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Abstract
What are the relations between the edge weights and the topology in real-world 
graphs? Given only the topology of a graph, how can we assign realistic weights 
to its edges based on the relations? Several trials have been done for edge-weight 
prediction where some unknown edge weights are predicted with most edge weights 
known. There are also existing works on generating both topology and edge weights 
of weighted graphs. Differently, we are interested in generating edge weights that 
are realistic in a macroscopic scope, merely from the topology, which is unexplored 
and challenging. To this end, we explore and exploit the patterns involving edge 
weights and topology in real-world graphs. Specifically, we divide each graph into 
layers where each layer consists of the edges with weights at least a threshold. We 
observe consistent and surprising patterns appearing in multiple layers: the similar-
ity between being adjacent and having high weights, and the nearly-linear growth of 
the fraction of edges having high weights with the number of common neighbors. 
We also observe a power-law pattern that connects the layers. Based on the observa-
tions, we propose PEAR, an algorithm assigning realistic edge weights to a given 
topology. The algorithm relies on only two parameters, preserves all the observed 
patterns, and produces more realistic weights than the baseline methods with more 
parameters.
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1 Introduction

In weighted graphs, the edge weights reveal the heterogeneity of edges and enrich 
the information provided by the topology (Newman 2004). In practice, weighted 
graphs have been widely used to model traffic (De Montis et al. 2007), biological 
interactions (Aittokallio and Schwikowski 2006), personal preference (Liu et al. 
2009), etc. The relation between topology and edge weights, therefore, attracts 
much attention. A typical scenario where the two kinds of information are inte-
grated is edge-weight prediction (Fu et al. 2018; Rotabi et al. 2017). The target of 
edge-weight prediction is to predict the unknown edge weights using the given 
topological and edge-weight information, where usually most of the edge weights 
are given as the inputs. Another related direction is to generate both the topology 
and the edge weights of weighted graphs  (Akoglu et  al. 2008; McGlohon et  al. 
2008; Yang et al. 2021).

However, not much has been explored about the relation between the pure 
topology and the edge weights in a graph, despite the importance of the relation. 
In some previous trials, the problem of classifying edges into strong ones and 
weak ones by assuming strong triadic closure (Sintos and Tsaparas 2014) (STC) 
is considered. The STC assumption forbids open triangles (also called triads or 
wedges) with two strong edges and aims to maximize the number of strong edges. 
However, the diversity of edge weights is over-simplified in such a setting. More-
over, it has been pointed out by Adriaens et al. (2020) that the STC assumption 
with a maximum number of strong edges is often far from the reality, and the 
generalized version still has room for improvement, especially w.r.t the empirical 
grounds (Adriaens et al. 2020).

Specifically, we study how the edge weights in real-world graphs are related 
to the topology in a macroscopic way, which allows us to generate realistic edge 
weights when given an unweighted topology. We would like to emphasize that we 
do not aim to assign edge weights with small errors w.r.t each individual edge. 
We are motivated by the following practical applications:

• Edge weight anonymization. In social networks, due to data privacy issues, 
sometimes only the binary connections are publicly accessible, while the 
detailed edge weights should not be publicized  (Steinhaeuser and Chawla 
2008; Skarkala et  al. 2012). Using the macroscopic patterns, we are able to 
generate realistic edge weights for a given topology and publicize the gener-
ated weighted graph to researchers and practitioners as a benchmark dataset, 
without revealing the true edge weights.

• Anomaly detection. In communication networks, the edge weights usually rep-
resent the frequency or intensity of the communication between the entities. 
Using the patterns observed on real-world graphs, we may detect anomalous 
edge weights that deviate from the patterns, and they may correspond to enti-
ties that have abnormally frequent or intensive communication (Thottan et al. 
2010; Akoglu et al. 2015).
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• Community detection. Community detection is a fundamental problem in network 
analysis  (Fortunato 2010). Edge weights are known to be helpful for commu-
nity detection because they provide additional information about the strength and 
importance of connections between nodes (Liu et al. 2014; He et al. 2021), and 
thus assigning edge weights to unweighted graphs has the potential to enhance 
the performance of community detection algorithms (Berry et al. 2011).1

We introduce and use a new tool called layers to study weighted graphs in a hierar-
chical way, where each layer is a subgraph that consists of the edges with weights 
exceeding some threshold. We examine eleven real-world graphs from five dif-
ferent domains and observe consistently strong correlations between the number 
of common neighbors (CNs) of an edge and the weight of the edge. Although the 
information of CNs has been widely used in link prediction (Wang et al. 2015) and 
used to indicate the significance of individual edges (Ahmad et al. 2020; Cao et al. 
2015; Zhu and Xia 2016), to the best of our knowledge, we are the first to study the 
quantitative patterns between the information of CNs and edge weights in a macro-
scopic scope. We observe consistent within-layer patterns in multiple layers: (1) the 
nearly-linear growth of fraction of high-weight edges with the number of CNs, (2) 
the relation between being adjacent and having high weights (specifically, the rela-
tion between the fraction of high-weight edges and that of adjacent pairs with the 
same name number of CNs), and across the layers, we observe a power-law correla-
tion between the overall fraction of high-weight edges and the counterpart within 
the group of edges sharing no CNs. Based on the observations, we propose PEAR 
(Pattern-based Edge-weight Assignment on gRaphs), an algorithm for assigning 
realistic edge weights to a given topology by preserving all the observed macro-
scopic patterns. The proposed algorithm has only two parameters. On multiple real-
world datasets, PEAR outperforms the baseline methods using the same number of, 
or even more, parameters, producing more realistic edge weights in several different 
aspects w.r.t different macroscopic network statistics.

In short, our contributions are five-fold:

• New problem. We introduce a new challenging problem: realistic assignment of 
edge weights merely based on topology.

• New perspective. We introduce the concept of layers, which provides a new per-
spective to study weighted graphs.

• Patterns. We extensively study eleven real-world graphs and discover the various 
relations between topology and edge weights.

• Algorithm. We propose PEAR, a weight-assignment algorithm based on the 
observed patterns. The algorithm has only two parameters yet produces realistic 
edge weights to a given topology.

• Experiments. We evaluate PEAR on real-world graphs. Without sophisticated 
fine-tuning, PEAR overall outperforms the baseline methods with more param-

1 See Appendix E for some illustrative experiments, where we use edge weights generated by our pro-
posed method to enhance the performance of a community detection method.
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eters, producing more realistic edge-weights w.r.t node-degree and edge-CN dis-
tributions, average clustering coefficient, and a graph distance measure computed 
by NetSimile (Berlingerio et al. 2012).

Roadmap. The remaining part of the paper is organized as follows. In Sect. 2, we 
discuss related work. In Sect. 3, we provide some preliminaries. In Sect. 4, we pro-
pose some new concepts. In Sect.  5, we describe the patterns that we observe on 
real-world datasets. In Sect. 6, we formulate our observations and, based on them, 
propose our algorithm, PEAR. In Sect. 7, the empirical evaluation of PEAR on real-
world datasets is demonstrated. In Sect. 8, we discuss some potential limitations of 
our work and future directions, and lastly, conclude the paper.
Reproducibility. The code and datasets are available at https:// github. com/ bokve 
izen/ topol ogy- edge- weight- inter play (Bu et al. 2022).

2  Related work

Edge-weight prediction. In the early trials of edge-weight prediction (Aicher et al. 
2015; Zhao et al. 2015; Zhu et al. 2016), the problem is dealt with as a natural exten-
sion of the link prediction (Martínez et al. 2016) problem. Specifically, the proposed 
link-prediction algorithms assign scores to node pairs as the likelihood of edge exist-
ence, and the scores are also naturally used as the estimated edge weights. More 
recently, Fu et al. (2018) use multiple topological features to predict the unknown 
edge weights in a supervised manner. Specifically, they fit a regression model to 
the known edge weights with the features and use the fitted model to predict the 
unknown ones. The main differences between the problem that we focus on in this 
work and the edge-weight prediction problem are: (1) in the edge-weight prediction 
problem, most (e.g., 80% (Aicher et al. 2015) or 90% (Fu et al. 2018; Zhao et al. 
2015; Zhu et al. 2016)) of the edge weights are assumed to be known and are given 
together with topology as the inputs, while we consider the scenarios where we only 
have access to the topology and we have none known edge weights; and (2) the tar-
get of the edge-weight prediction problem is to estimate the weights of individual 
edges in a microscopic way, while we aim to generate realistic edge weights for a 
given topology preserving the macroscopic patterns that we observe in real-world 
graphs. Notably, there is another independent research problem that focuses on the 
edge-weight prediction of weighted signed graphs, which has essential differences 
from the research problem in this paper. Specifically, the techniques proposed in a 
recent work studying that problem (Kumar et  al. 2016) are specially designed for 
weighted signed graphs representing pairwise relations such as like/dislike and trust/
distrust, which cannot be directly applied to the scenarios that we focus on where 
the edge weights represent the repetitions of the corresponding binary relations.
Weighted-graph generation. The other trials exploring the interplay between topol-
ogy and edge weights, include the weighted-graph generation problem (Akoglu et al. 
2008; McGlohon et al. 2008; Yang et al. 2021). In those works, the authors specifi-
cally study the evolution of both topology and edge weights over time, and they pro-
pose algorithms that generate both topology and edge weights of weighted graphs. 

https://github.com/bokveizen/topology-edge-weight-interplay
https://github.com/bokveizen/topology-edge-weight-interplay
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Although some simple static patterns (e.g., power-law or geometric weight distribu-
tions) are also discussed in those works, the problem that we focus on, generating 
edge weights for a given topology, is essentially and technically different with the 
weighted-graph generation problem since in our problem the topology is given and 
thus fixed.
Strong triadic closure. The concept of strong triadic closure (STC) is first proposed 
by Sintos and Tsaparas (2014), where the authors consider the problem of classify-
ing edges into strong ones and weak ones. They define that a graph satisfies the STC 
property if there exists no open triangle with two strong edges,2 and they assume 
that graphs often satisfy the STC property and have many strong edges. Therefore, 
they specifically consider the problem of maximizing the number of strong edges 
while satisfying the STC property. However, only two types of edge weights are con-
sidered in this problem, while real-world graphs often have a high diversity of edge 
weights (see, e.g., the datasets in Table  2). Moreover, this optimization problem 
has both theoretical (it can have many optimal solutions) and practical (real-world 
graphs often do not have many strong edges) limitations, as pointed out by Adriaens 
et al. (2020). Even though the above problem has been extended to edge weights of 
a wider range with other modifications (Adriaens et al. 2020), the extended version 
still has room for improvement w.r.t the empirical grounds, and the methods fail to 
predict the edge weights of real-world graphs accurately. Specifically, the predicted 
edge weights have almost zero correlation with the ground truth on many datasets, 
as shown by Adriaens et al. (2020).

To the best of our knowledge, we are the first to consider the problem of assigning 
realistic edge weights to a given topology by trying to preserve patterns observed on 
real-world graphs.

3  Preliminaries

In this section, we provide some mathematical and notational backgrounds.
A weighted graph G = (V ,E,W) consists of a node set V = V(G) , an edge set 

E = E(G) ∈

(
V

2

)
 , and edge weights W = W(G) . By ignoring the edge weights, we 

have the underlying unweighted graph G = (V ,E) of G. For each edge e ∈ E , We is 
the weight of e. In this work, we focus on graphs with positive integer edge weights, 
i.e., W ∈ ℕ

E , where ℕ is the set of positive integers, where each edge weight repre-
sents the number of occurrences of the corresponding edge. Note that the analysis 
on weighted graphs is mainly done on the graphs with integer edge weights (New-
man 2004), and for graphs with non-integer edge weights, we may round each edge 
weight to the nearest integer. All graphs are assumed to be undirected and without 
self-loops. Thus, (u,  v) and (v,  u) represent the same edge (i.e., the set {u, v} ) 
between two nodes u ≠ v ∈ V .

