
Vol:.(1234567890)

Data Mining and Knowledge Discovery (2024) 38:22–48
https://doi.org/10.1007/s10618-023-00948-2

1 3

Improving position encoding of transformers
for multivariate time series classification

Navid Mohammadi Foumani1  · Chang Wei Tan1 · Geoffrey I. Webb1 ·
Mahsa Salehi1

Received: 28 November 2022 / Accepted: 5 June 2023 / Published online: 5 September 2023
© Crown 2023

Abstract
Transformers have demonstrated outstanding performance in many applications of
deep learning. When applied to time series data, transformers require effective posi-
tion encoding to capture the ordering of the time series data. The efficacy of position
encoding in time series analysis is not well-studied and remains controversial, e.g.,
whether it is better to inject absolute position encoding or relative position encoding,
or a combination of them. In order to clarify this, we first review existing absolute
and relative position encoding methods when applied in time series classification.
We then proposed a new absolute position encoding method dedicated to time series
data called time Absolute Position Encoding (tAPE). Our new method incorporates
the series length and input embedding dimension in absolute position encoding.
Additionally, we propose computationally Efficient implementation of Relative Posi-
tion Encoding (eRPE) to improve generalisability for time series. We then propose a
novel multivariate time series classification model combining tAPE/eRPE and con-
volution-based input encoding named ConvTran to improve the position and data
embedding of time series data. The proposed absolute and relative position encod-
ing methods are simple and efficient. They can be easily integrated into transformer
blocks and used for downstream tasks such as forecasting, extrinsic regression, and
anomaly detection. Extensive experiments on 32 multivariate time-series datasets
show that our model is significantly more accurate than state-of-the-art convolution
and transformer-based models. Code and models are open-sourced at https://​github.​
com/​Navid​fouma​ni/​ConvT​ran.

Keywords  Multivariate time series classification · Transformers · Position encoding

Responsible editor: Charalampos Tsourakakis.

Extended author information available on the last page of the article

http://orcid.org/0000-0003-2475-6040
https://github.com/Navidfoumani/ConvTran
https://github.com/Navidfoumani/ConvTran
http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-023-00948-2&domain=pdf

23

1 3

Improving position encoding of transformers for multivariate…

1  Introduction

A time series is a time-dependent quantity recorded over time. Time series data
can be univariate, where only a sequence of values for one variable is collected;
or multivariate, where data are collected on multiple variables. There are many
applications that require time series analysis, such as human activity recognition
(Lockhart et al. 2011), diagnosis based on electrocardiogram (ECG), electroen-
cephalogram (EEG), and systems monitoring problems (Bagnall eta al. 2018).
Many of these applications are inherently multivariate in nature—various sensors
are used to measure human’s activities; EEGs use a set of electrodes (channels)
to measure brain signals at different locations of the brain. Hence, multivariate
time-series analysis methods such as classification and segmentation are of great
current interest (Bagnall et al. 2017; Fawaz et al. 2019; Ruiz et al. 2020).

Convolutional neural networks (CNNs) have been widely employed in time
series classification (Fawaz et al. 2019; Ruiz et al. 2020). Many studies have
shown that convolution layers tend to have strong generalization with fast conver-
gence due to their strong inductive bias (Dai et al. 2021). While CNN-based mod-
els are excellent for capturing local temporal/spatial correlations, these models
cannot effectively capture and utilize long-range dependencies. Also, they only
consider the local order of data points in a time series rather than the order of all
data points globally. Due to this, many recent studies have used recurrent neural
networks (RNN) such as LSTMs to capture this information (Karim et al. 2019).
However, RNN-based models are computationally expensive, and their capability
in capturing long-range dependencies are limited (Vaswani et al. 2017; Hao and
Cao 2020).

On the other hand, attention models can capture long-range dependencies,
and their broader receptive fields provide more contextual information, which
can improve the models’ learning capacity. Not surprisingly, with the success
of attention models in natural language processing (Vaswani et al. 2017; Devlin
et al. 2018), many previous studies have attempted to bring the power of attention
models into other domains such as computer vision (Dosovitskiy et al. 2020) and
time series analysis (Hao and Cao 2020; Zerveas et al. 2021; Kostas et al. 2021).

The transformer’s core is self-attention (Vaswani et al. 2017), which is capable
of modeling the relationship of input time series. Self-attention, however, has a
limitation - it cannot capture the ordering of input series. Hence, adding explicit
representations of position information is especially important for the attention
since the model is otherwise entirely invariant to input order, which is undesira-
ble for modeling sequential data. This limitation is even worse in time series data
since, unlike image and text, which use Word2Vec-like embedding, time series
data has less informative data context.

There are two main methods for encoding positional information in transform-
ers: absolute and relative. Absolute methods, such as those used in Vaswani et al.
(2017); Devlin et al. (2018), assign a unique encoding vector to each position in
the input sequence based on its absolute position in the sequence. These encoding
vectors are combined with the input encoding to provide positional information

24	 N. M. Foumani et al.

1 3

to the model. On the other hand, relative methods (Shaw et al. 2018; Huang
et al. 2018) encode the relative distance between two elements in the sequence,
rather than their absolute positions. The model learns to compute the relative dis-
tances between any two positions during training and looks up the corresponding
embedding vectors in a pre-defined table to obtain the relative position embed-
dings. These embeddings are used to directly modify the attention matrix. Posi-
tion encoding has been verified to be effective in natural language processing and
computer vision (Dufter et al. 2022). However, in time series classification, the
efficacy is still unclear.

The original absolute position encoding is proposed for language modeling,
where high embedding dimensions like 512 or 1024 are usually used for position
embedding of input with a length of 512 (Vaswani et al. 2017). But, for time series
tasks, embedding dimensions are relatively low, and the series might have a variety
of lengths (ranging from very low to very high). In this paper, for the first time,
we study the efficiency (i.e. how well resources are utilized) and the effectiveness
(i.e. how well the encodings achieve their intended purpose) of existing absolute
and relative position encodings for time series data. We then show that the existing
absolute position encodings are ineffective with time series data. We introduce a
novel time series-specific absolute position encoding method that takes into account
the series embedding dimension and length. We show that our new absolute position
encoding outperforms the existing absolute position encodings in time series clas-
sification tasks.

Additionally, since the existing relative position encodings have large mem-
ory overhead and they require a large number of parameters to be trained, in time
series data it is very likely they overfit. We propose a novel computationally effi-
cient implementation of relative position encoding to improve their generalisabil-
ity for time series. We show that our new relative position encoding outperforms
the existing relative position encodings in time series classification tasks. We then
propose a novel time series classification model based on the combination of our
proposed absolute/relative position encodings named ConvTran to improve the
position embedding of time series data. We further enriched the data embedding of
time series using CNN rather than linear encoding. Our extensive experiments on
32 benchmark datasets show ConvTran is significantly more accurate than the pre-
vious state-of-the-art in deep learning models for time series classification (TSC).
We believe our novel position encodings can boost the performance of other trans-
former-based TSC models.

2 � Related work

In this section, we briefly discuss the state-of-the-art multivariate time series clas-
sification (MTSC) algorithms, as well as CNN and attention-based models that have
been applied to MTSC tasks. We refer interested readers to the corresponding papers
or the recent survey on deep learning for time series classification (Foumani et al.
2023) for a more detailed description of these algorithms and models.

25

1 3

Improving position encoding of transformers for multivariate…

2.1 � State‑of‑the‑art MTSC algorithms

Many MTSC algorithms have been proposed in recent years (Bagnall eta al. 2018;
Ruiz et al. 2020; Fawaz et al. 2019), where many of them are adapted from their
univariate version. A recent survey (Ruiz et al. 2020) evaluated most of the existing
MTSC algorithms on the UEA MTS archive, that consists of 26 equal-length time
series datasets. This benchmark includes a few deep learning as well as non-deep
learning approaches. This survey concluded that there are four main state of the art
methods. These are ROCKET (Dempster et al. 2020), HIVE-COTE (Bagnall et al.
2020), CIF (Middlehurst et al. 2020) and Inception-Time (Fawaz et al. 2020).

