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Abstract
Transformers have demonstrated outstanding performance in many applications of 
deep learning. When applied to time series data, transformers require effective posi-
tion encoding to capture the ordering of the time series data. The efficacy of position 
encoding in time series analysis is not well-studied and remains controversial, e.g., 
whether it is better to inject absolute position encoding or relative position encoding, 
or a combination of them. In order to clarify this, we first review existing absolute 
and relative position encoding methods when applied in time series classification. 
We then proposed a new absolute position encoding method dedicated to time series 
data called time Absolute Position Encoding (tAPE). Our new method incorporates 
the series length and input embedding dimension in absolute position encoding. 
Additionally, we propose computationally Efficient implementation of Relative Posi-
tion Encoding (eRPE) to improve generalisability for time series. We then propose a 
novel multivariate time series classification model combining tAPE/eRPE and con-
volution-based input encoding named ConvTran to improve the position and data 
embedding of time series data. The proposed absolute and relative position encod-
ing methods are simple and efficient. They can be easily integrated into transformer 
blocks and used for downstream tasks such as forecasting, extrinsic regression, and 
anomaly detection. Extensive experiments on 32 multivariate time-series datasets 
show that our model is significantly more accurate than state-of-the-art convolution 
and transformer-based models. Code and models are open-sourced at https://​github.​
com/​Navid​fouma​ni/​ConvT​ran.
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1  Introduction

A time series is a time-dependent quantity recorded over time. Time series data 
can be univariate, where only a sequence of values for one variable is collected; 
or multivariate, where data are collected on multiple variables. There are many 
applications that require time series analysis, such as human activity recognition 
(Lockhart et  al. 2011), diagnosis based on electrocardiogram (ECG), electroen-
cephalogram (EEG), and systems monitoring problems (Bagnall eta al. 2018). 
Many of these applications are inherently multivariate in nature—various sensors 
are used to measure human’s activities; EEGs use a set of electrodes (channels) 
to measure brain signals at different locations of the brain. Hence, multivariate 
time-series analysis methods such as classification and segmentation are of great 
current interest (Bagnall et al. 2017; Fawaz et al. 2019; Ruiz et al. 2020).

Convolutional neural networks (CNNs) have been widely employed in time 
series classification (Fawaz et  al. 2019; Ruiz et  al. 2020). Many studies have 
shown that convolution layers tend to have strong generalization with fast conver-
gence due to their strong inductive bias (Dai et al. 2021). While CNN-based mod-
els are excellent for capturing local temporal/spatial correlations, these models 
cannot effectively capture and utilize long-range dependencies. Also, they only 
consider the local order of data points in a time series rather than the order of all 
data points globally. Due to this, many recent studies have used recurrent neural 
networks (RNN) such as LSTMs to capture this information (Karim et al. 2019). 
However, RNN-based models are computationally expensive, and their capability 
in capturing long-range dependencies are limited (Vaswani et al. 2017; Hao and 
Cao 2020).

On the other hand, attention models can capture long-range dependencies, 
and their broader receptive fields provide more contextual information, which 
can improve the models’ learning capacity. Not surprisingly, with the success 
of attention models in natural language processing (Vaswani et al. 2017; Devlin 
et al. 2018), many previous studies have attempted to bring the power of attention 
models into other domains such as computer vision (Dosovitskiy et al. 2020) and 
time series analysis (Hao and Cao 2020; Zerveas et al. 2021; Kostas et al. 2021).

The transformer’s core is self-attention (Vaswani et al. 2017), which is capable 
of modeling the relationship of input time series. Self-attention, however, has a 
limitation - it cannot capture the ordering of input series. Hence, adding explicit 
representations of position information is especially important for the attention 
since the model is otherwise entirely invariant to input order, which is undesira-
ble for modeling sequential data. This limitation is even worse in time series data 
since, unlike image and text, which use Word2Vec-like embedding, time series 
data has less informative data context.

There are two main methods for encoding positional information in transform-
ers: absolute and relative. Absolute methods, such as those used in Vaswani et al. 
(2017); Devlin et al. (2018), assign a unique encoding vector to each position in 
the input sequence based on its absolute position in the sequence. These encoding 
vectors are combined with the input encoding to provide positional information 
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to the model. On the other hand, relative methods (Shaw et  al. 2018; Huang 
et al. 2018) encode the relative distance between two elements in the sequence, 
rather than their absolute positions. The model learns to compute the relative dis-
tances between any two positions during training and looks up the corresponding 
embedding vectors in a pre-defined table to obtain the relative position embed-
dings. These embeddings are used to directly modify the attention matrix. Posi-
tion encoding has been verified to be effective in natural language processing and 
computer vision (Dufter et  al. 2022). However, in time series classification, the 
efficacy is still unclear.

The original absolute position encoding is proposed for language modeling, 
where high embedding dimensions like 512 or 1024 are usually used for position 
embedding of input with a length of 512 (Vaswani et al. 2017). But, for time series 
tasks, embedding dimensions are relatively low, and the series might have a variety 
of lengths (ranging from very low to very high). In this paper, for the first time, 
we study the efficiency (i.e. how well resources are utilized) and the effectiveness 
(i.e. how well the encodings achieve their intended purpose) of existing absolute 
and relative position encodings for time series data. We then show that the existing 
absolute position encodings are ineffective with time series data. We introduce a 
novel time series-specific absolute position encoding method that takes into account 
the series embedding dimension and length. We show that our new absolute position 
encoding outperforms the existing absolute position encodings in time series clas-
sification tasks.

Additionally, since the existing relative position encodings have large mem-
ory overhead and they require a large number of parameters to be trained, in time 
series data it is very likely they overfit. We propose a novel computationally effi-
cient implementation of relative position encoding to improve their generalisabil-
ity for time series. We show that our new relative position encoding outperforms 
the existing relative position encodings in time series classification tasks. We then 
propose a novel time series classification model based on the combination of our 
proposed absolute/relative position encodings named ConvTran to improve the 
position embedding of time series data. We further enriched the data embedding of 
time series using CNN rather than linear encoding. Our extensive experiments on 
32 benchmark datasets show ConvTran is significantly more accurate than the pre-
vious state-of-the-art in deep learning models for time series classification (TSC). 
We believe our novel position encodings can boost the performance of other trans-
former-based TSC models.

2 � Related work

In this section, we briefly discuss the state-of-the-art multivariate time series clas-
sification (MTSC) algorithms, as well as CNN and attention-based models that have 
been applied to MTSC tasks. We refer interested readers to the corresponding papers 
or the recent survey on deep learning for time series classification (Foumani et al. 
2023) for a more detailed description of these algorithms and models.
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2.1 � State‑of‑the‑art MTSC algorithms

Many MTSC algorithms have been proposed in recent years (Bagnall eta al. 2018; 
Ruiz et  al. 2020; Fawaz et  al. 2019), where many of them are adapted from their 
univariate version. A recent survey (Ruiz et al. 2020) evaluated most of the existing 
MTSC algorithms on the UEA MTS archive, that consists of 26 equal-length time 
series datasets. This benchmark includes a few deep learning as well as non-deep 
learning approaches. This survey concluded that there are four main state of the art 
methods. These are ROCKET (Dempster et al. 2020), HIVE-COTE (Bagnall et al. 
2020), CIF (Middlehurst et al. 2020) and Inception-Time (Fawaz et al. 2020).

