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Abstract
We consider a real-world scenario in which a newly-established pilot project needs 
to make inferences for newly-collected data with the help of other parties under pri-
vacy protection policies. Current federated learning (FL) paradigms are devoted to 
solving the data heterogeneity problem without considering the to-be-inferred data. 
We propose a novel learning paradigm named transductive federated learning to 
simultaneously consider the structural information of the to-be-inferred data. On the 
one hand, the server could use the pre-available test samples to refine the aggregated 
models for robust model fusion, which tackles the data heterogeneity problem in FL. 
On the other hand, the refinery process incorporates test samples into training and 
could generate better predictions in a transductive manner. We propose several tech-
niques including stabilized teachers, rectified distillation, and clustered label refin-
ery to facilitate the model refinery process. Abundant experimental studies verify 
the superiorities of the proposed Model refinery framework for Transductive Feder-
ated learning. The source code is available at https://​github.​com/​lxcnju/​MrTF.
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1  Introduction

Machine learning techniques, especially deep learning, have been widely applied to 
various real-world applications (He et al. 2016; Vaswani et al. 2017; Li et al. 2022; 
Yang et al. 2021), etc. Inductive learning and transductive learning are two common 
learning paradigms, where the latter could obtain test samples in advance (Chen 
et al. 2002; Rohrbach et al. 2013; Liu et al. 2019). Fusing to-be-inferred unlabeled 
data into training could lead to appreciable performances because it simultaneously 
captures structural information in both train and test data. The settings of these two 
paradigms are illustrated at the bottom of Fig. 1.

A practical scenario is that a particular party/user is urgent to make predictions 
for newly-collected unlabeled data while it has no labeled samples for training. 
Thus, it needs to seek the help of other relevant parties/users (clients) to build a 
prediction model in collaboration. There is a restriction that the data of other par-
ties cannot be used directly due to privacy protection policies. Federated Learning 
(FL) (Yang et al. 2019; McMahan et al. 2017; Li et al. 2022) has been proposed as 
an efficient distributed training paradigm to collaborate with isolated parties without 
sending users’ data out. On the one hand, various challenges have emerged in FL, 
e.g., the Non-Independent Identically Distributed (Non-I.I.D.) data challenge (Hsieh 
et al. 2020). Participating clients may own various data distributions under differ-
ent contexts, leading to weight divergence in distributed local training (Zhao et al. 
2018). On the other hand, existing FL follows an inductive manner that aims to build 
a global model that could generalize well to any possible forthcoming samples with-
out considering the information of the pre-available test samples. The scenario and 
challenges are illustrated at the right of Fig. 1, where the newly-established party has 
10 classes to infer, while the participating parties may contain only several classes, 
various classes, or imbalanced classes, etc. These challenges lead to Non-I.I.D. data 
that hinders the effectiveness of FL.

Fig. 1   Left: comparisons of several paradigms. TFL could access test data in advance and the training 
data is decentralized across clients. Right: a real-world scenario formulated as TFL and corresponding 
challenges
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In this paper, we abstract the scene mentioned above as transductive federated 
learning (TFL), where the server owns to-be-inferred data in advance while train-
ing data are distributed across clients in a Non-I.I.D. manner. In TFL, the goal of 
the server is to assign labels to the test samples on hand. There are two fundamental 
challenges to tackle: (1) how to overcome the Non-I.I.D. challenge across clients 
during distributed training? (2) how to improve the inference process for unlabeled 
data on the server? To solve the former, some previous FL works take various tech-
niques. For example, some works (Jeong et al. 2018) allow sending out a small por-
tion of clients’ data. A better way to meet the privacy policy is the recently proposed 
FedDF (Lin et al. 2020), which views the local updated models as “teachers" and 
distills the knowledge to the aggregated model on a publicly available dataset for 
robust model fusion. However, collecting appropriate public data is also challeng-
ing, especially in data-scarce scenarios. For the latter, we should consider the struc-
tural information contained in the pre-available test data to assign better predictions. 
Considering both, FedDF seems to be an appropriate solution. First, the trouble of 
collecting unlabeled public data is omitted in TFL because the to-be-referred data is 
a good candidate. What’s more, distilling on the to-be-referred samples also consid-
ers their information, which is expected beneficial for making predictions.

Nevertheless, it is not all smooth sailing. FedDF encounters several fatal chal-
lenges faced with large amounts of clients and stochastic client selection. Specifi-
cally, FedDF takes the “AvgLogi" (i.e., Averaging Logits) of local updated models 
as the ensemble, while the logits’ magnitudes across local models vary a lot, and 
directly averaging them as the “teacher" may lead to training instability. Addition-
ally, stochastic client selection does not guarantee that the local model’s ensemble 
covers all classes, negatively transferring knowledge for missing classes. Corre-
spondingly, we propose a more stable way as an alternative to refine the aggregated 
model via rectifying the local models’ logits and introducing label clustering tech-
niques. Verified on several benchmarks, our proposed methods show superiorities 
towards other methods. Our contributions could be briefed as originally introducing 
the practical TFL framework and proposing an effective solution named MrTF.

2 � Related works

Our work is closely related to federated learning (FL), transductive learning (TL), 
and external data in FL.

2.1 � Federated learning (FL)

FL (Yang et  al. 2019; McMahan et  al. 2017) aims to organize isolated clients to 
accomplish the machine learning process following a distributed training style. As 
the most standard FL algorithm, Federated Averaging (FedAvg) (McMahan et  al. 
2017) follows the parameter server architecture (Li et al. 2013) where a server coor-
dinates amounts of clients. During the whole process, only model parameters are 
transmitted, and advanced privacy protection methods (e.g., differential privacy 



2049

1 3

MrTF: model refinery for transductive federated learning

(Abadi et  al. 2016)) could be additionally applied for stricter privacy protections. 
The Non-I.I.D. challenge in FL refers to that data of participating users are heteroge-
neous under various contexts, which hinders the aggregation and personalization in 
FL (Zhao et al. 2018; Li and Zhan 2021). Various solutions are proposed for better 
model fusion via introducing local regularization (Li et al. 2020; Yao et al. 2018), 
reducing gradient variance (Karimireddy et al. 2020), fine-tuning aggregated model 
via additional data (Jeong et al. 2018; Lin et al. 2020), etc. Knowledge distillation 
(Hinton et  al. 2015) could facilitate the generalization in FL (Afonin and Karim-
ireddy 2022; Zhang et  al. 2022). However, these FL methods are only devoted to 
solving the data heterogeneity problem and could not be directly applied to simulta-
neously solve the two major challenges of TFL.