2 Formally, the STC property requires that, for any three nodes u, v, and w, if both of the edges (u, v) and 
(u, w) are strong, then the edge (v, w) must exist.
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The concepts below use only the topology of G (i.e., V and E). For each 
node v ∈ V  , Nv(G) = {v� ∈ V ∶ (v, v�) ∈ E} is the neighborhood of v in 
G, and dv(G) = |Nv(G)| is the degree of v in G. For two nodes u, v ∈ V  , 
CNuv(G) = Nu(G) ∩ Nv(G) is the set of common neighbors (CNs) of u and v in 
G, and we say the two nodes u and v share the common neighbors in CNuv(G) . 
For an edge e = (u, v) , we use CNe(G) to denote CNuv(G) , and we say that the 
edge e shares the common neighbors in CNe(G) . Sometimes, the number |CNe(G)| 
of common neighbors shared by the two endpoints of e is called the embedded-
ness (Cleaver 2002) of e.

Given G = (V ,E,W) , the line graph  (Harary and Norman 1960) of G is the 
graph L(G) = (E,X) , where the nodes of L(G) one-to-one correspond to the edges 
of G and two nodes of L(G) are adjacent to each other if and only if the two corre-
sponding edges in G share a common endpoint. Given k ∈ ℕ , the k-core (Seidman 
1983) Ck(G) of G is the maximal subgraph of G where each node of Ck(G) has 
degree k within it.

We list the frequently used notations and abbreviations in Table 1. In the nota-
tions, the input graph G can be omitted when the context is clear.

In this paper, we consider the problem where given the topology of a graph, 
we aim to assign realistic edge weights to the topology based on several patterns 
observed on real-world graphs, where each edge weight is a positive integer rep-
resenting the number of occurrences of the corresponding edge. We formulate the 
considered problem (informally at this moment) as follows:

Problem 1 (Informal) Given an unweighted graph G = (V ,E) , we aim to generate 
edge weights W ∶ E → ℕ that satisfy a group of realistic properties regarding the 
interplay between topology and edge weights, where each edge weight is a positive 
integer representing the number of occurrences of the corresponding edge.

We shall first present the patterns (i.e., the group of realistic properties) that we 
observe on real-world graphs, and then we provide a formal problem statement by 
formulating the patterns as mathematical properties. Finally, we propose an algo-
rithm that assigns realistic edge weights to a given topology while preserving the 
formulated properties.

4  Proposed concepts

In this section, we introduce the proposed concepts. We will use them to describe 
our observations and design our algorithm.

When given an unweighted graph G = (V ,E) , the topology divides the pairs (
V

2

)
 of nodes into two categories. Each pair (u, v) ∈

(
V

2

)
 of nodes is either adja-

cent ( (u, v) ∈ E , weight ≥ 1 ) or distant ( (u, v) ∉ E , weight < 1 ). When we have a 
weighted graph G = (V ,E,W) , we can similarly set different weight thresholds i ∈ ℕ 
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and extract the subgraph consisting of edges with weight ≥ i , which gives the fol-
lowing definition of layers.

Definition 1 (Layers) Given G = (V ,E,W) and i ∈ N , the layer-i of G is the 
weighted graph Gi = (Vi,Ei,Wi) obtained from G by taking the edges with weights 
greater than or equal to i.3 Formally, Ei = Ei(G) = {e ∈ E ∶ We ≥ i} , and 
Wi = Wi(G) satisfies that Wi(e) = W(e),∀e ∈ Ei . We also define all the possible node 

pairs Ri = Ri(G) =

(
Vi

2

)
.

Based on the concept of layers, we also define the following related concepts, 
weighty edges (WEs) and fraction of weighty edges (FoWE), w.r.t each layer of a 
graph. Intuitively, in each layer, the weighty edges are the edges with weights higher 
than the threshold determined by the layer. Notably, we define overall FoWEs for the 
whole layer, and we also define FoWE w.r.t each number c of common neighbors 
(CNs).

Definition 2 (Fractions of weighty edges and adjacent pairs) Given G = (V ,E,W) 
and i ∈ ℕ , we call an edge e ∈ Ei a weighty edge (w.r.t G and i) if and only if 
We > i (i.e., e ∈ Ei+1 ), where recall that Ei is the edge set of Gi . The overall 

Table 1  Notations and abbreviations

Notation/Abbreviation Definition/Meaning

G = (V ,E,W) A graph with a node set V, a edge set E, and edge weights W

G = (V ,E) The underlying unweighted graph of G

W
e

The edge weight of e ∈ E

N
v
(G) The set of neighbors of v ∈ V

d
v
(G) The degree of v ∈ V

CN
uv
(G) The set of common neighbors of u, v ∈ V

G
i
= (V

i
,E

i
,W

i
) The layer-i of G whose edge set consists of the edges with weights ≥ i in G

R
i
=

(
V
i

2

)
The set of all the node pairs in G

i

E
c;i
(G) The set of edges sharing c common neighbors in G

i

R
c;i
(G) The set of pairs sharing c common neighbors in G

i

f
overall;i

(G) ( f̃
overall;i

(G)) The overall fraction of weighty edges (adjacent pairs) w.r.t G and i (Def. 2)

f
c;i
(G) ( f̃

c;i
(G)) The fraction of weighty edges (adjacent pairs) within E

c;i
(G) (Def. 2)

CN Common neighbor
PEAR Pattern-based Edge-weight Assignment on gRaphs
FoWE Fraction of weighty edges
FoAP Fraction of adjacent pairs

3 G
1
 , the layer-1 of G, is identical to the original graph G.
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fraction of weighty edges foverall;i(G) is defined as |Ei+1|∕|Ei| . Further given c ∈ ℕ , 
let Ec;i ⊆ Ei denote the set of edges sharing c CNs (i.e., edges whose endpoints 
share c CNs) in Gi . The fraction of weighty edges (w.r.t G, i, and c) fc;i(G) is defined 
as |Ec;i ∩ Ei+1|∕|Ec;i| . Similarly, we define the overall fraction of adjacent pairs 
f̃overall;i(G) = |Ei|∕|Ri| , as well as the fraction of adjacent pairs (w.r.t G, i, and c) 
f̃c;i(G) = |Ec;i|∕|Rc;i| for each c, where Rc;i is the set of pairs sharing c CNs in Gi.4

5  Patterns in real‑world graphs

In this section, we analyze eleven real-world graphs from different domains and 
extract patterns w.r.t the interplay between topology and edge weights.

Datasets We use 11 publicly-available real-world datasets from five different 
domains. In Table 2, we give some basic statistics (the number of nodes and the num-
ber of edges in each of the first four layers) of the datasets we study in this work. In all 
the datasets, the edge weights can be interpreted as the time of occurrences of the cor-
responding binary relation. We take the largest connected component of each graph. In 
the OF dataset (Opsahl 2013), the nodes are users and an edge represents communica-
tion within a blog post. In the FL (flights) dataset (Opsahl 2011), the nodes are airports 
and an edge represent a flight between two airports. In the th (threads) datasets (Ben-
son et al. 2018), the nodes are users and an edge exists between two users if they par-
ticipate in the same thread within 24 h. The sx (stack exchange) datasets (Paranjape 

Table 2  Some basic statistics (number of nodes and number of edges in each of the first four layers) of 
the eleven real-world datasets (Opsahl 2013; Benson et al. 2018; Paranjape et al. 2017; Sinha et al. 2015) 
from five domains used in our empirical study. The datasets are grouped w.r.t their domains

Dataset |V| |E| = |E
1
| |E

2
| |E

3
| |E

4
|

OF 897 71380 47,266 (66.2%) 35,456 (49.7%) 28,546 (40.0%)
FL 2905 15,645 4608 (29.5%) 1507 (9.6%) 564 (3.6%)
th-UB 82,075 182,648 7297 (4.0%) 2090 (1.1%) 965 (0.5%)
th-MA 152,702 1,088,735 128,400 (11.8%) 48,605 (4.5%) 26,121 (2.4%)
th-SO 2,301,070 20,989,078 1,168,210 (5.6%) 350,871 (1.7%) 170,618 (0.8%)
sx-UB 152,599 453,221 135,948 (30.0%) 56,115 (12.4%) 28,029 (6.2%)
sx-MA 24,668 187,939 74,493 (39.6%) 36,604 (19.5%) 21,364 (11.4%)
sx-SO 2,572,345 28,177,464 9,871,784 (35.0%) 4,137,454 (14.7%) 2,055,034 

(7.3%)
sx-SU 189,191 712,870 216,296 (30.3%) 82,475 (11.6%) 37,655 (5.3%)
co-DB 1,654,109 7,713,116 2,269,679 (29.4%) 1,085,489 (14.1%) 654,182 (8.5%)
co-GE 898,648 4,891,112 1,055,077 (21.6%) 446,833 (9.1%) 246,944 (5.1%)

4 Note that the fraction of adjacent pairs can be different from the density of the corresponding induced 
subgraph.
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et al. 2017) are extracted from the same websites as the th datasets, but here an edge 
exists if one user answers or comments on a question of another, and the two groups 
of datasets are essentially different (see also Table 2 for the statistical difference). In 
the co (coauthorship) datasets (Benson et al. 2018; Sinha et al. 2015), the nodes are 
authors and an edge exists between the two authors if they coauthor a paper.

5.1  Why the number of common neighbors?

First, we shall show that the numbers of common neighbors (CNs) are consistently 
indicative of edge weights even when compared with the more complicated ones. We 
compare the numbers of CNs with several other quantities widely used in link pre-
diction (Martínez et al. 2016) and edge-weight prediction (Fu et al. 2018). Notably, 
the number of CNs shared by two adjacent nodes is equal to the number of triangles 
involving the two nodes. Real-world graphs are rich in triangles (Tsourakakis 2008; 
Shin et al. 2020). For special graphs, e.g., bipartite graphs where no triangle exists, 
we can consider butterflies ((2, 2)-bicliques) instead (Sanei-Mehri et al. 2018).

Given a graph G = (V ,E,W) , for each edge (u, v) ∈ E , we consider the following 
quantities, using only the topology (V and E):

• NC (Number of common neighbors, also called embeddedness  (Cleaver 
2002)). NCuv = |CNuv|.

• SA (Salton index) (Salton and McGill 1983). SAuv = NCuv∕
√
du ⋅ dv.

• JC (Jaccard index) (Levandowsky and Winter 1971). JCuv = NCuv∕|Nu ∪ Nv|.
• HP (Hub-promoted) (Ravasz et al. 2002). HPuv = NCuv∕min(du, dv).
• HD (Hub-depressed) (Ravasz et al. 2002). HDuv = NCuv∕max(du, dv).
• SI (Sørensen index) (Sorensen 1948). SIuv = 2NCuv∕(du + dv).
• LI (Leicht-Holme-Newman index) (Leicht et al. 2006). LIuv = NCuv∕(du ⋅ dv).
• AA (Adamic-Adar index) (Adamic and Adar 2003). AAuv =

∑
x∈CNuv

1∕ log dx.
• RA (Resource allocation) (Zhou et al. 2009). RAuv =

∑
x∈CNuv

1∕dx.
• PA (Preferential attachment) (Albert and Barabási 2002). PAuv = du ⋅ dv.
• FM (Friends-measure)  (Fire et  al. 2011). FM

uv
= |{(x ∈ N

u
, y ∈ N

v
) ∶ x = y

∨(x, y) ∈ E}| = NC
uv
+ |{(x ∈ N

u
, y ∈ N

v
) ∶ (x, y) ∈ E}|.

• DL (Degree in the line graph). DKuv = du + dv − 2.
• EC (Edge coreness). The maximum k ∈ ℕ such that the edge (u, v) is in Ck(G) , 

the k-core (Seidman 1983) of G.
• LP (Local path index). LPuv = (A2)uv + �(A3)uv , where A is the adjacency 

matrix of G. We use � = 10−3 as in (Zhou et al. 2009).

