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Abstract
We introduce a novel class of null models for the statistical validation of results 
obtained from binary transactional and sequence datasets. Our null models are Row-
Order Agnostic (ROA), i.e., do not consider the order of rows in the observed data-
set to be fixed, in stark contrast with previous null models, which are Row-Order 
Enforcing (ROE). We present ROhAN, an algorithmic framework for efficiently 
sampling datasets from ROA models according to user-specified distributions, which 
is a necessary step for the resampling-based statistical hypothesis tests employed to 
validate the results. ROhAN uses Metropolis-Hastings or rejection sampling to build 
on top of existing or future ROE sampling procedures. Our experimental evaluation 
shows that ROA models are very different from ROE ones, impacting the statistical 
validation, and that ROhAN is efficient, mixes fast, and scales well as the dataset 
grows.
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1  Introduction

Results obtained from a dataset through the Knowledge Discovery from Data 
(KDD) process should be statistically validated to ensure that they are not just due 
to the randomness in the Data-Generating Process (DGP)  (Hämäläinen and Webb 
2019; Pellegrina et al 2019; Zimmermann 2014): the goal of the analysis is to gain 
new knowledge about the DGP through the observed dataset, rather than knowledge 
about the dataset itself.

A rigorous validation approach subjects the results to statistical hypothesis 
tests  (Lehmann and Romano 2022): results that pass the tests are deemed statisti-
cally significant,1 as they appear to give new information on the DGP.

The significance of the results is assessed against a null model (Z,�) , where the null 
set Z is the collection of datasets that the DGP may generate, which are assumed to share 
some characteristics with the observed dataset (e.g., size, frequency of items, number of 
simple patterns, ...), and � is a user-specified probability distribution over Z . The null 
model captures assumed or existing knowledge about the DGP. Results that are deemed 
significant under an appropriate null model constitute new knowledge about the DGP.

A null model is partially independent from the task whose results one wants to vali-
date, as it models the generation of datasets, not directly of results, but on the other hand, 
it is used to evaluate the results of the task, so it needs to be representative of the task. 
The choice of the null model by the user must therefore be deliberate and informed, 
as the meaning of “significant” depends on it: results deemed significant under one 
null model cannot in general be compared to those deemed significant under a differ-
ent null model. “All models are wrong, but some are useful” (George E. P. Box), and 
some null models may be more appropriate for testing the significance of the results of a 
task than others, because they more closely represent the settings of the task. Many null 
models should be available, capturing different properties of the observed dataset, and 
users must be informed of their differences, so they can choose the one most appropriate 
for their needs (Ferkingstad et al. 2015). In this work, we present null models that, we 
argue, are more appropriate for many data mining tasks from transactional datasets, thus 
expanding the “library” of models available to practitioners.

Many hypothesis tests are based on resampling (Westfall and Young 1993; Lehmann 
and Romano 2022): they analyze multiple datasets drawn from the null model in order 
to approximate the distribution of the test statistic, and then compare the observed value 
of the statistic against such distribution. Thus, computationally-efficient procedures to 
sample from the null model distribution are necessary for statistically validating KDD 
results.

Contributions

We study the problem of evaluating the significance of results from binary transac-
tional2 and sequence datasets, using resampling-based hypothesis tests.

1  Throughout this work, we use “significant” to mean “statistically significant”.
2  We drop “binary” and just use “transactional” in the rest of this work.
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•	 We introduce a novel class of null models for these datasets. Our models are 
Row-Order Agnostic (ROA), i.e., do not consider the order of the rows (i.e., 
transactions or sequences) in the observed dataset to be fixed. Previous null 
models were instead Row-Order Enforcing (ROE). We argue that the order of 
the rows is not meaningful for many KDD tasks on such datasets (e.g., frequent 
pattern mining, large tile identification), thus ROA null models more closely rep-
resent the settings of such tasks. Apart from this difference, ROA models can 
preserve the same properties (e.g., number of rows, lengths of the rows, item/
itemset frequencies, ...) as ROE models.