2.2 � Transductive learning (TL)

Inductive learning assumes test data are not available during training, requiring the 
trained models to generalize well on any possible test set. As the opposition, TL 
could access the to-be-inferred data, and the training process could progressively 
capture the structural information in both train and test data. TL relaxes the require-
ment of model generalization and only aims to make better predictions on the avail-
able test data. Hence, compared with inductive learning, TL could basically achieve 
better results when the test samples are accessible. TSVM (Chen et  al. 2002) uti-
lizes the margin information in test samples and yields better SVM models. A real-
world scenario is that we have to make predictions for unlabeled samples in a novel 
domain, and fusing labeled samples from source domains for together training is a 
common solution in transfer learning (Rohrbach et al. 2013) or domain adaptation 
(Long et  al. 2015). Another advantageous scene for TL is learning with few-shot 
samples, where some studies (Liu et al. 2019) have verified the superiorities of TL.

2.3 � External data in FL

To reduce the weight divergence in FL, (Jeong et al. 2018) utilize additional labeled 
data on the server to fine-tune the global model, while (Li and Wang 2019) resorts 
to publicly available labeled data. Some semi-supervised FL also introduces unla-
beled data (Jeong et al. 2021; Long et al. 2021), while they consider the clients own 
both labeled and unlabeled samples. The most related work to ours is FedDF (Lin 
et al. 2020), which utilizes “AvgLogi" to ensemble local models and further distill 
the knowledge from them to the aggregated model. However, FedDF only consid-
ers the cross-silo scenes defined in Kairouz et al. (2019) where the amount of local 
clients is small [e.g., 20 clients on CIFAR (Krizhevsky 2012)] and the client partici-
pation ratio is high (e.g., 40% on vision tasks and 100% on NLP tasks). With large 
amounts of local clients and stochastic client selection, FedDF faces several prob-
lems. FedED (Sui et al. 2020) extends FedDF for medical relation extraction. More 
practical scenes of utilizing FedDF are also studied, e.g., the resource-aware scenes 
(Yu et al. 2022).
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2.4 � Other related works

Learning from multiple source domains (Yao and Doretto 2010) is also related to 
TFL. The former does not consider the privacy protection policies and could send 
out source data or source models to facilitate the learning process of the target 
domain. The fundamental problem in these works is how to measure the transfer-
ability (Tong et  al. 2021; Li et  al. 2022) between source domains and the target 
domain. TFL considers data privacy protection, making the learning process more 
challenging. In TFL, we aim to simultaneously tackle the data heterogeneity prob-
lem and make better predictions for the to-be-inferred data.

3 � Preliminaries

In this section, we first detail the setting and goal of TFL. Then, we introduce Fed-
Avg (McMahan et al. 2017)/FedDF (Lin et al. 2020) and their drawbacks in TFL.

3.1 � Transductive federated learning (TFL)

TFL also follows the parameter server (Li et  al. 2013) architecture, and assumes 
training data are decentralized on local clients while the server could previously 
access the to-be-inferred data. Mathematically, we have K clients and each client 
owns a unique data distribution Dk = pk(x, y) = pk(x)pk(y|x), k ∈ [K] . We denote the 
observed samples as {(xk,i, yk,i)}

nk
i=1

 , where nk is the number of training samples on 
kth client. The total number of training samples from all clients is N =

∑K

k=1
nk . In 

TFL, we assume the server owns an unlabeled set {xj}Mj=1 ∼ pg(x) with M samples to 
be predicted. The goal of TFL is to make good predictions on the test set via collab-
orating with these K clients without transmitting clients’ data. Generally, we con-
sider the data distribution of the test data (i.e., pg(⋅) ) does not diverge a lot from the 
data distribution if all clients’ data are centralized (i.e., 1

K

∑K

k=1
pk(⋅) ). We also con-

sider the opposite case in Sect. 5.4 (i.e., cross-domain TFL).

3.2 � Federated averaging (FedAvg)

FedAvg (McMahan et al. 2017) takes T communication rounds of local and global 
procedures to collaborate with local clients. During local procedures, a small frac-
tion (i.e. R ∈ [0, 1] ) of clients St download the global model from server and update 
it on their own local data for E epochs. We denote the global model parameters in tth 
round as �t , and the updated model on kth client is �t,k . During the global procedure, 
the server collects the updated models and takes a simple parameter averaging pro-
cess as �t+1 ←

1

�St�
∑

k∈St
�t,k . Faced with heterogeneous data, the local model update 

incurs large gradient variance and weight divergence (Zhao et al. 2018). In the fol-
lowing, we denote fk(x;�k) or fk as the prediction function of the kth local model that 
outputs the “logits" for C classes, while fg(x;�) or fg as the prediction function of the 
aggregated model. We sometimes omit the communication round index t for 
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simplification. We use qk(y|x;�k) = �(fk(x;�k)) to denote the predicted class proba-
bility distribution based on the kth local model, where �(⋅) is the softmax operator. 
Similarly, qg(y|x;�) denotes the predicted probability of the aggregated model. Nota-
bly, q(⋅;�) denotes predicted probabilities while p(⋅) denotes the oracle ones.

3.3 � Non‑I.I.D. data

Because users’ data is generated from different contexts, the data across federated 
clients is usually Non-I.I.D.. For experimental studies, previous works distribute 
a definite public data set (e.g., MNIST (Lecun et  al. 1998), CIFAR (Krizhevsky 
2012)) onto K clients according to various split strategies. In classification tasks 
with C classes, two commonly utilized ways are “split by label" and “split by dir-
ichlet". The former assumes each client could only observe C classes while other 
C − C classes are not accessible (McMahan et  al. 2017; Zhao et  al. 2018; Li and 
Zhan 2021). Although some classes are missing, the observed classes are almost 
balanced. A smaller C corresponds to more serious Non-I.I.D. data. The latter sam-
ples a class distribution from the Dirichlet distribution pk(y) ∼ Dir(�) for each cli-
ent (Hsieh et al. 2020; Lin et al. 2020), where � controls the Non-I.I.D. level, and a 
smaller � corresponds to a more Non-I.I.D. scene. After determining local clients’ 
class distributions, training data are accordingly allocated to these clients for distrib-
uted training. We study both cases in this paper and show the split distributions with 
K = 5 clients in Fig. 2. These two cases cover both challenges caused by data het-
erogeneity, data imbalance, amount skew, and missing classes, which are sufficient 
to verify the effectiveness of proposed FL methods. Aside from these constructed 
Non-I.I.D. scenes split by classes, we also consider benchmarks split by users in 
experimental studies.