For each dataset and each considered quantity, we collect the sequence of the quanti-
ties of the edges and that of the binary indicators of repetition (i.e., having weight 
> 1 ), and compute the Point-biserial correlation coefficient  (Tate 1954) between 
them.5 In Table 3, we report the results. Among all the considered quantities, the 

5 The point-biserial correlation measures the correlation between a continuous variable and a discrete 
variable, and it is mathematically equivalent to the Pearson correlation.
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number of CNs is the simplest one while having the highest average point-biserial 
correlation coefficient and the highest average ranking w.r.t the correlation with 
edge repetition over all the datasets. See Appendix B for the results measured by the 
area under the ROC curve (AUC).

For the four smallest datasets (OF, FL, sx-MA, and th-UB), we also use the 
four additional quantities with relatively high computational costs. They are (1) 
edge betweenness  (Girvan and Newman 2002), (2) personalized pagerank  (Jeh 
and Widom 2003), and two “node-centrality” measures in the line graph L(G) 
(each node in L(G) corresponds to an edge in G): (3) eigenvector central-
ity  (Bonacich 1987) and (4) pagerank  (Page et  al. 1999). For all four datasets, 
NC consistently has a higher correlation than the four quantities mentioned 
above. Moreover, in line graphs, we also consider the closeness centrality (Free-
man 1977), the betweenness centrality (Freeman 1977), and the clustering coef-
ficients (Watts and Strogatz 1998). However, due to the even larger computational 
costs of these quantities, it is only possible to compute them on the smallest data-
set OF, and the Pearson correlation coefficients are 0.12, 0.06, and −0.12 for the 
closeness centrality, the betweenness centrality, and the clustering coefficients, 
respectively, which are much lower than that of NC, even though they are much 
more complicated than NC.

Below, for the clarity and brevity of the presentation, we may visualize or 
report results on a small number of datasets, while similar results are obtained 
across all datasets. The full results on all the datasets are available in the supple-
mentary material (Bu et al. 2022).

5.2  Observation 1: the fractions of weighty edges

We have shown that the numbers of CNs and the repetition (i.e., weightiness in 
layer-1) of edges are highly correlated. We examine this phenomenon in more 
layers and study the detailed numerical relations between the number c of CNs 
and the corresponding fraction of weighty edges (FoWE) fc;i . In Fig. 1, for each 
dataset and each layer-i with 1 ≤ i ≤ 5 , we plot the FoWEs, where we can observe 
that the FoWEs grow nearly linearly with the number of CNs until some satura-
tion point (see Definition  3) such that the FoWEs after the saturation point are 
almost 100% . In Fig. 1, we also show the results of the linear fitting for the points 
truncated before the corresponding saturation point with the R2 values, where we 
can see consistently strong linear correlations. We formally define the saturation 
point of the fractions of weighty edges (FoWEs) as the minimum number c∗ such 
that all the edges in Ec∗;i are weighty edges.

Definition 3 (Saturation points of the fraction of weighty edges) Given G and 
i, the saturation point c∗

i
(G) of the fractions of weighty edges is defined as 

min{c ∈ ℕ ∶ fc;i = 1}.
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Remark 1 Theoretically, the above definition of saturation point may appear less 
robust since a single edge that is not weighty can affect the whole group of edges 
sharing the same number of CNs. We use such a definition for simplicity and clarity. 
In Appendix C, we discuss this issue and show the practical reasonableness of this 
definition on the datasets used in our empirical evaluation.

Observation 1 (Nearly linear growth of FoWEs) On each dataset, in each layer, the 
FoWEs grow nearly linearly with the number of CNs and become almost all 100% 
after some saturation point.

Fig. 1  Fractions of strong edges grow nearly linearly until a saturation point. We also report the R2 of lin-
ear fitting before the saturation point. The R2 is high in each layer, indicating that the growth is consist-
ently nearly linear. See the supplementary material (Bu et al. 2022) for the full results
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5.3  Observation 2: adjacency and weightiness

The number of CNs has been widely used for link prediction (Liu et al. 2011; Güneş 
et al. 2016), i.e., inferring the adjacency between node pairs. In the above Observa-
tion 1, we have shown the connection between the number of CNs and the weighti-
ness of edges. Are the adjacency of pairs and the weightiness of edges also quanti-
tatively related? In Fig. 2, for each dataset and each layer-i with 1 ≤ i ≤ 5 , we report 
how (a) the fraction of adjacent pairs within each group of pairs (i.e., f̃c;i ) and (b) the 
fraction of weighty edges within each group of edges (i.e., fc;i ) depend on the num-
ber of CNs, where consistently high Pearson correlation coefficients are observed. 
We summarize our observation w.r.t this similarity as follows.

As we have mentioned, the information of CNs has been used for link pre-
diction   (Wang et  al. 2015) and for indicating the significance of individual 
edges (Ahmad et al. 2020; Cao et al. 2015; Zhu and Xia 2016), where the assump-
tion is usually qualitative, e.g., node pairs between two nodes sharing more CNs are 
more likely to be adjacent (or more important). However, no existing works study the 
quantitative relation between the adjacency of pairs and the weightiness (repetition) 
of edges w.r.t the number of CNs in a unified way and compare them with each other.

Similar to the saturation point of FoWEs, we also defined the saturation point of 
the fractions of adjacent pairs (FoAPs) as the minimum number c∗ such that all the 
pairs in Rc∗;i are adjacent pairs.

Definition 4 (Saturation points of the fractions of adjacent pairs) Given G and i, 
recall that the saturation point c∗

i
(G) of the fractions of weighty edges is defined as 

min{c ∈ ℕ ∶ fc;i = 1} , the saturation point c̃∗
i
(G) of the fractions of adjacent pairs is 

defined as min{c ∈ ℕ ∶ Rc;i = Ec;i}.

As shown in Table 4, we observe that the saturation point of the FoWEs is con-
sistently similar to that of the FoAPs (see Fig. 2).

Observation 2 (Similarity between pair-adjacency and edge-weightiness) On each 
dataset, in each layer, the trends of the fractions of adjacent pairs and the fractions of 
weighty edges w.r.t the number of CNs have a high correlation (see the consistently 
high Pearson’s r values),6 and the saturation point of the FoWEs is close to that of 
the FoAPs.

5.4  Observation 3: a power law across layers

The previous observations describe some patterns within each layer. Is there any 
pattern that connects different layers? For each layer-i, we collect the information 
of f0;i (FoWE of the group of edges without CNs in layer-i) and foverall;i (the over-
all FoWE of all the edges in layer-i). By doing so, we obtain two sequences ( f0;i ’s 

6 We are studying the correlations here, and the absolute differences are not necessarily small.
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and foverall;i’s) across different layers. We observe a consistent and strong power law 
between the two sequences, which we visualize in Fig. 3. In the figure, for each data-
set, we plot (a) the point (foverall;i, f0;i) for each 1 ≤ i ≤ 10 in the log-log scale and (b) 
the power-law fitting line,7 which is linear in the log-log scale. The consistent and 
strong power law is clearly observed.

Fig. 2  The fractions of a adjacent pairs and b weighty edges within each group with the same number of 
common neighbors are similar. We report Pearson’s r between the two fractions, which is high in each 
layer. Note that for each dataset, the range of the x-axis changes over layers, which is because the maxi-
mum number of common neighbors changes over layers. Also, we do not compare the fractions across 
different layers but only compare them within each layer. The full results are in the supplementary mate-
rial (Bu et al. 2022)

7 We only include the first four layers of FL since the layer-5 is too sparse and small.
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Observation 3 (A power law across layers) On each dataset, across the layers, the 
FoWEs of the group of edges sharing no CNs and the overall FoWEs of all edges 
follow a strong power law.

Remark 2 All the above observations are based on layer structures. For weighted 
graphs with positive-integer edge weights, decomposing such graphs into layers 
is straightforward, while for weighted graphs with real-valued edge weights, we 
can convert the edge weights into integers by rounding or other ways. Moreover, 
in the datasets used in this work, the edge weights represent the number of occur-
rences. Therefore, the observations may not hold on weighted graphs where the edge 
weights have other real-world meanings. See Appendix A for more discussions.

Table 4  The saturation point of 
the fractions of weighty edges 
and that of the fractions of 
adjacent pairs are consistently 
close

For each layer of each dataset, we report the saturation point of the 
fractions of adjacent pairs on the left and that of the fractions of 
weighty edges on the right

Dataset Layer-1 Layer-2 Layer-3 Layer-4 Layer-5

OF 241/271 190/192 157/156 134/137 119/101
FL 64/66 31/31 17/17 – –
th-UB 73/87 30/31 19/20 18/11 15/11
th-MA 372/401 145/153 114/114 84/67 63/59
th-SO 685/750 208/205 134/129 97/82 74/72
sx-UB 152/149 63/69 48/42 36/27 31/22
sx-MA 185/181 113/102 75/63 60/49 51/41
sx-SO 886/749 407/324 221/203 169/130 120/103
sx-SU 202/206 96/93 63/54 48/37 36/27
co-DB 83/88 36/29 22/24 20/21 16/16
co-GE 74/92 52/49 34/40 28/30 24/21

Fig. 3  Consistent and strong power laws exists between the fractions of weighty edges of a those without 
common neighbors and b those of all edges. We also report the R2 of power-law fitting. The R2 is consist-
ently close to 1 for all datasets, indicating consistently strong power laws. See the supplementary mate-
rial (Bu et al. 2022) for the full results



2154 F. Bu et al.

1 3

6  Proposed algorithm: PEAR

In this section, we propose PEAR (Pattern-based Edge-weight Assignment on 
gRaphs), an algorithm with only two parameters that assigns weights to a given topol-
ogy. PEAR produces the edge weights layer by layer based on the above observations. 
Below, we shall describe the mathematical formulation of our observations and then 
the detailed procedure of PEAR.

6.1  Formulation of the observations

In Sect. 5, we describe the patterns that we have observed on the real-world datasets. 
For constructing an algorithm, we shall first mathematically formulate the observa-
tions. In the formulation, we may idealize the observations into simple, intuitive, and 
deterministic formulae.

Linear growth of FoWEs In Observation 1, we have mentioned that the fractions of 
weighty edges (FoWEs) grow nearly linearly with the number of CNs with some satu-
ration points consistently over all datasets and all layers. In our algorithm PEAR, we 
assume perfect linearity, and we formulate this phenomenon as follows:

where c∗
i
(G) is the saturation point of FoWEs in Gi . By this formulation, fc;i = f0;i 

when c = 0 , and it increases with the number of CNs in a ratio of (1 − f0;i)∕c
∗
i
 until 

fc;i = 1 when c reaches c∗
i
 and stays with fc;i = 1 thereafter.

(1)fc;i(G) = min(1, f0;i(G) + (1 − f0;i(G))
c

c∗
i
(G)

),∀G, i, c,
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Saturation points In Observations 2 and 1, we have mentioned the similarity 
between the trends of the fraction of adjacent pairs and the FoWEs and we have 
further pointed out that the saturation points of the two kinds of fractions are 
close. In the algorithm, we assume equality between c̃∗

i
 and c∗

i
 , and we formulate 

it as follows:

where recall that c̃∗
i
(G) = min{c ∶ Rc;i(G) = Ec;i(G)} and Rc;i(G) is the set of node 

pairs sharing c CNs in Gi.
The power law across layers In Observation  3, we have mentioned that the 

FoWEs of the group of edges sharing no CNs and the overall FoWEs of all edges 
follow a strong power law. In the algorithm, assuming a perfect power law, we for-
mulate it as follows:

where a(G) and k(G) are the two parameters of the power law which may vary for 
each different graph G.