ROCKET (Dempster et  al. 2020) is a scalable TSC algorithm that uses 10,000 
random convolution kernels to extract 2 features from each input time series, creat-
ing 20,000 features for each time series. Then a linear model is used for classifi-
cation, such as ridge or logistic regression. Mini-ROCKET (Dempster et al. 2021) 
is an extension of ROCKET with some slight modifications to the feature extrac-
tion process. It is significantly more scalable than ROCKET and uses only 10,000 
features without compromising accuracy. Multi-ROCKET (Tan et al. 2021) extends 
Mini-ROCKET by leveraging the first derivative of the series as well as extracting 4 
features per kernel. It is significantly more accurate than both ROCKET and Mini-
ROCKET on 128 univariate TSC tasks. Note that neither Mini-ROCKET nor Multi-
ROCKET has previously been benchmarked on the UEA MTS archive. The adapta-
tion for multivariate time series for ROCKET, Mini-ROCKET and Multi-ROCKET 
is done by randomly selecting different channels of the time series for each convolu-
tional kernel.

The Canonical Interval Forest (CIF) (Middlehurst et al. 2020) is an interval based 
classifier. It first extracts 25 features from random intervals of the time series and 
builds a time series forest with 500 trees. It is an algorithm initially designed for uni-
variate TSC and was adapted to multivariate TSC by expanding the random interval 
search space, where an interval is defined as a random dimension of the time series.

The Hierarchical Vote Collective of Transformation-based Ensembles (HIVE-
COTE) is a meta ensemble for TSC. It forms its ensemble from classifiers of mul-
tiple domains. Since its introduction in 2016, HIVE-COTE has gone through a few 
iterations. The version used in the MTSC benchmark (Ruiz et al. 2020) comprised 
of 4 ensemble members—Shapelet Transform Classifier (STC), Time Series For-
est (TSF), Contractable Bag of Symbolic Fourier Approximation Symbols (CBOSS) 
and Random Interval Spectral Ensemble (RISE), each of them being the state of 
the art in their respective domains. Since these algorithms were designed for uni-
variate time series, the adaption for multivariate time series is not easy. Hence, they 
were adapted for multivariate time series through ensembling over all the models 
built on each dimension independently. This means that they are computationally 
very expensive especially when the number of channels is large. Recently, the lat-
est HIVE-COTE version, HIVE-COTEv2.0 (HC2) was proposed (Middlehurst et al. 
2011). It is currently the most accurate classifier for both univariate and multivariate 
TSC tasks (Middlehurst et al. 2011). Despite being the most accurate on 26 bench-
mark MTSC datasets, that are relatively small, HC2 is not scalable to either large 
datasets with long time series or datasets with many channels.
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2.2 � CNN based models

CNNs are popular deep learning architectures for MTSC due to their ability to 
extract latent features from the time series data efficiently. Fully Convolutional Neu-
ral Network (FCN) and Residual Network (ResNet) were proposed in Wang et al. 
(2017) and evaluated in Fawaz et al. (2019). FCN is a simple convolutional network 
that does not contain any pooling layers in convolution blocks. The output from the 
last convolution block is averaged with a Global Average Pooling (GAP) layer and 
passed to a final softmax classifier. ResNet is one of the deepest architectures for 
MTSC (and TSC in general), containing three residual blocks followed by a GAP 
layer and a softmax classifier. It uses residual connections between blocks to reduce 
the vanishing gradient effect in deep learning models. ResNet was one of the most 
accurate deep learning TSC architectures on 85 univariate TSC datasets (Fawaz 
et al. 2019; Bagnall et al. 2017). It was also proven to be an accurate deep learning 
model for MTSC (Fawaz et al. 2019; Ruiz et al. 2020).

Inception-Time is the current state-of-the-art deep learning model for both uni-
variate TSC and MTSC (Fawaz et al. 2020; Ruiz et al. 2020). Inception-Time is an 
ensemble of five randomly initialised inception network models that each consists 
of two blocks of inception modules. Each inception module first reduces the dimen-
sionality of a multivariate time series using a bottleneck layer with length and stride 
of 1 while maintaining the same length. Then, 1D convolutions of different lengths 
are applied to the output of the bottleneck layer to extract patterns at different sizes. 
A max pooling layer followed by a bottleneck layer are also applied to the original 
time series to increase the robustness of the model to small perturbations. Resid-
ual connections are also used between each inception block to reduce the vanishing 
gradient effect. The output of the second inception block is passed to a GAP layer 
before feeding into a softmax classifier.

Recently, Disjoint-CNN (Foumani et  al. 2021) shows that factorization of 1D 
convolution kernels into disjoint temporal and spatial components yields accuracy 
improvements with almost no additional computational cost. Applying disjoint tem-
poral convolution and then spatial convolution behaves similarly to the “Inverted 
Bottleneck” (Sandler et al. 2018). Like the Inverted Bottleneck, the temporal convo-
lutions expand the number of input channels, and spatial convolutions later project 
the expanded hidden state back to the original size to capture the temporal and spa-
tial interaction.

2.3 � Attention based models

Self-attention has been demonstrated to be effective in various natural language pro-
cessing tasks due to its higher capacity and superior ability to capture long-term 
dependencies in text (Vaswani et al. 2017). Recently, it has also been shown to be 
effective for time series classification tasks. Cross Attention Stabilized Fully Con-
volutional Neural Network (CA-SFCN) (Hao and Cao 2020) has applied the self-
attention mechanism to leverage the long-term dependencies for the MTSC task. 
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CA-SFCN combines FCN and two types of self-attention—temporal attention 
(TA) and variable attention (VA), which interact to capture both long-range tem-
poral dependencies and interactions between variables. With evidence that multi-
headed attention dominates self-attention, many models try to adapt it to the MTSC 
domain. Gated Transformer Networks (GTN) (Liu et al. 2021), similar to CA-SFCN, 
use two-tower multi-headed attention to capture discriminative information from the 
input series. They merge the output of two towers using a learnable matrix named 
gating.

Inspired by the development of transformer-based self-supervised learning like 
BERT (Kostas et al. 2021), many models try to adopt the same structure for time 
series classification (Kostas et al. 2021; Zerveas et al. 2021). BErt-inspired Neural 
Data Representations (BENDER) replace the word2vec encoder in BERT with the 
wav2vec to leverage the same structure for time series data. BENDER shows that if 
we have a massive amount of EEG data, the pre-trained model can be used effec-
tively to model EEG sequences recorded with differing hardware. Similarly, Voice-
to-Series with Transformer-based Attention (V2Sa) uses a large-scale pre-trained 
speech processing model for downstream problems like time series classification 
problems (Yang et al. 2011). Recently, a Transformer-based Framework (TST) was 
also introduced to adopt vanilla transformers to the multivariate time series domain 
(Zerveas et al. 2021). TST uses only the encoder part of transformers and pre-train it 
with proportionally masked data in an unsupervised manner.

3 � Background

This section provides a basic definition of self-attention and an overview of cur-
rent position encoding models. Note that position encoding refers to the method that 
integrates position information, e.g., absolute or relative. Position embedding refers 
to a numerical vector associated with position encoding.

