learning

In the recent past, many theoretical studies have focused on linear models and on 
the necessary assumptions to improve rates of convergence of the learned prediction 
model when increasing the size of the labeled sample set (Hazan and Karnin 2014; 
Sabato and Munos 2014; Chaudhuri et al. 2017). In the design of experiments field, 
optimal design (Pukelsheim 2006) aims at constructing a training set by minimizing 
a statistical criterion related to the information matrix in a linear model, e.g. its 
trace (Chan 1982) or its determinant (John and Draper 1975). It has further been 
extended to generalized linear models (Woods et al. 2006) and also to more general 
parametric models (Yang et al. 2013).

Space filling approaches like Greedy Sampling over the feature space, GSx (Wu 
et al. 2019), inspired by Yu and Kim (2010) also come under model-free methods, 

Fig. 1  Illustration of model-free vs model-based AL methods in regression
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as they target a training set diverse in features. It selects the sample closest to 
the centroid of the feature space as the first sample in the training set, followed 
by the one farthest from it, according to L2 distance. The samples to be labeled 
consequently are the ones farthest from all the samples that have been previously 
selected to ensure diversity. However, such an approach samples well only if the 
feature space is uniformly distributed, which rarely occurs.

Iterative Representativeness Diversity Maximization, iRDM (Liu et  al. 
2021) successfully outperformed GSx by taking into account both diversity and 
representativeness of the feature space. It uses k-means clustering to partition the 
feature space into a number of clusters corresponding to the number of samples to 
be labeled. It then selects the samples closest to the centroids of these clusters as the 
starting points, and over the course of the algorithm, combines it with the basic idea 
of feature space diversity from GSx to update the centroids to the samples which 
are representative and diverse. Even though they achieve modest performances, the 
method relies on the assumption that the data can be well clustered, which is not 
always the case, especially not for large number of clusters.

In the field of survey methodology, the cube method (Chauvet and Tillé 2006) 
has been used for balanced sampling from finite populations. It constructs a sample 
of fixed size with the same characteristics as those of the features of the full dataset, 
assuming that this sample will lead to a good approximation of the distribution of 
the response, or its conditional distribution, given the features.

Zhang et  al. (2020) propose another model-free AL scheme where they aim at 
reducing an uncertainty measure at each iteration of the algorithm. More precisely, 
they argue that missing labels in the unlabeled data set lead to uncertainty in the 
prediction model and they select the points to be labeled as the ones which are most 
distant from the already labeled points and close to many points of the unlabeled 
set, according to the L1 distance. In practice, their algorithm, referred to as graph-
based in the sequel, may be represented as a graph with edges between labeled and 
unlabeled samples, and the uncertainty to be minimized is computed from the edges.

2.2  Model‑based active learning

A typical model-based AL algorithm consists of the passive part (or model-free 
active part) that is used to label a few samples to construct an initial model, which 
is then used to pick the next samples (or set of samples in the batch-mode) to be 
labeled for improving the regression model. One of the pioneer works in this context 
came from Cohn et  al. (1994), where a method to select samples is proposed by 
reducing the variance under weak parametric modeling assumptions (mixture of 
Gaussian regressions and locally weighted regressions). This theoretical study 
however is not competitive on real datasets.

Greedy Sampling over the response, GSy (Wu et  al. 2019) follows the AL 
architecture by using GSx for the first part to get an initial regression function based 
on linear Ridge regression, followed by a prediction of the unlabeled samples. The 
next sample to be labeled is picked based on diversity of the response, similar to 
what is done for GSx. The L2 distance computations are now performed in the 
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response space, with labels of samples in the labeled set being their true labels, and 
those of samples in the unlabeled set being the predictions made by the previously 
trained model. This repeated update improves the regression model and was shown 
to perform better than passive learning and a few AL methods. However, their results 
hold true only for linear models, thus restricting their use for non-linear problems.

Variance-based Query By Committee (QBC) for regression (Burbidge et  al. 
2007) is another model-based AL strategy that selects the samples with the highest 
variance among the predictions from a committee of models. The committee is 
constructed by bootstrapping on an initial set of passively labeled samples. However, 
training many models in the committee makes the approach computationally 
complex. Moreover, the choice for the class of models is not always clear.

Expected Model Change Maximization, EMCM (Cai et  al. 2013) uses a set of 
passively labeled samples to get an initial regression model, followed by construction 
of a set of regression models via bootstrapping. It then computes the expected 
change in these models with respect to the initial regressor, inspired by stochastic 
gradient descent update rules, and selects the sample that leads to the largest model 
change. They showed improvement over passive sampling and a few model-free AL 
methods. They also developed a batch version of their method, B-EMCM (Cai et al. 
2017), which although is computationally cheaper, does not succeed to outperform 
EMCM. However, Liu et  al. (2021) have recently shown that their method iRDM 
works better on many datasets, even though it is model-free.

Wu (2019) proposes a set of Representation and Diversity (RD) based extensions 
of a few AL methods, namely RD-QBC, RD-EMCM and RD-GS. After performing 
a k-means clustering on the dataset (with the number of clusters equal to the number 
of features of the dataset), it labels the samples closest to the centroid of these 
clusters. This is followed by clustering the dataset with one more cluster. The largest 
cluster without a labeled sample is identified, and a new sample is chosen to be 
labeled from that cluster, either the one closest to the centroid, or via QBC, EMCM 
or Greedy Sampling (GS). They showed that these algorithms give the same results 
statistically, which are not very far from Greedy sampling. Moreover, iRDM (Liu 
et al. 2021) tends to work better than these as well.

Another recent advancement in the field came from Goetz et al. (2018), in which 
AL was proposed via purely random Mondrian trees (Lakshminarayanan et  al. 
2014). Mondrian trees differ from classical regression trees in their branching and 
prediction: the branching does not depend on the features and is random, contrary 
to regression trees that branch to minimize the impurity in the features; and their 
prediction is a weighted average over the previous branchings. After labeling an 
initial set of samples randomly, they construct a purely random Mondrian tree on 
[0,1]. They then theoretically derive the number of samples to be selected in each 
leaf of their random trees to achieve the best possible loss. Although they show 
modest improvement over random sampling, it is important to note that the purely 
random nature of the trees leads to a very high variance over repeated experiments. 
Moreover, they scale the entire dataset to [0,1] as the purely random Mondrian tree 
is constructed on [0,1], which may not be the ideal approach for all datasets.

Recently, there is a growing interest in new approaches to AL based on Bayesian 
models and Gaussian Processes (GP) on one hand and with deep learning techniques 
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on the other. Riis et al. (2023) propose two algorithms, a Bayesian version of QBC 
and a second one using a GP as a mixture of Gaussian models for AL and is inspired 
by Zhao et al. (2020). However, they focus on datasets of (very) low dimension. GP 
active learning has also been extended to ensemble GP AL (Polyzos et  al. 2022), 
again considering datasets of low dimension only. Holzmüller et al. (2023) propose 
a novel Batch Model Deep Active Learning (BMDAL) method to improve the 
sampling-efficiency of neural network regression using network-dependent kernels 
and kernel transformations. Although they show a good performance, the method is 
broadly dedicated to large datasets and training a large number of samples, thus not 
beneficial for cases where labeling is expensive, which is what we focus on.