(2)c∗
i
(G) = c̃∗

i
(G),∀G, i,

(3)f0;i(G) = a(G)f
k(G)

overall;i
,∀G, i,
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With Properties (1)–(3) formulated and explicitly described, we are now ready to 
re-state Problem 1 in a more formal and specific way.

Problem  2 (Formal) Given an unweighted graph G = (V ,E) , we aim to generate 
edge weights W ∶ E → ℕ that satisfy Properties (1)–(3).

6.2  Algorithmic details

Now we are ready to describe the algorithmic details of PEAR (Algorithm 1), which 
combines all the above formulae to produce the edge weights layer by layer. From 
now on, we suppose that G is given as an input and thus fixed. By Equation (3) and 
the definition of foverall;i = |Ei+1∕Ei| , we have

For each layer-i, the total number |Ei+1| of weighty edges should be equal to the sum-
mation of the numbers of weighty edges in all the Ec;i’s. By Eqs. (1) and (2), it gives

Note that c̃∗
i
 can be obtained from the given topology when i = 1 or from the cur-

rently generated layers when i > 1 (Line 9). We expand Eq. (5) to get

which further gives the relation between f0;i and c̃∗
i
:

Equations (4) and (7) give us two different expressions of f0;i and we can use them to 
obtain |Ei+1| by solving the following equation:

Remark 3 In Eq.  (8), the denominator is zero only when Ec;i = � for each c ≤ c̃∗
i
 , 

which implies that all the edges are strong edges and the generated edge weights are 
not meaningful.

(4)f0;i = a(|Ei+1|∕|Ei|)k,∀i.

(5)

|Ei+1| =
∑

c

|Ec;i|fc;i =
∑

c

|Ec;i|min(1, f0;i + (1 − f0;i)c∕c
∗
i
)

=
∑

c

|Ec;i|min(1, f0;i + (1 − f0;i)c∕c̃
∗
i
).

(6)

|Ei+1| =
∑

c≤c̃∗
i

|Ec;i|(f0;i + (1 − f0;i)c∕c̃
∗
i
) +

∑

c>c̃∗
i

|Ec;i|

=f0;i
∑

c≤c̃∗
i

|Ec;i|(c̃∗i − c)∕c̃∗
i
+
∑

c

|Ec;i|min(1, c∕c̃∗
i
),

(7)f0;i =
�Ei+1� −

∑
c �Ec;i�min(1, c∕c̃∗

i
)

∑
c≤c̃∗

i

�Ec;i�(c̃∗i − c)∕c̃∗
i

.

(8)a(�Ei+1�∕�Ei�)k =
�Ei+1� −

∑
c �Ec;i�min(1, c∕c̃∗

i
)

∑
c<c̃∗

i

�Ec;i�(c̃∗i − c)c̃∗
i

.
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Theorem 1 Assume that c̃∗
i
> 0 exists and 

∑
c<c̃∗

i

�Ec;i� > 0 . If a < 1 and k > 1 , then 
in the range (0, |Ei|) , Eq. (8) has a unique solution |Ei+1| ∈ (0, |Ei|).

Proof Define

on x ∈ [0, |Ei|] . We have

and g(|Ei|) = a − 1 < 0 . Since f is continuous, by the intermediate value theorem 
(see also Bolzano’s theorem), we have at least one solution in the range (0, |Ei|) . For 
the uniqueness, we have

(i.e., f is convex on (0, |Ei|) ). Assume that we have two roots 0 < x1 < x2 < |Ei| , let 
t = (|Ei| − x2)∕(|Ei| − x1) ∈ (0, 1) , then by the convexity of f we have

completing the proof by contradiction.   ◻

After obtaining |Ei+1| (Line 7), we use Eq. (4) to compute f0;i (Line 8), and then 
use Eq. (1) with c∗

i
= c̃∗

i
 to compute all fc;i ’s (Lines 9 and 12). Then for each c, we 

sample fc;i|Ec| edges uniformly at random in Ec in the current layer Gi to be weighty 
edges, assign the edge weights accordingly, and construct the next layer Gi+1 
(Lines 13–19). We repeat the process layer after layer. By Theorem 1, if we have 
a valid saturation point c̃∗

i
 and there exist edges sharing less than c̃∗

i
 CNs, we can 

always obtain a unique solution of |Ei+1| from Eq. (8), and thus the whole process 
can continue. If any of the conditions are not met, the process terminates, and the 
current edge weights are returned as the final output (Lines 4 and 21).

The following theorem shows the time complexity of Algorithm 1.

Theorem  2 Given an input graph G = (V ,E) and two parameters a and k, Algo-
rithm 1 takes O(imax

∑
v∈V d

2
v
)) time to output a weight assignment W, where imax is 

the maximum layer index such that Gimax
 is non-empty, i.e., the maximum weight in 

the output.

Proof We shall show that it takes O(
∑

v∈V d
2
v
) to generate each layer. The time com-

plexity consists of (1) that of computing c̃∗
i
 (Line 9) and (2) that of sampling weighty 

edges (Lines 14–17). For (1), checking the CNs of all pairs can be done by enumer-
ating all neighbor pairs of each node, which takes O(

∑
v∈V d

2
v
(Gi)) = O(

∑
v∈V d

2
v
(G)) 

g(x) = a(
x

�Ei�
)k −

x −
∑

c �Ec;i�min(1, c∕c̃∗
i
)

∑
c≤c̃∗

i

�Ec;i�(c̃∗i − c)c̃∗
i

g(0) =

∑
c �Ec;i�min(1, c∕c̃∗

i
)

∑
c≤c̃∗

i

�Ec;i�(c̃∗i − c)c̃∗
i

> 0

f ��(x) = ak(k − 1)xk−2∕|Ei|k > 0,∀x ∈ (0, |Ei|)

0 = g(x2) = g(tx1 + (1 − t)|Ei|) ≤ tg(x1) + (1 − t)g(|Ei|) = (1 − t)g(|Ei|) < 0,
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time. For (2), sampling among Ei takes O(�Ei�) = O(�E�) = O(
∑

v∈V dv(G)) time, 
completing the proof.   ◻

The following theorem states that Algorithm  1 indeed preserves all the for-
mulated properties and is What are the relations between the edge weights and 
the topology in real-world graphs? Given only the topology of a graph, how can 
we assign realistic weights to its edges based on the relations? Several trials 
have been done for edge-weight prediction where some unknown edge weights 
are predicted with most edge weights known. There are also existing works on 
generating both topology and edge weights of weighted graphs. Differently, 
we are interested in generating edge weights that are realistic in a macroscopic 
scope, merely from the topology, which is unexplored and challenging. To this 
end, we explore and exploit the patterns involving edge weights and topology 
in real-world graphs. Specifically, we divide each graph into layers where each 
layer consists of the edges with weights at least a threshold. We observe consist-
ent and surprising patterns appearing in multiple layers: the similarity between 
being adjacent and having high weights, and the nearly-linear growth of the frac-
tion of edges having high weights with the number of common neighbors. We 
also observe a power-law pattern that connects the layers. Based on the obser-
vations, we propose PEAR, an algorithm assigning realistic edge weights to a 
given topology. The algorithm relies on only two parameters, preserves all the 
observed patterns, and produces more realistic weights than the baseline meth-
ods with the same number of, or even more, parameters. a valid approach for 
Problem 2.

Theorem 3 Given any Ḡ = (V ,E) , a, and k, the output of PEAR (Algorithm 1) satis-
fies Properties (1)–(3) up to integer rounding.

Proof Property  (1) is explicitly preserved by Line  12, and Property  (2) is explic-
itly preserved by Line 9. Regarding Property  (3), since Property  (1) is preserved, 
the solution of Equation (8) which combines Properties (1) and (3) preserves Prop-
erty (3), completing the proof.   ◻

Remark 4 Due to the interconnectedness of all the three properties, for any fixed a 
and k, the output of PEAR is unique up to the sampling (Line 14-17), which is evi-
dentially supported by the small standard variations in Tables 5 and 6.

7  Experiments

In this section, through experiments on the real-world graphs, we shall show 
that, in most cases, PEAR generates realistic edge weights for a given topology 
with only two parameters and without sophisticated searching or fine-tuning on 
the parameters.
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Interplay between topology and edge weights in real-world graphs...

7.1  Baseline methods and experimental settings

The following baseline methods (PRD, SCN, SEB, PEB, and STC) are unsupervised 
in that they do not use any explicit ground truth edge-weight information. However, 
for these methods to output meaningful predictions, we provide the ground-truth 
number of edges for each layer-i (i.e., |Ei| ) with 2 ≤ i ≤ 5 to them. Such additional 
information is not provided to PEAR.8

• PRD (purely random) The PRD method repeatedly uniformly at random chooses 
an edge and increments its weight until the |Ei| ’s are satisfied.

• SCN (sorting-CN) Instead of random sampling, the SCN method sorts the edges 
by the number of CNs and assigns the weights accordingly (higher weights to the 
edges with more CNs).9

• SEB (sorting-embedding) The SEB method sorts the edges by the inner product 
of the node embeddings of the two endpoints of each edge and assigns higher 
weights to the edges with higher inner products. The node embeddings are 
produced by two different methods, RandNE  (Zhang et  al. 2018; Rozemberc-
zki et al. 2020) and node2vec (Grover and Leskovec 2016). We use SEB-R and 
SEB-N to denote the results using RandNE and node2vec, respectively. The fea-
ture dimension is set as 32, and all the other parameters are kept the same as in 
the original paper.

• PEB (probability-embedding) The PEB method uses node embeddings as in 
SEB, and it repeatedly chooses an edge and increments its weight until the |Ei| ’s 
are satisfied, where the exponential of the inner product of the node embeddings 
of the two endpoints of each edge is used as the weight of the edge in the sam-
pling. We use PEB-R and PEB-N to denote the results using RandNE and node-
2vec, respectively.

• STC (strong triadic closure) The STC method makes use of the strong triadic 
closure (Sintos and Tsaparas 2014) (STC) principle. Specifically, for each layer-i, 
the STC method first uses a greedy algorithm to maximize the number of can-
didate weighty edges in the layer without having any open triangle (i.e., three 
nodes v1, v2, v3 s.t. the two edges (v1, v2) and (v1, v3) exist and (v2, v3) does not 
exist). After that, the STC method uniformly at random samples |Ei| weighty 
edges among all the candidates.10

8 The |E
i
| ’s (specifically, |E

1
| , |E

2
| , |E

3
| , and |E

4
| ) are essentially four parameters, compared to only two 

parameters used in PEAR.
9 The CNs are counted in each original graph (i.e., layer-i) instead of in each layer. An optimization 
problem in (Adriaens et al. 2020) of maximizing the total edge weights of all triangles is equivalent to 
this method.
10 We simply take all the candidates, if |E

i
| is larger than the number of candidates. We have also tried 

including all the candidates as the weighty edges, which, however, for each dataset, produced layers that 
only change slightly after layer-2, and thus cannot produce meaningful edge weights more than binary 
categorization.
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By contrast, for the proposed method PEAR, we only consider two settings 
(a, k) ∈ {(0.98, 1.02), (0.7, 1.3)} , where for the two co datasets and the four 
sx datasets we use (a, k) = (0.98, 1.02) ; and for the remaining datasets we use 
(a, k) = (0.7, 1.3) . For each dataset, we report the results in the better setting. Note 
that these settings are chosen without relying on ground-truth weights. Specifically, 
when we choose the parameters, we simply move two parameters a and k in the 
opposite directions, while keeping a + k = 2 , so that all the candidate parameter set-
tings satisfy the assumptions in Theorem 1. Also, the best-performing settings show 
clear domain-based patterns. Specifically, we can use the same parameter setting for 
datasets in the same domain. Although it is challenging to find the best-performing 
setting for a dataset merely based on its topology,11 the structural similarity between 
datasets within the same real-world domain (Chakrabarti and Faloutsos 2006; Wills 
and Meyer 2020) can be utilized to find a proper setting for each dataset based on 
the topology. See Appendix D for more discussions.