We implement FedAvg on several Non-I.I.D. cases via a one-shot FL similar to 
Guha et al. (2019) with only one communication round. Specifically, we first pre-
train a global model on the centralized training set for r0 steps and denote the 

Fig. 2   Split data distributions with K = 5 clients. We split MNIST and SVHN via both “split by label" 
( C = 5 ) and “split by dirichlet" ( � = 1.0 ). Darker colors and larger sizes mean more samples
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obtained parameters as �0 . We use �0 as initializations for both centralized training 
and decentralized training. For the former, we continually update �0 on the central-
ized training set for 50 SGD steps, and denote the obtained centralized model as 
�Cen . Then, we use �0 as global parameters and distribute it onto K = 10 clients con-
structed via the aforementioned split ways. We update �0 separately on these 10 cli-
ents for 50 steps, and denote the updated models as {�Dec,k}Kk=1 . In FedAvg, these 
updated models will be averaged on the server as the aggregated model, i.e., �Agg . 
We plot the extracted features of �0 , �Cen , and �Agg under various Non-I.I.D. levels. 
For MNIST, we set the dimension of the final classification layer as 2 and plot the 
feature scatters. For SVHN, we extract hidden features and then utilize T-SNE 
(van der 2013) to obtain the 2-dimensional scatters. The figures are plotted in Fig. 3 
where clusters with different colors represent different classes. The decentralized 
I.I.D. scenes (i.e., C = 10 , � = 10.0 ) tend to perform better than centralized training 
because the former uses 10× training samples (10 clients). However, Non-I.I.D. data 
(i.e., C = 3 , � = 0.1 ) experiences performance degradation and the features are less 
discriminative. In many FL theoretical analyses, local gradient variance among cli-
ents is always assumed to be bounded (Shamir et al. 2014; Li et al. 2020; Karim-
ireddy et al. 2020), i.e., Ek

�‖∇�k
fk(x;�k)‖2

�
≤ �,∀x . Intuitively, smaller gradient dis-

similarity corresponds to better performances and faster convergence. We calculate 
the gradient variance as 1

K

∑K

k=1
‖�Dec,k − �Agg‖2 . Furthermore, the weight diver-

gence proposed in Zhao et al. (2018) could also reflect the impact of Non-I.I.D. data, 
i.e., ‖�Agg−�Cen‖

2

‖�Cen‖2  . We calculate these two statistical measures under three Non-I.I.D. 
levels and plot the bars in Fig. 3, where Non-I.I.D. scenes really lead to larger local 
gradient variance and weight divergence. These findings conform to previous stud-
ies (Zhao et al. 2018; Li et al. 2020; Li and Zhan 2021). Additionally and originally, 
we also investigate the performance gap between Non-I.I.D. and I.I.D. training along 
with the quality of model initialization, i.e., varying pre-training steps to obtain dif-
ferent �0 . We plot the performances of �0 , �Cen , and �Agg under various Non-I.I.D. 
levels in rightmost of Fig. 3. The gap is significantly large when the initialization 

Fig. 3   Performance degradation of FedAvg under Non-I.I.D. scenes. The two rows show “split by dir-
ichlet" on MNIST and “split by label" on SVHN, respectively. In each row, the left five figures show the 
extracted features and test accuracies (top-right numbers) of the pre-trained model, centralized model, 
and decentralized model under three levels of Non-I.I.D. data. The bars show two measures to evaluate 
the divergence of distributed training and centralized training. The rightmost shows the accuracy change 
of these five models with respect to pre-training steps
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model is worse, while it reduces a lot with �0 becoming better. This observation 
inspires us that solving the Non-I.I.D. problem in the beginning communication 
rounds of FL could be more valuable to accelerate training. To be brief, Non-I.I.D. 
data lead to performance degradation of FedAvg.

3.4 � Federated ensemble distillation (FedDF)

FedAvg takes an inductive manner and does not make utilization of the available test 
data in TFL. FedDF (Lin et al. 2020) could use ensemble distillation (Hinton et al. 
2015) to fine-tune the aggregated model on the unlabeled test data in TFL. Math-
ematically, instead of simply averaging parameters as done in FedAvg, FedDF takes 
additional distillation steps to update the global aggregated model as follows:

where �j is the aggregated model after the jth distillation step. KL denotes KL-
divergence usually used in knowledge distillation (Hinton et al. 2015). The used x is 
originally obtained from a relevant public data set in FedDF, while we could directly 
sample x from the pre-available test data, i.e. ∼ pg(x) , in TFL.

FedDF significantly depends on the ensemble quality of local models, which is 
named as distillation targets in this paper (Eq. 1). The verified FL scenes in FedDF 
are cross-silo ones (Kairouz et al. 2019), where the number of clients is small (e.g., 
20 clients) and clients’ participation is stable (e.g., 40% or 100% client participa-
tion ratio). Furthermore, as declared in FedDF, local clients should undertake more 
local training steps (e.g., 40 or up to 160 epochs) to obtain ensemble models with 
enough diversity. These conditions may be too rigorous for some edge devices with 
unstable communication or limited computation. We consider a larger number of 
local clients (e.g., 100, 1000) and a smaller client participation ratio (e.g., 10%, 1%) 
in this paper. We run FedDF on decentralized SVHN as an example and plot the 
results in Fig. 4. We record test accuracies of the aggregated model, the ensemble 
of local updated models via “AvgLogi", and the distilled model obtained via Eqs. 1 
and 2. Clearly, the “AvgLogi" distillation does not improve the aggregated model, 
and leads to training instability. Therefore, directly applying FedDF to TFL scenes 
seems to encounter some issues. We attribute the ineffectiveness of FedDF under 
these scenes to two reasons: varying magnitudes and improper distillation. We will 
detail these in the next section. The essence of FedDF inspires us to propose more 
effective techniques to refine the inaccurate aggregated model.