3  Method

In this section, we formally introduce the context of AL, and more specifically 
model-based AL. Then, we introduce our main method, named Regression tree-
based active learning (RT-AL), and how it can be tuned by adapting ideas from 
model-free methods.

3.1  Model‑based active learning

Let X be a D-dimensional random vector and let Y be a random variable linked 
to X through a regression model. In pool-based AL methods, a dataset of size N 
with all observations {xi}

N

i=1
 unlabeled is given, and let (yi)Ni=1 denote the (unknown) 

associated labels.
Formally, if f̂In denotes the estimator among a class F  of prediction models learnt 

on a training set of size n indexed by In ⊂ {1,… ,N} with respect to the risk R,

we look for the set of observations indexed by In ⊆ {1,… ,N} of size n such that the 
transductive risk is minimized:

However, in practice, one does not have access to the transductive risk because the 
labels are not observed.

Model-based AL methods focus on the knowledge of the joint distribution of 
X and Y to mimic the minimization problems given by Eqs. (1) and (2). To do so, 
a first set Iinit of ninit samples is detected by a model-free method (either RS or 
something smarter). Then, f̂Iinit is considered as a first estimate of the chosen ML 
model. This prediction function is now used to select the next nact = n − ninit sam-
ples. The selection criteria is a fundamental step in model-based AL approaches 

(1)f̂In = argmin
f∈F

{
1

n

∑

i∈In

R(f̂In (xi), yi)

}
,

(2)In = argmin
In⊆{1,…,N}

{
1

N − n

∑

i∉In

R(f̂In (xi), yi)

}
.
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and we develop the proposed method in the next sub-section. Note that the nact 
samples can be detected sequentially (re-training the model after adding each 
sample), be split into batches of moderate dimension or be detected in one step.

Before moving to the method, we want to highlight the need to select the first 
samples smartly.

Although it is common to use RS, we argue here that this may not always be 
the best approach. In model-based AL methods, as the samples that are selected 
subsequently for labeling are based on a first estimate given by the initial sam-
ples, the first set should also be the most diverse, representative and informative. 
Exploiting model-free AL methods like GSx (Wu et  al. 2019) and iRDM (Liu 
et al. 2021) could be really profitable as this would lead to a better initialisation 
for most datasets. Moreover, a good training set should be diverse and well rep-
resent both the feature and the response space. For example, if there is a linear 
relationship between the features and the response, it is intuitive that a model-free 
AL method like GSx (or iRDM) would lead to a better sampling as compared to 
sampling randomly, because a set of samples diverse in the feature space will 
ensure diversity in the response space as well. The choice of which model-free 
AL method to use can be inferred from the structure of the dataset: for datasets 
that are uniformly distributed in the feature space, a diversity based method like 
GSx would be a good initialiser; a dataset that appears to show prominent cluster-
ing in the feature space would be better initialised by iRDM. However if neither 
of them applies, then RS tends to perform better. Note that this information from 
the structure of the dataset alone is not sufficient in general, as the details of the 
response are still hidden. But in many applications, a minor intuition of the rela-
tionship between the response and the features is sufficient to conclude the best 
initialisation sampling scheme for the concerned dataset. A multimodal dataset 
however, is more complex: a set of samples diverse in the feature space may not 
always correspond to diversity in the response. In this case using RS may be more 
apt than using GSx and iRDM as the algorithm prefers no information (of X and 
Y) rather than information related only to the features, which is what GSx and 
iRDM do. As this underlying distribution of the response is not available in AL 
scenarios, model-based AL methods become all the more relevant. In cases when 
a good number of labels can be afforded, the best method (out of RS and model-
free AL schemes) can also be chosen based on their performances on a small test 
set.
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3.2  Regression tree‑based active learning (RT‑AL)

The method we propose is based on standard regression trees. Regression trees 
partition the feature space into a set of K hyper-rectangles, referred to as regions 
and denoted Rk =

∏p

�=1
[ak,� , bk,�] for 1 ≤ k ≤ K , and assign a common weight 

�k ∈ ℝ to each region k:

where the set of parameters Θ = ((Rk, �k)1≤k≤K) corresponds to the set of regions 
and the associated weights. These parameters can be easily estimated using a labeled 
set: the weights minimize the quadratic loss for fixed regions, leading to the empiri-
cal mean of the observations in each region. The best regions are constructed recur-
sively by finding the best feature and the best splitting point to divide a current 
region into two sub-regions that makes the prediction less variable. The class of pre-
diction models F  that we consider in Eq. (1) is then the set of piece-wise constant 
functions. As the splitting process is dyadic, it can be represented as a tree, where 
each node determines the features to split and its corresponding value, and the final 
partition is given by the leaves of the tree.

Let Iinit be the indices of the first samples detected by a model-free method. We 
construct a standard regression tree with K leaves using the corresponding labeled 
set (xi, yi)i∈Iinit , and use it to predict every unlabeled sample: (Ŷ Iinit

i
)i∉Iinit . Condition-

ally to the first labeled set, we use the results derived in Goetz et al. (2018)1 that 
state that the best performance for a sample of size n with the tree structure learnt 
on (xi, yi)i∈Iinit will be achieved if n∗

k
 samples are picked for labeling from leaf k, 

where

where nact = n − ninit , �̂�2
k
 denotes the variance computed on the true labels in leaf k, 

and �k the probability that an unlabeled sample xi belongs to leaf k, defined formally 
as follows: for 1 ≤ k ≤ K,

f (x;Θ) =

K∑

k=1

�k1{x∈Rk}
,

(3)n∗
k
= nact

�
𝜋k�̂�

2
k

∑K

�=1

�
𝜋
�
�̂�2
�

;

(4)�̂�2
k
=

∑
i∈Iinit∶xi∈Rk

(Ŷ
Iinit
i

− Yi)
2

�i ∈ Iinit ∶ xi ∈ Rk� − 1
,

(5)�k =
|i ∉ Iinit ∶ xi ∈ Rk|

N
.

1 These results were given for purely random Mondrian trees. Here, we use a regression tree that con-
tains the knowledge of the training set, thus improving the structure of the tree.
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This can be seen as a trade-off to select samples diverse in the response but 
representative of the entire X space, thus taking into account maximum possible 
information. Using n∗

k
 , the nact samples to be labeled are thus divided into the sets Ik

act
 

for each leaf k, and the final labeled set proposed to approximate In from Eq. (2) is

If the selection of these samples Ik
act

 from the leaf k is done passively as proposed by 
Goetz et al. (2018), it would contribute to an additional randomness in the samples 
selected and we argue that this can be improved. We describe ways to detect these 
samples efficiently in the following section.

The method is summarized in the form of a pseudo-code in Algorithm 1 and as 
a flowchart in Appendix 1. This AL design works well as it is but can be improved 
further by splitting the active part into various steps, i.e. by adding few samples at 
each step, followed by retraining the regression tree at each iteration. This process is 
then repeated till the desired size of the training set is reached.