We also consider two supervised edge-weight prediction methods directly super-
vised by ground-truth edge weights. Notably, the supervised methods deal with the 
prediction task as a classification task and do not rely on the layer structure. We give 
the below supervised methods 10% of the ground truth edge weights as the input 
training set (and another 10% as the validation set if needed). We make sure each of 
the training set covers all five classes: edges of weight 1, 2, 3, 4,≥ 5 , corresponding 
to the five layers we are studying. Notably, the supervised methods use much more 
parameters. The considered methods are:

• RFF (random forest-feature) The RFF method uses a random forest classi-
fier (Breiman 2001) with the 14 metrics we have used in Sect. 5.1 (see Table 3), 
which follows the procedure in a previous work (Fu et al. 2018) except for that 
the random forest is smaller and some metrics are not used due to its high com-
putational cost as mentioned in Sect. 5.1. The hyperparameters of random forest 
are listed as follows: the number of trees = 32, the maximum depth of the tree = 
5, and all the other parameters are kept the same as in the original work (Brei-
man 2001).

• NEB (neural network-embedding) The NEB method uses a neural network con-
sisting of one bilinear layer. For each edge, the node embeddings of both end-
points, which are obtained as in SEB, are used as the input, and the neural net-
work is trained to minimize a classification loss (cross-entropy). We use NEB-R 
and NEB-N to denote the results using RandNE and node2vec, respectively.

11 As a weighted graph evolves, its topology may stay the same, but the edge weights representing the 
repetitions of edges may change. Such scenarios imply that for a given topology, multiple optimal groups 
of edge weights exist, and thus it is hard to find the best-performing setting.
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7.2  Evaluation methods

We would re-emphasize that we aim to generate edge weights that are realistic 
in a macroscopic scope, and thus the evaluation should also be in a macroscopic 
scope. We report the following metrics including several graph statistics that have 
been widely used for evaluating graph generators (Leskovec et al. 2005; Shuai et al. 
2013; Cao et al. 2015; Heath and Parikh 2011) to compare, for each 2 ≤ i ≤ 5 , the 
layer-i produced by each method and the original one: (1) KS statistic for number-
of-CN distributions (KSCN), (2) KS statistic for node-degree distributions (KSND), 
(3) difference in average clustering coefficients (DACC), and (4) a graph distance 
measure computed by NetSimile  (Berlingerio et  al. 2012).12 The intuition is that 
if two weighted graphs have similar layers with the same layer index, then the two 
weighted graphs are similar too. Note that the evaluation focuses on the first four 
layers since, for i > 5 , the ground-truth layer-i is too small or too sparse in some 
datasets. See Appendix F for more analysis using graph motifs.

7.3  Results

First, we show how the methods perform on each dataset. In Tables  5 and  6, for 
each dataset, each metric, and each method, we report the average value over all the 
generated layers. For PEAR, the mean value and the standard deviation over three 
trials of each setting are reported. Overall, PEAR has the best average value and the 
highest average rank among all the methods w.r.t each metric. Specifically, PEAR 
achieves an average rank of 2.18, 2.09, 3.27, and 1.70 (there are 11 methods in 
total), w.r.t the metric KSCN, KSNC, DACC, and NetSimile, respectively. Notably, 
although supervised with some ground-truth edge weights, the supervised baseline 
methods do not show clear superiority over the unsupervised ones. In our under-
standing, this is because the edge-weight classes (i.e., layers) are highly imbalanced 
(i.e., the numbers of edges with different weights vary a lot), while the ground-
truth numbers of edges in each edge-weight class are provided to the unsupervised 
baseline methods including SEB are helpful. Also, the methods using sophisticated 
embeddings are sometimes even worse than SCN which assigns edge weights using 
a simple heuristic based on the number of CNs. In our understanding, this is because 
local information is important (according to our observations), while the embed-
ding-based methods focus on higher-order information which can be confusing and 
harmful to the prediction results.

In Fig. 4, for the two datasets th-UB and sx-MA, and for i ∈ {2, 3, 4} , we report 
the node-degree and edge-CN distributions of the layer-i generated by each method, 
where the layers generated by PEAR have the two distributions closest to the 

12 Given a graph, NetSimile uses seven node-level structural features to generate a characteristic vector 
for the graph after feature aggregation over the nodes. Notably, we do not need to solve the node-corre-
spondence problem for NetSimile and the measure is size-invariant (Berlingerio et al. 2012). NetSimile 
runs out of memory on sx-SO and the corresponding results are unavailable.
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original ones. For each baseline method using embeddings, between the two vari-
ants using RandNE and node2vec, we report the results of the variant that performs 
better.

We also study how the performance varies across generated layers. In Fig. 5, for 
each method, each metric, and each layer index i, we report the average over all 
datasets. Again, for each baseline method using embeddings, between the two vari-
ants using RandNE and node2vec, we report the results of the variant that performs 
better. Overall, PEAR performs best for each layer.

8  Conclusion and future directions

In this work, we explored the relations between edge weights and topology in real-
world graphs. We proposed a new concept called layers (Definition 1) with several 
related concepts (Definition 2), and observed several pervasive patterns (Observa-
tions 2–3). We also proposed PEAR (Algorithm 1), a weight-assignment algorithm 
with only two parameters, based on the formulation of our observations (Proper-
ties (1)–(3) and Eqs. (4)–(8)). In our experiments on eleven real-world graphs, we 

Fig. 4  PEAR  produces realistic edge weight. For each i ∈ {2, 3, 4} and each method including the 
ground truth, we report the node-degree and number-of-CN distributions of the generated layer-i. See 
Tables 5 and 6 for the numerical comparison in detail
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showed that PEAR generates more realistic edge weights than the baseline methods, 
including those requiring much more prior knowledge and parameters (Tables 5 and 
6 and Figs. 4 and 5).

The observations in this work are macroscopic and the proposed model is based 
on those observations. Although macroscopic patterns are relatively more robust to 
outliers compared to microscopic ones, it is still possible that outliers can impair 
the performance of our method. We plan to explore and examine how outliers can 
affect the performance of our method and the corresponding solutions. We studied 
weighted graphs with positive-integer edge weights, and we plan to extend the study 
on the interplay between edge weights and topology to real-valued edge weights. 
We studied the average behavior of each group of edges or pairs with the same num-
ber of common neighbors, and we plan to further explore the patterns within each 
group. We also plan to study how the two parameters of PEAR affect the output.

A  General edge weights

As mentioned in Remark 2, all the observations in this work are based on layer 
structures, and the edge weights are limited to integer ones representing the num-
ber of occurrences. In order to examine the generality of our observations and the 
proposed algorithm, we examined several blockchain transaction datasets  (Kılıç 
et  al. 2022a, 2022), where each edge weight is a real number representing the 
amount of the corresponding transaction. On the transaction datasets mentioned 
above, the correlations between the edge weights and the number of common 

PEAR (ours) PRD SCN SEB PEB STC RFF NEB

Fig. 5  PEAR  generates edge weights that are realistic in each layer. For each generated layer-i with 
i ∈ {2, 3, 4, 5} , each method, and each metric, we report the average over all datasets. We use asterisk 
marks ( ∗ ) to indicate the 14 (out of 16) cases where PEAR performs best. See Tables 5 and 6 for the 
numerical comparison in detail



2166 F. Bu et al.

1 3

neighbors are very low (consistently less than 0.1). Therefore, our observations 
and the proposed algorithm can not be directly applied to these datasets, which is 
a limitation of this work.

For general weighted graphs, we may make use of the known observation that real-
world weighted graphs often have a heavy-tailed edge-weight distribution (Barrat et al. 
2004; Kumar et al. 2020; Starnini et al. 2017). We leave as a potential future direc-
tion the exploration of the relation between edge weights and the number of common 
neighbors on weighted graphs with more general edge weights, as well as weighted 
graphs with edge weights having different real-world meanings (other than the number 
of occurrences).

B  The indicativeness of the number of common neighbors

In Sect. 5.1, we have compared the indicativeness of the number of common neigh-
bors with some baseline quantities measured by the point-biserial correlation coeffi-
cients (which are mathematically equivalent to the Pearson correlation coefficients). 
We would like to also examine this relation using other metrics, e.g., the area under the 
ROC curve (AUC).

In Table 7, we report the additional results measured by the AUC. Specifically, for 
each quantity, we first perform logistic regression between the sequence of the quantity 
and the binary indicators of repetition, then we compute the AUC of the output pre-
diction. Although there are some baseline quantities achieving marginally higher AUC 
values, the number of common neighbors is still one of the most promising quantities, 
especially when we consider its simplicity.

C Saturation points

In Definition 4, we have defined the saturation point of the fraction of weighty 
edges (adjacent pairs) as the number c of common neighbors such that all (i.e., 
100% ) the edges (pairs) sharing c common neighbors are weighty (adjacent). The-
oretically, this definition can be less robust since a single edge (pair) that is not 
weighty (adjacent) can affect the whole group of edges (pairs) sharing the same 
number of common neighbors. We have chosen to use the current definition for 
simplicity and clarity, while it is possible to make the concept more robust by 
using a less “absolute” threshold, e.g., “ 99%”.

In Table 8, we show how the saturation points in the datasets used in our exper-
iments change when we change the “ 100% ” in the definition to “ 99% ”. In the real-
world datasets that we use, such a change makes no big difference. Therefore, we 
claim that such a simple and clear definition is expected to work well in practice, 
but practitioners may take the issue discussed above into consideration for better 
robustness.
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D Parameters

As discussed in Sect. 7, PEAR uses only two parameters (a and k), and for the eleven 
real-world datasets used in our experiments, we only use two parameter settings 
(a, k) ∈ {(0.98, 1.02), (0.7, 1.3)} without fitting to the ground-truth edge weight.

In Table 9, we report the results on the parameter sensitivity of PEAR, where 
we provide the performance of PEAR with four different parameter settings 
(including the two considered parameter settings (a, k) ∈ {(0.98, 1.02), (0.7, 1.3)} ). 
In the table, for each parameter setting, we also report the average rank of PEAR 
(as in Tables 5 and 6) if we use the setting for PEAR.

One observed limitation of PEAR is its considerable parameter sensitivity. 
That is, using PEAR with different parameters can give fairly different perfor-
mances. Therefore, it is important to find a well-working group of parameters 
when using PEAR.

First, we would like to emphasize that finding the best parameters is not a 
trivial problem. This is because, for a given topology, multiple plausible groups 
of edge weights are possible (consider, e.g., multiple snapshots of an evolving 
weighted graph).

Fortunately, PEAR works well without extensive parameter searching (specifi-
cally, only with two parameter settings) in the form of (1 − x, 1 + x) , and we have 
observed that for datasets within the same domain, we can use the same param-
eter setting. Notably, even simply using the same parameters (a, k) = (0.98, 1.02) , 
PEAR still achieves the best average value for each metric (compare the values in 
Tables 5, 6, and 9).