ROCKET (Dempster et al. 2020) is a scalable TSC algorithm that uses 10,000
random convolution kernels to extract 2 features from each input time series, creat-
ing 20,000 features for each time series. Then a linear model is used for classifi-
cation, such as ridge or logistic regression. Mini-ROCKET (Dempster et al. 2021)
is an extension of ROCKET with some slight modifications to the feature extrac-
tion process. It is significantly more scalable than ROCKET and uses only 10,000
features without compromising accuracy. Multi-ROCKET (Tan et al. 2021) extends
Mini-ROCKET by leveraging the first derivative of the series as well as extracting 4
features per kernel. It is significantly more accurate than both ROCKET and Mini-
ROCKET on 128 univariate TSC tasks. Note that neither Mini-ROCKET nor Multi-
ROCKET has previously been benchmarked on the UEA MTS archive. The adapta-
tion for multivariate time series for ROCKET, Mini-ROCKET and Multi-ROCKET
is done by randomly selecting different channels of the time series for each convolu-
tional kernel.

The Canonical Interval Forest (CIF) (Middlehurst et al. 2020) is an interval based
classifier. It first extracts 25 features from random intervals of the time series and
builds a time series forest with 500 trees. It is an algorithm initially designed for uni-
variate TSC and was adapted to multivariate TSC by expanding the random interval
search space, where an interval is defined as a random dimension of the time series.

The Hierarchical Vote Collective of Transformation-based Ensembles (HIVE-
COTE) is a meta ensemble for TSC. It forms its ensemble from classifiers of mul-
tiple domains. Since its introduction in 2016, HIVE-COTE has gone through a few
iterations. The version used in the MTSC benchmark (Ruiz et al. 2020) comprised
of 4 ensemble members—Shapelet Transform Classifier (STC), Time Series For-
est (TSF), Contractable Bag of Symbolic Fourier Approximation Symbols (CBOSS)
and Random Interval Spectral Ensemble (RISE), each of them being the state of
the art in their respective domains. Since these algorithms were designed for uni-
variate time series, the adaption for multivariate time series is not easy. Hence, they
were adapted for multivariate time series through ensembling over all the models
built on each dimension independently. This means that they are computationally
very expensive especially when the number of channels is large. Recently, the lat-
est HIVE-COTE version, HIVE-COTEv2.0 (HC2) was proposed (Middlehurst et al.
2011). It is currently the most accurate classifier for both univariate and multivariate
TSC tasks (Middlehurst et al. 2011). Despite being the most accurate on 26 bench-
mark MTSC datasets, that are relatively small, HC2 is not scalable to either large
datasets with long time series or datasets with many channels.

26	 N. M. Foumani et al.

1 3

2.2 � CNN based models

CNNs are popular deep learning architectures for MTSC due to their ability to
extract latent features from the time series data efficiently. Fully Convolutional Neu-
ral Network (FCN) and Residual Network (ResNet) were proposed in Wang et al.
(2017) and evaluated in Fawaz et al. (2019). FCN is a simple convolutional network
that does not contain any pooling layers in convolution blocks. The output from the
last convolution block is averaged with a Global Average Pooling (GAP) layer and
passed to a final softmax classifier. ResNet is one of the deepest architectures for
MTSC (and TSC in general), containing three residual blocks followed by a GAP
layer and a softmax classifier. It uses residual connections between blocks to reduce
the vanishing gradient effect in deep learning models. ResNet was one of the most
accurate deep learning TSC architectures on 85 univariate TSC datasets (Fawaz
et al. 2019; Bagnall et al. 2017). It was also proven to be an accurate deep learning
model for MTSC (Fawaz et al. 2019; Ruiz et al. 2020).

Inception-Time is the current state-of-the-art deep learning model for both uni-
variate TSC and MTSC (Fawaz et al. 2020; Ruiz et al. 2020). Inception-Time is an
ensemble of five randomly initialised inception network models that each consists
of two blocks of inception modules. Each inception module first reduces the dimen-
sionality of a multivariate time series using a bottleneck layer with length and stride
of 1 while maintaining the same length. Then, 1D convolutions of different lengths
are applied to the output of the bottleneck layer to extract patterns at different sizes.
A max pooling layer followed by a bottleneck layer are also applied to the original
time series to increase the robustness of the model to small perturbations. Resid-
ual connections are also used between each inception block to reduce the vanishing
gradient effect. The output of the second inception block is passed to a GAP layer
before feeding into a softmax classifier.

Recently, Disjoint-CNN (Foumani et al. 2021) shows that factorization of 1D
convolution kernels into disjoint temporal and spatial components yields accuracy
improvements with almost no additional computational cost. Applying disjoint tem-
poral convolution and then spatial convolution behaves similarly to the “Inverted
Bottleneck” (Sandler et al. 2018). Like the Inverted Bottleneck, the temporal convo-
lutions expand the number of input channels, and spatial convolutions later project
the expanded hidden state back to the original size to capture the temporal and spa-
tial interaction.

2.3 � Attention based models

Self-attention has been demonstrated to be effective in various natural language pro-
cessing tasks due to its higher capacity and superior ability to capture long-term
dependencies in text (Vaswani et al. 2017). Recently, it has also been shown to be
effective for time series classification tasks. Cross Attention Stabilized Fully Con-
volutional Neural Network (CA-SFCN) (Hao and Cao 2020) has applied the self-
attention mechanism to leverage the long-term dependencies for the MTSC task.

27

1 3

Improving position encoding of transformers for multivariate…

CA-SFCN combines FCN and two types of self-attention—temporal attention
(TA) and variable attention (VA), which interact to capture both long-range tem-
poral dependencies and interactions between variables. With evidence that multi-
headed attention dominates self-attention, many models try to adapt it to the MTSC
domain. Gated Transformer Networks (GTN) (Liu et al. 2021), similar to CA-SFCN,
use two-tower multi-headed attention to capture discriminative information from the
input series. They merge the output of two towers using a learnable matrix named
gating.

Inspired by the development of transformer-based self-supervised learning like
BERT (Kostas et al. 2021), many models try to adopt the same structure for time
series classification (Kostas et al. 2021; Zerveas et al. 2021). BErt-inspired Neural
Data Representations (BENDER) replace the word2vec encoder in BERT with the
wav2vec to leverage the same structure for time series data. BENDER shows that if
we have a massive amount of EEG data, the pre-trained model can be used effec-
tively to model EEG sequences recorded with differing hardware. Similarly, Voice-
to-Series with Transformer-based Attention (V2Sa) uses a large-scale pre-trained
speech processing model for downstream problems like time series classification
problems (Yang et al. 2011). Recently, a Transformer-based Framework (TST) was
also introduced to adopt vanilla transformers to the multivariate time series domain
(Zerveas et al. 2021). TST uses only the encoder part of transformers and pre-train it
with proportionally masked data in an unsupervised manner.

3 � Background

This section provides a basic definition of self-attention and an overview of cur-
rent position encoding models. Note that position encoding refers to the method that
integrates position information, e.g., absolute or relative. Position embedding refers
to a numerical vector associated with position encoding.

3.1 � Problem description and notation

Given a time series dataset X with n samples, X =
{
�
�
, �

�
, ..., �

�

}
 , where

�
�
=
{
x1, x2, ..., xL

}
 is a dx-dimensional time series and L is the length of time series,

�
�
∈ ℝ

L×dx , and the set of relevant response labels Y =
{
y1, y2, ..., yn

}
 , yt ∈ {1, ..., c}

and c is the number of classes. The aim is to train a neural network classifier to map
set X to Y.

3.2 � Self‑attention

The first attention mechanisms were proposed in the context of natural language pro-
cessing (Luong et al. 2015). While they still relied on a recurrent neural network at
its core, Vaswani et al. (2017) proposed a transformer model that relies on attention
only. Transformers map a query and a set of key-value pairs to an output. More spe-
cifically, for an input series, �

�
=
{
x1, x2, ..., xL

}
 , self-attention computes an output

28	 N. M. Foumani et al.

1 3

series �
�
=
{
z1, z2, ..., zL

}
 where zi ∈ ℝ

dz and is computed as a weighted sum of input
elements:

Each coefficient weight �i,j is calculated using softmax function:

where eij is an attention weight from positions j to i and is computed using a scaled
dot-product:

The projections WQ,WK ,WV ∈ ℝ
dx×dz are parameter matrices and are unique per

layer. Instead of computing self-attention once, Multi-Head Attention (MHA) (Vas-
wani et al. 2017) does so multiple times in parallel, i.e., employing h attention heads.
A linear transformation is applied to the attention head outputs and concatenated
into the standard dimensions.