3.3  Query method to select the n∗
k
 samples

Once we know the number of samples to be labeled from each leaf, the obvious 
choice of selecting them is by passive learning i.e. by random sampling. In Fig. 2 
we show how using RT-AL with random sampling in leaves, improves RS, by 
sampling from different regions in the feature-response space. However, there are 
two concerns with this choice: firstly, it leads to an additional randomness, which 
can be detrimental when there is a large amount of unlabeled data and may lead 
to insignificant improvement of model-based active learning over passive sam-
pling, we observe in Fig. 2 that similar (and redundant) points are labeled. Sec-
ondly, even though the tree is constructed on the labeled part of the data, thus is 
quite informative, a passive sampling of the next set of points ignores the samples 
that have already been labeled. For instance, in a leaf with a few samples already 

În = Iinit ∪ (∪K
k=1

Ik
act
).
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labeled, selecting more samples passively would not lead to the most diverse and 
representative set of samples from that leaf.

Thus, we propose to adapt ideas from model-free AL algorithms for the selec-
tion of the n∗

k
 samples. We describe two methods that achieve this goal below. We 

highlight here that this is an important contribution and difference of our work 
when compared to that of Goetz et al. (2018) as the algorithm based on Mondrian 
trees does not take any feature or response information into account when build-
ing the next model.

3.3.1  Diversity‑based query in leaves

For datasets that would be sampled well by feature-space diversity based 
methods, we propose to sample points from the leaves keeping this diversity in 
mind. For leaf k ∈ {1,… ,K} from which n∗

k
 samples are to be chosen for labeling, 

we label the samples using the following routine.
First, we calculate the L2 distance of each unlabeled sample in leaf k to all the 

labeled samples: for j ∈ {� ∉ Iinit ∶ x
�
∈ Rk} and i ∈ Iinit,

Then, we compute dj , the shortest distance from xj to all labeled samples, and we 
select the unlabeled sample corresponding to the largest distance for labeling:

(6)dji = ‖xj − xi‖.

(7)j∗ = argmax
j∈{�∉Iinit∶x�∈Rk}

min
i∈Iinit

dji.

Fig. 2  Comparison of the samples selected for labeling (shown as black dots) by our method from a gen-
erated dataset with 2 features and 500 samples, using different query criteria (labeled as RT-AL, RT-
AL(Diversity-based) and RT-AL(Representativity-based), with passive sampling and model-free AL 
methods GSx and iRDM. The black lines correspond to the different regions the regression tree splits 
the feature-response space into. The colors represent the true values of response in the data (Color figure 
online)
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 Thereby, the samples that are selected for labeling in the leaves are the ones most 
distant from the samples that have already been labeled in the initialisation step, and 
also among themselves, such that it gives a more diverse set of samples.

Note that the straightforward use of GSx in each leaf would ignore the samples 
labeled before training the initial model. In Fig. 2, we illustrate how sampling using 
our regression tree with the diversity-based criteria (denoted by RT-AL(Diversity-
based)) differs from the feature-space diversity-based method GSx (Wu et al. 2019). 
The model-free method GSx only takes into account the feature space information, 
thus the samples selected by it are spread all over the dataset uniformly. However, 
our method takes into account the response through the regression tree, thus 
resulting in a set of samples that are diverse in response as well, as the samples are 
now spread in the regions defined by homogeneous values of the response. We also 
illustrate the efficiency of this query criterion in Sect.  4. The pseudo-code of the 
algorithm is provided in Algorithm 2.

3.3.2  Representativity‑based query in leaves

For datasets with prominent clustering, we propose a representativity-based criteria 
to select the samples from the leaves. We denote J1 = {1,… , n∗

1
} and 

Jk = {
∑k−1

u=1
n∗
u
+ 1,… ,

∑k

u=1
n∗
u
} for k ∈ {2,… ,K} . We first perform a clustering in 

each leaf k only on the unlabeled samples, with n∗
k
 clusters, denoted by (c

�
)
�∈Jk

 . The 
sample closest to the centroid of these clusters, denoted (xj∗

�

)
�∈Jk

 , is a good 
representative of these clusters. However, it is possible that all the n∗

k
 centroids do 

not form a diverse enough set of samples in leaf k, and even more generally, that the 
set of all nact =

∑K

k=1
n∗
k
 centroids do not form a diverse enough set of samples in the 

feature space, amongst themselves and also with respect to the samples that have 
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already been labeled. For each cluster � = 1,… , nact , we thus update the centroids 
by optimising the following criteria,

that considers the diversity in the measure Δ(xj) and maintains the representativeness 
in the measure R(xj) , where for each unlabeled sample xj ∈ c

�
 , for � = 1,… , nact,

Note that at this point, Δ(xj) includes information of not just the cluster centroids of 
the cluster in leaf k, but also of the cluster centroids in all other leaves, and all the 
samples that were labeled beforehand.

The above routine is then repeated for all other clusters in all the leaves and is 
iterated over till the nact samples to be selected are optimised (or till a threshold is 
reached). In Fig. 2, we illustrate the benefits of this representativity-based criteria 
(denoted by RT-AL(Representativity-based)) by comparing it with the model-free 
AL method iRDM (Liu et  al. 2021). As it is only a feature-space based method, 
we see that the samples selected by iRDM are well representative of the clusters, 

(8)j∗
�
= argmax

j∈c
�

[Δ(xj) − R(xj)],

(9)
R(xj) =

1

�c
�
� − 1

�

xm ∈ c
�

m ≠ j

‖xj − xm‖;

(10)Δ(xj) = min
m∈Iinit∪{j

∗
l
}l≠�

‖xj − xm‖ = min
m∈Iinit∪{j

∗
l
}l≠�

djm.
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however they do not represent the response enough. Thus, many samples containing 
similar information of the response are chosen. However, as our method takes the 
response into account, we choose a set of samples that are representative of the 
response as well. We also show in Sect. 4 how this algorithm works efficiently. The 
pseudo-code of the algorithm is provided in Algorithm 3.

4  Experimental validation

We illustrate our method on several datasets, and compare its performance 
with many state-of-the-art methods. First, we describe the settings we used. 
This is followed by an evaluation of the performance of our method over several 
benchmark datasets in Sect.  4.2. Finally, we illustrate our results in detail on the 
Superconductivity dataset in Sect. 4.3.

4.1  Settings

We compare the performance of our method with several others, which we list 
here along with their settings and hyperparameters used. Random Sampling from a 
uniform distribution (RS) is used as the simplest case of sampling. The model-free 
AL methods we consider are:

• GSx: given by Wu et  al. (2019), the first sample chosen is the centroid of the 
training set, and the rest of the samples are chosen based on diversity measured 
by the L2 distance.

• iRDM: the samples selected for labeling from the clusters were optimised at 
most 5 times, or lesser if it stopped evolving before, as proposed by Liu et al. 
(2021). The Matlab code for iRDM is available at https:// github. com/ drwuH 
UST/ iRDM.

• Cube: the cube sampling method proposed by Chauvet and Tillé (2006), 
using uniform inclusion probabilities. The code is available in the R package 
sampling.

• Graph-Based: as proposed by Zhang et  al. (2020) where the closeness is 
measured using the L1 distance.

We also draw a comparison with known model-based AL methods in regression:

• GSy: also proposed by Wu et al. (2019), GSx is used as the model-free method 
for constructing the first regressor. The responses for the unlabeled samples are 
predicted by Ridge regression at every step, exactly as in Wu et al. (2019), and 
samples to be labeled are detected using the L2 distance in the response space 
using these predictions.