(1)LKL,j = KL

⎛
⎜⎜⎜⎜⎜⎜⎝

�

�
1

�St�
�
k∈St

fk(x;�k)

�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Distillation Targets

, �(f (x;�j−1))

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(2)�j ← �j−1 − �∇�j−1
E
x∼pg(x)

[
LKL,j

]
,
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4 � Proposed methods

In this section, we introduce our proposed methods. We follow FedDF (Lin et al. 2020) 
and polish it to be broadly applicable to TFL under more settings. Specifically, we 
propose Model refinery for Transductive Federated learning (MrTF) containing three 
modules: (1) stabilized teachers; (2) rectified distillation; (3) clustered label refinery.

4.1 � Stabilized teachers

FedDF (Lin et al. 2020) takes “AvgLogi" to generate the distillation targets, i.e.,

while we consider another one via “AvgProb" as follows:

where we add weights for each client wk ≥ 0 satisfying 
∑

k wk = 1 , and temporarily 
omit the client selection process for simplification (i.e., the |St| in Eq. 1). We cal-
culate the sensitivity of the targets q⋆,c , c ∈ [C] , ⋆ ∈ {AL,AP} with respect to the 
local model parameters �k via calculating the gradients:

where JAL(y|x) = qAL(y|x) , JAP(y|x) = qk(y|x;�k) . Obviously, the sensitivity is par-
tially determined by the absolute value of the predicted probabilities J⋆(y|x) . This 
implies that large probabilities make the distillation process sensitive to local 

(3)qAL(y|x) = �

(∑
k

wkfk(x;�k)

)
,

(4)qAP(y|x) =
∑
k

wk�
(
fk(x;�k)

)
,

(5)
𝜕q⋆,c

𝜕𝜃k
= wkJ⋆,c(y|x)

(
𝜕fk,c

𝜕𝜃k
−
∑
j

J⋆,j(y|x)
𝜕fk,j

𝜕𝜃k

)
,

Fig. 4   Performance degradation of FedDF with larger number of clients (e.g., K = 100, 1000 ) and lower 
stochastic participation ratios (e.g., 10%, 1% ). Rows show cases split by “label" and “dirichlet". E denotes 
the number of local training epochs
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models, while moderate prediction results are more stable. This also consists with 
some previous distillation research that find tolerant teachers will educate better stu-
dents (Yang et al. 2019). Actually, we find that local updated models could generate 
“logits" with varying magnitudes on the same class, making “AvgLogi" suffer from 
large variance, and the predicted probabilities vary significantly across classes. We 
will show observations in experiments (Sect. 5.1).

To further reduce the “logits" variance and the sensitivity, we also normalize the 
“logits" before calculating probabilities in Eq. 4 as follows:

where std({⋅}) calculates the standard deviation of a set of values, i.e., all “logit" 
values of all classes on all test samples. � is the temperature that controls the entropy 
and we use � = 4.0 . This normalization process could generate magnitude-invariant 
distillation targets among local models, which are more robust to averaging.

4.2 � Rectified distillation

From another aspect, the distillation in FedDF aims to optimize:

where we use q(y|x) = qAP(y|x) in Eq.  7 without any more consideration of 
“AvgLogi”. This is just the KL-divergence in Eq. 1. Then, we rewrite the distillation 
process as:

where we consider stochastic client participation (i.e., only |S| clients) resulted from 
limited or unstable communication. The ideal optimization of � should be minimiz-
ing KL(pg(y|x), qg(y|x;�)) , ∀x ∼ pg(x) . If we could guarantee 

∑
k∈S

wk∑
j∈S wj

qk(y�x;�k) 
approximates pg(y|x) , the distillation process is unbiased and beneficial. This condi-
tion could be basically met in TFL if at least one of the following satisfies: (1) the 
clients’ data distributions are the same with the global one, i.e., the I.I.D. case; (2) 
full or higher client participation in Non-I.I.D. case. The latter one explains why 
FedDF (Lin et al. 2020) is useful in cross-silo FL scenes. However, with a smaller 
set of participating clients, and supposing only the kth client is selected as an 

(6)qk(y�x;�k) = �

⎛
⎜⎜⎜⎝
� ∗

fk(x;�k)

std
�
{fk,c(x;�k)}x∼pg(x),c∈[C]

�
⎞
⎟⎟⎟⎠
,

(7)qAP(y|x) =
∑
k

wkqk(y|x;�k),

(8)min
�

E
x∼pg(x)

[
−

C∑
c=1

q(y = c|x) log qg(y = c|x;�)
]
,

(9)min
�

E
x

�
−

C�
c=1

��
k∈S

wk∑
j∈S wj

qk(y = c�x;�k) log qg(y = c�x;�)
��

,



2056	 X.-C. Li et al.

1 3

extreme case, we actually minimize KL(qk(y|x;�k), qg(y|x;�)) . Because qk(y|x;�k) is 
fitted to pk(y|x) and pk(y|x) ∝ pk(y)pk(x|y) , the distillation implicitly biases the 
global model � to the kth client’s prior distribution pk(y) . Similarly, with a set of cli-
ents S, the aggregated model will be updated towards 

∑
k∈S

wk∑
j∈S wj

pk(y) . In Non-I.I.D. 

cases, 
∑

k∈S

wk∑
j∈S wj

pk(y)is not guaranteed to cover proper probabilities for all classes 

and experiences high variance with smaller set of S. For example, we have C = 4 
classes and select S = {1, 2} with p1(y) = [0.5, 0.5, 0.0, 0.0] and 
p2(y) = [0.5, 0.0, 0.5, 0.0] . We use uniform weights. Then the distillation process 
will be biased towards the distribution [0.5, 0.25, 0.25, 0.0], which brings a negative 
transfer to the fourth class. We will verify this more in Sect. 5.1.