3.1 � Problem description and notation

Given a time series dataset X with n samples, X =
{
�
�
, �

�
, ..., �

�

}
 , where 

�
�
=
{
x1, x2, ..., xL

}
 is a dx-dimensional time series and L is the length of time series, 

�
�
∈ ℝ

L×dx , and the set of relevant response labels Y =
{
y1, y2, ..., yn

}
 , yt ∈ {1, ..., c} 

and c is the number of classes. The aim is to train a neural network classifier to map 
set X to Y.

3.2 � Self‑attention

The first attention mechanisms were proposed in the context of natural language pro-
cessing (Luong et al. 2015). While they still relied on a recurrent neural network at 
its core, Vaswani et al. (2017) proposed a transformer model that relies on attention 
only. Transformers map a query and a set of key-value pairs to an output. More spe-
cifically, for an input series, �

�
=
{
x1, x2, ..., xL

}
 , self-attention computes an output 
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series �
�
=
{
z1, z2, ..., zL

}
 where zi ∈ ℝ

dz and is computed as a weighted sum of input 
elements:

Each coefficient weight �i,j is calculated using softmax function:

where eij is an attention weight from positions j to i and is computed using a scaled 
dot-product:

The projections WQ,WK ,WV ∈ ℝ
dx×dz are parameter matrices and are unique per 

layer. Instead of computing self-attention once, Multi-Head Attention (MHA) (Vas-
wani et al. 2017) does so multiple times in parallel, i.e., employing h attention heads. 
A linear transformation is applied to the attention head outputs and concatenated 
into the standard dimensions.

3.3 � Position encoding

The self-attention layer cannot preserve time series positional information in the 
transformer architecture since the transformer contains no recurrence and convolu-
tion. However, the local positional information, i.e., the ordering of time series, is 
essential. The practical approach in transformer-based methods involves using mul-
tiple encoding (Huang et al. 2020; Wu et al. 2021; Dufter et al. 2022), such as abso-
lute or relative positional encoding, to enhance the temporal context of time-series 
inputs.

3.3.1 � Absolute position encoding

The original self-attention considers the absolute position (Vaswani et al. 2017), and 
adds the absolute positional embedding P = (p1, ..., pL) to the input embedding x as:

where the position embedding pi ∈ ℝ
dmodel . There are several options for absolute 

positional encodings, including the fixed encodings by sine and cosine functions 
with different frequencies called VanillaAPE and the learnable encodings through 
trainable parameters (we refer it as Learn method) (Vaswani et al. 2017; Devlin et al. 
2018).

(1)zi =

L∑
j=1

�i,j(xjW
V )

(2)�i,j =
exp(eij)∑L

k=1
exp(eik)

(3)eij =
(xiW

Q)(xjW
K)T

√
dz

(4)xi = xi + pi
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By using sine and cosine for fixed position encoding, the dmodel-dimensional embed-
dings of ith time step position can be represented by the following equation:

where k is in the range of [0, dmodel
2

] , dmodel is the embedding dimension and �k is the 
frequency term. Variations in �k ensure that no positions < 104 are assigned similar 
embeddings.

3.3.2 � Relative position encoding

In addition to the absolute position embedding, recent studies in natural language pro-
cessing and computer vision also consider the pairwise relationships between input ele-
ments, i.e., relative position Shaw et  al. (2018); Huang et  al. (2018). This type of 
method encodes the relative distance between the input elements xi and xj into vectors 
p
Q

i,j
, pK

i,j
, pV

i,j
∈ ℝ

dz . The encoding vectors are embedded into the self-attention module, 
which modifies Eqs. (1) and (3) as

By doing so, the pairwise positional relation is trained during transformer training.
Shaw et  al. (2018) proposed the first relative position encoding for self-attention. 

Relative positional information is supplied to the model on two levels: values and keys. 
First, relative positional information is included in the model as an additional compo-
nent to the keys. The softmax operation Eq. (3) remains unchanged from vanilla self-
attention. Lastly, relative positional information is resupplied as a sub-component of 
the values matrix. Besides, the authors believe that relative position information is not 
useful beyond a certain distance, so they introduced a clip function to reduce the num-
ber of parameters. Encoding is formulated as follows to consider the distance between 
inputs i and j in computing their attention:

(5)pi(2k) = sin i�k pi(2k + 1) = cos i�k �k = 10000−2k∕dmodel

(6)zi =

L∑
j=1

�i,j(xjW
V + pV

i,j
)

(7)eij =
(xiW

Q + p
Q

i,j
)(xjW

K + pK
i,j
)T

√
dz

(8)eij =
(xiW

Q)(xjW
K + pK

clip(i−j,k)
)T

√
dz

(9)zi =

L∑
j=1

�i,j(xjW
V + pV

clip(i−j,k)
)

(10)clip(x, k) = max(−k,min(k, x))
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Where pV and pK are the trainable weights of relative position encoding on values 
and keys, respectively. PV = (pV

−k
, ..., pV

k
) and PK = (pK

−k
, ..., pK

k
) where pV

i
, pK

i
∈ ℝ

dz . 
The scalar k is the maximum relative distance.

However, this technique (Shaw) is not memory efficient. As can be seen in Eq. 8, 
it requires O(L2d) memory due to the additional relative position encoding. Huang 
et  al. (2018) introduced a new method (in this paper it is called Vector method) 
of computing relative positional encoding that reduces its intermediate memory 
requirement from O(L2d) to O(Ld) using skewing operation (Huang et  al. 2018). 
According to this paper, the authors also dropped the additional relative positional 
embedding corresponding to the value term and focused only on the key component. 
Encoding is formulated as follows:

Where Skew procedure use padding, reshaping and slicing to reduce the memory 
requirement (Huang et al. 2018). In Table 1 we provided a summary of the parame-
ter sizes, memory, and computation complexities of various position encoding meth-
ods (including our proposed ones in this paper) for comparison purposes.

4 � Position encoding of transformers for MTSC

We design our position encoding methods to examine several aspects which are not 
well studied in prior transformers-based time series classification work (see the anal-
ysis in Sec 5.4).

As a first step, we propose a new absolute position encoding method dedicated 
to time series data called time Absolute Position Encoding (tAPE). tAPE incorpo-
rates the series length and input embedding dimension in absolute position encod-
ing. We then introduce efficient Relative Position Embedding (eRPE) to explore the 
independent encoding of positions from the input encodings. After that, to study the 
integration of eRPE into a transformer model, we compare different integration of 
position information to the attention matrix; finally, we provide an efficient imple-
mentation for our methods.

4.1 � Time absolute position encoding (tAPE)

Absolute position encoding was originally proposed for language modeling, where 
high embedding dimensions like 512 or 1024 are usually used for position embed-
ding of input with a length of 512 (Vaswani et al. 2017). Figure 1a shows the dot 
product between two sinusoidal positional embedding whose distance is K using 
Eq.  (5) with various embedding dimensions. Clearly, higher embedding dimen-
sions, such as 512 (red thick line), can better reflect the similarity between various 

(11)eij =
(xiW

Q)(xjW
K)T + Srel

√
dz

(12)Srel = Skew(WQP)
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positions. As shown in Fig. 1a using 64 or 128 as embedding dimensions (thin blue 
and orange lines, respectively), the dot product does not always decrease as the dis-
tance between two positions increases. We call this the distance awareness property, 
which disappears when lower embedding dimensions, such as 64, are used for posi-
tion encoding.