•	 We present ROhAN, a general algorithmic approach for the efficient sampling of 
datasets from ROA models. Our methods can use existing or future approaches 
for sampling from ROE models as subroutines (thus building on top of a vast 
literature), and rely on the Metropolis-Hastings (MH) algorithm when these are 
based on the Markov-Chain-Monte-Carlo (MCMC) method, and on rejection 
sampling otherwise. Our procedures can be used in resampling-based hypothesis 
testing for the validation of KDD results.

•	 The results of our experimental evaluation show that ROE and ROA null models 
are not equivalent, and this difference affects the validation of results. We evalu-
ated ROhAN on real datasets: it is fast, (empirically) rapidly-mixing, and scal-
able as the dataset grows.

1.1 � Related work

Transactional and sequence datasets are a natural representation of data from many 
areas, from logs, to gene mutations, to temporal events, to athletes’ vitals  (Hrovat 
et al. 2015), to satellite images  (Méger et al. 2015). They are extremely common, 
and many KDD methods for them are available. We focus here on works related to 
the validation of results from such datasets.

1.1.1 � Null models for transactional datasets

The need to evaluate the statistical significance of results obtained from transac-
tional datasets has long been noted  (Megiddo and Srikant 1998) and remarked by 
the KDD community (Zimmermann 2014). A long line of research studied how to 
discard non-interesting patterns from mined collections, or directly mine patterns 
w.r.t. different interestingness measures (Vreeken and Tatti 2014). This direction is 
orthogonal to assessing the statistical significance of the results, but they may be 
combined (Dalleiger and Vreeken 2022).

Many works focused on finding significant patterns, where the meaning of “sig-
nificance” is varied. Hämäläinen and Webb (2019) and Pellegrina et al. (2019) sur-
vey this area, so we focus on the contributions most relevant to ours.

Gionis et al. (2007) study a ROE null model (ZM,�) for transactional datasets, 
where ZM is the set of all I × J binary matrices with the same row and column sums 
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(a.k.a., margins) as the observed dataset.3 The problem of how to generate such 
matrices has been studied in mathematics (Ryser 1963, Ch. 6) (e.g., as the problem 
of generating bipartite graphs with fixed degree sequences) and statistics (e.g., to 
sample 2-way I × J binary contingency tables) for a long time (Besag and Clifford 
1989 Sect. 3), as it has applications to, e.g., ecology (Connor and Simberloff 1979). 
Gionis et al. (2007) use MCMC approaches to sample from (ZM,�) , to assess KDD 
results. We argue that the output of many KDD tasks (e.g., frequent itemset mining) 
from transactional datasets is not dependent on the order of the transactions, and null 
models that do not consider this order fixed, i.e., the ROA models that we introduce, 
are more representative of the settings of such tasks. Our algorithmic framework 
ROhAN can use existing and future methods to sample from (ZM,�) as subroutines 
to sample from ROA models, thus allowing us to build on top of an extensive lit-
erature, discussed in depth by Fout (2022). Recently, Preti et al. (2022) presented a 
ROA model for transactional datasets preserving the number of caterpillars in the 
graph corresponding to a transactional dataset. They leverage our Lemma 3.

De  Bie (2010) proposes null models (Z
�
,�MaxEnt) that preserve properties of the 

observed transactional dataset in expectation w.r.t. �MaxEnt , rather than exactly, as 
our ROA models and the ROE model studied by Gionis et al. (2007). The distribu-
tion �MaxEnt over Z

�
 is the one with the maximum entropy among with the required 

expectations.4 These models are ROE in expectation, thus less appropriate, as 
argued, for many tasks from transactional datasets, than the ROA models we pro-
pose. While requiring the distribution to have maximum entropy may be appropri-
ate in some cases, a user-specified � can incorporate additional existing or assumed 
knowledge about the DGP in the null model. We therefore do not consider preserv-
ing properties in expectation in this work, but developing “in-expectation ROA 
models”, and efficient procedures to sample from them, is a possible direction for 
future work.

1.1.2 � Null models for sequence datasets

Jenkins et  al. (2022, Sect.  2) discuss previous work on assessing results from 
sequence datasets in depth, so here we only comment on the most relevant.