3.3 � Position encoding

The self-attention layer cannot preserve time series positional information in the
transformer architecture since the transformer contains no recurrence and convolu-
tion. However, the local positional information, i.e., the ordering of time series, is
essential. The practical approach in transformer-based methods involves using mul-
tiple encoding (Huang et al. 2020; Wu et al. 2021; Dufter et al. 2022), such as abso-
lute or relative positional encoding, to enhance the temporal context of time-series
inputs.

3.3.1 � Absolute position encoding

The original self-attention considers the absolute position (Vaswani et al. 2017), and
adds the absolute positional embedding P = (p1, ..., pL) to the input embedding x as:

where the position embedding pi ∈ ℝ
dmodel . There are several options for absolute

positional encodings, including the fixed encodings by sine and cosine functions
with different frequencies called VanillaAPE and the learnable encodings through
trainable parameters (we refer it as Learn method) (Vaswani et al. 2017; Devlin et al.
2018).

(1)zi =

L∑
j=1

�i,j(xjW
V)

(2)�i,j =
exp(eij)∑L

k=1
exp(eik)

(3)eij =
(xiW

Q)(xjW
K)T

√
dz

(4)xi = xi + pi

29

1 3

Improving position encoding of transformers for multivariate…

By using sine and cosine for fixed position encoding, the dmodel-dimensional embed-
dings of ith time step position can be represented by the following equation:

where k is in the range of [0, dmodel
2

] , dmodel is the embedding dimension and �k is the
frequency term. Variations in �k ensure that no positions < 104 are assigned similar
embeddings.

3.3.2 � Relative position encoding

In addition to the absolute position embedding, recent studies in natural language pro-
cessing and computer vision also consider the pairwise relationships between input ele-
ments, i.e., relative position Shaw et al. (2018); Huang et al. (2018). This type of
method encodes the relative distance between the input elements xi and xj into vectors
p
Q

i,j
, pK

i,j
, pV

i,j
∈ ℝ

dz . The encoding vectors are embedded into the self-attention module,
which modifies Eqs. (1) and (3) as

By doing so, the pairwise positional relation is trained during transformer training.
Shaw et al. (2018) proposed the first relative position encoding for self-attention.

Relative positional information is supplied to the model on two levels: values and keys.
First, relative positional information is included in the model as an additional compo-
nent to the keys. The softmax operation Eq. (3) remains unchanged from vanilla self-
attention. Lastly, relative positional information is resupplied as a sub-component of
the values matrix. Besides, the authors believe that relative position information is not
useful beyond a certain distance, so they introduced a clip function to reduce the num-
ber of parameters. Encoding is formulated as follows to consider the distance between
inputs i and j in computing their attention:

(5)pi(2k) = sin i�k pi(2k + 1) = cos i�k �k = 10000−2k∕dmodel

(6)zi =

L∑
j=1

�i,j(xjW
V + pV

i,j
)

(7)eij =
(xiW

Q + p
Q

i,j
)(xjW

K + pK
i,j
)T

√
dz

(8)eij =
(xiW

Q)(xjW
K + pK

clip(i−j,k)
)T

√
dz

(9)zi =

L∑
j=1

�i,j(xjW
V + pV

clip(i−j,k)
)

(10)clip(x, k) = max(−k,min(k, x))

30	 N. M. Foumani et al.

1 3

Where pV and pK are the trainable weights of relative position encoding on values
and keys, respectively. PV = (pV

−k
, ..., pV

k
) and PK = (pK

−k
, ..., pK

k
) where pV

i
, pK

i
∈ ℝ

dz .
The scalar k is the maximum relative distance.

However, this technique (Shaw) is not memory efficient. As can be seen in Eq. 8,
it requires O(L2d) memory due to the additional relative position encoding. Huang
et al. (2018) introduced a new method (in this paper it is called Vector method)
of computing relative positional encoding that reduces its intermediate memory
requirement from O(L2d) to O(Ld) using skewing operation (Huang et al. 2018).
According to this paper, the authors also dropped the additional relative positional
embedding corresponding to the value term and focused only on the key component.
Encoding is formulated as follows:

Where Skew procedure use padding, reshaping and slicing to reduce the memory
requirement (Huang et al. 2018). In Table 1 we provided a summary of the parame-
ter sizes, memory, and computation complexities of various position encoding meth-
ods (including our proposed ones in this paper) for comparison purposes.

4 � Position encoding of transformers for MTSC

We design our position encoding methods to examine several aspects which are not
well studied in prior transformers-based time series classification work (see the anal-
ysis in Sec 5.4).

As a first step, we propose a new absolute position encoding method dedicated
to time series data called time Absolute Position Encoding (tAPE). tAPE incorpo-
rates the series length and input embedding dimension in absolute position encod-
ing. We then introduce efficient Relative Position Embedding (eRPE) to explore the
independent encoding of positions from the input encodings. After that, to study the
integration of eRPE into a transformer model, we compare different integration of
position information to the attention matrix; finally, we provide an efficient imple-
mentation for our methods.

4.1 � Time absolute position encoding (tAPE)

Absolute position encoding was originally proposed for language modeling, where
high embedding dimensions like 512 or 1024 are usually used for position embed-
ding of input with a length of 512 (Vaswani et al. 2017). Figure 1a shows the dot
product between two sinusoidal positional embedding whose distance is K using
Eq. (5) with various embedding dimensions. Clearly, higher embedding dimen-
sions, such as 512 (red thick line), can better reflect the similarity between various

(11)eij =
(xiW

Q)(xjW
K)T + Srel

√
dz

(12)Srel = Skew(WQP)

31

1 3

Improving position encoding of transformers for multivariate…

positions. As shown in Fig. 1a using 64 or 128 as embedding dimensions (thin blue
and orange lines, respectively), the dot product does not always decrease as the dis-
tance between two positions increases. We call this the distance awareness property,
which disappears when lower embedding dimensions, such as 64, are used for posi-
tion encoding.

While high embedding dimensions show a desirable monotonous decrease trend
when the distance between two positions increases (see red line in Fig. 1a), they are
not suitable for encoding time series datasets. The reason is that most time series
datasets have relatively low input dimensionality (e.g., 28 out of 32 datasets have
less than 64 input dimension), and higher embedding dimensions may yield inferior
model throughput due to extra parameters (increasing the chances of overfitting the
model).

On the other hand, in low embedding dimensions, the similarity value between
two random embedding vectors is high, making the embedding vectors very similar
to each other. In other words, we cannot fully utilise the embedding vector space
to differentiate between two positions. Figure 1b depicts the embedding vectors of
the first and last position embedding for the embedding dimension equals 128 and
length equals 30. In this figure, almost half of the embedding vectors are the same.
This is called the anisotropic phenomenon (Liang et al. 2021). The anisotropic phe-
nomenon makes the position encoding to be ineffective in low embedding dimen-
sions as embedding vectors become similar to each other as it is shown in Fig. 1a
(the blue line).

Hence, we require a position embedding for time series that has distance aware-
ness while simultaneously being isotropic. In order to incorporate distance aware-
ness, we propose to use the time series length in Eq. (5). In this equation, �k refers
to the frequency of the sine and cosine functions from which the embedding vectors
are generated. Without our modification, as series length L increases the dot product
of positions becomes ever less regular, resulting in a loss of distance awareness. By
incorporating the length parameter in the frequency terms in both sine and cosine
functions in Eq. (5), the dot product remains smoother with a monotonous trend.

Fig. 1   Sinusoidal absolute position encoding. a The dot product of two sinusoidal position embeddings
whose distance is K with various embedding dimensions. b 128 dimension sinusoidal positional encod-
ing curves for positions 1 and 30 in a series of length 30

32	 N. M. Foumani et al.

1 3

As the embedding dimension dmodel value increases, it is more likely the vector
embeddings are sampled from low-frequency sinusoidal functions, which results in
the anisotropic phenomenon. To alleviate this, we incorporate the dmodel parameter
into the frequency term in both sine and cosine functions in Eq. (5). We propose a
novel absolute position encoding for time series called tAPE in which �new

k
 takes

into account the input embedding dimension and length as follows:

where L is the series length and dmodel shows the embedding dimension.
Our new tAPE position encoding is compared with a vanilla sinusoidal posi-

tion encoding to provide further illustration. Using dmodel = 128 dimension vector,
Fig 2a–b show the dot product (similarity) of two positions with a distance of K for
series with of length L = 1000 and L = 30 respectively. As depicted in Fig 2a, in
vanilla APE, only the closest positions in the series have a monotonous decreasing
trend, and approximately from a distance 50 onwards ( |K| > 50 ) on both sides, the
decreasing similarity trend becomes less apparent as the distance between two posi-
tions in the time series increases. However, tAPE has a more stable decreasing trend
and more steadily reflects the distance between two positions. Meanwhile, Fig 2b
shows the embedding vectors of tAPE are less similar to each other compared to
vanilla APE. This is due to better utilising the embedding vector space to differenti-
ate between two positions as we discussed earlier.