• QBC: Query By Committee (Burbidge et al. 2007) using regression trees as the 
models in a committee of 5 models. This non-linear variant of QBC was chosen 
and implemented by us as our method is based on trees.

https://github.com/drwuHUST/iRDM
https://github.com/drwuHUST/iRDM
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• EMCM: the model-variance based approach by Cai et  al. (2013). We use the 
non-linear version of EMCM, that uses Gradient Boosting Trees (GBT) in the 
committee of models, with 100 trees in the GBT (except for the superconductivity 
dataset where we use 25 trees, due to the large size of the dataset). The number 
of models in the committee are 4 as in Cai et  al. (2013). As Batch-EMCM is 
worse than EMCM in performance, we do not use it for comparison in this paper.

• Mondrian trees: denoted by MT, the approach by Goetz et al. (2018). The python 
code for Mondrian trees method (MT) is available at https:// github. com/ jackr- 
goetz/ Mondr ian_ Tree_ AL.

• Batch Mode Deep Active Learning (BMDAL): denoted by LCMD (where 
LCMD stands for the selection method - Greedy distance maximisation in 
largest cluster), the method proposed by Holzmüller et al. (2023). Their code is 
available at https:// github. com/ dholz muell er/ bmdal_ reg, and we use the same 
hyperparameters as the ones in the code.

For all the methods mentioned above, the hyperparameters from the original papers 
were used unless stated above. For our method RT-AL, the hyperparameters are 
as follows: the minimum samples in the leaf of the decision tree was set to 5 (i.e. 
the trees do not branch if the number of samples in a leaf is smaller than 5), for 
meaningful variance calculations, while simultaneously optimising the tree as much 
as possible. The sampling from the leaves for our method was done with respect to 
the results of passive learning and model-free AL methods.

For the methods that require an initial set of labeled samples (i.e. Graph-Based, 
QBC, EMCM, MT, LCMD and RT-AL), the set is sampled using RS, GSx or iRDM 
depending on the best performer out of these for each dataset. In Appendix 2 we 
show how this is indeed the smarter choice for initialisation for all these methods. 
Note that for GSy, GSx is used to label the initial set as proposed by Wu et  al. 
(2019).

For each dataset and each method, we consider a test set of size 50% of the whole 
dataset, uniformly drawn, on which the final regressor inferred on the constructed 
training set is tested, unless specified otherwise. Considering a test set particularly 
large is a choice made to keep the test set as diverse as possible. When considering the 
model-based AL methods, we select ninit = 15 . The Root Mean Squared Error (RMSE) 
of the target (response) was used as the performance measure for all the methods,

where T is the size of the test set, yi are the true labels of the test set, and f (xi) 
is the prediction for a test sample xi . The final regressor that we use to evaluate 
every method at each step is a Random Forest built on the labeled set selected by 
the method. The number of trees in the forest were set to 100, which is a good 
estimate of the optimum hyperparameter throughout the prediction phase as 
shown in Appendix 3. The depth of the trees in the forest was defined by minimum 
samples in the leaf, set to 3, so as to avoid overfitting. Note, as we compare different 

(11)RMSE =

√√√√ 1

T

T∑

i=1

(f (xi) − yi)
2

https://github.com/jackrgoetz/Mondrian_Tree_AL
https://github.com/jackrgoetz/Mondrian_Tree_AL
https://github.com/dholzmueller/bmdal_reg
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methods throughout the prediction phase, we keep the same hyperparameters for 
all the methods for consistency. Moreover, random forest was chosen as the final 
predictor because it is versatile and robust to outliers. It is also particularly suited 
for our method as we rely on its basic architecture - regression trees, to construct 
our training set. The experiments were run 200 times each for all the methods to 
compute statistics, and we discuss the relevance of differences based on a t-test at 
level 5% . To see the evolution of the performance of model-based AL methods with 
respect to the number of labeled points, we do the following: the first 15 samples to 
be labeled are selected using a passive/model-free AL method. This number is kept 
small so as to take maximum benefit of the model-based part of the method. Then, 
the active step is performed after every 20 samples have been labeled (except for 
the first round where only 5 new samples are labeled, for uniformity in the plots). 
Thereafter, the new samples are added to the training set and the model is refit. Note 
that methods like RS, GSx, GSy, Graph-based, QBC and EMCM are sequential, so 
we label after each point, but measure the performance only after every 20 points.

Scaling the data, for example to a normal distribution with mean equal to 0 and 
standard deviation equal to 1, or to a scale of desired range might be detrimental 
in some cases as it can hide certain technicalities of the dataset leading to a loss of 
information. Thus, we do not scale the data in this study, unless there is a specific 
distance calculation in the method (for example in GSx) that calls for it.

The python code used in this work can be found here https:// github. com/ Ashna 
Jose/ Regre ssion- Tree- based- Active- Learn ing, along with the datasets that are used 
in the next section.

4.2  Comparison with state‑of‑the‑art

We illustrate the behavior of our AL method on several benchmark datasets in this 
section, and compare it with state-of-the-art methods. We consider the passive 
method RS, model-free AL methods GSx, iRDM, the cube sampling method, the 
graph-based approach, and model-based AL methods GSy, QBC, EMCM, MT and 
LCMD, all as described before. The method (depending on the datasets) to sample 
in the leaf is selected depending on the initialiser (e.g. RT (Diversity-based) where 
GSx is used to label the first set of samples).

We use 6 datasets of various sizes, and of different number and types of attributes 
(continuous and discrete), namely Airfoil, Boston Housing, Diabetes, Orange Juice, 
Superconductivity (denoted by SP) and Yacht Hydrodynamics, all commonly used in 
regression tasks and available at UCI repository,2 except Orange Juice that is available 
in R package cggd and Diabetes that is available in R package lars. The details of 
these datasets can be found in Table 1. The 2-component PCA plots and the histograms 
of the response are provided in Appendix 4 to understand the distributions of the 
features and the response better, and the extent to which they are linked. Reminder 
however, that the post analysis on the response cannot be done in practice on a new 
dataset as no response would be available for the same.

2 https:// archi ve. ics. uci. edu/.

https://github.com/AshnaJose/Regression-Tree-based-Active-Learning
https://github.com/AshnaJose/Regression-Tree-based-Active-Learning
https://archive.ics.uci.edu/
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The mean and the variance of RMSE over 200 runs for a sample size of 100 
(except for Orange Juice dataset that is quite small so we consider 60 labeled 
samples) are given in Table 1. Our method has been represented as RT-AL. The 
initialiser, for methods that require and initial labeled set, corresponds to the best 
method out of passive sampling, GSx and iRDM, which is dataset dependent. The 
RMSE values of the initialiser have been italicised in the table for each dataset. 
Overall, it is clear from the table that our approach performs the best for all data-
sets. We describe the results in detail below.

Firstly, we draw a comparison between passive sampling and model-free AL 
methods GSx, iRDM, Cube and graph-based:

• We can conclude from the table that the performance of the passive/model-free 
methods depends strongly on the dataset. This is in line with our understanding 
of the structure of the dataset using the principle component analysis plots.