Tonon and Vandin (2019) introduce two null models for sequence datasets: one 
that preserves the number of sequences, the number of itemsets participating in each 
sequence (i.e., the length of the sequence), and the number of times an itemset par-
ticipates in the sequences (i.e., the multi-support of the itemset), and a more restric-
tive null model preserving all structure of the observed dataset, except the order of 

3  When considering the order of transactions as fixed, as ROE models do, there is a 1:1 correspondence 
between transactional datasets and binary matrices. The row sums correspond to the transaction lengths, 
and the column sum to the supports of single items.
4  Preserving properties exactly can partially be incorporated in these null models, but they usually make 
it impossible to derive a closed form for � , with relevant computational consequences. The same is also 
true for many complex in-expectation constraints (Cimini et al. 2019).
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the itemsets participating in each sequence. A more restrictive model is studied by 
Pinxteren and Calders (2021). All these models are ROE, as is the null model intro-
duced by Jenkins et al. (2022, Sect. 4.2.2.) which preserves the item-lengths of the 
sequences (i.e., the sums of the lengths of the itemsets participating in them), rather 
than the lengths. As in the case of transactional datasets, we argue that the order of 
the sequences in the dataset is not relevant for many KDD tasks, thus motivating our 
work on ROA models for sequence datasets. When sampling from ROA models that 
preserve the same properties as these ROE models, ROhAN employs the efficient 
methods by Jenkins et al. (2022) in combination with rejection sampling.

Gwadera and Crestani (2010) and Low-Kam et al. (2013) present maximum entropy 
ROE null models for sequence datasets. The comments above about the maximum 
entropy model by De Bie (2010) apply to these models as well.

1.1.3 � Null models for other data

ROE null models have been proposed for database tables  (Ojala et  al. 2010), and 
real-valued and mixed-value matrices  (Ojala et  al. 2008; Ojala 2010). Developing 
ROA null models, and efficient algorithms to sample from them, is an interesting 
direction for future work.

2 � Preliminaries

We now first define the types of datasets we study, and then discuss the fundamen-
tals of resampling-based statistical hypothesis testing.

2.1 � Transactional and sequence datasets

Let I ≐ {a1,… , an} be a finite alphabet of n ≐ |I| items. W.l.o.g., I ≐ {1,… , n} . 
An itemset A ⊆ I  is any non-empty subset of I .

A transactional dataset D ≐ {t1,… , tm} is a finite bag of m ≐ |D| itemsets, 
which, as elements of D , are known as transactions. An itemset A appears in trans-
action t when A ⊆ t . The support �D(A) of itemset A in the transactional dataset D is 
the number of transactions of D in which A appears, i.e.,

For example, if we let D = {{1, 2, 4}, {2, 4}} , then �D({2, 4}) = 2 since the itemset 
{2, 4} appears in both transactions in D , while, e.g., �D({1, 2}) = 1.

A sequence is a finite ordered list (or a vector) of not-necessarily-distinct item-
sets, i.e., S = ⟨A1,… ,A

�
⟩ for some � ≥ 1 , with Ai ⊆ I  , 1 ≤ i ≤ � . Itemsets Ai par-

ticipate in S, and we denote this fact with Ai ∈ S , 1 ≤ i ≤ � . The length |S| of a 
sequence is the number of itemsets participating in it. The itemlength �S� ≐ ∑

Ai∈S
��Ai

�� 
is the total number of items in S. A sequence S = ⟨A1,… ,A�S�⟩ is a subsequence of a 

𝜎D(A) ≐ |{t ∈ D ∶ A ⊆ t}|.
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sequence T = ⟨B1,… ,B�T�⟩ , or S ⊑ T  , if there exists ordered integers 
i1 < i2 < ⋯ < i|S| such that A1 ⊆ Bi1

,A2 ⊆ Bi2
,… ,A|S| ⊆ Bi|S| . Suppose that 

A = {1, 2, 4} and B = {2, 4} , and let S = ⟨A,B,B⟩ . Then A,B ∈ S , |S| = 3 , and 
|S| = 7 . In addition, if T = ⟨A,A,B,C,B⟩ , for any itemset C, then S ⊑ T  : a possible 
choice of indices is i1 = 1, i2 = 2 , i3 = 5 (or i3 = 3 ), as B ⊂ A , but other choices are 
also possible.