Note in Eq. (13) our �new
k

 will obviously be equal to the �k in vanilla APE when
dmodel = L and the encodings of tAPE and vanilla APE will be the same. However,
if dmodel ≠ L , tAPE will encode the positions in series more effectively than vanilla
APE due to the two properties we discussed earlier. Figure 2a shows a case in which
dmodel < L and Fig 2b shows a case in which dmodel > L and in both cases tAPE uti-
lises embedding space to provide an isotropic encoding, while holding the distance

(13)
�k = 10000−2k∕dmodel

�
new
k

=
�k × dmodel

L

Fig. 2   Comparing dot product between two position whose distance is K in a time series using tAPE and
vanilla APE with d

x
= 128 dimension vector for series of length a L = 1000 b L = 30

33

1 3

Improving position encoding of transformers for multivariate…

awareness property. In other words, tAPE provides a balance between these two
properties in its encodings. The superiority of tAPE compared to vanilla APE and
learned APE on various length time series datasets is shown in the experimental
results section.

4.2 � Efficient relative position encoding (eRPE)

There are multiple extensions of the abovementioned Sect. 3.3.2 relative position
embeddings in machine translation and computer vision (Huang et al. 2020; Wu
et al. 2021; Dufter et al. 2022). However, input embeddings are the basis for all
previous methods of relative position encoding (adding or multiplying the position
matrices to the query, key, and value matrices, as exemplified in Fig. 3a). In this
study, we introduce an efficient model of relative position encoding independent of
input embeddings (Fig. 3b).

In particular, we propose the following formulation:

where L is series length, Ai,j is attention weight and wi−j is a learnable scalar (i.e.,
w ∈ ℝ

O(L) ) and represent the relative position weight between positions i and j.
It is worth comparing the strengths and weaknesses of relative position encod-

ings and attention to determine what properties are more desirable for relative posi-
tion encoding of time series data. Firstly, the relative position embedding wi−j is an

(14)�i =
�
j∈L

⎛
⎜⎜⎜⎜⎜⎝

exp(ei,j)∑
k∈L exp(ei,k)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

Ai,j

+wi−j

⎞
⎟⎟⎟⎟⎟⎠

xj

Fig. 3   Self-attention modules with relative position encoding using scalar and vector parameters. Newly
added parts are depicted in grey

34	 N. M. Foumani et al.

1 3

input-independent parameter with static values, whereas an attention weight Ai,j is
dynamically determined by the representation of the input series. In other words,
attention adapts to input series via a weighting strategy (input-adaptive weighting
(Vaswani et al. 2017)). Input-adaptive-weighting enables models to capture the com-
plicated relationships between different time points, a property that we desire most
when we want to extract high-level concepts in time series. This can be for instance
the seasonality component in time series. However, when we have limited size data
we are at a greater risk of overfitting when using attention.

Secondly, relative position embedding wi−j takes into account the relative shift
between positions i and j and not their values. This is similar to translation equiva-
lence property of convolution, which has been shown to enhance generalization (Dai
et al. 2021). We propose to consider the notation of wi−j as a scalar rather than a vec-
tor to enable the translation equivalency without blowing up the number of param-
eters. In addition, the scalar representation of w provides the benefit that the value of
wi−j for all (i, j) can be subsumed within the pairwise dot-product attention function,
resulting in minimal additional computation (see Sect. 4.2.1). We call our proposed
efficient relative position encoding as eRPE.

Theoretically, there are many possibilities for integrating relative position infor-
mation into the attention matrix, but we empirically found that attention models
perform better when we add the relative position to the model after applying the
softmax to the attention matrix as shown in Eq. (14) and Fig. 3b. We presume this
is because the position values will be sharper without the softmax. And sharper
position embeddings seems to be beneficial in TSC task as it emphasizes more
on informative relative positions for classification compared to existing models in
which softmax is applied to relative position embeddings.

4.2.1 � Efficient implementation: indexing

To implement the efficient version of eRFE in Eq. (14) for input time series with a
length of L, for each head, we create a trainable parameter w of size 2L − 1 , as the
maximum distance is 2L − 1 . Then for two position indices i and j, the correspond-
ing relative scalar is wi−j+L where indexes start from 1 instead of 0 (1-base index).
Accordingly, we need to index L2 elements from 2L − 1 vector.

On GPU, a more efficient way to index is to use gather, which only requires
memory access. At inference time, indexing the L2 elements from 2L − 1 vector can
be pre-computed and cached to increase the processing speed further. As shown in
Table 1, our proposed eRPE is more efficient in terms of both memory and time
complexities compared to the existing relative position encoding methods in the
literature.

4.3 � ConvTran

Now we look at how we can utilize our new position encodings method to build a
time series classification network. According to the earlier discussion, global atten-
tion has a quadratic complexity w.r.t. the series length. This means that if we directly

35

1 3

Improving position encoding of transformers for multivariate…

apply the proposed attention in Eq. (14) to the raw time series, the computation will
be excessively slow for long time series. Hence, we first use convolutions to reduce
the series length and then apply our proposed position encodings once the feature
map has been reduced to a less computationally intense size. See Fig. 4 where con-
volution blocks comes as a first component proceeded by attention blocks.

Another benefit of using convolutions is that convolutions operations are very
well-suited to capture local patterns. By using convolutions as the first component
in our architecture we can capture any discriminative local information that exists in
raw time series.

As Shown in Fig. 4, as the first step in the convolution layers, M temporal filters
are applied to the input data. In this step, the model extracts temporal patterns in
the input series. Next, the output of temporal filtering is convolved with dmodel spa-
tial dx ×M shape filters to capture the correlations between variables in multivariate
time series and construct dmodel size input embeddings. Such disjoint temporal and
spatial convolution is similar to “Inverted Bottleneck” in Sandler et al. (2018). It
first expands the number of input channels and then squeezes them. A key reason for
this choice is that the Feed Forward Network (FFN) in transformers (Vaswani et al.
2017) also expands on the input size and later projects the expanded hidden state
back to the original size to capture the spatial interactions.

Before feeding the input embedding to the transformer block, we add the tAPE-
generated position embedding to the input embedding vector so that the model can
capture the temporal order of the time series. The size of the embedding vector is
dmodel , which is the same as the input embedding. Inside the multi-head attention,
the inputs with the L × dmodel dimension are first converted to L × dz × 3 shape using

Table 1   Comparing the parameter sizes, memory, and computation complexities of various position
encoding methods

In our implementation d
z
 is equal to d

model

Method Parameter Memory Complexity

Absolute tAPE None Ld
model

Ld
model

Vanilla APE (Vaswani et al. 2017) None Ld
model

Ld
model

Learn (Devlin et al. 2018) Ld
model

Ld
model

Ld
model

Relative Shaw Shaw et al. (2018) (2L − 1)d
z L

2
d
z
+ L

2
L
2
d
z

Vector (Huang et al. 2018) Ld
z Ld

z
+ L

2
L
2
d
z

eRPE 2L − 1 L + L
2

L
2

Fig. 4   Overall architecture of the ConvTran model

36	 N. M. Foumani et al.

1 3

a linear layer to get the qkv matrix in which dz indicates the model dimension and
defined by the user. Each of the three matrices of shape L × dz represents the Query
(q), Key (k) and Value (v) matrices. These q, k, and v matrices are reshaped to
h × L × dz∕h to represent the h attention heads. Each of these attention heads can be
responsible for capturing different patterns in time series. For instance, one attention
head can attend to the non-noisy data, another head can attend to the seasonal com-
ponent and another to the trend. Once we have the q, k, and v matrices, we finally
perform the attention operation inside the Multi-Head attention block using Eq. (14).