While high embedding dimensions show a desirable monotonous decrease trend 
when the distance between two positions increases (see red line in Fig. 1a), they are 
not suitable for encoding time series datasets. The reason is that most time series 
datasets have relatively low input dimensionality (e.g., 28 out of 32 datasets have 
less than 64 input dimension), and higher embedding dimensions may yield inferior 
model throughput due to extra parameters (increasing the chances of overfitting the 
model).

On the other hand, in low embedding dimensions, the similarity value between 
two random embedding vectors is high, making the embedding vectors very similar 
to each other. In other words, we cannot fully utilise the embedding vector space 
to differentiate between two positions. Figure 1b depicts the embedding vectors of 
the first and last position embedding for the embedding dimension equals 128 and 
length equals 30. In this figure, almost half of the embedding vectors are the same. 
This is called the anisotropic phenomenon (Liang et al. 2021). The anisotropic phe-
nomenon makes the position encoding to be ineffective in low embedding dimen-
sions as embedding vectors become similar to each other as it is shown in Fig. 1a 
(the blue line).

Hence, we require a position embedding for time series that has distance aware-
ness while simultaneously being isotropic. In order to incorporate distance aware-
ness, we propose to use the time series length in Eq. (5). In this equation, �k refers 
to the frequency of the sine and cosine functions from which the embedding vectors 
are generated. Without our modification, as series length L increases the dot product 
of positions becomes ever less regular, resulting in a loss of distance awareness. By 
incorporating the length parameter in the frequency terms in both sine and cosine 
functions in Eq. (5), the dot product remains smoother with a monotonous trend.

Fig. 1   Sinusoidal absolute position encoding. a The dot product of two sinusoidal position embeddings 
whose distance is K with various embedding dimensions. b 128 dimension sinusoidal positional encod-
ing curves for positions 1 and 30 in a series of length 30
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As the embedding dimension dmodel value increases, it is more likely the vector 
embeddings are sampled from low-frequency sinusoidal functions, which results in 
the anisotropic phenomenon. To alleviate this, we incorporate the dmodel parameter 
into the frequency term in both sine and cosine functions in Eq. (5). We propose a 
novel absolute position encoding for time series called tAPE in which �new

k
 takes 

into account the input embedding dimension and length as follows:

where L is the series length and dmodel shows the embedding dimension.
Our new tAPE position encoding is compared with a vanilla sinusoidal posi-

tion encoding to provide further illustration. Using dmodel = 128 dimension vector, 
Fig 2a–b show the dot product (similarity) of two positions with a distance of K for 
series with of length L = 1000 and L = 30 respectively. As depicted in Fig 2a, in 
vanilla APE, only the closest positions in the series have a monotonous decreasing 
trend, and approximately from a distance 50 onwards ( |K| > 50 ) on both sides, the 
decreasing similarity trend becomes less apparent as the distance between two posi-
tions in the time series increases. However, tAPE has a more stable decreasing trend 
and more steadily reflects the distance between two positions. Meanwhile, Fig 2b 
shows the embedding vectors of tAPE are less similar to each other compared to 
vanilla APE. This is due to better utilising the embedding vector space to differenti-
ate between two positions as we discussed earlier.

Note in Eq. (13) our �new
k

 will obviously be equal to the �k in vanilla APE when 
dmodel = L and the encodings of tAPE and vanilla APE will be the same. However, 
if dmodel ≠ L , tAPE will encode the positions in series more effectively than vanilla 
APE due to the two properties we discussed earlier. Figure 2a shows a case in which 
dmodel < L and Fig 2b shows a case in which dmodel > L and in both cases tAPE uti-
lises embedding space to provide an isotropic encoding, while holding the distance 

(13)
�k = 10000−2k∕dmodel

�
new
k

=
�k × dmodel

L

Fig. 2   Comparing dot product between two position whose distance is K in a time series using tAPE and 
vanilla APE with d

x
= 128 dimension vector for series of length a L = 1000 b L = 30
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awareness property. In other words, tAPE provides a balance between these two 
properties in its encodings. The superiority of tAPE compared to vanilla APE and 
learned APE on various length time series datasets is shown in the experimental 
results section.

4.2 � Efficient relative position encoding (eRPE)

There are multiple extensions of the abovementioned Sect.  3.3.2 relative position 
embeddings in machine translation and computer vision (Huang et  al. 2020; Wu 
et  al. 2021; Dufter et  al. 2022). However, input embeddings are the basis for all 
previous methods of relative position encoding (adding or multiplying the position 
matrices to the query, key, and value matrices,  as exemplified in Fig.  3a). In this 
study, we introduce an efficient model of relative position encoding independent of 
input embeddings (Fig. 3b).

In particular, we propose the following formulation:

where L is series length, Ai,j is attention weight and wi−j is a learnable scalar (i.e., 
w ∈ ℝ

O(L) ) and represent the relative position weight between positions i and j.
It is worth comparing the strengths and weaknesses of relative position encod-

ings and attention to determine what properties are more desirable for relative posi-
tion encoding of time series data. Firstly, the relative position embedding wi−j is an 

(14)�i =
�
j∈L

⎛
⎜⎜⎜⎜⎜⎝

exp(ei,j)∑
k∈L exp(ei,k)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

Ai,j

+wi−j

⎞
⎟⎟⎟⎟⎟⎠

xj

Fig. 3   Self-attention modules with relative position encoding using scalar and vector parameters. Newly 
added parts are depicted in grey
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input-independent parameter with static values, whereas an attention weight Ai,j is 
dynamically determined by the representation of the input series. In other words, 
attention adapts to input series via a weighting strategy (input-adaptive weighting 
(Vaswani et al. 2017)). Input-adaptive-weighting enables models to capture the com-
plicated relationships between different time points, a property that we desire most 
when we want to extract high-level concepts in time series. This can be for instance 
the seasonality component in time series. However, when we have limited size data 
we are at a greater risk of overfitting when using attention.

Secondly, relative position embedding wi−j takes into account the relative shift 
between positions i and j and not their values. This is similar to translation equiva-
lence property of convolution, which has been shown to enhance generalization (Dai 
et al. 2021). We propose to consider the notation of wi−j as a scalar rather than a vec-
tor to enable the translation equivalency without blowing up the number of param-
eters. In addition, the scalar representation of w provides the benefit that the value of 
wi−j for all (i, j) can be subsumed within the pairwise dot-product attention function, 
resulting in minimal additional computation (see Sect. 4.2.1). We call our proposed 
efficient relative position encoding as eRPE.

Theoretically, there are many possibilities for integrating relative position infor-
mation into the attention matrix, but we empirically found that attention models 
perform better when we add the relative position to the model after applying the 
softmax to the attention matrix as shown in Eq. (14) and Fig. 3b. We presume this 
is because the position values will be sharper without the softmax. And sharper 
position embeddings seems to be beneficial in TSC task as it emphasizes more 
on informative relative positions for classification compared to existing models in 
which softmax is applied to relative position embeddings.