Another interesting and insightful observation is that the well-performing 
parameters of the datasets are seemingly correlated to the correlation between 
the numbers of common neighbors and the repetition of edges. Based on the 
point-biserial correlation coefficients between the sequences of the numbers of 

Table 8  The saturation point of 
the fractions of adjacent pairs 
does not change much when 
we change the threshold in the 
definition from 100% to 99%

For each layer of each dataset, we report the saturation point of the 
fractions of adjacent pairs with threshold 100% on the left and the 
saturation point with threshold 99% on the right

Dataset Layer-1 Layer-2 Layer-3 Layer-4 Layer-5

OF 241/234 190/190 157/157 134/134 119/119
FL 64/64 31/31 17/17 – –
th-UB 73/73 30/30 19/19 18/18 15/15
th-MA 372/372 145/145 114/114 84/84 63/63
th-SO 685/685 208/208 134/134 97/97 74/74
sx-UB 152/152 63/63 48/48 36/36 31/31
sx-MA 185/185 113/113 75/75 60/60 51/51
sx-SO 886/886 407/407 221/221 169/169 120/120
sx-SU 202/202 96/96 63/63 48/48 36/36
co-DB 83/83 36/20 22/17 20/17 16/14
co-GE 74/74 52/46 34/32 28/27 24/22
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common neighbors and the binary indicators of repetition in Table 3, we can see that for 
all the datasets with a high coefficient (specifically, larger than 0.30), the parameter set-
ting (a, k) = (0.7, 1.3) performs better than (a, k) = (0.98, 1.02) , while for all the dataset 
with a relatively low coefficient, the situation is the opposite. Although the repetition of 
edges cannot be directly obtained merely from the topology, this provides insights into the 
reasons why PEAR with different parameters shows different performance on different 
datasets. We leave finding optimal parameters of PEAR for a given topology as a future 
direction.

E An application: community detection

As mentioned in the introduction (Sect.  1), assigning realistic edge weights to 
a given topology is an important and practical problem, and the predicted edge 
weights output by PEAR can be used in many practical applications. Here, we show-
case one possible application, where we use the predicted edge weights to enhance 
the performance of community detection algorithms on graphs.

We use seven datasets with ground-truth clusters but without groud-truth edge 
weights, including (1–2) citation networks cora and citeseer (Sen et al. 2008), (3–5) 
website networks cornell, texas, and wisconsin (Pei et al. 2020), and (6–7) co-pur-
chasing networks computer and photo (Shchur et al. 2018).13

For each dataset, we compare the performance of the Louvain method (Blondel 
et al. 2008) on the original unweighted graph and on the weighted counterpart with 
edge weights predicted by PEAR. For simplicity, we only predict a single layer, i.e., 
layer-2. The parameter settings (a, k) used on the datasets are: (0.95, 1.05) for cora; 
(0.99, 1.01) for citeseer, pubmed, computer, and photo; and (0.9, 1.1) for cornell, 
texas, and wisconsin. We then measure the performance w.r.t the adjusted rand index 
(ARI) and the normalized mutual information (NMI).

See Table  10 for the detailed results, where we can observe that the predicted 
edge weights consistently improve the community detection performance of the 
Louvain method, and we leave further exploration of this application (e.g., the rea-
sons behind this improvement) as a future direction. In our understanding, the edge 
weights output by PEAR reinforce the local structures and thus enhance the per-
formance. Indeed, triangle counts have been shown to be a helpful feature for com-
munity detection (Satuluri et al. 2011; Tsourakakis et al. 2017; Benson et al. 2016).
Even on weighted graphs with ground-truth edge weights, one can still use PEAR to 
obtain another group of edge weights and use the edge weights predicted by PEAR 
as additional features.

13 More details of these datasets can be found at https:// pytor ch- geome tric. readt hedocs. io/ en/ latest/ notes/ 
data_ cheat sheet. html (Fey and Lenssen 2019).

https://pytorch-geometric.readthedocs.io/en/latest/notes/data_cheatsheet.html
https://pytorch-geometric.readthedocs.io/en/latest/notes/data_cheatsheet.html
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F Evaluation using graph motifs

In this section, we provide the additional results where we evaluate predicted edge 
weights by analyzing graph motifs in each layer. Specifically, for each dataset, and 
for each 2 ≤ i ≤ 5 , we compare the layer-i output by each method, by counting the 
number of different 3-motifs (induced subgraphs of size 3, up to graph isomorphism) 
and comparing the distributions. There are three kinds of (nonempty) 3-motifs (up to 
graph isomorphism): (1) a single edge and an isolated node, (2) a wedge (i.e., an open 
triangle), and (3) a (closed) triangle. In each output layer, we iterate all the 3-sub-
graphs and count the 3-motifs. Then we use their ratios to obtain a sum-one vector of 
size 3 for each case. The final performance is measured by the L1 difference (which 
is equivalent to the total variance (Garner and McGill 1956)) between the distribu-
tion in the original graph and that in the output one. This comparison is related to 
the difference in average clustering coefficients in that both comparisons involve tri-
angles, but the evaluation using graph motifs provides a different perspective, focus-
ing more on the local patterns. For brevity, we only report the results of PEAR and 
SEB-N, which perform consistently better than the other method. See Table 11 for 
the detailed results, where in most cases PEAR shows better performance.

G Full experimental results

In this section, we show the full results of our experiments which we cannot put 
all in the main text due to the space limit. In Tables 12, 13, 14, 15, 16, 17, 18, 19, 
20, 21 and  22, for each dataset, we report the detailed results w.r.t each metric, 
each method, and each layer. For the three methods using embeddings (i.e., SEB, 
PEB, and NEB), we use a “-R” suffix to denote the results using RandNE and we 
use a “-N” suffix to denote the results using node2vec.

Table 10  The predicted edge weights output by PEAR  can enhance the community detection perfor-
mance of the Louvain method

For seven real-world datasets, we report the community detection performance of the Louvain method on 
the original unweighted graph and the weighted counterpart with edge weighted output by PEAR. The 
performance is measured by adjusted rand index (ARI) and normalized mutual information (NMI). The 
better results are marked in bold

Dataset ARI (unweighted) ARI (PEAR) NMI (unweighted) NMI (PEAR)

cora 0.2481 ± 0.0189 �.���� ± �.���� 0.4546 ± 0.0069 �.���� ± �.����

citeseer 0.0937 ± 0.0069 �.���� ± �.���� 0.3287 ± 0.0027 �.���� ± �.����

pubmed 0.0946 ± 0.0034 �.���� ± �.���� 0.1774 ± 0.0033 �.���� ± �.����

computer 0.3147 ± 0.0119 �.���� ± �.���� 0.5411 ± 0.0083 �.���� ± �.����

photo 0.5696 ± 0.0301 �.���� ± �.���� 0.6673 ± 0.0165 �.���� ± �.����

cornell 0.0230 ± 0.0006 �.���� ± �.���� 0.0956 ± 0.0019 �.���� ± �.����

texas 0.0513 ± 0.0025 �.���� ± �.���� 0.0698 ± 0.0014 �.���� ± �.����

wisconsin 0.0230 ± 0.0039 �.���� ± �.���� 0.0911 ± 0.0057 �.���� ± �.����
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Table 12  Full experimental results on th-UB 

Metric Method Layer-2 Layer-3 Layer-4 Layer-5

KSCN PRD 0.619 0.715 0.763 0.790
SCN 0.595 0.547 0.526 0.443
SEB-R 0.607 0.708 0.756 0.779
SEB-N 0.533 0.657 0.720 0.769
PEB-R 0.620 0.614 0.730 0.697
PEB-N 0.620 0.614 0.730 0.697
STC 0.556 0.710 0.763 0.790
RFF 0.313 0.369 0.352 0.351
NEB-R 0.609 0.715 0.763 0.790
NEB-N 0.538 0.715 N/A N/A
PEAR  (ours) 0.190±0.005 0.116±0.017 0.168±0.017 0.200±0.027

KSND PRD 0.196 0.298 0.389 0.459
SCN 0.473 0.472 0.350 0.328
SEB-R 0.204 0.321 0.419 0.502
SEB-N 0.189 0.302 0.389 0.462
PEB-R 0.199 0.247 0.316 0.394
PEB-N 0.198 0.247 0.316 0.394
STC 0.305 0.433 0.506 0.562
RFF 0.144 0.350 0.298 0.275
NEB-R 0.270 0.375 0.443 0.469
NEB-N 0.156 0.241 N/A N/A
PEAR  (ours) 0.121±0.004 0.174±0.006 0.182±0.013 0.150±0.018

DACC PRD 0.143 0.209 0.276 0.328
SCN 0.496 0.489 0.399 0.352
SEB-R 0.138 0.206 0.273 0.323
SEB-N 0.104 0.184 0.257 0.317
PEB-R 0.143 0.188 0.269 0.299
PEB-N 0.143 0.188 0.269 0.299
STC 0.113 0.206 0.276 0.328
RFF 0.138 0.374 0.330 0.273
NEB-R 0.136 0.209 0.276 0.328
NEB-N 0.083 0.209 0.276 0.328
PEAR  (ours) 0.102±0.001 0.124±0.002 0.150±0.009 0.142±0.010



2175

1 3

Interplay between topology and edge weights in real-world graphs...

Table 12  (continued)

Metric Method Layer-2 Layer-3 Layer-4 Layer-5

NetSimile PRD 20.959 23.523 26.813 27.562
SCN 21.034 20.132 18.238 15.326
SEB-R 20.630 24.608 27.174 28.192
SEB-N 20.339 23.964 26.151 27.629
PEB-R 20.878 19.689 19.127 17.424
PEB-N 20.911 19.689 19.127 17.424
STC 22.044 26.734 31.114 30.920
RFF 17.313 18.154 15.549 15.041
NEB-R 22.501 20.131 20.839 21.778
NEB-N 20.989 28.706 N/A N/A
PEAR  (ours) 10.116±0.352 9.210±0.211 9.318±0.281 8.665±0.629

Table 13  Full experimental results on th-MA 

Metric Method Layer-2 Layer-3 Layer-4 Layer-5

KSCN PRD 0.730 0.848 0.887 0.895
SCN 0.580 0.591 0.577 0.568
SEB-R 0.661 0.783 0.815 0.833
SEB-N 0.544 0.609 0.622 0.627
PEB-R 0.739 0.690 0.694 0.721
PEB-N 0.739 0.691 0.694 0.721
STC 0.753 0.768 0.766 0.801
RFF 0.342 0.339 0.374 0.415
NEB-R 0.887 0.903 0.905 0.902
NEB-N 0.892 0.903 0.905 0.902
PEAR  (ours) 0.166±0.000 0.144±0.002 0.179±0.010 0.255±0.017

KSND PRD 0.133 0.205 0.259 0.280
SCN 0.595 0.597 0.590 0.564
SEB-R 0.117 0.193 0.236 0.258
SEB-N 0.128 0.198 0.248 0.272
PEB-R 0.139 0.246 0.288 0.320
PEB-N 0.139 0.246 0.288 0.320
STC 0.411 0.432 0.449 0.471
RFF 0.405 0.390 0.383 0.373
NEB-R 0.424 0.425 0.442 0.431
NEB-N 0.277 0.318 0.358 0.354
PEAR  (ours) 0.137±0.002 0.188±0.004 0.204±0.004 0.170±0.003
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Table 13  (continued)

Metric Method Layer-2 Layer-3 Layer-4 Layer-5

DACC PRD 0.303 0.369 0.403 0.409
SCN 0.467 0.467 0.452 0.441
SEB-R 0.278 0.353 0.393 0.401
SEB-N 0.240 0.310 0.343 0.352
PEB-R 0.305 0.312 0.322 0.312
PEB-N 0.305 0.312 0.322 0.312
STC 0.205 0.256 0.286 0.344
RFF 0.473 0.421 0.391 0.386
NEB-R 0.321 0.374 0.404 0.410
NEB-N 0.322 0.374 0.404 0.410
PEAR  (ours) 0.215±0.001 0.279±0.002 0.290±0.002 0.263±0.004

NetSimile PRD 19.974 24.147 25.210 25.857
SCN 21.198 22.229 21.980 21.634
SEB-R 19.708 24.016 25.192 25.887
SEB-N 19.442 23.695 24.717 25.304
PEB-R 20.277 18.374 18.806 20.125
PEB-N 20.267 18.383 18.806 20.125
STC 24.551 26.088 26.563 26.915
RFF 19.096 17.926 17.502 17.892
NEB-R 24.681 21.923 22.156 22.753
NEB-N 27.871 26.918 26.250 25.712
PEAR  (ours) 10.106±0.037 14.945±0.199 16.894±0.092 17.473±0.081
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Table 14  Full experimental results on th-SO 