According to Eq. (14) the eRPE with the same shape of L × L is also added to
the attention output. We consider the notation of wi−j as a scalar (i.e., w ∈ RO(L) ) to
enable the global convolution kernel without increasing the number of parameters.
The relative position embedding enables the model to learn not only the order of
time points, but also the relative position of pairs of time points, which can capture
richer information than other position embedding strategies.

The FFN, is a multi-layer perceptron block consisting of two linear layers and
Gaussian Error Linear Units (GELUs) as an activation function. The outputs from
the FFN block are again added to the inputs (via skip connection) to get the final
output from the transformer block. Finally, just before the fully connected layer,
max-pooling and global average pooling (GAP) are applied to the output of the last
layer’s ELU activation function, which gives a more translation-equivalence model.

5 � Experimental results

In this section, we evaluate the performance of our ConvTran model on the UEA
time series repository (Bagnall eta al. 2018) and two large multivariate time series
datasets and compare it with the state-of-the-art models. All of our experiments were
conducted using the PyTorch framework in Python on a computing system consist-
ing of a single Nvidia A5000 GPU with 24GB of memory and an Intel(R) Core(TM)
i9-10900K CPU. To promote reproducibility, we have provided our source code and
more experimental results online.1

We have divided our experiments into four parts. First, we present an ablation
study on various position encodings. Then, we demonstrate that our ConvTran
model outperforms existing CNN and transformer-based models. Next, we compare
the performance of ConvTran with four state-of-the-art MTSC algorithms (includ-
ing both deep learning and non-deep learning categories) identified in Ruiz et al.
(2020); Middlehurst et al. (2011). We report the results provided on the archive web-
site2 for HiveCote2, CIF, ROCKET, and Inception-Time on 26 out of 30 UEA data-
sets only in Sect. 5.6. Finally, we evaluate the efficiency and effectiveness of Con-
vTran by comparing it with the current state-of-the-art model, ROCKET.

1  https://​github.​com/​Navid​fouma​ni/​ConvT​ran.
2  https://​times​eries​class​ifica​tion.​com/​HC2.​php.

https://github.com/Navidfoumani/ConvTran
https://timeseriesclassification.com/HC2.php

37

1 3

Improving position encoding of transformers for multivariate…

5.1 � Datasets

•	 UEA Repository The archive consists of 30 real-world multivariate time series
data from a wide range of applications such as Human Activity Recognition,
Motion classification, and ECG/EEG classification (Bagnall eta al. 2018). The
number of dimensions ranges from two dimensions to 1345 dimensions. The
length of the time series ranges from 8 to 17,984. The datasets also have a train
size ranging from 12 to 25000.

•	 Ford Challenge This dataset is obtained from the Kaggle challenge website.3 It
includes measurements from total of 600 real-time driving sessions where each
driving session takes 2 min and sampled with 100ms rate. Also, the trials are
samples from 100 drivers of both genders, and of different ages. The training
data file consists of 604,329 data points each belongs to one of 500 trials. The
test file contains 120,840 data points belonging to 100 trials. While each data
point comes with a label in 0,1 and also contains 8 physiological, 12 environ-
mental, and 10 vehicular features that are acquired while driving.

•	 Actitracker human Activity Recognition This dataset describes six daily
activities which are collected in a controlled laboratory environment. The activi-
ties include “Walking”, “Jogging”, “Stairs”, “Sitting”, “Standing”, and “Lying
Down” which are recorded from 36 users collected using a cell phone in their
pocket. Data has 2,980,765 samples with 3 dimensions, subject-wise split into
train and test sets, and a sampling rate of 20Hz (Lockhart et al. 2011).

5.2 � Evaluation procedure

We use the classification accuracy as the overall metric to compare different models.
Then we rank each model based on its classification accuracy per dataset. The most
accurate model is assigned a rank of 1 and the worse performing model is assigned
the highest rank. The average ranking is taken in case of ties. Then the average rank
for each model is computed across all datasets in the repository.

This gives a direct general assessment of all the models: the lowest rank corre-
sponds to the method that is the most accurate on average. The average ranking for
each model is presented in the form of critical difference diagram (Demšar 2006),
where models in the same clique (the black bar in the diagram) are not statistically
significant. For the statistical test, we used the Wilcoxon signed-rank test with Holm
correction as the post hoc test to the Friedman test (Demšar 2006).

5.3 � Parameter setting

Adam optimization is used simultaneously with an early stopping method based on
validation loss. We use the default setting for other models. We set the default value
for the number of temporal and spatial filters to 64 and set the length of the temporal

3  https://​www.​kaggle.​com/c/​staya​lert.

https://www.kaggle.com/c/stayalert

38	 N. M. Foumani et al.

1 3

filters to 8. The width of the spatial convolutions are set equal to the input dimen-
sions (Foumani et al. 2021).

Similar to TST, the transformers based model for MTSC (Zerveas et al. 2021),
and default transformers block (Vaswani et al. 2017), we use 8 heads to capture the
varieties of attention from input series. The dimension of transformers encoding is
set to dmodel = dz = 64 and FFN in transformers block expands the input size by 4x
and later projects the 4x-wide hidden state back to the original size.

5.4 � Ablation study on position encoding

In this section, firstly we compare our proposed tAPE with the exisiting absolute
position encodings. Secondly, we compare our proposed eRPE with the existing rel-
ative position encoding methods. As a final step, we combined tAPE and eRPE into
a single framework and campare it with all possible combinations of absolute and
relative position encodings.

For this ablation study we run a single-layer transformer five times on all 30 UEA
benchmark datasets for classification. Figure 5a illustrates the critical difference dia-
gram of a single-layer transformer with different absolute position encodings. Note
in critical difference diagram methods grouped by a black line are not significantly
different from each other. In Fig. 5, None is the model without any position encod-
ing, Learn is the model with learning absolute position encoding parameters (Devlin
et al. 2018), Vanilla APE is the vanilla sinusoidal function-based encoding (Vaswani
et al. 2017), Vector is the vector-based implementation of input-dependent relative
position embedding (Huang et al. 2018), and our proposed models showed as tAPE
and eRPE.

As depicted in Fig. 5a, tAPE has the highest rank in terms of accuracy and is
significantly better than other absolute position encodings due to effectively utilising
embedding space to provide an isotropic encoding while holding the distance aware-
ness property. As expected, the model without position encoding has the least accu-
rate results, highlighting the importance of absolute position encoding in time series
classification. The vanilla APE also improves overall performance despite not being
significantly accurate than Learn APE since it has fewer parameters.

Figure 5b shows the critical difference diagram of a single-layer transformer with
different relative position encodings. As shown in this figure, eRPE has the highest
rank and is significantly better than other encodings in terms of accuracy as it has
less number of parameters which is less likely to overfit. It is not surprising that
the model without position encoding has the least accurate results, highlighting the
importance of relative position encoding and the translation equality property in

Fig. 5   Critical difference diagram of various position encoding over thirty datasets for the UEA MTSC
archive based on average accuracies: a Various absolute position encodings, b Various relative position
encodings. The lowest rank corresponds to the method that is the most accurate on average

39

1 3

Improving position encoding of transformers for multivariate…

time series classification. The input-dependent Vector encoding also improves over-
all performance and is significantly better than None model. Figure 6 shows the crit-
ical difference diagram for the various combinations of absolute and relative posi-
tion encodings. As depicted in this figure, the combination of our proposed tAPE
and eRPE is significantly more accurate than all other combinations. This shows
the high potential of our encoding methods to incorporate position information into
transformers. The combination of Learn and Vector has the least accurate results,
most likely due to the high number of parameters.

5.5 � Comparing with state‑of‑the‑art deep learning models

we compare our ConvTran with the following convolution-based and transformer-
based models for MTSC:

•	 FCN: Fully Convolutional Neural network is one of the most accurate deep neu-
ral networks for MTSC (Fawaz et al. 2019) reported in the literature.

•	 ResNet: Residual Network is also one of most accurate deep neural networks for
both univariate TSC and MTSC(Fawaz et al. 2019) reported in the literature.

•	 Disjoint-CNN: One of the accurate and lightweight CNN-based models that fac-
torize convolution kernels into disjoint temporal and spatial convolutions (Foum-
ani et al. 2021).

•	 Inception-Time: The most accurate deep learning univariate TSC and MTSC
algorithm to date. Fawaz et al. (2020); Ruiz et al. (2020).

•	 TST: A transformer-based model for MTSC (Zerveas et al. 2021).