4.2.1 � Efficient implementation: indexing

To implement the efficient version of eRFE in Eq. (14) for input time series with a 
length of L, for each head, we create a trainable parameter w of size 2L − 1 , as the 
maximum distance is 2L − 1 . Then for two position indices i and j, the correspond-
ing relative scalar is wi−j+L where indexes start from 1 instead of 0 (1-base index). 
Accordingly, we need to index L2 elements from 2L − 1 vector.

On GPU, a more efficient way to index is to use gather, which only requires 
memory access. At inference time, indexing the L2 elements from 2L − 1 vector can 
be pre-computed and cached to increase the processing speed further. As shown in 
Table  1, our proposed eRPE is more efficient in terms of both memory and time 
complexities compared to the existing relative position encoding methods in the 
literature.

4.3 � ConvTran

Now we look at how we can utilize our new position encodings method to build a 
time series classification network. According to the earlier discussion, global atten-
tion has a quadratic complexity w.r.t. the series length. This means that if we directly 



35

1 3

Improving position encoding of transformers for multivariate…

apply the proposed attention in Eq. (14) to the raw time series, the computation will 
be excessively slow for long time series. Hence, we first use convolutions to reduce 
the series length and then apply our proposed position encodings once the feature 
map has been reduced to a less computationally intense size. See Fig. 4 where con-
volution blocks comes as a first component proceeded by attention blocks.

Another benefit of using convolutions is that convolutions operations are very 
well-suited to capture local patterns. By using convolutions as the first component 
in our architecture we can capture any discriminative local information that exists in 
raw time series.

As Shown in Fig. 4, as the first step in the convolution layers, M temporal filters 
are applied to the input data. In this step, the model extracts temporal patterns in 
the input series. Next, the output of temporal filtering is convolved with dmodel spa-
tial dx ×M shape filters to capture the correlations between variables in multivariate 
time series and construct dmodel size input embeddings. Such disjoint temporal and 
spatial convolution is similar to “Inverted Bottleneck” in Sandler et  al. (2018). It 
first expands the number of input channels and then squeezes them. A key reason for 
this choice is that the Feed Forward Network (FFN) in transformers (Vaswani et al. 
2017) also expands on the input size and later projects the expanded hidden state 
back to the original size to capture the spatial interactions.

Before feeding the input embedding to the transformer block, we add the tAPE-
generated position embedding to the input embedding vector so that the model can 
capture the temporal order of the time series. The size of the embedding vector is 
dmodel , which is the same as the input embedding. Inside the multi-head attention, 
the inputs with the L × dmodel dimension are first converted to L × dz × 3 shape using 

Table 1   Comparing the parameter sizes, memory, and computation complexities of various position 
encoding methods

In our implementation d
z
 is equal to d

model

Method Parameter Memory Complexity

Absolute tAPE None Ld
model

Ld
model

Vanilla APE (Vaswani et al. 2017) None Ld
model

Ld
model

Learn (Devlin et al. 2018) Ld
model

Ld
model

Ld
model

Relative Shaw Shaw et al. (2018) (2L − 1)d
z L

2
d
z
+ L

2
L
2
d
z

Vector (Huang et al. 2018) Ld
z Ld

z
+ L

2
L
2
d
z

eRPE 2L − 1 L + L
2

L
2

Fig. 4   Overall architecture of the ConvTran model
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a linear layer to get the qkv matrix in which dz indicates the model dimension and 
defined by the user. Each of the three matrices of shape L × dz represents the Query 
(q), Key (k) and Value (v) matrices. These q, k, and v matrices are reshaped to 
h × L × dz∕h to represent the h attention heads. Each of these attention heads can be 
responsible for capturing different patterns in time series. For instance, one attention 
head can attend to the non-noisy data, another head can attend to the seasonal com-
ponent and another to the trend. Once we have the q, k, and v matrices, we finally 
perform the attention operation inside the Multi-Head attention block using Eq. (14).

According to Eq.  (14) the eRPE with the same shape of L × L is also added to 
the attention output. We consider the notation of wi−j as a scalar (i.e., w ∈ RO(L) ) to 
enable the global convolution kernel without increasing the number of parameters. 
The relative position embedding enables the model to learn not only the order of 
time points, but also the relative position of pairs of time points, which can capture 
richer information than other position embedding strategies.

The FFN, is a multi-layer perceptron block consisting of two linear layers and 
Gaussian Error Linear Units (GELUs) as an activation function. The outputs from 
the FFN block are again added to the inputs (via skip connection) to get the final 
output from the transformer block. Finally, just before the fully connected layer, 
max-pooling and global average pooling (GAP) are applied to the output of the last 
layer’s ELU activation function, which gives a more translation-equivalence model.

5 � Experimental results

In this section, we evaluate the performance of our ConvTran model on the UEA 
time series repository (Bagnall eta al. 2018) and two large multivariate time series 
datasets and compare it with the state-of-the-art models. All of our experiments were 
conducted using the PyTorch framework in Python on a computing system consist-
ing of a single Nvidia A5000 GPU with 24GB of memory and an Intel(R) Core(TM) 
i9-10900K CPU. To promote reproducibility, we have provided our source code and 
more experimental results online.1

We have divided our experiments into four parts. First, we present an ablation 
study on various position encodings. Then, we demonstrate that our ConvTran 
model outperforms existing CNN and transformer-based models. Next, we compare 
the performance of ConvTran with four state-of-the-art MTSC algorithms (includ-
ing both deep learning and non-deep learning categories) identified in Ruiz et  al. 
(2020); Middlehurst et al. (2011). We report the results provided on the archive web-
site2 for HiveCote2, CIF, ROCKET, and Inception-Time on 26 out of 30 UEA data-
sets only in Sect. 5.6. Finally, we evaluate the efficiency and effectiveness of Con-
vTran by comparing it with the current state-of-the-art model, ROCKET.

1  https://​github.​com/​Navid​fouma​ni/​ConvT​ran.
2  https://​times​eries​class​ifica​tion.​com/​HC2.​php.

https://github.com/Navidfoumani/ConvTran
https://timeseriesclassification.com/HC2.php
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5.1 � Datasets

•	 UEA Repository The archive consists of 30 real-world multivariate time series 
data from a wide range of applications such as Human Activity Recognition, 
Motion classification, and ECG/EEG classification (Bagnall eta al. 2018). The 
number of dimensions ranges from two dimensions to 1345 dimensions. The 
length of the time series ranges from 8 to 17,984. The datasets also have a train 
size ranging from 12 to 25000.

•	 Ford Challenge This dataset is obtained from the Kaggle challenge website.3 It 
includes measurements from total of 600 real-time driving sessions where each 
driving session takes 2 min and sampled with 100ms rate. Also, the trials are 
samples from 100 drivers of both genders, and of different ages. The training 
data file consists of 604,329 data points each belongs to one of 500 trials. The 
test file contains 120,840 data points belonging to 100 trials. While each data 
point comes with a label in 0,1 and also contains 8 physiological, 12 environ-
mental, and 10 vehicular features that are acquired while driving.

•	 Actitracker human Activity Recognition This dataset describes six daily 
activities which are collected in a controlled laboratory environment. The activi-
ties include “Walking”, “Jogging”, “Stairs”, “Sitting”, “Standing”, and “Lying 
Down” which are recorded from 36 users collected using a cell phone in their 
pocket. Data has 2,980,765 samples with 3 dimensions, subject-wise split into 
train and test sets, and a sampling rate of 20Hz (Lockhart et al. 2011).