A sequence dataset D is a finite bag of sequences, which, as elements of D , are 
known as seq-transactions. The support �D(S) of a sequence S in D is the number of 
seq-transactions in D of which S is a subsequence. The support �D(A) of an itemset 
A in D is the number of seq-transactions of D in which A participates. The multi-
support �D(A) of A in D is the number of times that A participates in total in the seq-
transactions of D . For example, if D = {⟨A,B⟩, ⟨A,C,A⟩, ⟨B,C⟩} , then �D(A) = 2 
and �D(A) = 3.

In the rest of the work, we use the term “row” to refer to a transaction for transac-
tional datasets, or to a sequence for sequence datasets. We also use the term pattern 
to refer to an itemset or a sequence respectively, and we denote with L the set of all 
possible patterns. Doing this allows us to define the generic task of frequent pattern 
mining: given a minimum support threshold � ∈ [1, |D|] , the set ��D(�) of frequent 
patterns in D w.r.t. � is the set of patterns that have support at least � in D , i.e.,

Efficient algorithms for finding the frequent patterns exist for both transactional and 
sequence datasets (Agrawal and Srikant 1994; Pei et al. 2004).

We define transactional and sequence datasets as bags, so the rows in them have 
no fixed order. Later we discuss ROE models for which the order of the rows in a 
dataset is considered fixed. In this case, datasets are ordered lists or vectors of rows, 
and we refer to them as ordered datasets.

2.2 � Null models and hypothesis testing

We tailor the presentation of hypothesis testing to the task of evaluating the sig-
nificance of the size ||��D(�)|| of the collection of frequent patterns. We choose this 
simple statistically-sound KDD task because it allows for a self-contained presenta-
tion that is also accessible to non-experts, rather than describing an arguably more 
interesting, but certainly more convoluted task such as mining statistically-signifi-
cant frequent patterns. Both the ROE and the ROA models we discuss can be used 
to validate any kind of results obtained from transactional and sequence datasets, 
including mining statistically-significant frequent patterns, evaluating the correla-
tions between different items, and more.

Statistical significance is assessed w.r.t. a user-specified null model, defined on 
the basis of an observed dataset D̊ , given by the user. A null model is a pair 
Π ≐ (Z,�) , where Z is a set of datasets, known as the null set, and � is a user-speci-
fied probability distribution over Z . The null set Z is such that D̊ ∈ Z and Z con-
tains all and only datasets that share some user-specified characteristic properties 

(1)��D(�) ≐
{
P ∈ L ∶ �D(P) ≥ �

}
.
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with D̊ , i.e., the null model depends on the observed dataset D̊.5 For example, the 
user may want to preserve the number |||D̊

||| of rows, and/or the support of single items 

in D̊ , and much more. The user may specify any distribution � over Z . Choosing 
which properties of D̊ to preserve, and which distribution to sample from, allows the 
user to incorporate in the null model existing or assumed knowledge about the DGP, 
as Z is the set of all the datasets that the DGP may generate, and � is the distribution 
according to which the DGP generates datasets.

The null model is used to understand whether the observed results represent new 
knowledge about the DGP. Specifically, the goal is understanding how “typical” the 
results from D̊ are w.r.t. the distribution of the results from datasets sampled from 
the null model Π : if they are not “typical”, the results are considered significant 
(under Π ), i.e., expressing new knowledge about the DGP. For example, if we want 
to assess whether the number ||��D̊(𝜃)|| of frequent patterns w.r.t. � in D̊ is significant, 
we could make the null hypothesis

and then perform a statistical hypothesis test to assess whether there is sufficient evi-
dence that this null hypothesis may be false. If so, we reject the null hypothesis and 
say that the value ||��D̊(𝜃)|| appears significant.