Figure 7 shows the average rank of ConvTran on 32 MTS datasets againts all convo-
lutional-based and/or transformer-based methods. This figure shows that on average,
ConvTran has the lowest average rank and is more accurate than all other methods.
It is important to observe that ConvTran is significantly more accurate than its pre-
decessors, i.e., a convolution based model, Disjoint-CNN as well as the transformer

Fig. 6   The average rank of various combination of absolute and relative position encodings

Fig. 7   The average rank of ConvTran against all deep learning based methods on all 32 MTS datasets.
Datasets are sorted based on the number of training samples per-class. The highest accuracy for each
dataset is highlighted in bold

40	 N. M. Foumani et al.

1 3

based model, TST. This indicates the effectiveness of adding tAPE and eRPE to
transformers. Table 2 presents the classification accuracy of each method on all 32
datasets and the highest accuracy for each dataset is highlighted in bold. In this table
datasets are sorted based on the number of training samples per class. Considering
Fig. 7 and Table 2 we can conclude that ConvTran is the most accurate TSC method
on average on all 32 benchmark datasets and particularly has superior performance
in datasets in which there are enough data to train (i.e., the number of training sam-
ples per class is more than 100) and wins on all 12 datasets except one.

Table 2   Average accuracy of six deep learning based models over 32 multivariate time series datasets

DataSets Avg Train ConvTran TST IT Disjoint-CNN FCN ResNet

Ford 17,300 0.7805 0.7655 0.7628 0.7422 0.6353 0.687
HAR 8400 0.9098 0.8831 0.8775 0.8807 0.8445 0.8711
FaceDetection 2945 0.6722 0.6542 0.5885 0.5665 0.5037 0.5948
Insectwingbeat 2500 0.7132 0.6748 0.6956 0.6308 0.6004 0.65
PenDigits 750 0.9871 0.9694 0.9797 0.9708 0.9857 0.9771
ArabicDigits 660 0.9945 0.9749 0.9872 0.9859 0.9836 0.9832
LSST 176 0.6156 0.2846 0.4456 0.5559 0.5616 0.5725
FingerMovement 158 0.56 0.58 0.56 0.54 0.53 0.54
MotorImagery 139 0.56 0.48 0.53 0.49 0.55 0.52
SelfRegSCP1 134 0.918 0.86 0.8634 0.8839 0.7816 0.8362
Heartbeat 102 0.7853 0.6975 0.6248 0.717 0.678 0.7268
SelfRegSCP2 100 0.5833 0.5333 0.4722 0.5166 0.4667 0.5
PhonemeSpectra 85 0.3062 0.089 0.1586 0.2821 0.1599 0.1596
CharacterTraject 72 0.9922 0.9825 0.9881 0.9945 0.9868 0.9945
EthanolConcen 66 0.3612 0.151 0.3489 0.2775 0.3232 0.3155
HandMovement 40 0.4054 0.5405 0.3783 0.5405 0.2973 0.2838
PEMS-SF 39 0.8284 0.7572 0.8901 0.8901 0.8324 0.7399
RacketSports 38 0.8618 0.8815 0.8223 0.8355 0.8223 0.8223
Epilepsy 35 0.9855 0.9492 0.9928 0.8898 0.9928 0.9928
JapaneseVowels 30 0.9891 0.9837 0.9702 0.9756 0.973 0.9135
NATOPS 30 0.9444 0.95 0.9166 0.9277 0.8778 0.8944
EigenWorms 26 0.5934 0.4503 0.5267 0.5934 0.4198 0.4198
UWaveGesture 15 0.8906 0.8906 0.9093 0.8906 0.85 0.85
Libras 12 0.9277 0.8222 0.8722 0.8577 0.85 0.8389
ArticularyWord 11 0.9833 0.9833 0.9866 0.9866 0.98 0.98
BasicMotions 10 1 0.975 1 1 1 1
DuckDuckGeese 10 0.62 0.5 0.36 0.5 0.36 0.24
Cricket 9 1 1 0.9861 0.9772 0.9306 0.9722
Handwriting 6 0.3752 0.2752 0.3011 0.2372 0.376 0.18
ERing 6 0.9629 0.9296 0.9296 0.9111 0.9037 0.9296
AtrialFibrillation 5 0.4 0.2 0.2 0.4 0.3333 0.3333
StandWalkJump 4 0.3333 0.3333 0.4 0.3333 0.4 0.4

41

1 3

Improving position encoding of transformers for multivariate…

5.6 � Benchmark against state‑of‑the‑art models

Given the experiments on the 32 datasets show that our ConvTran model has the
best performance compared to all the other convolution and transformers based
models, we now proceed to benchmark it against the state-of-the-art MTSC mod-
els, i.e., both deep learning and non-deep learning models. We compare HC2, CIF
and ROCKET models on only 26 out of 32 MTSC benchmarking datasets (Ruiz
et al. 2020) because the other six datasets are either large in terms of training sample
or have varied series lengths that make it almost impossible to run HC2 on them.
For having detailed insights into the ConvTran performance we provide a pair-wise
comparison between our proposed model and each of these models.

As shown in Fig. 8 our proposed model mostly outperforms HC2, ROCKET,
CIF, and Inception-Time on the datasets with 100 or more training samples per class
(marked with a blue circle). However, state-of-the-art models outperform ConvTran
on datasets with few training instances such as EigenWorms with 26 train sample
per-class. Indeed, as shown in Table 2, all CNN based models fail to perform com-
petitively on the EigenWorms dataset. Note that ConvTran is the most accurate
among all CNNs on this dataset. This is due to the limitation of CNN-based models,
which cannot capture long-term dependencies in the high length time series. Adding
a transformer improves the performance, but it still requires more training samples
to perform as well as other models.

It is also interesting to observe from Fig. 8a and c that HC2 and CIF perform
better than ConvTran on the EthanolConcentration dataset. Considering that
this dataset is based on spectra of water-and-ethanol, hence interval and shapelet-
based approaches which are also components of HC2 perform better. On the other
hand, ROCKET has a few wins compared to ConvTran (Fig 8b). Most of these data-
sets where ROCKET performs better, such as the StandWalkjump dataset have
a small number of time series instances per class. For instance, StandWalkjump
has 3 classes with 12 training instances, which is 4 time series per class. This is
insufficient to train large number of parameters in deep learning models such as
ConvTran to achieve better performance. Note, as mentioned, these results are for
26 datasets only, excluding six datasets for which we could not run HC2 (which has
high computational complexity and is limited to be applied on variable-length time
series). Among excluded datasets, 4 of them are large datasets from which Con-
vTran could have benefited. Considering this, ConvTran still achieves competetive
performance compared to SOTA deep and non-deep models.

5.7 � ConvTran versus rocket efficiency and effectiveness

To provide further insight into the efficiency of our model on datasets of varying
sizes, we conducted additional experiments on the largest UEA dataset InsectWing-
Beat with 25,000 series for training. We compare the training time and test accu-
racy of our proposed ConvTran and ROCKET on random subsets of 5,000, 10,000,
15,000, 20,000, and 25,000 training samples.

42	 N. M. Foumani et al.

1 3

The results depicted in Fig. 9 demonstrate that ROCKET has faster training time
than ConvTran on smaller datasets, specifically on the 5k and 10k datasets while
achieving similar training time to ConvTran on the 15k set. However, our deep learn-
ing-based model, ConvTran, demonstrates faster training times with increasing data
quantity, as expected. Additionally, we also observed from the figure that ConvTran
is consistently more accurate than ROCKET on this dataset. We refer interested
readers to Appendix for a more comprehensive exploration of the empirical evalua-
tion of efficiency and effectiveness on all datasets. Notably, ConvTran demonstrates
faster inference time compared to ROCKET across all datasets. It is important to

Fig. 8   Pairwise comparison of ConvTran with the state of the art models: a HC2, b ROCKET, c CIF d
and Inception-Time. The datasets with 100 training samples per class or more are marked with a blue
circle, while the others are marked with a red square. The three values at the top of each figure show the
number of win/draw/loss from left to right

43

1 3

Improving position encoding of transformers for multivariate…

note that all the ConvTran experiments are performed on GPUs, whereas ROCKET
experiments are performed on a CPU (please refer to Sect. 5 for computing system
details).