5.2 � Evaluation procedure

We use the classification accuracy as the overall metric to compare different models. 
Then we rank each model based on its classification accuracy per dataset. The most 
accurate model is assigned a rank of 1 and the worse performing model is assigned 
the highest rank. The average ranking is taken in case of ties. Then the average rank 
for each model is computed across all datasets in the repository.

This gives a direct general assessment of all the models: the lowest rank corre-
sponds to the method that is the most accurate on average. The average ranking for 
each model is presented in the form of critical difference diagram (Demšar 2006), 
where models in the same clique (the black bar in the diagram) are not statistically 
significant. For the statistical test, we used the Wilcoxon signed-rank test with Holm 
correction as the post hoc test to the Friedman test (Demšar 2006).

5.3 � Parameter setting

Adam optimization is used simultaneously with an early stopping method based on 
validation loss. We use the default setting for other models. We set the default value 
for the number of temporal and spatial filters to 64 and set the length of the temporal 

3  https://​www.​kaggle.​com/c/​staya​lert.

https://www.kaggle.com/c/stayalert
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filters to 8. The width of the spatial convolutions are set equal to the input dimen-
sions (Foumani et al. 2021).

Similar to TST, the transformers based model for MTSC (Zerveas et al. 2021), 
and default transformers block (Vaswani et al. 2017), we use 8 heads to capture the 
varieties of attention from input series. The dimension of transformers encoding is 
set to dmodel = dz = 64 and FFN in transformers block expands the input size by 4x 
and later projects the 4x-wide hidden state back to the original size.

5.4 � Ablation study on position encoding

In this section, firstly we compare our proposed tAPE with the exisiting absolute 
position encodings. Secondly, we compare our proposed eRPE with the existing rel-
ative position encoding methods. As a final step, we combined tAPE and eRPE into 
a single framework and campare it with all possible combinations of absolute and 
relative position encodings.

For this ablation study we run a single-layer transformer five times on all 30 UEA 
benchmark datasets for classification. Figure 5a illustrates the critical difference dia-
gram of a single-layer transformer with different absolute position encodings. Note 
in critical difference diagram methods grouped by a black line are not significantly 
different from each other. In Fig. 5, None is the model without any position encod-
ing, Learn is the model with learning absolute position encoding parameters (Devlin 
et al. 2018), Vanilla APE is the vanilla sinusoidal function-based encoding (Vaswani 
et al. 2017), Vector is the vector-based implementation of input-dependent relative 
position embedding (Huang et al. 2018), and our proposed models showed as tAPE 
and eRPE.

As depicted in Fig.  5a, tAPE has the highest rank in terms of accuracy and is 
significantly better than other absolute position encodings due to effectively utilising 
embedding space to provide an isotropic encoding while holding the distance aware-
ness property. As expected, the model without position encoding has the least accu-
rate results, highlighting the importance of absolute position encoding in time series 
classification. The vanilla APE also improves overall performance despite not being 
significantly accurate than Learn APE since it has fewer parameters.

Figure 5b shows the critical difference diagram of a single-layer transformer with 
different relative position encodings. As shown in this figure, eRPE has the highest 
rank and is significantly better than other encodings in terms of accuracy as it has 
less number of parameters which is less likely to overfit. It is not surprising that 
the model without position encoding has the least accurate results, highlighting the 
importance of relative position encoding and the translation equality property in 

Fig. 5   Critical difference diagram of various position encoding over thirty datasets for the UEA MTSC 
archive based on average accuracies: a Various absolute position encodings, b Various relative position 
encodings. The lowest rank corresponds to the method that is the most accurate on average
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time series classification. The input-dependent Vector encoding also improves over-
all performance and is significantly better than None model. Figure 6 shows the crit-
ical difference diagram for the various combinations of absolute and relative posi-
tion encodings. As depicted in this figure, the combination of our proposed tAPE 
and eRPE is significantly more accurate than all other combinations. This shows 
the high potential of our encoding methods to incorporate position information into 
transformers. The combination of Learn and Vector has the least accurate results, 
most likely due to the high number of parameters.

5.5 � Comparing with state‑of‑the‑art deep learning models

we compare our ConvTran with the following convolution-based and transformer-
based models for MTSC:

•	 FCN: Fully Convolutional Neural network is one of the most accurate deep neu-
ral networks for MTSC (Fawaz et al. 2019) reported in the literature.

•	 ResNet: Residual Network is also one of most accurate deep neural networks for 
both univariate TSC and MTSC(Fawaz et al. 2019) reported in the literature.

•	 Disjoint-CNN: One of the accurate and lightweight CNN-based models that fac-
torize convolution kernels into disjoint temporal and spatial convolutions (Foum-
ani et al. 2021).

•	 Inception-Time: The most accurate deep learning univariate TSC and MTSC 
algorithm to date. Fawaz et al. (2020); Ruiz et al. (2020).

•	 TST: A transformer-based model for MTSC (Zerveas et al. 2021).

Figure 7 shows the average rank of ConvTran on 32 MTS datasets againts all convo-
lutional-based and/or transformer-based methods. This figure shows that on average, 
ConvTran has the lowest average rank and is more accurate than all other methods. 
It is important to observe that ConvTran is significantly more accurate than its pre-
decessors, i.e., a convolution based model, Disjoint-CNN as well as the transformer 

Fig. 6   The average rank of various combination of absolute and relative position encodings

Fig. 7   The average rank of ConvTran against all deep learning based methods on all 32 MTS datasets. 
Datasets are sorted based on the number of training samples per-class. The highest accuracy for each 
dataset is highlighted in bold
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based model, TST. This indicates the effectiveness of adding tAPE and eRPE to 
transformers. Table 2 presents the classification accuracy of each method on all 32 
datasets and the highest accuracy for each dataset is highlighted in bold. In this table 
datasets are sorted based on the number of training samples per class. Considering 
Fig. 7 and Table 2 we can conclude that ConvTran is the most accurate TSC method 
on average on all 32 benchmark datasets and particularly has superior performance 
in datasets in which there are enough data to train (i.e., the number of training sam-
ples per class is more than 100) and wins on all 12 datasets except one.