We propose two techniques to rectify the distillation targets. The first one is 
enlarging the ensemble. The initial global model and the aggregated model in 
the tth round are �t and �t+1 , respectively, while the collected local models are 
{�t,k}k∈St . We use all of these models to generate distillation targets. Consider-
ing the aggregated models may perform worse in the beginning, we set a lower 
weight for them at previous communication rounds and gradually increase the 
weight. The second technique considers a certain local model could only per-
form well on a portion of test data. For example, if a local model only or majorly 
observes dogs and cats during local training, it could not teach or negatively 
teach the aggregated model to identify cars. We propose using the predicted 
entropy to measure how confident is the local model on the predicted sample, 
i.e., et,k(x) = −

∑C

c=1
qk(y = c�x;�t,k) log qk(y = c�x;�t,k) . A smaller entropy corre-

sponds to more confidence, and we let this model contribute more to the distil-
lation process on this sample. Mathematically, the proposed rectified distillation 
targets are formulated as:

where utilizing {wt,k(x)}k∼St = �
(
−1.0 ∗ {et,k(x)}k∈St

)
 can choose appropriate local 

models for each test sample to generate distillation targets. qk(⋅) and qg(⋅) are calcu-
lated as in Eq. 6. ut balances the influence of local and global models. We adjust ut 
via ut = 0.25 + 0.75 ∗

(

1
|St |

∑

k∈St t,k

)

∕ logC . Lt,k denotes the local cross-entropy loss. 
With the loss becoming smaller, the aggregated models usually perform better and 
we enhance their influences. Notably, fusing the initial model �t (i.e., the aggregated 
model in previous round) and the aggregated model �t+1 could work as temporal 
ensembling or self-teaching such as in  Laine and Aila (2017), Tarvainen and Val-
pola (2017), Li et al. (2021).

(10)

qRAP,t(y�x) = ut ∗

��
k∈St

wt,k(x)∑
j∈St

wt,j(x)
qk(y�x;�t,k)

�

+
1 − ut

2
∗
�
qg(y�x;�t) + qg(y�x;�t+1)

�
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Self Teaching

,
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4.3 � Clustered label refinery

The aforementioned two modules separately provide solutions for the problem of 
varying magnitudes and improper distillation in FedDF (Lin et al. 2020). Only with 
these two modules, we could already yield better performances compared with 
FedDF. However, we additionally introduce other techniques to further enhance the 
stability and quality of the distillation targets. We take advantage of deep clustering 
(Caron et  al. 2018) to consider feature structural information. This technique has 
been verified beneficial in domain adaptation (Liang et al. 2020) and transductive 
few-shot learning (Liu et al. 2019). Formally, we denote the obtained distillation tar-
gets as q(y|x) = qRAP,t (Eq.  10). We extract hidden feature representations via the 
aggregated global model �t+1 and denote the features as {h(x)}

x∼pg(x)
 . Then we fur-

ther improve the distillation targets:

where Df (⋅, ⋅) is a distance metric and we use Df (x1, x2) = 1.0 −
x
T
1
x2

‖x1‖‖x2‖ . � is the 
temperature which is also set as 4.0. The two steps in Eqs. 11 and 12 could be iter-
ated for several steps as done in unsupervised clustering (Caron et al. 2018), while 
we only take one step and it is enough to generate better distillation targets. Notably, 
the aggregated model could not extract discriminative features in the beginning, 
thus we omit this process in the first several rounds (e.g., 5).

4.4 � MrTF

With the three modules, we propose MrTF as follows. During the tth communi-
cation round, the local procedure is the same as FedAvg (McMahan et al. 2017), 
while the global procedure takes several steps: (1) collect �t , the updated models 
{�t,k}k∈St , and the aggregated model �t+1 ; (2) make predictions for the global test 
set using these models in Eq. 6; (3) rectify these predicted probabilities in Eq. 10; 
(4) generate distillation targets via considering feature clusters in Eqs. 11 and 12; 
(5) refine the aggregated model �t+1 on the global test set in Eqs.  1 and 2 with 
the replaced distillation targets. The refined global model is then distributed onto 
another set of clients for the next round of learning. The procedure of MrTF is 
illustrated in Fig.  5. The upload and download process is the same as FedAvg. 
The proposed stabilized teachers, rectified distillation, and clustered label refin-
ery are aimed at generating better distillation targets. The refined model could 
simultaneously tackle the data heterogeneity challenge across clients and fuse the 
structural information of the to-be-inferred data.

(11)vc =
E
x∼pg(x)

[
qc(y|x)h(x)

]

E
x∼pg(x)

[
qc(y|x)

] ,

(12)q(y|x) = �
(
{−1.0 ∗ � ∗ Df (h(x), vc)}

C
c=1

)
,
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4.5 � More discussion

We present more analysis of MrTF from other relevant aspects.

4.5.1 � Individual distillation

“AvgProb" in Eq.  4 could bring another advantage that the distillation could be 
clearly decomposed into each client, which is more intuitive to analyze. Specifically, 
the loss in Eq.  9 could be viewed as 

∑
k∈S

wk∑
j∈S wj

KL(qk(y�x;�k), qg(y�x;�)) , where 
each client’s model individually serves as a teacher. Hence, we expect different 
teachers transfer different knowledge, i.e., their confident samples, implying the 
applied weights in Sect. 4.2 are more rational.

4.5.2 � Sensitivity to weights

We apply weights wk(x) in Eq.  10, and we could also add a uniform weight 
wk = 1∕K . If we do not use “AvgProb", directly utilizing “AvgLogi" has been veri-
fied sensitive to different weighting, shown in Fig. 6. Theoretically, the sensitivity 
of qAL with respect to wk is relevant to the absolute value of fk(x;�k) (Eq. 3), while 
in qAP , it is relevant to �(fk(x;�k)) ∈ [0, 1] . Obviously, the latter is more robust to the 
applied weights. This paves the foundation for adding two-level weights in rectified 
distillation (Sect. 4.2).

4.5.3 � Self teaching

In the module of rectified distillation (Sect. 4.2), we add global aggregated models 
into the ensemble. We could decompose Eq. 10 into three parts: (1) the first is distill-
ing local models’ ability to the aggregated model; (2) the second is like KD(�t, �t+1) , 

Fig. 5   The training procedure of the proposed MrTF. The proposed three techniques (i.e., stabilized 
teachers, rectified distillation, and clustered label refinery) could generate better distillation targets and 
facilitate the model refinery process
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which utilizes historical prediction to supervise the current learning; (3) the third 
part is KD(�t+1, �t+1) , which is similar to self-teaching. KD(⋅, ⋅) denotes the knowl-
edge distillation process.