Table 1  Performance for 
100 labeled samples (except 
for orange dataset where 
we consider only 60 labeled 
samples due to the smaller size 
of the dataset), depicted using 
RMSE (average and variance 
over 200 repetitions)

Best performance highlighted with bold and star (with the best 
passive/model-free active learner shown in italics, that corresponds 
to the method used to initialize Graph-based, QBC, EMCM, MT, 
LCMD and RT-AL for each dataset, and accordingly in the leaves for 
RT-AL), their statistical equivalent result in bold (t-test at level 0.05)

Airfoil Yacht Diabetes Boston SP Orange

N 1503 308 442 506 21,263 218
D 5 6 10 13 81 700
RS 4.51 2.04 59.10 4.48 19.61 10.97

(0.07) (0.46) (5.09) (0.21) (0.82) (1.06)
GSx 4.44 2.04 59.04 4.27 26.89 10.59

(0.05) (0.54) (5.35) (0.20) (8.25) (1.01)
iRDM 4.33 2.11 58.75* 4.28 20.49 10.64

(0.04) (0.63) (6.02) (0.21) (1.42) (1.10)
Cube 4.52 2.00 59.55 4.49 19.73 11.00

(0.06) (0.50) (7.89) (0.27) (1.00) (1.08)
Graph-Based 4.70 2.09 58.83 4.38 19.45 10.57

(0.08) (0.71) (6.37) (0.29) (0.43) (0.96)
GSy 4.71 1.80 59.40 4.40 24.53 10.84

(0.10) (0.30) (6.26) (0.24) (7.70) (1.51)
QBC 4.69 1.52* 59.35 4.13 19.50 10.75

(0.09) (0.11) (6.44) (0.20) (1.53) (1.00)
EMCM 5.93 1.56 59.01 4.51 22.1 10.75

(0.41) (0.11) (7.15) (0.17) (3.18) (1.02)
MT 4.51 1.94 59.34 4.49 20.26 10.83

(0.06) (0.46) (6.40) (0.26) (1.53) (1.06)
LCMD 4.31 2.00 59.24 4.28 20.63 10.70

(0.04) (0.49) 5.86 0.22 1.43 0.99
RT-AL 4.30* 1.53 58.98 4.18* 19.18* 10.36*

(0.04) (0.12) (5.68) (0.19) (0.76) (1.01)
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• iRDM and GSx, the supposedly smart model-free AL methods in comparison 
with RS, are the best for 4 datasets, while random sampling performs better than 
them for SP and Yacht datasets. Thus for these datasets, we use RS to sample 
from the leaves.

• For datasets like Diabetes, the geometry of the feature space is uniformly 
distributed, and so is the distribution of the response. This explains why almost 
all the methods perform similar, however, using our diversity-based criterion in 
the trees makes the most sense due to the uniformity.

• For the Superconductivity dataset on the other hand, as it is not uniformly 
distributed, or well clustered, passive sampling turns out to be better than model-
free AL approaches.

• In general, the cube sampling method performs the worst out of these schemes, 
and does not show a consistency with respect to all the datasets either.

• The graph-based approach has the highest variance among these methods, thus 
suggesting that it is not a reliable scheme.

On comparing all the model-based AL approaches i.e. GSy, QBC, EMCM, MT and 
LCMD, we conclude the following:

• It is clear from the table that not all model-based AL methods perform better 
than the model-free ones.

• For datasets where GSx was the best initialiser, GSy does not tend to improve 
GSx. We guess that this is because the improvement by GSy is guaranteed 
only for linear regression problems (Wu et  al. 2019 use ridge regression), and 
although we use ridge regression for selecting the samples, we predict using a 
random forest to be consistent, and because RFs are more robust and achieve 
better performance on all datasets.

• QBC, where we use regression trees in the committee of models, performs 
modestly in terms of both RMSE and variance. This again highlights the benefits 
of the tree, and its ability to generate better models in general. This improvement 
is also a result of the fact that regression trees deal with outliers better, thus 
select a better set of samples.

• In general, out of the model-based AL methods, EMCM and MT have the largest 
values of variance, and are therefore of limited practical use.

• Both EMCM and MT give modest performances for some datasets, but are really 
bad sampling schemes for some others, and thus lack consistency.

• LCMD, the deep active learning method, is also not consistent over the different 
datasets. It has a high variance, and in some cases higher RMSE than even random 
sampling. Moreover, as neural networks require a lot of data to train well, we argue 
here that AL using deep learning is not a good choice for a small set of samples.

Now, coming to a detailed evaluation of our method:

• Our method (labeled RT-AL in Table 1) is the best performer for all the datasets 
in consideration.
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• Our method is the only one that is consistent for all the datasets, which is very 
important for any ML model.

• Of all the methods in Table 1, our approach has the lowest value of variance for 
all datasets, thus showing how robust our sampling scheme is. We point again 
that the variance of a sampling method is very important, because practitioners 
will construct the training dataset only once.

• This means using a regression tree in the query strategy, along with utilising 
model-free AL methods for initialising and using diversity and representativity-
based criteria inside the leaves, is in fact a successful sampling strategy, that 
produces the most consistent and the least varying results.

Figure  3 depicts the plots with evolution of RMSE averaged over 200 runs, with 
respect to the sample size, and the boxplots for the 200 runs are available in 
Appendix 4. The figure further confirms the conclusions from the table, and we see 
that our method succeeds to perform very well for all the datasets, which are of very 
different sizes and dimensions, thus highlighting the versatility of our approach.

Fig. 3  Performance in prediction using RMSE averaged over 200 runs when the training set is constructed 
using passive and active learning methods for 6 real datasets. The training set size varies from 20 to 200 
(except for orange dataset where it varies from 20 to 60, and for Yacht dataset, where it varies from 20 to 140)
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In Table 2, we show the number of times our method RT-AL outperformed the 
state-of-the-art with the help of a pairwise ranking among 200 runs. For example, 
in a series of 200 runs, our method gives a lower RMSE than RS 193 times for the 
yacht dataset. The numbers in this table show that our approach is very consistent, 
as we rank first a very large number of times, as compared to other methods. It also 
highlights the subtle nature of the diabetes dataset, as almost all the methods seem 
to give similar results due to uniformity in its feature space. It is however important 
to note that even though the table is highly rewarding for our method, we can derive 
more information from the values of the RMSE. For example, even though it seems 
like RT-AL is better than RS 128 times for the superconductivity dataset, the 72 
times that RS is better may not all be statistically significant. We show using histo-
grams of the difference in RMSE between our method and all others in Appendix 
5, that when another method is better than ours, the difference between the RMSEs 
is very low. The main message from the table is that our method is the most con-
sistent one, regardless of the dataset. Another important point to mention here is 
that even though the final model we train is a random forest, it does not restrict the 
use of RT-AL to it. In Appendix 6 we show that RT-AL is also a competitive sam-
pling scheme for two other classes of final predictors, linear models and neural net-
works. This shows the robustness of our approach and its ability to adapt to different 
machine learning models.

Finally, we would also like to highlight the computational complexity of the 
methods discussed in this work. We argue that compared to other model-based AL 
methods, our method is computationally cheaper. For example, QBC is a computa-
tionally complex method if non-linear models are used in its committee because to 
label a single new sample, QBC needs to train 5 models (as we set the number of 
models in the committee to 5), while our method is able to label a set of samples by 
training a single regression tree. Similarly, EMCM is computationally complex as it 

Table 2  Pairwise ranking over 
200 runs

The numbers denote the number of times our method, RT-AL, 
performs better than the respective methods by row, for 100 labeled 
samples (except for orange dataset where it is 60), among a series of 
200 runs, for each dataset by column

Airfoil Yacht Diabetes Boston SP Orange

RS 151 193 115 163 128 167
GSx 138 186 112 125 200 152
iRDM 102 187 107 131 169 154
Cube 157 189 124 172 131 172
Graph-Based 190 192 111 149 123 137
GSy 171 170 118 151 197 141
QBC 182 93 120 80 115 165
EMCM 200 139 108 160 191 164
MT 154 179 116 171 154 180
LCMD 109 190 122 134 167 160
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requires training a GBT with many trees in order to label new samples. We provide a 
table of computation times for all the different methods in Appendix 7 for reference.