Table 2   Average accuracy of six deep learning based models over 32 multivariate time series datasets

DataSets Avg Train ConvTran TST IT Disjoint-CNN FCN ResNet

Ford 17,300 0.7805 0.7655 0.7628 0.7422 0.6353 0.687
HAR 8400 0.9098 0.8831 0.8775 0.8807 0.8445 0.8711
FaceDetection 2945 0.6722 0.6542 0.5885 0.5665 0.5037 0.5948
Insectwingbeat 2500 0.7132 0.6748 0.6956 0.6308 0.6004 0.65
PenDigits 750 0.9871 0.9694 0.9797 0.9708 0.9857 0.9771
ArabicDigits 660 0.9945 0.9749 0.9872 0.9859 0.9836 0.9832
LSST 176 0.6156 0.2846 0.4456 0.5559 0.5616 0.5725
FingerMovement 158 0.56 0.58 0.56 0.54 0.53 0.54
MotorImagery 139 0.56 0.48 0.53 0.49 0.55 0.52
SelfRegSCP1 134 0.918 0.86 0.8634 0.8839 0.7816 0.8362
Heartbeat 102 0.7853 0.6975 0.6248 0.717 0.678 0.7268
SelfRegSCP2 100 0.5833 0.5333 0.4722 0.5166 0.4667 0.5
PhonemeSpectra 85 0.3062 0.089 0.1586 0.2821 0.1599 0.1596
CharacterTraject 72 0.9922 0.9825 0.9881 0.9945 0.9868 0.9945
EthanolConcen 66 0.3612 0.151 0.3489 0.2775 0.3232 0.3155
HandMovement 40 0.4054 0.5405 0.3783 0.5405 0.2973 0.2838
PEMS-SF 39 0.8284 0.7572 0.8901 0.8901 0.8324 0.7399
RacketSports 38 0.8618 0.8815 0.8223 0.8355 0.8223 0.8223
Epilepsy 35 0.9855 0.9492 0.9928 0.8898 0.9928 0.9928
JapaneseVowels 30 0.9891 0.9837 0.9702 0.9756 0.973 0.9135
NATOPS 30 0.9444 0.95 0.9166 0.9277 0.8778 0.8944
EigenWorms 26 0.5934 0.4503 0.5267 0.5934 0.4198 0.4198
UWaveGesture 15 0.8906 0.8906 0.9093 0.8906 0.85 0.85
Libras 12 0.9277 0.8222 0.8722 0.8577 0.85 0.8389
ArticularyWord 11 0.9833 0.9833 0.9866 0.9866 0.98 0.98
BasicMotions 10 1 0.975 1 1 1 1
DuckDuckGeese 10 0.62 0.5 0.36 0.5 0.36 0.24
Cricket 9 1 1 0.9861 0.9772 0.9306 0.9722
Handwriting 6 0.3752 0.2752 0.3011 0.2372 0.376 0.18
ERing 6 0.9629 0.9296 0.9296 0.9111 0.9037 0.9296
AtrialFibrillation 5 0.4 0.2 0.2 0.4 0.3333 0.3333
StandWalkJump 4 0.3333 0.3333 0.4 0.3333 0.4 0.4
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5.6 � Benchmark against state‑of‑the‑art models

Given the experiments on the 32 datasets show that our ConvTran model has the 
best performance compared to all the other convolution and transformers based 
models, we now proceed to benchmark it against the state-of-the-art MTSC mod-
els, i.e., both deep learning and non-deep learning models. We compare HC2, CIF 
and ROCKET models on only 26 out of 32 MTSC benchmarking datasets (Ruiz 
et al. 2020) because the other six datasets are either large in terms of training sample 
or have varied series lengths that make it almost impossible to run HC2 on them. 
For having detailed insights into the ConvTran performance we provide a pair-wise 
comparison between our proposed model and each of these models.

As shown in Fig.  8 our proposed model mostly outperforms HC2, ROCKET, 
CIF, and Inception-Time on the datasets with 100 or more training samples per class 
(marked with a blue circle). However, state-of-the-art models outperform ConvTran 
on datasets with few training instances such as EigenWorms with 26 train sample 
per-class. Indeed, as shown in Table 2, all CNN based models fail to perform com-
petitively on the EigenWorms dataset. Note that ConvTran is the most accurate 
among all CNNs on this dataset. This is due to the limitation of CNN-based models, 
which cannot capture long-term dependencies in the high length time series. Adding 
a transformer improves the performance, but it still requires more training samples 
to perform as well as other models.

It is also interesting to observe from Fig.  8a and c that HC2 and CIF perform 
better than ConvTran on the EthanolConcentration dataset. Considering that 
this dataset is based on spectra of water-and-ethanol, hence interval and shapelet-
based approaches which are also components of HC2 perform better. On the other 
hand, ROCKET has a few wins compared to ConvTran (Fig 8b). Most of these data-
sets where ROCKET performs better, such as the StandWalkjump dataset have 
a small number of time series instances per class. For instance, StandWalkjump 
has 3 classes with 12 training instances, which is 4 time series per class. This is 
insufficient to train large number of parameters in deep learning models such as 
ConvTran to achieve better performance. Note, as mentioned, these results are for 
26 datasets only, excluding six datasets for which we could not run HC2 (which has 
high computational complexity and is limited to be applied on variable-length time 
series). Among excluded datasets, 4 of them are large datasets from which Con-
vTran could have benefited. Considering this, ConvTran still achieves competetive 
performance compared to SOTA deep and non-deep models.

5.7 � ConvTran versus rocket efficiency and effectiveness

To provide further insight into the efficiency of our model on datasets of varying 
sizes, we conducted additional experiments on the largest UEA dataset InsectWing-
Beat with 25,000 series for training. We compare the training time and test accu-
racy of our proposed ConvTran and ROCKET on random subsets of 5,000, 10,000, 
15,000, 20,000, and 25,000 training samples.
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The results depicted in Fig. 9 demonstrate that ROCKET has faster training time 
than ConvTran on smaller datasets, specifically on the 5k and 10k datasets while 
achieving similar training time to ConvTran on the 15k set. However, our deep learn-
ing-based model, ConvTran, demonstrates faster training times with increasing data 
quantity, as expected. Additionally, we also observed from the figure that ConvTran 
is consistently more accurate than ROCKET on this dataset. We refer interested 
readers to Appendix  for a more comprehensive exploration of the empirical evalua-
tion of efficiency and effectiveness on all datasets. Notably, ConvTran demonstrates 
faster inference time compared to ROCKET across all datasets. It is important to 

Fig. 8   Pairwise comparison of ConvTran with the state of the art models: a HC2, b ROCKET, c CIF d 
and Inception-Time. The datasets with 100 training samples per class or more are marked with a blue 
circle, while the others are marked with a red square. The three values at the top of each figure show the 
number of win/draw/loss from left to right
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note that all the ConvTran experiments are performed on GPUs, whereas ROCKET 
experiments are performed on a CPU (please refer to Sect. 5 for computing system 
details).

6 � Conclusion

This paper studies the importance of position encoding for time series for the first 
time and reviews existing absolute and relative position encoding methods in time 
series classification. Based on the limitations of the current position encodings for 
time series, we proposed two novel absolute and relative position encodings sep-
ecifically for time series called tAPE and eRPE, respectively. We then integrated our 
two proposed position encodings into a transformer block and combine them with a 
convolution layer and presented a novel deep-learning framework for multivariate 
time series classification (ConvTran). Extensive experiments show that ConvTran 
benefits from the position information, achieving state-of-the-art performance on 
Multivariate time series classification in deep learning literature. In future, we will 
study the effectiveness of our new transformer block in other transformer-based TSC 
models and other down stream tasks such as anomaly detection.