5 � Experiments

We use datasets from: (a) digits recognition: MNIST (Lecun et al. 1998), MNISTm 
(Ganin and Lempitsky 2015), SVHN (Netzer et  al. 2011; b) image classification: 
CIFAR10/100 (Krizhevsky 2012), recommended by FedML (He et  al. 2020; c) 
FeMnist and Shakespeare, recommended by LEAF (Caldas et  al. 2018). Datasets 
in (a) and (b) are commonly utilized as benchmarks in centralized training. In our 
work, we split the corresponding training set onto K clients according to “split by 
label" with different C or “split by dirichlet" with different � . Smaller C and � lead 
to more Non-I.I.D. scenes, i.e., clients’ data distributions differ a lot. Benchmarks in 
(c) provide a user list, and we construct Non-I.I.D. FL scenes via taking each user as 
an individual client. Specifically, Shakespeare is a dataset built from the Complete 
Works of William Shakespeare, which is originally used in FedAvg (McMahan et al. 
2017). It is constructed by viewing each speaking role in each play as a different 
device, and the target is to predict the next character based on the previous charac-
ters. FeMnist is a task to classify the mixture of digits and characters, where data 
from each writer is considered as a client. These two benchmarks contain amounts 
of training samples and we only select 10% data for training. We list statistics of 
these benchmarks in Table 1 including: (1) the total amount of training samples of 
all clients (N); (2) the total number of test samples on the server (M); (3) the num-
ber of classes (C); (4) the number of clients (K); (5) the number of training samples 
of each client on average ( Nk ); (6) the number of observed classes (i.e., at least 5 
training samples) of each client on average when split by label ( C = 3 ) or dirichlet 
( � = 0.1 ), denoted as Ck separated by " |".

For different datasets, we use corresponding deep neural networks, including: (1) 
MLPNet for MNIST with three layers, the hidden size of each hidden layer is 1024, 

Table 1   Statistics of utilized datasets. We take K = 100 for an example

N M C K N
k

C
k

MNIST (Lecun et al. 1998) 55k 10k 10 100 550 3.0 | 3.6
MNISTm (Ganin and Lempitsky 2015) 55k 10k 10 100 550 3.0 | 3.6
SVHN (Netzer et al. 2011) 73k 26k 10 100 730 3.0 | 3.9
CIFAR10 (Krizhevsky 2012) 50k 10k 10 100 500 3.0 | 3.6
CIFAR100 (Krizhevsky 2012) 50k 10k 100 100 500 30 | 17.5
FeMnist (Caldas et al. 2018) 85k 16k 62 359 236 15.3 | 

14.4
Shakespeare (Caldas et al. 2018) 437k 84k 80 112 3.9k 28.7 | 

29.2
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and the last layer’s size is 2 for visualization in Fig. 3 and 128 for performance com-
parisons; (2) LeNet (Lecun et  al. 1998) for MNISTm; (3) ConvNet for SVHN as 
used in FedAvg (McMahan et al. 2017), we use T-SNE (van der 2013) for visualiza-
tion in Fig. 3; (4) VGG8 (Simonyan and Zisserman 2015) for CIFAR10/100 with 5 
convolution layers and 3 fully-connected layers; (5) ResNet8/20 (He et al. 2016) for 
CIFAR100; (6) FeCNN for FeMnist as used in LEAF (Caldas et al. 2018; 7) CharL-
STM for Shakespeare as used in FedAvg (McMahan et al. 2017). For our proposed 
MrTF, we extract features for further label refinery as introduced in Sect. 4.3. For 
MLPNet and CharLSTM, we utilize the last hidden layer’s output as features; for 
convolution networks, we use the flattened convolution features.

In TFL, the number of clients K, the client participation ratio R, the split param-
eters C and � determine a FL scene. Usually, K is large in FL, and R could be 
small due to limited or unstable communication. C and � are introduced to split 
the centralized training data for simulating a decentralized setting. We investi-
gate K = 100, 1000 , R = 10%, 1% in our experiments. We also investigate several 
data split ways, e.g., C = 5, 3 for C = 10 , � = 1.0, 0.1 . Smaller C or � corresponds 
to more Non-I.I.D. scenes. Other important hyper-parameters include the number 
of global communication rounds T and the local training epochs E. We also study 
our method on various settings of T and E. We use SGD with a momentum of 
0.9 as the local optimizer. For digits recognition scenes, we vary learning rate in 
{0.1, 0.05, 0.01} and report the best one for comparison; for CIFAR scenes, we vary 
learning rate in {0.05, 0.03, 0.01} ; for FeMnist, we use 0.004; for Shakespeare, we 
use 1.47. For digits and CIFAR scenes, we use a batch size of 64; for FeMnist and 
Shakespeare, we use 10. We use Adam with a learning rate 0.0003 as the global 
optimizer in FedDF and MrTF (Ours) and take 500 distillation steps.

5.1 � Demo analysis

We first verify the success of the first two modules in MrTF, which are proposed to 
tackle the varying magnitudes and improper distillation drawbacks in FedDF (Lin 
et al. 2020). We experiment on MNIST with three clients and each client could only 
observe two classes. We init a global model and distribute it to the three clients. 
After local training, we use these three local models to predict on the global test 
set, recording the accuracy and each instance’s “logits" and “probs". We average 
the class “logits" or “probs" across test samples for better presentation. Because the 
global test set is uniformly distributed across 10 classes, and we expect the aver-
age results of both “logits" and “probs" are also uniform. The results are shown in 
Fig. 6.