4.3  Illustration on a real dataset

In this section, we illustrate our method on the superconductivity dataset,3 taken 
from the UCI repository4. As this dataset is very large, with about 21k samples and 
81 attributes, we use 75% of the dataset in the test set.

Like before, for our method, the number of samples labeled by the passive/model-
free AL method are 15, after which new samples are labeled using the tree, with the 
tree being fit regularly as mentioned in Sect. 4.1. The results are depicted in Fig. 4 
using mean RMSE over 200 runs as the performance measure, for all the methods 
described in the previous sections. Our method has been represented as RT-AL, that 
uses the regression tree with passive sampling (RS), as for this dataset, we find that 
RS is better than the model-free AL approaches. This is clear once we look at the 
structure of the datatset using the Principal Component Analysis (PCA) provided in 
the supplementary material, where we see that this dataset is not uniformly distrib-
uted and may not be well clustered. Moreover, as a post analysis, we also see that 
this dataset is multimodal, therefore any conclusions drawn on it based on features 
alone will not be enough. Thus, we use RS as the initialiser as well as the method 
to pick the samples from the leaves. The experiments were repeated till 400 samples 
were labeled. In Fig. 5, we present the results in the form of box plots, that gives a 

Fig. 4  Performance in prediction using RMSE averaged over 200 runs when the training set is con-
structed using passive and active learning methods on the dataset Superconductivity (N = 21,263 and D 
= 81). The training set size varies from 20 to 400

3 For a deeper understanding, we illustrate our method on a generated multimodal dataset in Appendix 8 
as well.
4 https:// archi ve. ics. uci. edu/ ml/ datas ets/ super condu ct-  ivty+ data/.

https://archive.ics.uci.edu/ml/datasets/superconductivty+data/
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more clear insight of the variance and the outliers within the 200 runs. We can draw 
the following conclusions from the learning curves shown in Figs. 4 and 5:

• For all the methods, the RMSE on the test set decreases with increasing training 
set size, that shows that the samples added by all these methods contribute 
positively towards a better ML model in general.

• The best performance is guaranteed by our method RT-AL, as is evident from the 
figure, not only for a training set size as small as 20, but also for large training set 
sizes.

• Comparing RS with all the model-free AL methods (i.e. GSx, iRDM, Cube and 
graph-based) we conclude that indeed RS performs better for this dataset, not 
only for a few labeled samples, but also for a training set size as large as 400. 
This also shows that our conclusion from the structure of the dataset was right. 
Thus, choosing RS as the initialiser and inside the leaves is the right choice for 
this dataset.

• The performance of GSx is particularly bad, as expected, as the dataset is not 
uniformly distributed.

• iRDM performs satisfactorily for a very small number of labeled samples, 
however as the training set size increases, it fails as the data is now separated 
into far too many clusters even though there is no inherent clustering present.

• Coming to the model-based AL methods, GSy succeeds to improve GSx, 
however it still performs very poorly as it is not suited for non-linear problems 
(while we use random forests as the final predictor, samples are selected to be 
good for Ridge regression).

• MT does not succeed to give good results, and gives large values of RMSE with 
a very high variance, that is seen in Fig. 5. This can be understood from the fact 
that there is a lot of randomness in the algorithm, be it in the way of initialisation, 
the method to select samples, or the fundamental construction of the Mondrian 
tree itself.

Fig. 5  Performance in prediction using boxplots over 200 runs when the training set is constructed using 
passive and active learning methods on the dataset Superconductivity. The training set size varies from 
20 to 400
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• EMCM also does not give a very good performance, close to that of GSy, even 
though it deploys GBT in their algorithm, thus being suitable for the non-linear 
case.

• LCMD also does not succeed to sample well and builds a model high in variance, 
with a large number of outliers.

• QBC gives a modest performance, however its high variance and large number of 
outliers in Fig. 5 compared to our method does not make it an apt choice for AL 
in general.

Therefore, it is clear that adding information of the response space via our regres-
sion trees tremendously improves the sampling by lowering the RMSE. Our method 
also has the lowest variance, and the least number of outliers for the entire learning 
curve. Thus, our approach is simple, robust, and overall the most apt choice for AL 
in regression. Being low in variance also implies that it is very reliable, as in prac-
tice, the method would be used only once.

Another important factor affecting the performance of the model is the number 
of samples labeled during the initialisation process, either by passive sampling, or 
by a model-free AL method. The optimum number of samples to be labeled together 
by the two parts would of course depend on the maximum labeling capacity, but the 
ratio ninit:nact can vary. In Fig. 6, we compare two cases: one is our standard routine 
where ninit is 15 and nact is n − ninit , while the tree is refit after every 20 samples 
have been labeled. The other case we consider is when ninit = nact , considering 
independent experiments at each training set size, thus giving equal weight to the 
passive/model-free AL and the model-based AL part. We see that for training sets 
of small size, giving equal weight to both parts is more or less similar to giving 
a higher weight to the model-based AL part, but for larger training sets, the AL 

Fig. 6  Performance in prediction using boxplots over 200 runs when the training set is constructed using 
RT-AL, while changing the ratio n

init
:n

act
 , on the dataset Superconductivity. The training set size varies 

from 20 to 400



443

1 3

Regression tree-based active learning

part is more beneficial and gives better results. This is intuitive, as a regressor (a 
regression tree in our case), learnt on a very small training set, may not be very 
accurate. This is particularly the case for our trees, as we fix the depth of the tree 
(via the hyperparameter minimum number of samples in a leaf set to 5), so the tree 
is not deep enough for a small training set. However, with substantial training of the 
regressor, it indeed performs significantly better. On observing the evolution of the 
tree structure in our AL scheme, we see that the first two or three trees vary slightly 
in their structure, however subsequently, the basic structure of the tree remains the 
same, with only further branching. It confirms that in fact model-based AL is really 
important for training sets of large sizes, whereas model-free AL has usually been 
illustrated and motivated for small sample sizes. Note that although we have shown 
this result only for RT-AL with RS as the initialiser and in the leaves, this behaviour 
also holds true for other model-free AL methods as initialisers and in the leaves (i.e. 
GSx + RT (Diversity-based) and iRDM + RT(Representativity-based)).

5  Conclusion and discussion

In this paper we propose a model-based AL method for non-parametric regression 
that smartly uses the knowledge in the available data through the regression tree 
structure to improve the performance of the model. It selects new samples from each 
leaf of the regression tree, that is constructed on the labeled part of the dataset, thus 
the new samples contain information of both the features and the response. We also 
take advantage of already established model-free AL methods by utilising them to 
improve the algorithm. We get good and consistent results for several benchmark 
datasets, and succeed to show that our approach works better than the existing 
schemes in active learning in regression. We especially highlight the low variance 
of the results on all the experiments made in this study, which is vital when doing 
active learning.