6 � Conclusion

This paper studies the importance of position encoding for time series for the first
time and reviews existing absolute and relative position encoding methods in time
series classification. Based on the limitations of the current position encodings for
time series, we proposed two novel absolute and relative position encodings sep-
ecifically for time series called tAPE and eRPE, respectively. We then integrated our
two proposed position encodings into a transformer block and combine them with a
convolution layer and presented a novel deep-learning framework for multivariate
time series classification (ConvTran). Extensive experiments show that ConvTran
benefits from the position information, achieving state-of-the-art performance on
Multivariate time series classification in deep learning literature. In future, we will
study the effectiveness of our new transformer block in other transformer-based TSC
models and other down stream tasks such as anomaly detection.

Appendix

 Empirical evaluation of efficiency and effectiveness

The results presented in Table 3 demonstrate that ConvTran outperforms
ROCKET in terms of both train time and test accuracy on larger datasets with
more than 10k samples. However, ROCKET has a better train time on smaller

Fig. 9   Comparison of runtime and accuracy between ConvTran and ROCKET on UEA largest dataset
InsectWingBeat with 25,000 training samples. The figure shows the runtime of the two models on data-
sets with different sizes, and their corresponding classification accuracy

44	 N. M. Foumani et al.

1 3

Table 3   Comparison of runtime and accuracy between ConvTran and ROCKET on 32 datasets of vary-
ing sizes

To facilitate easy identification, superior performance in both accuracy and runtime is highlighted in
bold in the table. For a detailed comparison, the runtimes are shown in seconds

Datasets Train size ROCKET ConvTran

Accuracy Train time Test time Accuracy Train time Test time

HAR 41,546 0.8293 5366.34 11.51 0.9098 2367.77 1.82
Ford 28,839 0.6051 6863.81 11.91 0.7805 1619.42 0.95
InsectWingbeat 25,000 0.4182 5721.04 41.5 0.7132 1617.82 5.47
PenDigits 7494 0.984 65.26 0.99 0.9871 401.1 0.59
ArabicDigits 6599 0.9932 75.59 10.38 0.9945 376.7 0.37
FaceDetection 5890 0.5624 53.23 11.99 0.6722 413.39 0.83
PhonemeSpectra 3315 0.1894 42 37.22 0.3062 202.27 0.89
LSST 2459 0.5251 5.84 3.52 0.6156 148.07 0.48
CharacterTrajec 1422 0.9916 8.4 7.72 0.9922 89.61 0.28
FingerMovement 316 0.55 0.96 0.35 0.56 21.33 0.02
MotorImagery 278 0.56 45.39 16.26 0.56 386 0.81
ArticularyWord 275 0.9933 2.09 2.19 0.9833 19.76 0.08
JapaneseVowels 270 0.9568 0.57 0.67 0.9891 20.6 0.13
SelfRegSCP1 268 0.8601 10.2 11.25 0.918 45.54 0.27
PEMS-SF 267 0.8266 3.53 2.13 0.8284 28.08 0.09
EthanolConcen 261 0.4448 14.59 14.32 0.3612 131.58 0.69
Heartbeat 204 0.7414 4.57 4.59 0.7853 17.13 0.09
SelfRegSCP2 200 0.5833 10.78 9.65 0.5833 50.05 0.22
NATOPS 180 0.8944 0.6 0.58 0.9444 14.61 0.04
Libras 180 0.8667 0.36 0.29 0.9277 11.51 0.04
HandMovement 160 0.4189 3.31 1.7 0.4054 11.29 0.03
RacketSports 151 0.9078 0.29 0.32 0.8618 11.86 0.03
Handwriting 150 0.5376 0.81 3.92 0.3752 11.85 0.23
Epilepsy 137 0.971 0.91 0.93 0.9855 10.52 0.03
EigenWorms 128 0.8702 107.48 111.42 0.5934 225.71 0.7
UWaveGesture 120 0.9188 1.21 3.07 0.8906 10.2 0.09
Cricket 108 1 5.79 4.07 1 32.1 0.1
DuckDuckGeese 50 0.5 1.59 1.76 0.62 9.46 0.05
BasicMotions 40 1 0.25 0.27 1 4.45 0.01
ERing 30 0.9851 0.17 0.7 0.9629 3.17 0.06
AtrialFibrillation 15 0.2 0.39 0.41 0.4 1.99 0.01
StandWalkJump 12 0.5333 1.52 1.65 0.3333 14.56 0.09

datasets. Nevertheless, even on small datasets, ConvTran achieves acceptable
accuracy within a reasonable train time. It is worth noting that the performance
of ConvTran improves as the dataset size increases, indicating that our model is
suitable for scaling to larger datasets.

45

1 3

Improving position encoding of transformers for multivariate…

ConvTran versus non‑deep learning SOTA models

Table 4 compares the performance of ConvTran against three non-deep learn-
ing models - ROCKET, HC2, and CIF - on different datasets with varying training
sample sizes. The table presents the accuracy of each model on each dataset, with

Table 4   Comparison of ConvTran and non-deep learning models (ROCKET, HC2, CIF) on varying
training sample sizes

Bold Face Font Indicates Superior Accuracy, ’-’ Denotes Non-Runnable Methods due to Computation
Complexity or Inability to Handle Various Length Series

Datasets Train Size ConvTran ROCKET HC2 CIF

HAR 41,546 0.9098 0.8293 – –
Ford 28,839 0.7805 0.6051 – –
InsectWingbeat 25,000 0.7132 0.4182 – –
PenDigits 7494 0.9871 0.984 0.9791 0.9674
SpokenArabicDigits 6599 0.9945 0.9932 – –
FaceDetection 5890 0.6722 0.5624 0.6603 0.6271
PhonemeSpectra 3315 0.3062 0.1894 0.2905 0.2654
LSST 2459 0.6156 0.5251 0.6427 0.5726
CharacterTrajectories 1422 0.9922 0.9916 – –
FingerMovements 316 0.56 0.55 0.53 0.52
MotorImagery 278 0.56 0.56 0.54 0.5
ArticularyWordRecognition 275 0.9833 0.9933 0.9933 0.9833
JapaneseVowels 270 0.9891 0.9568 – –
SelfRegulationSCP1 268 0.918 0.8601 0.8908 0.8601
PEMS-SF 267 0.8284 0.8266 1 1
EthanolConcentration 261 0.3612 0.346 0.7719 0.7338
Heartbeat 204 0.7853 0.678 0.7317 0.7805
SelfRegulationSCP2 200 0.5833 0.5833 0.5 0.5
NATOPS 180 0.9444 0.8944 0.8944 0.8556
Libras 180 0.9277 0.8667 0.9333 0.9111
HandMovementDirection 160 0.4054 0.4189 0.473 0.5946
RacketSports 151 0.8618 0.9078 0.9078 0.8816
Handwriting 150 0.3752 0.5376 0.5482 0.3565
Epilepsy 137 0.9855 0.971 1 0.9855
EigenWorms 128 0.5934 0.8702 0.9466 0.916
UWaveGestureLibrary 120 0.8906 0.9188 0.9281 0.925
Cricket 108 1 1 1 0.9861
DuckDuckGeese 50 0.62 0.5 0.56 0.44
BasicMotions 40 1 1 1 1
ERing 30 0.9629 0.9593 0.9889 0.9815
AtrialFibrillation 15 0.4 0.1333 0.2667 0.3333
StandWalkJump 12 0.3333 0.5333 0.4667 0.4
Wins or Draw – 19 7 13 4

46	 N. M. Foumani et al.

1 3

boldface indicating superior accuracy. “-” denotes non-runnable methods, either due
to computation complexity or inability to handle various length series.

Overall, ConvTran outperforms the non-deep learning models on 19 out of 32
datasets (for the HC2 and CIF models, we only have results for 26 datasets, and
ConvTran outperforms the other models in 13 out of the 26). It performs better on
datasets with larger training sample sizes, such as InsectWingBeat, while other mod-
els perform better on datasets with fewer training samples, such as StandWalkJump,
which only has 12 training samples. Additionally, the table shows that some of the
non-deep learning models failed to handle specific datasets due to either computa-
tional complexity or the inability to handle varying input series lengths. For exam-
ple, we were not able to run HC2 and CIF on the larger HAR, Ford, and InsectWing-
beat datasets due to computational complexity. They were also not designed to
handle varying length time series such as the CharacterTrajectories, SpokenArabic-
Digits, and JapaneseVowels datasets.