Metric Method Layer-2 Layer-3 Llayer-4 Layer-5

KSCN PRD 0.704 0.776 0.792 0.800
SCN 0.649 0.646 0.629 0.613
SEB-R 0.637 0.744 0.775 0.790
SEB-N 0.554 0.636 0.654 0.651
PEB-R 0.706 0.541 0.571 0.612
PEB-N 0.706 0.541 0.571 0.612
STC 0.580 0.666 0.758 0.787
RFF 0.451 0.421 0.425 0.439
NEB-R 0.474 0.579 0.571 0.614
NEB-N 0.704 0.734 0.743 0.748
PEAR  (ours) 0.188±0.001 0.119±0.002 0.077±0.008 0.121±0.022

KSND PRD 0.070 0.139 0.194 0.241
SCN 0.451 0.458 0.435 0.427
SEB-R 0.074 0.142 0.185 0.228
SEB-N 0.075 0.137 0.185 0.223
PEB-R 0.072 0.127 0.146 0.187
PEB-N 0.072 0.127 0.146 0.187
STC 0.338 0.364 0.427 0.457
RFF 0.312 0.327 0.327 0.320
NEB-R 0.329 0.322 0.321 0.331
NEB-N 0.360 0.347 0.348 0.353
PEAR  (ours) 0.112±0.000 0.167±0.001 0.135±0.005 0.101±0.005

DACC PRD 0.149 0.205 0.235 0.257
SCN 0.527 0.505 0.464 0.450
SEB-R 0.131 0.198 0.231 0.254
SEB-N 0.122 0.184 0.216 0.238
PEB-R 0.149 0.180 0.206 0.227
PEB-N 0.149 0.180 0.206 0.227
STC 0.011 0.141 0.218 0.250
RFF 0.459 0.406 0.376 0.354
NEB-R 0.092 0.155 0.181 0.218
NEB-N 0.137 0.189 0.216 0.237
PEAR  (ours) 0.123±0.000 0.156±0.001 0.157±0.003 0.148±0.004
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Table 14  (continued)

Metric Method Layer-2 Layer-3 Llayer-4 Layer-5

NetSimile PRD 20.562 22.485 23.102 23.385
SCN 23.646 23.821 23.439 22.666
SEB-R 19.271 21.319 22.086 22.608
SEB-N 19.641 22.903 24.093 24.435
PEB-R 20.544 13.841 15.926 19.471
PEB-N 20.563 13.843 15.925 19.472
STC 22.020 21.292 23.244 25.772
RFF 20.500 18.956 18.409 17.991
NEB-R 22.043 20.275 19.527 20.103
NEB-N 24.565 23.259 22.315 21.710
PEAR  (ours) 11.215±0.032 13.121±0.035 14.569±0.204 16.239±0.168

Table 15  Full experimental results on sx-UB 

metric method layer-2 layer-3 layer-4 layer-5

KSCN PRD 0.194 0.250 0.263 0.262
SCN 0.673 0.792 0.828 0.833
SEB-R 0.231 0.262 0.257 0.257
SEB-N 0.095 0.039 0.103 0.164
PEB-R 0.220 0.079 0.068 0.068
PEB-N 0.221 0.079 0.068 0.068
STC 0.351 0.288 0.267 0.263
RFF 0.789 0.806 0.813 0.810
NEB-R 0.315 0.269 0.252 0.258
NEB-N 0.367 0.304 0.278 0.267
PEAR  (ours) 0.027±0.001 0.068±0.005 0.098±0.006 0.110±0.004

KSND PRD 0.021 0.036 0.050 0.054
SCN 0.382 0.548 0.610 0.635
SEB-R 0.021 0.038 0.044 0.050
SEB-N 0.026 0.035 0.032 0.016
PEB-R 0.032 0.072 0.047 0.014
PEB-N 0.033 0.073 0.046 0.015
STC 0.388 0.313 0.271 0.242
RFF 0.558 0.594 0.620 0.635
NEB-R 0.161 0.125 0.116 0.109
NEB-N 0.220 0.172 0.278 0.246
PEAR  (ours) 0.049±0.000 0.013±0.005 0.016±0.003 0.027±0.002
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Table 15  (continued)

metric method layer-2 layer-3 layer-4 layer-5

DACC PRD 0.040 0.037 0.034 0.031
SCN 0.442 0.589 0.642 0.673
SEB-R 0.042 0.036 0.032 0.030
SEB-N 0.026 0.021 0.016 0.009
PEB-R 0.044 0.004 0.012 0.032
PEB-N 0.044 0.004 0.012 0.032
STC 0.050 0.034 0.030 0.029
RFF 0.628 0.645 0.651 0.655
NEB-R 0.042 0.032 0.027 0.028
NEB-N 0.058 0.042 0.035 0.032
PEAR  (ours) 0.005±0.000 0.015±0.001 0.021±0.000 0.022±0.001

NetSimile PRD 9.225 14.532 17.858 19.721
SCN 20.568 24.865 26.595 27.526
SEB-R 11.196 16.499 18.445 19.698
SEB-N 6.122 8.263 9.526 10.117
PEB-R 10.872 11.974 13.355 15.974
PEB-N 10.881 11.972 13.358 15.990
STC 24.500 25.378 23.417 22.872
RFF 25.865 25.415 25.597 25.555
NEB-R 17.233 17.121 16.549 17.552
NEB-N 27.344 29.778 31.093 30.994
PEAR  (ours) 2.306±0.059 5.095±0.119 7.513±0.251 9.192±0.150
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Table 16  Full experimental results on sx-MA 

metric method layer-2 layer-3 layer-4 layer-5

KSCN PRD 0.264 0.463 0.576 0.643
SCN 0.570 0.697 0.721 0.738
SEB-R 0.175 0.340 0.436 0.497
SEB-N 0.142 0.210 0.251 0.280
PEB-R 0.335 0.266 0.303 0.337
PEB-N 0.334 0.266 0.303 0.337
STC 0.733 0.703 0.696 0.696
RFF 0.511 0.549 0.578 0.604
NEB-R 0.458 0.431 0.403 0.371
NEB-N 0.733 0.759 0.752 0.752
PEAR  (ours) 0.075±0.000 0.069±0.001 0.070±0.002 0.073±0.001

KSND PRD 0.019 0.039 0.074 0.103
SCN 0.551 0.575 0.558 0.542
SEB-R 0.018 0.047 0.084 0.119
SEB-N 0.018 0.051 0.081 0.108
PEB-R 0.028 0.067 0.103 0.144
PEB-N 0.028 0.067 0.103 0.144
STC 0.517 0.494 0.475 0.481
RFF 0.407 0.424 0.419 0.414
NEB-R 0.158 0.157 0.165 0.170
NEB-N 0.240 0.268 0.236 0.244
PEAR  (ours) 0.149±0.001 0.169±0.001 0.153±0.001 0.114±0.001

DACC PRD 0.113 0.135 0.146 0.162
SCN 0.434 0.514 0.580 0.564
SEB-R 0.090 0.113 0.125 0.143
SEB-N 0.082 0.097 0.108 0.122
PEB-R 0.134 0.051 0.027 0.042
PEB-N 0.133 0.051 0.027 0.042
STC 0.173 0.141 0.134 0.143
RFF 0.442 0.475 0.482 0.472
NEB-R 0.129 0.106 0.090 0.087
NEB-N 0.191 0.169 0.162 0.171
PEAR  (ours) 0.071±0.002 0.062±0.002 0.034±0.001 0.004±0.004

NetSimile PRD 7.317 11.563 14.668 16.403
SCN 20.317 22.851 23.891 24.019
SEB-R 6.035 11.508 14.621 16.059
SEB-N 5.275 8.677 10.356 11.333
PEB-R 9.545 10.886 14.598 16.204
PEB-N 9.531 10.886 14.597 16.201
STC 24.303 25.971 26.068 25.792
RFF 20.941 20.592 20.722 21.213
NEB-R 15.878 15.291 13.433 12.214
NEB-N 24.828 28.615 27.732 27.321
PEAR  (ours) 7.596±0.066 9.347±0.080 9.908±0.022 10.736±0.021
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Table 17  Full experimental results on sx-SO 

metric method layer-2 layer-3 layer-4 layer-5

KSCN PRD 0.153 0.264 0.303 0.315
SCN 0.682 0.812 0.841 0.845
SEB-R 0.230 0.338 0.329 0.322
SEB-N 0.103 0.154 0.179 0.200
PEB-R 0.202 0.067 0.146 0.131
PEB-N 0.202 0.067 0.146 0.131
STC 0.481 0.385 0.336 0.317
RFF 0.690 0.736 0.753 0.757
NEB-R 0.402 0.295 0.266 0.254
NEB-N 0.081 0.117 0.166 0.185
PEAR  (ours) 0.191±0.000 0.275±0.003 0.258±0.002 0.231±0.001

KSND PRD 0.015 0.025 0.031 0.037
SCN 0.267 0.359 0.412 0.446
SEB-R 0.013 0.027 0.047 0.064
SEB-N 0.020 0.034 0.040 0.043
PEB-R 0.033 0.081 0.083 0.086
PEB-N 0.033 0.081 0.083 0.086
STC 0.626 0.553 0.496 0.451
RFF 0.160 0.226 0.277 0.320
NEB-R 0.376 0.373 0.335 0.299
NEB-N 0.338 0.218 0.160 0.115
PEAR  (ours) 0.070±0.000 0.150±0.003 0.227±0.005 0.264±0.004

DACC PRD 0.036 0.037 0.036 0.036
SCN 0.394 0.507 0.572 0.607
SEB-R 0.037 0.037 0.035 0.035
SEB-N 0.026 0.026 0.026 0.027
PEB-R 0.040 0.004 0.029 0.022
PEB-N 0.040 0.004 0.029 0.022
STC 0.049 0.035 0.030 0.029
RFF 0.535 0.549 0.554 0.555
NEB-R 0.036 0.021 0.020 0.020
NEB-N 0.007 0.034 0.040 0.041
PEAR  (ours) 0.037±0.000 0.039±0.000 0.036±0.000 0.035±0.000



2182 F. Bu et al.

1 3

Table 18  Full experimental results on sx-SU 

metric method layer-2 layer-3 layer-4 layer-5

KSCN PRD 0.209 0.305 0.332 0.350
SCN 0.683 0.787 0.804 0.797
SEB-R 0.279 0.343 0.338 0.350
SEB-N 0.170 0.228 0.259 0.290
PEB-R 0.245 0.099 0.118 0.156
PEB-N 0.245 0.099 0.118 0.156
STC 0.416 0.352 0.331 0.350
RFF 0.698 0.721 0.721 0.713
NEB-R 0.416 0.355 0.338 0.346
NEB-N 0.426 0.265 0.203 0.215
PEAR  (ours) 0.020±0.001 0.079±0.003 0.135±0.003 0.178±0.001

KSND PRD 0.029 0.045 0.049 0.059
SCN 0.380 0.491 0.561 0.594
SEB-R 0.024 0.052 0.066 0.084
SEB-N 0.029 0.040 0.042 0.052
PEB-R 0.043 0.069 0.062 0.056
PEB-N 0.043 0.069 0.062 0.056
STC 0.450 0.368 0.312 0.287
RFF 0.339 0.401 0.440 0.461
NEB-R 0.241 0.203 0.171 0.162
NEB-N 0.286 0.202 0.094 0.079
PEAR  (ours) 0.038±0.000 0.022±0.002 0.006±0.000 0.020±0.002