As the proposed RT-AL method is based on regression trees, it is possible that 
the samples selected by it are more suitable for tree-based prediction models like 
Random Forests, Gradient Boosting Trees etc. This is due to the fact that RT-AL 
tends to sample points where the gradient of targets is large, thus helping the tree 
based algorithms to find good boundaries between regions homogeneous in the 
target. As this is not the foundation of model-training for other machine learning 
models, it may not be the best sampling strategy for some other models. Having said 
that, as Random Forests and other ensemble tree methods are known to generalize 
well, and show good performance especially when the dataset is small in size, we 
believe that our method of sampling is robust in general.

The use of regression trees opens the door to many extensions. For example, 
every region of the tree is supposed to be homogeneous in the output value (low 
variance), so one application of interest is to construct a set of samples tuned for 
specific range of target values, e.g. one may be interested in constructing a training 
set that achieves good performance to detect materials with high values of target. 
Moreover, although RT-AL is based on trees, it is also interesting to consider 
extensions of the method to other models like neural networks in the future. As a 
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perspective, there is a need of theoretical guarantees of active learning methods. One 
can hope for a better rate of convergence than the one achieved by passive learning, 
given by the central limit theorem, but this study is out of the scope of this paper.

Appendix 1: RT‑AL

Figure 7 gives an overview of the RT-AL algorithm.

Appendix 2: Initialisation

In Table 3, we compare using RMSE for 100 labeled samples (except for orange 
dataset where we consider only 60 labeled samples due to the smaller size of the 
dataset) the performance of AL methods requiring an initial set of labeled sam-
ples, when the initial samples are selected using random sampling (shown with 
(RS) in front of the method name), and when the initial samples are selected 
smarty (shown in bold) using iRDM for Airfoil dataset and GSx for Diabe-
tes, Boston and Orange datasets. The datasets in the main paper for which RS 
was the best initialiser have not been shown here. We see from the table that 

Fig. 7  Flowchart giving an overview of regression tree-based active learning (RT-AL)
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indeed initialising the first model smartly helps in building a better model as the 
RMSEs for this case are lower than for the cases initialised by RS. Thus, the first 
set of samples should indeed be chosen smartly as it would eventually contribute 
to training a better model.

Appendix 3: Hyperparameters for the final model: random forest

The two parameters of interest in the final regressor that we use, Random Forest, 
are the depth of the tree (defined by the minimum number of samples required to 
form a leaf), and the number of trees in the forest. We set the minimum samples 
in the leaf to 3 (while the default in scikit-learn is 1) to avoid over-fitting. Fur-
ther, we take the number of trees in the forest to be 100 as it is a good estimate 
of the point where the performance of different methods that we test converge, 
throughout the prediction phase (as shown in Figs.  8 and 9 for the yacht data-
set). Although hyperparameter optimisation for the final regressor is important 
in general, it depends on the samples selected, thus the method of sampling used, 
therefore it could be unfair to compare different methods with different hyperpa-
rameter optimisations. So we chose 100 trees, which is a safe hyperparameter for 
all the methods.

Table 3  Performance for 100 labeled samples (except for orange dataset where we consider only 60 
labeled samples due to the smaller size of the dataset), depicted using RMSE (average over 200 repeti-
tions) with and without smart initialisation

Bold values indicate the smart initialisation case

AL method Airfoil Diabetes Boston Orange

Graph-based (RS) 5.16 58.77 4.40 10.77
Graph-based 4.70 58.83 4.38 10.57
QBC (RS) 4.75 59.28 4.17 10.94
QBC 4.69 59.35 4.13 10.75
EMCM (RS) 6.00 58.82 4.47 10.94
EMCM 5.93 59.01 5.51 10.75
MT (RS) 4.51 59.55 4.52 10.96
MT 4.51 59.34 4.49 10.83
RT-AL (RS) 4.48 59.41 4.40 10.87
RT-AL 4.30 58.98 4.18 10.36
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Fig. 8  The performance in prediction using RMSE averaged over 200 runs for different stages in the 
training using passive and active learning methods for Yacht dataset, as a function of the number of trees 
in the Random Forest
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Fig. 9  The performance in prediction using RMSE averaged over 200 runs for different stages in the training using 
passive and active learning methods for Yacht dataset, as a function of the number of trees in the Random Forest
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Appendix 4: Plots for Sect. 4.2

In this section, we present the two-component PCA plots and response histograms for 
all the real datasets studied in Sect. 4.2 of the main paper (Figs. 10, 11, 12, 13, 14 and 
15). We also show the performance in prediction using our method and compare it with 
the state-of-the-art with the help of boxplots, that highlight the difference in the RMSE, 
and also in the variance and the number of outliers.

Fig. 10  Two-component PCA and histogram of the response of the Superconductivity dataset. Perfor-
mance in prediction using boxplots over 200 runs when the training set is constructed using passive and 
AL approaches. The training set size varies from 20 to 200

Fig. 11  Two-component PCA and histogram of the response of the Airfoil dataset. Performance 
in prediction using boxplots over 200 runs when the training set is constructed using passive and AL 
approaches. The training set size varies from 20 to 200
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Fig. 12  Two-component PCA and histogram of the response of the Boston Housing dataset. Performance 
in prediction using boxplots over 200 runs when the training set is constructed using passive and AL 
approaches. The training set size varies from 20 to 200

Fig. 13  Two-component PCA and histogram of the response of the Diabetes dataset. Performance 
in prediction using boxplots over 200 runs when the training set is constructed using passive and AL 
approaches. The training set size varies from 20 to 200
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Fig. 14  Two-component PCA and histogram of the response of the Orange juice dataset. Performance 
in prediction using boxplots over 200 runs when the training set is constructed using passive and AL 
approaches. The training set size varies from 20 to 60
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Appendix 5: Histograms of difference in RMSEs

In this section, we show the histograms of the error differences between our 
method and the state-of-the-art, to have a visual understanding of Table 2 of the 
main paper. With these histograms, we see that indeed our method is consistently 
a good performer for all the datasets. We also highlight that for cases where other 
approaches may give equivalent results compared to ours, the vales of the differ-
ence in errors is very low, thus not statistically significant (Figs. 16, 17, 18, 19, 
20 and 21). This can be seen from the peak at 0 on the X axis, suggesting that 
there are many such cases where other methods may be better than us but not 
statistically.

Fig. 15  Two-component PCA and histogram of the response of the Yacht hydrodynamics dataset. Perfor-
mance in prediction using boxplots over 200 runs when the training set is constructed using passive and 
AL approaches. The training set size varies from 20 to 140
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Fig. 16  Histograms depicting difference in RMSE (E) of our approach compared to the state-of-the-art 
over a series of 200 experiments for the airfoil dataset, for 100 labeled samples

Fig. 17  Histograms depicting difference in RMSE (E) of our approach compared to the state-of-the-art 
over a series of 200 experiments for the yacht dataset, for 100 labeled samples
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Fig. 18  Histograms depicting difference in RMSE (E) of our approach compared to the state-of-the-art 
over a series of 200 experiments for the diabetes dataset, for 100 labeled samples

Fig. 19  Histograms depicting difference in RMSE (E) of our approach compared to the state-of-the-art 
over a series of 200 experiments for the boston housing dataset, for 100 labeled samples
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Fig. 20  Histograms depicting difference in RMSE (E) of our approach compared to the state-of-the-art 
over a series of 200 experiments for the Superconductivity dataset, for 100 labeled samples

Fig. 21  Histograms depicting difference in RMSE (E) of our approach compared to the state-of-the-art 
over a series of 200 experiments for the orange dataset, for 100 labeled samples
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Appendix 6: RT‑AL with other classes of machine learning models

We use three different models for the final predictor to show how our method can 
be applied to other models. We show in Fig.  22 the performance in prediction 
using RMSE averaged over 200 runs for different stages in training using the 
model-based AL methods GSy, QBC, EMCM, MT, LCMD and our method 
RT-AL, for the superconductivity dataset (with N = 21,263 and D = 81). RS 
was used to initialise all the methods (except for GSy where GSx is used as 
proposed by the authors). The different models we use for the final predictor with 
hyperparameter optimisation for each run are described below:

• Linear model Lasso: We use lasso model as implemented in Scikit-learn, while 
optimising alpha, and keeping the other hyperparameters as default.