One way to perform such a test is to approximate the distribution of the statistic 
of interest (in this case, the number of frequent patterns) by sampling datasets from 
the null model (Lehmann and Romano 2022, Ch. 17), and then compare the observed 
statistic ||��D̊(𝜃)|| to the obtained empirical distribution, as follows. Assume to sam-
ple a collection T ≐ {D1,… ,D

�
} of � datasets independently from Z according to � . 

The (empirical) p-value �̃(D̊, T) is defined as the fraction of datasets in T ∪ {D̊} with a 
number of frequent itemsets w.r.t. � that is not smaller than the one observed in D̊ , i.e.,

Now let � ∈ (0, 1) be a user-specified acceptable probability of error. If �̃(D̊, T) ≤ 𝛼 , 
then we say ||��D̊(𝜃)|| is significant at level � , which can be interpreted as meaning 
there is evidence that the null hypothesis from (2) is false and should be rejected. 
The value � is the probability of getting a false discovery, i.e., of wrongly declaring 
the observed results significant.

In most statistically-sound KDD tasks, multiple hypotheses must be tested. For 
example, in significant pattern mining  (Hämäläinen and Webb 2019; Pellegrina 
et  al. 2019), there is one hypothesis per pattern. One then wants guarantees, e.g., 
on the Family-Wise Error Rate (FWER), i.e., on the probability of making any 
false discovery. To ensure that the FWER is bounded by an user-specified threshold 
� ∈ (0, 1) , the p-value of each hypothesis to be tested is compared to an adjusted 
critical value �(Π,H, �) , where H is the set of the null hypotheses of interest. 

(2)H0 ≐ “||��D̊(𝜃)|| = �D∼𝜋[
||��D(𝜃)||]”,

�̃(D̊, T) ≐
1 +

|||{1 ≤ i ≤ � ∶
|||��Di

(𝜃)
||| ≥ ||��D̊(𝜃)||}|||

1 + �
.

5  We do not indicate this fact in the notation, to keep it light.
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Resampling approaches for multiple hypothesis testing (Westfall and Young 1993) 
compute adjusted critical values using datasets sampled according to � , and they 
have been used with success in significant itemset mining (Pellegrina et al. 2019).

This discussion highlights how efficient procedures to draw datasets from Z inde-
pendently according to � are needed for assessing the statistical validity of results 
obtained from these datasets. Our algorithmic framework ROhAN achieves this goal 
for ROA models.

3 � Row‑order‑enforcing null models

We now describe ROE null models, i.e., models that consider the order of rows in a 
dataset to be fixed, thus permuting the order of the rows results, in general, in a dif-
ferent dataset, and we briefly describe the algorithms to sample from them, using 
existing examples.

3.1 � ROE models for transactional datasets

Gionis et al. (2007) define a ROE model (Z,�) where, given an observed ordered 
dataset D̊ , |||D̊

||| = m , Z contains all and only the ordered datasets such that: 

1.	 |D| = |||D̊
||| = m , i.e., D has the same size, i.e., number m of transactions, as D̊ ; and

2.	 𝜎D({a}) = 𝜎
D̊
({a}) , for every item a ∈ I  , i.e., each item has the same support in 

D and D̊ ; and
3.	 for i = 1,… ,m , |D[i]| = |||D̊[i]

||| , i.e., the transaction at index i of D has the same 
length as the transaction at index i of D̊ , for every i.

The distribution � can be any distribution over Z.6 We call ROE models that main-
tain the three constraints above “Size, Item-Supports, and Length Preserving” 
(SISLP). All SISLP null models for a given D̊ have the same null set Z , i.e., they 
differ only in � . De Bie (2010) considers a null model where the SISLP constraints 
are preserved only in expectation.

The SISLP models are just one example of ROE models for transactional datasets. 
One can devise others that preserve additional properties of the observed dataset. 
We take the SISLP models as an example for the whole class, and most of what we 
say for them can be applied to other ROE models.