Appendix

 Empirical evaluation of efficiency and effectiveness

The results presented in Table  3 demonstrate that ConvTran outperforms 
ROCKET in terms of both train time and test accuracy on larger datasets with 
more than 10k samples. However, ROCKET has a better train time on smaller 

Fig. 9   Comparison of runtime and accuracy between ConvTran and ROCKET on UEA largest dataset 
InsectWingBeat with 25,000 training samples. The figure shows the runtime of the two models on data-
sets with different sizes, and their corresponding classification accuracy
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Table 3   Comparison of runtime and accuracy between ConvTran and ROCKET on 32 datasets of vary-
ing sizes

To facilitate easy identification, superior performance in both accuracy and runtime is highlighted in 
bold in the table. For a detailed comparison, the runtimes are shown in seconds

Datasets Train size ROCKET ConvTran

Accuracy Train time Test time Accuracy Train time Test time

HAR 41,546 0.8293 5366.34 11.51 0.9098 2367.77 1.82
Ford 28,839 0.6051 6863.81 11.91 0.7805 1619.42 0.95
InsectWingbeat 25,000 0.4182 5721.04 41.5 0.7132 1617.82 5.47
PenDigits 7494 0.984 65.26 0.99 0.9871 401.1 0.59
ArabicDigits 6599 0.9932 75.59 10.38 0.9945 376.7 0.37
FaceDetection 5890 0.5624 53.23 11.99 0.6722 413.39 0.83
PhonemeSpectra 3315 0.1894 42 37.22 0.3062 202.27 0.89
LSST 2459 0.5251 5.84 3.52 0.6156 148.07 0.48
CharacterTrajec 1422 0.9916 8.4 7.72 0.9922 89.61 0.28
FingerMovement 316 0.55 0.96 0.35 0.56 21.33 0.02
MotorImagery 278 0.56 45.39 16.26 0.56 386 0.81
ArticularyWord 275 0.9933 2.09 2.19 0.9833 19.76 0.08
JapaneseVowels 270 0.9568 0.57 0.67 0.9891 20.6 0.13
SelfRegSCP1 268 0.8601 10.2 11.25 0.918 45.54 0.27
PEMS-SF 267 0.8266 3.53 2.13 0.8284 28.08 0.09
EthanolConcen 261 0.4448 14.59 14.32 0.3612 131.58 0.69
Heartbeat 204 0.7414 4.57 4.59 0.7853 17.13 0.09
SelfRegSCP2 200 0.5833 10.78 9.65 0.5833 50.05 0.22
NATOPS 180 0.8944 0.6 0.58 0.9444 14.61 0.04
Libras 180 0.8667 0.36 0.29 0.9277 11.51 0.04
HandMovement 160 0.4189 3.31 1.7 0.4054 11.29 0.03
RacketSports 151 0.9078 0.29 0.32 0.8618 11.86 0.03
Handwriting 150 0.5376 0.81 3.92 0.3752 11.85 0.23
Epilepsy 137 0.971 0.91 0.93 0.9855 10.52 0.03
EigenWorms 128 0.8702 107.48 111.42 0.5934 225.71 0.7
UWaveGesture 120 0.9188 1.21 3.07 0.8906 10.2 0.09
Cricket 108 1 5.79 4.07 1 32.1 0.1
DuckDuckGeese 50 0.5 1.59 1.76 0.62 9.46 0.05
BasicMotions 40 1 0.25 0.27 1 4.45 0.01
ERing 30 0.9851 0.17 0.7 0.9629 3.17 0.06
AtrialFibrillation 15 0.2 0.39 0.41 0.4 1.99 0.01
StandWalkJump 12 0.5333 1.52 1.65 0.3333 14.56 0.09

datasets. Nevertheless, even on small datasets, ConvTran achieves acceptable 
accuracy within a reasonable train time. It is worth noting that the performance 
of ConvTran improves as the dataset size increases, indicating that our model is 
suitable for scaling to larger datasets.
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ConvTran versus non‑deep learning SOTA models

Table  4 compares the performance of ConvTran against three non-deep learn-
ing models - ROCKET, HC2, and CIF - on different datasets with varying training 
sample sizes. The table presents the accuracy of each model on each dataset, with 

Table 4   Comparison of ConvTran and non-deep learning models (ROCKET, HC2, CIF) on varying 
training sample sizes

Bold Face Font Indicates Superior Accuracy, ’-’ Denotes Non-Runnable Methods due to Computation 
Complexity or Inability to Handle Various Length Series

Datasets Train Size ConvTran ROCKET HC2 CIF

HAR 41,546 0.9098 0.8293 – –
Ford 28,839 0.7805 0.6051 – –
InsectWingbeat 25,000 0.7132 0.4182 – –
PenDigits 7494 0.9871 0.984 0.9791 0.9674
SpokenArabicDigits 6599 0.9945 0.9932 – –
FaceDetection 5890 0.6722 0.5624 0.6603 0.6271
PhonemeSpectra 3315 0.3062 0.1894 0.2905 0.2654
LSST 2459 0.6156 0.5251 0.6427 0.5726
CharacterTrajectories 1422 0.9922 0.9916 – –
FingerMovements 316 0.56 0.55 0.53 0.52
MotorImagery 278 0.56 0.56 0.54 0.5
ArticularyWordRecognition 275 0.9833 0.9933 0.9933 0.9833
JapaneseVowels 270 0.9891 0.9568 – –
SelfRegulationSCP1 268 0.918 0.8601 0.8908 0.8601
PEMS-SF 267 0.8284 0.8266 1 1
EthanolConcentration 261 0.3612 0.346 0.7719 0.7338
Heartbeat 204 0.7853 0.678 0.7317 0.7805
SelfRegulationSCP2 200 0.5833 0.5833 0.5 0.5
NATOPS 180 0.9444 0.8944 0.8944 0.8556
Libras 180 0.9277 0.8667 0.9333 0.9111
HandMovementDirection 160 0.4054 0.4189 0.473 0.5946
RacketSports 151 0.8618 0.9078 0.9078 0.8816
Handwriting 150 0.3752 0.5376 0.5482 0.3565
Epilepsy 137 0.9855 0.971 1 0.9855
EigenWorms 128 0.5934 0.8702 0.9466 0.916
UWaveGestureLibrary 120 0.8906 0.9188 0.9281 0.925
Cricket 108 1 1 1 0.9861
DuckDuckGeese 50 0.62 0.5 0.56 0.44
BasicMotions 40 1 1 1 1
ERing 30 0.9629 0.9593 0.9889 0.9815
AtrialFibrillation 15 0.4 0.1333 0.2667 0.3333
StandWalkJump 12 0.3333 0.5333 0.4667 0.4
Wins or Draw – 19 7 13 4
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boldface indicating superior accuracy. “-” denotes non-runnable methods, either due 
to computation complexity or inability to handle various length series.

Overall, ConvTran outperforms the non-deep learning models on 19 out of 32 
datasets (for the HC2 and CIF models, we only have results for 26 datasets, and 
ConvTran outperforms the other models in 13 out of the 26). It performs better on 
datasets with larger training sample sizes, such as InsectWingBeat, while other mod-
els perform better on datasets with fewer training samples, such as StandWalkJump, 
which only has 12 training samples. Additionally, the table shows that some of the 
non-deep learning models failed to handle specific datasets due to either computa-
tional complexity or the inability to handle varying input series lengths. For exam-
ple, we were not able to run HC2 and CIF on the larger HAR, Ford, and InsectWing-
beat datasets due to computational complexity. They were also not designed to 
handle varying length time series such as the CharacterTrajectories, SpokenArabic-
Digits, and JapaneseVowels datasets.
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