• Random Forest: We used the random forest method (RF) as implemented in 
Scikit-learn, while optimising the number of estimators in the forest, maximum 
number of features and minimum samples in the leaf, and keeping the other 
hyperparameters as default.

• Multi Layer Perceptron Regressor: We use MLPRegressor (MLP) as 
implemented in Scikit-learn, while optimising hidden layer sizes, keeping the 
learning rate adaptive, maximum iterations 1000, setting early stopping to true 
and the other hyperparameters as default.

Fig. 22  The performance in prediction using RMSE averaged over 200 runs for different stages in the train-
ing using model-based active learning methods for the superconductivity dataset (N = 21,263, D = 81)
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From the plots in Fig. 22 we can conclude that the performance of each model-
based AL method varies based on the prediction model. However, our method with 
regression trees, RT-AL, is well positioned compared to other model-based AL algo-
rithms irrespective of the prediction model, thus implying that RT-AL can indeed 
be applied to other models. Moreover, using random forest as the prediction model 
leads to the best performance among these three classes of models according to the 
RMSE score, thus justifying our choice for comparing all the methods. Thus, our 
method using regression trees is indeed very efficient and robust.

Appendix 7: Computation time

We show in Table 4 the time (in seconds) it takes to label 100 samples for all the 
datasets (except for orange dataset, where we show the times for 60 labeled sam-
ples). Note that for our method, the methods corresponding to the italicised times 

Table 4  Mean computational time (in seconds) to label 100 samples (except for orange dataset where it 
is 60), for a series of 50 runs, for each dataset by column (N and D represent the total number of samples 
in the dataset and its dimension respectively). Their respective variance reported in brackets below

Airfoil Yacht Diabetes Boston SP Orange

N 1503 308 442 506 21,263 218
D 5 6 10 13 81 700
RS 0.433 0.271 0.314 0.404 2.696 2.325

(0.001) (0.011) (0.004) (0.003) (0.543) (0.360)
GSx 2.127 0.442 0.849 1.020 37.316 2.485

(0.173) (0.006) (0.015) (0.013) (16.559) (0.148)
iRDM 16.148 4.544 6.598 7.519 75.755 9.320

(7.962) (0.430) (0.609) (2.029) (0.302) (2.176)
Cube 0.335 0.321 0.406 0.268 30.591 2.400

(0.083) (0.038) (0.082) (0.002) (58.525) (0.376)
Graph-Based 1182.630 24.445 67.298 101.090 66171.045 18.003

(29.068) (0.005) (0.130) (0.301) (364904.528) (8.275)
GSy 4.410 0.935 1.513 1.781 167.867 2.530

(0.593) (0.061) (0.004) (0.031) (1296.503) (0.185)
QBC 47.370 7.920 12.335 16.211 148.480 7.851

(35.921) (1.980) (2.690) (2.931) (0.845) (0.546)
EMCM 2681.392 386.255 648.438 778.196 4074.811 224.986

(129.618) (8.058) (6.226) (29.610) (522.883) (4.926)
MT 0.385 0.273 0.283 0.376 3.133 1.714

(0.011) (0.007) (0.003) (0.002) (0.089) (0.044)
LCMD 2.019 1.340 1.703 2.193 79.920 3.346

(0.213) (0.249) (0.146) (0.182) (296.485) (0.510)
RT-AL 45.342 0.258 0.534 0.742 4.531 2.924

(19.726) (0.001) (0.016) (0.019) (0.892) (0.080)
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have been used as initialiser for the respective datasets, while for other model-based 
methods, RS is the initialiser. We see that our method is indeed very competitive, 
and most often takes the lowest times, especially among the model-based AL meth-
ods. RT-AL is far more efficient than QBC (with trees as models in the committee) 
which gave a performance close to ours for some datasets. We also would like to 
mention here that for cases where labeling is expensive, therefore not many samples 
can be used to construct the training set, it is more crucial to have an accurate model 
and model complexity may not play a big role in general.

Appendix 8: Illustration on a simulated dataset

It has been shown by Willett et al. (2005) that AL is not always interesting in regres-
sion, we try to answer why, and where it is indeed extremely necessary. We argue 
here that datasets with different distributions of the response and the features are 
the ones where AL is in fact most beneficial, and rather imperative when labeling is 
expensive. Keeping this idea in mind, we depict the importance of our method on a 
simulation that was generated particularly to have different structures for the features 
and the response (Fig. 23). As most methods focus on diversity in the features, we 
start our illustration with a simulation so as to control the link between the response 
and the features. We construct a D-dimensional feature space of N samples, such 
that it consists of c clusters. The response is then defined as a non-linear function of 
the first principal component of the features, so as to keep a weak relation between 
the two distributions.

Fig. 23  Two-component PCA and histogram of the response of the generated dataset

Fig. 24  Performance in prediction using boxplots over 200 runs when the training set is constructed 
using passive/model-free AL or RT-AL (grey and white) on a generated dataset, using the query criteria 
mentioned in parenthesis for RT-AL. The training set size varies from 20 to 200
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In Fig. 24, we compare our approach to the RS, GSx and iRDM, for a simula-
tion with N = 3000 , D = 15 and c = 10 the number of clusters. As expected, GSx 
and iRDM both underperform compared to RS because for both these methods, we 
provide additional information about the features at every step, while missing criti-
cal details of the structure of the response. The comparison thus shows that for data 
with weak correlation between the features and the response, picking points to be 
labeled without using any prior information at all (using RS) is better than adding 
details about the features, because it focuses on the wrong subset of points.

However, we see that adding information about the response using our regression 
trees is indeed helpful. It is clear from the figure that for all the methods in question, 
we observe a significant improvement by picking the set of points to be labeled 
using a regression tree that is built on the samples that are already labeled. Further, 
we also note that GSx + RT (RS) or iRDM + RT (RS) is better for such datasets, 
than GSx + RT (Diversity-based) or iRDM + RT (Representativity-based). This is 
because both GSx and iRDM do not work well for such datasets to begin with, so 
the knowledge they add in each leaf is also damageable. Thus, for datasets such as 
these, where AL schemes are hoped to be most interesting, we succeed to show that 
learning with simple regression trees alone reduces the size of the training set to 
be labeled by a good margin, for a desired level of accuracy. For example, from 
Fig. 24 we see that on an average, the performance with 120 samples well selected 
by our trees is the same as the performance with 140 samples uniformly selected, 
180 samples selected by iRDM and much more when selecting using GSx.
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