First, the top three figures show the results of each local model. The accuracies 
are low, i.e., 17.6%, 19.2%, 20.4%. The reasons are intuitive: they are trained with 
only 2 classes, while the global test set contains 10 classes. The “logits" across cli-
ents vary greatly, with the largest ranging from 9.0 to 20.0, while the correspond-
ing “probs" are limited to [0, 0.5]. If we uniformly ( wk = 1∕K ) average “logits" and 
“probs" of three local models for each test instance as done in Eqs.  3 and 4, the 
results are shown at the bottom left of Fig. 6. Because the 9th class (showed in red) 
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generally has large “logits" (i.e., around 20.0) predicted by the first local model, it 
dominates the �(⋅) operation and makes “AvgLogi" output much higher probabilities 
on the 9th class. However, using “AvgProb" leads to smoother class probabilities 
and the test accuracy improves from 33.1 to 44.0%. If we apply w1 = 0.6,w2 = 0.3

,w3 = 0.1 for averaging, the results of “AvgLogi" are worse as shown in the bottom 
middle of Fig. 6 (the 9th stem is higher). However, “AvgProb" performs more stably 
and the class probabilities are more uniform. These observations show that replac-
ing “AvgLogi" with “AvgProb" could really mitigate the problem of the varying 
magnitude, leading to moderate teachers and better ensemble performances.

From another aspect, because these three clients only observe at most 6 classes 
in total, some unseen classes’ “logits" will be inaccurate. Illustrated in Fig. 6, some 
classes’ probabilities become zero. That is, the stochastic client participation will 
lead to inaccurate distillation targets, and directly using “AvgLogi" or “AvgProb" for 
distillation is improper. Instead, we fuse the global aggregated models and rectify 
the probabilities as done in Sect.  4.2. Then the results shown at the bottom right 
of Fig. 6 are better. That is, the probabilities of “AvgLogi" and “AvgProb" become 
more smooth and the test accuracies are improved to 39.4% and 79.9%, respectively. 
All observations verify the rationality and effectiveness of our solutions in Sects. 4.1 
and 4.2.

5.2 � Performance comparisons

We compare MrTF with FedAvg (McMahan et al. 2017), FedProx (Li et al. 2020), 
FedMMD (Yao et al. 2018), FedOpt (Reddi et al. 2021), Scaffold (Karimireddy et al. 
2020), and FedDF (Lin et al. 2020). The first five algorithms do not access the global 
test set during training, while they utilize various techniques to solve Non-I.I.D. 

Fig. 6   Comparisons of “AvgLogi" and “AvgProb" across three clients on MNIST, each client only 
observes 2 classes. The top shows the instance-averaged “logits" and “probs" on global test set of each 
local model. The bottom shows the distillation targets generated via: uniform averaging, non-uniform 
averaging, averaging after adding aggregated models (Color figure online)
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problems. FedDF utilizes “AvgLogi" to refine the aggregated model, which is the 
most similar to ours. Details of these algorithms are presented as follows.

•	 FedAvg McMahan et  al. (2017): the most standard FL algorithm that utilizes 
parameter averaging for model aggregation.

•	 FedProx  Li et al. (2020): introduces a proximal term during local procedures to 
constrain the model parameters’ update.

•	 FedMMD Yao et al. (2018): introduces the discrepancy minimizing optimization 
(i.e., MMD) in local procedures and regularizes the local model not diverge a lot 
from the global model too much.

•	 FedOpt Reddi et al. (2021): updates the global model via momentum or adaptive 
optimization techniques to stabilize the global model’s update.

•	 Scaffold Karimireddy et al. (2020): points out the local update will diverge from 
the global direction and utilizes control variates to reduce local gradient vari-
ance.

•	 FedDF Lin et al. (2020): uses local models’ ensemble, i.e., “AvgLogi", to fine-
tune the global model on a relevant public data set.

5.2.1 � Part I

We first study on MNIST, MNISTm, SVHN, and CIFAR10, which have 10 classes 
to identify. We construct four FL scenes for each dataset via “split by label" with 
C ∈ {5, 3} and “split by dirichlet" with � ∈ {1.0, 0.1} . We take K = 100 clients and 
only select R = 10% clients in each communication round. We update E = 3 epochs 
for each client during local procedures and take T = 200 , 1500 communication 

Fig. 7   Performance comparisons on several FL scenes. Row shows each dataset and column shows each 
data split way
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rounds for digits and CIFAR scenes, respectively. The results are shown in Fig. 7, 
where MrTF converges faster and performs better on all scenes. First, MrTF could 
surpass other methods by a large margin especially in the beginning, verifying that 
learning from local models’ ensemble significantly helps and lays the foundation 
for subsequent improvements. This conforms to the observation in Sect. 3.3. Some 
compared algorithms could only improve FL on certain scenes. For example, Scaf-
fold performs better than others on CIFAR10, while worse on other datasets.

5.2.2 � Part II

Then, we vary the utilized networks and compare the performances on CIFAR100 
using VGG8 (Simonyan and Zisserman 2015) and ResNet8/20 (He et al. 2016). We 
take K = 100 clients and R = 10% . The results are shown in Fig. 8. For each scene, 
we run 500 communication rounds and each client takes on E = 20 epochs. In some 
cases, MrTF performs worse than Scaffold, attributed to the control variates used in 

Fig. 8   Performance comparisons on CIFAR100 based on VGG8 and ResNet8/20. Row shows FL scene 
with different data split ways
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Scaffold. However, MrTF could obtain better results on most of the cases, especially 
in more Non-I.I.D. scenes, i.e., C = 30 and � = 0.1 (the 2nd and 4th row in Fig. 8). 
Because we have 100 classes, the possibility that participating clients cannot cover 
all classes greatly increases, making FedDF ineffective.

5.2.3 � Part III

We also investigate our method on LEAF (Caldas et  al. 2018) benchmarks, i.e., 
FeMnist and Shakespeare. These two benchmarks are split by users, where the dis-
tribution skew dominates the Non-I.I.D. (Kairouz et al. 2019) problem. We show the 
results in Fig. 9. Our proposed MrTF could still show effectiveness towards other 
methods. Although Scaffold could achieve faster convergence in the beginning, the 
performance degrades a lot with a larger communication round. The training insta-
bility limits the application of Scaffold to TFL. Compared with this, our proposed 
MrTF could achieve the Scaffold’s best performance and is more stable.

5.2.4 � Part IV

We then majorly compare with FedAvg and FedDF on various scenes. Specifically, 
we vary K ∈ {100, 1000} to investigate large amounts of clients. For K = 100 , 
we take R = 10% to select only 10 clients in each round and each client updates 
E ∈ {2, 10, 50} local epochs; for K = 1000 , we use R = 1% and E ∈ {5, 50, 100} . 
We experiment on SVHN and CIFAR10 under two split strategies, i.e., “split by 
label" with C = 5 and “split by dirichlet" with � = 1.0 . The results are plotted in 
Fig. 10. MrTF can basically surpass FedAvg and FedDF on all scenes. Additionally, 
MrTF behaves more stably even with larger number of clients (e.g., K = 1000 ), con-
tributed to the stabilized teachers and rectified distillation.