Funding  Open Access funding enabled and organized by CAUL and its Member Institutions.

Declarations 

Conflict of interest  The authors have no competing interests to declare that are relevant to the content of
this article.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

Bagnall A, Lines J, Bostrom A, Large J, Keogh E (2017) The great time series classification bake off:
a review and experimental evaluation of recent algorithmic advances. Data Min Knowl Disc
31(3):606–660

Bagnall A, Dau HA, Lines J, Flynn M, Large J, Bostrom A, Southam P, Keogh E (2018) The UEA multi-
variate time series classification archive. arXiv preprint arXiv:​1811.​00075

Bagnall A, Flynn M, Large J, Lines J, Middlehurst M (2020) On the usage and performance of the hier-
archical vote collective of transformation-based ensembles version 1.0 (hive-cote v1. 0). In: Interna-
tional workshop on advanced analytics and learning on temporal data, pp 3–18

Dai Z, Liu H, Le QV, Tan M (2021) Coatnet: marrying convolution and attention for all data sizes. Adv
Neural Inf Process Syst 34:3965–3977

Dempster A, Petitjean F, Webb GI (2020) Rocket: exceptionally fast and accurate time series classifica-
tion using random convolutional kernels. Data Min Knowl Disc 34(5):1454–1495

Dempster A, Schmidt DF, Webb GI (2021) Minirocket: A very fast (almost) deterministic transform for
time series classification. In: SIGKDD conference on knowledge discovery and data mining, pp
248–257

Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1811.00075

47

1 3

Improving position encoding of transformers for multivariate…

Devlin J, Chang MW, Lee K, Toutanova K (2018) Bert: Pre-training of deep bidirectional transformers
for language understanding. arXiv preprint arXiv:​1810.​04805

Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Minderer
M, Heigold , Gelly, S, et al (2020) An image is worth 16x16 words: Transformers for image recog-
nition at scale. arXiv preprint arXiv:​2010.​11929

Dufter P, Schmitt M, Schütze H (2022) Position information in transformers: an overview. Comput Lin-
guist 48(3):733–763

Fawaz HI, Forestier G, Weber J, Idoumghar L, Muller P-A (2019) Deep learning for time series classifi-
cation: a review. Data Min Knowl Disc 33(4):917–963

Fawaz HI, Lucas B, Forestier G, Pelletier C, Schmidt DF, Weber J, Webb GI, Idoumghar L, Muller P-A,
Petitjean F (2020) Inceptiontime: finding alexnet for time series classification. Data Min Knowl
Disc 34(6):1936–1962

Foumani NM, Miller L, Tan CW, Webb GI, Forestier G, Salehi M (2023) Deep learning for time series
classification and extrinsic regression: a current survey. arXiv preprint arXiv:​2302.​02515

Foumani SNM, Tan CW, Salehi M (2021) Disjoint-cnn for multivariate time series classification. In:
2021 International Conference on Data Mining Workshops, pp. 760–769

Hao Y, Cao H (2020) A new attention mechanism to classify multivariate time series. In: International
joint conference on artificial intelligence

Huang CZA, Vaswani A, Uszkoreit J, Shazeer N, Simon I, Hawthorne C, Dai AM, Hoffman MD, Din-
culescu M, Eck D (2018) Music transformer. arXiv preprint arXiv:​1809.​04281

Huang Z, Liang D, Xu P, Xiang B (2020) Improve transformer models with better relative position
embeddings. arXiv preprint arXiv:​2009.​13658

Karim F, Majumdar S, Darabi H, Harford S (2019) Multivariate lstm-fcns for time series classification.
Neural Netw 116:237–245

Kostas D, Aroca-Ouellette S, Rudzicz F (2021) Bendr: using transformers and a contrastive self-super-
vised learning task to learn from massive amounts of eeg data. Front Hum Neurosci 15

Liang Y, Cao R, Zheng J, Ren J, Gao L (2021) Learning to remove: towards isotropic pre-trained bert
embedding. In: International conference on artificial neural networks, pp 448–459

Liu M, Ren S, Ma S, Jiao J, Chen Y, Wang Z, Song W (2021) Gated transformer networks for multivari-
ate time series classification. arXiv preprint arXiv:​2103.​14438

Lockhart JW, Weiss GM, Xue JC, Gallagher ST, Grosner AB, Pulickal TT (2011) Design considerations
for the wisdm smart phone-based sensor mining architecture. In: International workshop on knowl-
edge discovery from sensor data, pp 25–33

Luong MT, Pham H, Manning CD (2015) Effective approaches to attention-based neural machine transla-
tion. arXiv preprint arXiv:​1508.​04025

Middlehurst M, Large J, Flynn M, Lines J, Bostrom A, Bagnall A (2021) Hive-cote 2.0: a new meta
ensemble for time series classification. Mach Learn 110(11):3211–3243

Middlehurst M, Large J, Bagnall A (2020) The canonical interval forest (cif) classifier for time series
classification. In: 2020 IEEE international conference on big data, pp 188–195

Ruiz AP, Flynn M, Large J, Middlehurst M, Bagnall A (2020) The great multivariate time series classifi-
cation bake off: a review and experimental evaluation of recent algorithmic advances. Data Mining
and Knowledge Discovery, pp 1–49

Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC (2018) Mobilenetv2: Inverted residuals and lin-
ear bottlenecks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520

Shaw P, Uszkoreit J, Vaswani A (2018) Self-attention with relative position representations. arXiv pre-
print arXiv:​1803.​02155

Tan CW, Dempster A, Bergmeir C, Webb GI (2021) Multirocket: effective summary statistics for convo-
lutional outputs in time series classification. arXiv e-prints, 2102

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I (2017) Atten-
tion is all you need. Adv Neural Inf Process Syst 30

Wang Z, Yan W, Oates T (2017) Time series classification from scratch with deep neural networks: a
strong baseline. In: 2017 International joint conference on neural networks, pp 1578–1585

Wu K, Peng H, Chen M, Fu J, Chao H (2021) Rethinking and improving relative position encoding for
vision transformer. In: IEEE/CVF international conference on computer vision, pp 10033–10041

Yang CHH, Tsai YY, Chen PY (2021) Voice2series: Reprogramming acoustic models for time series
classification. In: International Conference on Machine Learning, pp. 11808–11819

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/2302.02515
http://arxiv.org/abs/1809.04281
http://arxiv.org/abs/2009.13658
http://arxiv.org/abs/2103.14438
http://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1803.02155

48	 N. M. Foumani et al.

1 3

Zerveas G, Jayaraman S, Patel D, Bhamidipaty A, Eickhoff C (2021) A transformer-based framework for
multivariate time series representation learning. In: SIGKDD conference on knowledge discovery
and data mining, pp 2114–2124

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Navid Mohammadi Foumani1  · Chang Wei Tan1 · Geoffrey I. Webb1 ·
Mahsa Salehi1

 *	 Navid Mohammadi Foumani
	 navid.foumani@monash.edu.com

	 Chang Wei Tan
	 chang.tan@monash.edu

	 Geoffrey I. Webb
	 geoff.webb@monash.edu

	 Mahsa Salehi
	 mahsa.salehi@monash.edu

1	 Department of Data Science and Artificial Intelligence, Monash University, Melbourne, VIC,
Australia

http://orcid.org/0000-0003-2475-6040

	Improving position encoding of transformers for multivariate time series classification
	Abstract
	1 Introduction
	2 Related work
	2.1 State-of-the-art MTSC algorithms
	2.2 CNN based models
	2.3 Attention based models

	3 Background
	3.1 Problem description and notation
	3.2 Self-attention
	3.3 Position encoding
	3.3.1 Absolute position encoding
	3.3.2 Relative position encoding

	4 Position encoding of transformers for MTSC
	4.1 Time absolute position encoding (tAPE)
	4.2 Efficient relative position encoding (eRPE)
	4.2.1 Efficient implementation: indexing

	4.3 ConvTran

	5 Experimental results
	5.1 Datasets
	5.2 Evaluation procedure
	5.3 Parameter setting
	5.4 Ablation study on position encoding
	5.5 Comparing with state-of-the-art deep learning models
	5.6 Benchmark against state-of-the-art models
	5.7 ConvTran versus rocket efficiency and effectiveness

	6 Conclusion
	Appendix
	 Empirical evaluation of efficiency and effectiveness
	ConvTran versus non-deep learning SOTA models

	References