DACC PRD 0.047 0.047 0.046 0.048
SCN 0.462 0.587 0.637 0.670
SEB-R 0.051 0.048 0.045 0.047
SEB-N 0.038 0.038 0.039 0.041
PEB-R 0.053 0.006 0.008 0.003
PEB-N 0.052 0.006 0.008 0.003
STC 0.058 0.042 0.039 0.046
RFF 0.580 0.597 0.602 0.601
NEB-R 0.061 0.046 0.043 0.044
NEB-N 0.064 0.014 0.023 0.022
PEAR  (ours) 0.007±0.001 0.019±0.001 0.029±0.001 0.036±0.000
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Table 18  (continued)

metric method layer-2 layer-3 layer-4 layer-5

NetSimile PRD 9.091 14.961 18.101 19.421
SCN 22.053 25.600 26.827 27.314
SEB-R 11.720 17.238 19.592 20.977
SEB-N 8.601 12.653 14.380 15.773
PEB-R 11.031 12.729 14.306 16.530
PEB-N 11.019 12.727 14.306 16.530
STC 25.350 25.761 24.815 24.382
RFF 24.993 25.270 25.487 25.930
NEB-R 19.497 19.244 19.118 19.210
NEB-N 24.957 20.922 22.447 21.625
PEAR  (ours) 2.588±0.318 4.736±0.104 7.787±0.184 10.352±0.053

Table 19  Full experimental results on co-DB 

metric method layer-2 layer-3 layer-4 layer-5

KSCN PRD 0.577 0.697 0.693 0.658
SCN 0.586 0.677 0.693 0.690
SEB-R 0.484 0.494 0.491 0.469
SEB-N 0.249 0.172 0.122 0.079
PEB-R 0.609 0.537 0.504 0.465
PEB-N 0.609 0.537 0.504 0.465
STC 0.065 0.143 0.330 0.413
RFF 0.431 0.310 0.245 0.188
NEB-R 0.091 0.037 0.103 0.152
NEB-N 0.144 0.207 0.253 0.293
PEAR  (ours) 0.046±0.000 0.206±0.015 0.439±0.027 0.626±0.010

KSND PRD 0.183 0.226 0.259 0.279
SCN 0.356 0.336 0.296 0.256
SEB-R 0.177 0.228 0.255 0.264
SEB-N 0.118 0.158 0.171 0.171
PEB-R 0.213 0.285 0.304 0.295
PEB-N 0.213 0.285 0.304 0.295
STC 0.230 0.247 0.339 0.410
RFF 0.328 0.227 0.177 0.135
NEB-R 0.109 0.050 0.029 0.032
NEB-N 0.158 0.067 0.048 0.086
PEAR  (ours) 0.064±0.000 0.024±0.006 0.078±0.013 0.255±0.019
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Table 19  (continued)

metric method layer-2 layer-3 layer-4 layer-5

DACC PRD 0.398 0.392 0.361 0.329
SCN 0.152 0.159 0.165 0.164
SEB-R 0.309 0.286 0.257 0.231
SEB-N 0.126 0.062 0.022 0.007
PEB-R 0.419 0.361 0.315 0.279
PEB-N 0.419 0.361 0.315 0.279
STC 0.057 0.083 0.135 0.192
RFF 0.287 0.212 0.163 0.126
NEB-R 0.043 0.018 0.055 0.087
NEB-N 0.106 0.037 0.086 0.120
PEAR  (ours) 0.087±0.000 0.206±0.009 0.294±0.008 0.322±0.002

NetSimile PRD 16.247 19.705 21.321 22.057
SCN 10.478 12.207 13.520 14.262
SEB-R 15.753 18.051 18.579 18.591
SEB-N 13.166 15.778 17.544 17.731
PEB-R 17.155 17.291 19.982 19.609
PEB-N 17.074 17.287 19.966 19.612
STC 19.979 19.511 22.531 23.371
RFF 20.067 15.482 12.799 10.487
NEB-R 11.914 9.378 8.875 8.742
NEB-N 21.978 19.250 18.583 18.255
PEAR  (ours) 9.209±0.009 14.024±0.066 16.830±0.191 22.859±0.727
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Table 20  Full experimental results on co-GE 

metric method layer-2 layer-3 layer-4 layer-5

KSCN PRD 0.683 0.767 0.752 0.722
SCN 0.620 0.618 0.563 0.491
SEB-R 0.553 0.518 0.463 0.419
SEB-N 0.299 0.221 0.160 0.117
PEB-R 0.700 0.569 0.534 0.503
PEB-N 0.701 0.570 0.534 0.503
STC 0.090 0.459 0.525 0.604
RFF 0.263 0.126 0.063 0.072
NEB-R 0.154 0.064 0.048 0.075
NEB-N 0.460 0.371 0.381 0.319
PEAR  (ours) 0.066±0.000 0.022±0.001 0.193±0.013 0.441±0.019

KSND PRD 0.228 0.283 0.312 0.345
SCN 0.412 0.304 0.229 0.186
SEB-R 0.210 0.292 0.318 0.334
SEB-N 0.171 0.210 0.207 0.202
PEB-R 0.248 0.291 0.312 0.323
PEB-N 0.249 0.291 0.312 0.323
STC 0.203 0.320 0.455 0.519
RFF 0.254 0.116 0.071 0.043
NEB-R 0.178 0.122 0.087 0.063
NEB-N 0.364 0.289 0.255 0.227
PEAR  (ours) 0.139±0.000 0.128±0.004 0.069±0.006 0.084±0.009

DACC PRD 0.426 0.393 0.354 0.330
SCN 0.136 0.143 0.132 0.104
SEB-R 0.284 0.231 0.185 0.154
SEB-N 0.083 0.009 0.034 0.059
PEB-R 0.437 0.352 0.301 0.273
PEB-N 0.437 0.353 0.301 0.273
STC 0.125 0.215 0.215 0.267
RFF 0.220 0.129 0.080 0.052
NEB-R 0.047 0.008 0.037 0.055
NEB-N 0.267 0.177 0.148 0.107
PEAR  (ours) 0.028±0.000 0.049±0.007 0.164±0.006 0.266±0.005
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Table 20  (continued)

metric method layer-2 layer-3 layer-4 layer-5

NetSimile PRD 16.932 19.968 20.996 21.830
SCN 12.804 13.911 13.827 12.727
SEB-R 16.439 18.021 17.994 18.118
SEB-N 14.461 17.265 18.726 18.900
PEB-R 17.500 15.756 17.848 19.084
PEB-N 17.489 15.769 17.847 19.087
STC 18.699 22.334 23.720 24.342
RFF 14.022 7.388 4.724 4.033
NEB-R 11.076 8.974 7.700 7.819
NEB-N 24.453 22.391 20.545 19.760
PEAR  (ours) 8.578±0.010 8.976±0.040 12.192±0.033 13.739±0.129

Table 21  Full experimental results on OF 

metric method layer-2 layer-3 layer-4 layer-5

KSCN PRD 0.368 0.524 0.612 0.665
SCN 0.391 0.505 0.527 0.518
SEB-R 0.194 0.240 0.227 0.209
SEB-N 0.336 0.472 0.533 0.560
PEB-R 0.663 0.592 0.624 0.625
PEB-N 0.664 0.592 0.624 0.625
STC 0.764 0.728 0.660 0.566
RFF 0.060 0.226 0.340 0.433
NEB-R 0.223 0.157 0.119 0.091
NEB-N 0.153 0.031 0.143 0.233
PEAR  (ours) 0.047±0.000 0.051±0.008 0.082±0.010 0.115±0.011

KSND PRD 0.079 0.102 0.095 0.106
SCN 0.350 0.361 0.362 0.364
SEB-R 0.065 0.102 0.093 0.088
SEB-N 0.069 0.096 0.102 0.116
PEB-R 0.181 0.210 0.262 0.273
PEB-N 0.182 0.209 0.262 0.273
STC 0.563 0.609 0.589 0.547
RFF 0.061 0.084 0.129 0.186
NEB-R 0.223 0.171 0.115 0.083
NEB-N 0.114 0.054 0.061 0.109
PEAR  (ours) 0.055±0.004 0.033±0.003 0.066±0.002 0.123±0.005
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Table 21  (continued)

metric method layer-2 layer-3 layer-4 layer-5

DACC PRD 0.183 0.271 0.334 0.377
SCN 0.105 0.167 0.180 0.210
SEB-R 0.044 0.062 0.069 0.067
SEB-N 0.169 0.237 0.275 0.304
PEB-R 0.312 0.241 0.214 0.193
PEB-N 0.312 0.242 0.213 0.194
STC 0.091 0.012 0.003 0.003
RFF 0.162 0.189 0.196 0.200
NEB-R 0.138 0.125 0.120 0.119
NEB-N 0.053 0.028 0.019 0.013
PEAR  (ours) 0.059±0.004 0.125±0.008 0.200±0.008 0.247±0.015

NetSimile PRD 7.961 12.254 13.001 14.730

SCN 15.064 14.635 15.677 16.512

SEB-R 6.603 9.133 10.673 10.967

SEB-N 7.350 11.064 11.752 12.514

PEB-R 12.233 12.537 11.849 11.488

PEB-N 12.195 12.539 11.848 11.501

STC 24.076 23.639 23.488 23.080

RFF 10.795 11.329 12.851 14.079

NEB-R 12.730 11.113 10.429 10.134

NEB-N 7.748 4.483 4.877 7.718
PEAR  (ours) 5.686±0.398 6.888±0.285 8.494±0.481 11.280±0.277
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Table 22  Full experimental results on FL 

metric method layer-2 layer-3 layer-4 layer-5

KSCN PRD 0.438 0.581 0.592 0.476
SCN 0.600 0.704 0.656 0.686
SEB-R 0.355 0.411 0.452 0.386
SEB-N 0.208 0.208 0.206 0.114
PEB-R 0.485 0.404 0.323 0.260
PEB-N 0.485 0.404 0.323 0.260
STC 0.545 0.474 0.445 0.433
RFF 0.335 0.283 0.147 0.178
NEB-R 0.361 0.345 0.373 0.278
NEB-N 0.428 0.485 0.603 N/A
PEAR  (ours) 0.064±0.007 0.166±0.019 0.261±0.033 0.474±0.021

KSND PRD 0.058 0.131 0.185 0.283
SCN 0.527 0.438 0.437 0.293
SEB-R 0.069 0.166 0.208 0.277
SEB-N 0.062 0.133 0.144 0.146
PEB-R 0.077 0.145 0.197 0.269
PEB-N 0.077 0.145 0.197 0.269
STC 0.302 0.408 0.378 0.451
RFF 0.245 0.166 0.089 0.084
NEB-R 0.104 0.118 0.119 0.092
NEB-N 0.149 0.318 0.330 N/A
PEAR  (ours) 0.056±0.009 0.077±0.003 0.047±0.003 0.101±0.006

DACC PRD 0.229 0.197 0.180 0.130
SCN 0.374 0.464 0.463 0.365
SEB-R 0.174 0.123 0.136 0.106
SEB-N 0.050 0.027 0.025 0.040
PEB-R 0.251 0.138 0.075 0.058
PEB-N 0.252 0.138 0.075 0.058
STC 0.083 0.017 0.101 0.109
RFF 0.175 0.033 0.082 0.135
NEB-R 0.169 0.138 0.152 0.110
NEB-N 0.091 0.077 0.187 N/A
PEAR  (ours) 0.152±0.004 0.096±0.006 0.063±0.014 0.011±0.005

NetSimile PRD 11.776 16.235 18.447 20.785

SCN 20.167 21.877 20.421 19.757

SEB-R 12.433 15.503 17.805 19.317

SEB-N 10.020 12.392 14.086 12.641

PEB-R 13.722 13.137 15.493 14.071

PEB-N 13.760 13.141 15.493 14.071

STC 20.606 21.186 19.798 23.037

RFF 14.230 16.560 14.197 10.233

NEB-R 13.182 12.921 13.251 12.441

NEB-N 15.381 19.241 22.776 N/A
PEAR  (ours) 7.688±0.368 8.318±0.302 8.965±0.462 10.700±1.054
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