5.3 � Ablation studies

Our proposed MrTF contains three modules: (1) we use “AvgProb" in Eq. 7 instead 
of “AvgLogi" to obtain stabilized teachers; (2) we fuse aggregated models into local 

Fig. 9   Performance comparisons on LEAF benchmarks
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models and apply two-level weights for rectified distillation; (3) we additionally take 
clustering techniques to refine the distillation targets. We incrementally add these 
modules for ablation studies. We denote these three components as “ST", “RD", and 
“CLR". Correspondingly, we compare performances of: (1) simple parameter aver-
aging without any refinery (i.e., FedAvg); (2) averaging logits (i.e., “AvgLogi" in 
FedDF); (3) ST; (4) ST + RD; (5) ST + RD + CLR (i.e., proposed MrTF). We com-
pare them on SVHN and CIFAR10 under various FL scenes, and the results could 
be found in Fig. 11. For each scene, we run 50 communication rounds. “AvgLogi" 
is not stable and sometimes surpasses parameter averaging while sometimes does 
not. Only using the “AvgProb" in Eq. 7 (i.e., ST) could already yield notable perfor-
mances, while fusing RD and CLR could lead to higher results.

5.4 � More studies: cross‑domain TFL

In some cases, although a party could collaborate with other parties to help infer 
the handy unlabeled data via the proposed TFL framework, the distribution of the 

Fig. 10   Comparison results with FedAvg and FedDF on more FL scenes. Row shows dataset and cor-
responding split strategy, and column shows the number of clients K and the number of local training 
epochs E 

Fig. 11   Ablation studies of the modules in MrTF. Each row shows a data set. Each column shows the 
split strategy ( C ∈ [5, 3] , � ∈ [1.0, 0.1] ) and corresponding K, E. The five bars refer to test accuracy of: 
(1) PA (parameter averaging in FedAvg); (2) AL (“AvgLogi" in FedDF); (3) ST (Stabilized Teachers, 
Sect. 4.1); (4) ST + RD (Rectified Distillation, Sect. 4.2); (5) ST + RD + CLR (Clustered Label Refin-
ery, Sect. 4.3) (MrTF)
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unlabeled data may also be heterogeneous from others. We call this case cross-
domain TFL, which is similar to the scene studied in Peng et al. (2020); Feng et al. 
(2021). These works only consider several heterogeneous domains (e.g., 5), which 
are more similar to domain adaptation under privacy protection (Long et al. 2015; 
Liang et al. 2020). That is, they do not consider some other challenges in our work, 
i.e., stochastic client participation, low-shot training samples, class imbalance, etc. 
In cross-domain TFL, we have to simultaneously tackle these challenges aside from 
Non-I.I.D. data and cross-domain knowledge transfer. We preliminarily apply MrTF 
to this scene. Specifically, we split SVHN (MNISTm) data across K = 100 clients 
with � ∈ {1.0, 0.1} . The server aims to make predictions for MNISTm (SVHN). In 
each round, we select 10 clients and each client takes on 5 epochs. We run 200 com-
munication rounds and report the final accuracies averaged by 5 independent experi-
ments. We compare with FedAvg and FedDF. Results are listed in Table 2. MrTF 
could still surpass FedAvg and FedDF by a significant margin even in cross-domain 
TFL. However, the overall cross-domain transfer performance is still lower com-
pared with in-domain learning, which means that more advanced domain adaptaion 
(Long et al. 2015) techniques should be considered for cross-domain TFL.

5.5 � More studies: privacy protection

FedAvg could only provide basic privacy protection for users, while some 
advanced attacks could still break privacy via inverting local gradients (Zhu et al. 
2019; Geiping et  al. 2020). Hence, techniques such as differential privacy (Abadi 
et  al. 2016) should be considered for stricter privacy protections. To guarantee 
(�, �)-DP in FL, gradient clipping is applied to local model updates, and gauss-
ian noises N(0, �2) are added before being sent to the server. With added noise, 
the aggregated model will be more inaccurate. However, we expect our model 
refinery process could mitigate the performance degradation. We experiment on 
CIFAR10 with � = 1.0,K = 100,E = 5, T = 200 . We use VGG8 and add noise 

Table 2   Performance 
comparisons in cross-domain 
TFL

SVHN→
MNISTm

MNISTm→

SVHN

�=1.0 �=0.1 �=1.0 �=0.1

FedAvg (McMahan et al. 2017) 40.26 34.52 32.09 31.06
FedDF (Lin et al. 2020) 41.90 35.91 33.06 28.84
MrTF (Ours) 44.78 41.70 35.32 34.55

Table 3   Performances when 
adding differential privacy

� = 0.0 � = 0.001 � = 0.01 � = 0.1

FedAvg (McMa-
han et al. 2017)

79.46 76.98 69.08 38.27

MrTF (Ours) 82.31 81.76 76.54 47.11
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� ∈ {0.0, 0.001, 0.01, 0.1} . We report the results of FedAvg and MrTF in Table 3. 
With higher noise, FedAvg’s performance degrades seriously while MrTF could 
maintain a better prediction.

5.6 � Limitations and future work

Our proposed MrTF is a novel and practical solution to the introduced real-world 
scenario in that a newly-established pilot project needs to build a machine-learning 
model with the help of other isolated parties. However, MrTF does not consider the 
existing models of these parties and trains local models from scratch, making the 
convergence slower. Utilizing the available pre-trained models and accelerating the 
training process may be interesting for future work.

6 � Conclusion

We consider transductive federated learning (TFL), where the server owns to-be-
referred data while the training data are distributed across other parties. We in-depth 
analyze some existing FL works and point out their drawbacks. As an alternative, we 
propose MrTF with three modules, i.e., stabilized teachers, rectified distillation, and 
clustered label refinery, to refine the global aggregated model and make predictions 
in a transductive manner. Our proposed method shows superiorities towards com-
pared methods on various investigated scenes.
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