6  Gionis et al. (2007) focus on the case where � is the uniform distribution, but extending their discus-
sion to a generic � is straightforward.
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3.1.1 � Binary matrices and sampling algorithms

ROE models for transactional datasets effectively equate ordered datasets to binary 
matrices: the (i,  j) entry of the matrix MD corresponding to the ordered dataset 
D = [t1,… , t|D|] is 1 iff item j ∈ ti . Thus, the null set Z of SISLP ROE models cor-
responds to the set M of m × n binary matrices with fixed column sums and fixed 
rows sums, which is a classical object of study in mathematics (Ryser 1963, Ch. 6) 
and statistics (Fout 2022). This identity is extremely convenient, as it allows to reuse 
existing algorithms that sample from M to sample from Z . Indeed Gionis et  al. 
(2007) describe, among others, also an MCMC algorithm introduced by Besag and 
Clifford (1989, Sect. 3),7 but any algorithm to sample from M can be used, and the 
literature is extensive (Fout 2022), including importance sampling algorithms (Chen 
et al. 2005) and recent MCMC algorithms (Wang 2020).

We now briefly describe one of the MCMC algorithms by Gionis et al. (2007). 
For ease of presentation, we assume here that � is the uniform over Z , i.e., over 
M . In Sect.  5.3 we show how ROhAN can use this algorithm as a subroutine to 
sample from SISLP-like ROA models. The algorithm, which we call SwapRand 
(for “Swap Randomization”), runs a Markov chain as follows. The state space is 
M , and there is an edge from matrix M′ to matrix M′′ if there are two row indi-
ces 1 ≤ r1, r2 ≤ m and two column indices 1 ≤ c1, c2 ≤ n such that M�(r1, c1) = 1 , 
M�(r1, c2) = 0 , M�(r2, c1) = 0 , M�(r2, c2) = 1 , and M′′ can be obtained from M′ by 
setting M�(r1, c1) = 0 , M�(r1, c2) = 1 , M�(r2, c1) = 1 , and M�(r2, c2) = 0 , i.e., by per-
forming a single swap. When running the Markov Chain, the algorithm chooses a 
neighbor M′′ of the current state M′ uniformly at random from the ���(M�) neigh-
bors of M′ , and moves to it with probability min{1, ���(M�)∕���(M��)} , otherwise it 
stays in M′ (i.e., it follows a self-loop). Gionis et al. (2007), Alg. 2, Thm. 4.3 give 
procedures to compute ���(M) for any matrix, and for drawing a neighbor uniformly 
at random. It is easy to show that the stationary distribution of this Markov chain 
is uniform over M . Thus, the algorithm runs the chain for a sufficient number � of 
steps to ensure that the distribution of the current state is (approximately) the sta-
tionary one, and returns the state at time � as a sample. This algorithm is just one 
example of MCMC methods to sample from M , and ROhAN is able to use any such 
algorithm as a subroutine, as we show in Sect. 5.3.

3.2 � ROE models for sequence datasets

Sequence data is more complex or richer than transactional data, which makes it possi-
ble to define many null models on it, by preserving different properties of the observed 
dataset D̊ . Tonon and Vandin (2019), Pinxteren and Calders (2021), and Jenkins et al. 
(2022) give ROE models for sequence datasets, and we now describe two of them as 
examples, but what we say can be applied to others. The first null model (Z(1),�(1)) is 

7  If not even earlier.
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essentially a SISLP model adapted to sequence datasets. Z(1) is the set of all and only 
the ordered datasets D such that 

1.	 |D| = |||D̊
||| = m , i.e., D has the same size, i.e., number m of seq-transactions, as 

D̊ ; and
2.	 for every itemset A participating in at least one seq-transaction of D̊ , it holds 

𝜌D(A) = 𝜌
D̊
(A) , i.e., the multi-supports of itemsets participating in the seq-trans-

actions are preserved; and
3.	 for i = 1,… ,m , |D[i]| = |||D̊[i]

||| , i.e., the seq-transaction at index i of D has the 
same length as the seq-transaction at index i of D̊ , for every i.

The second null model (Z(2),�(2)) preserves the same properties as the first, and also 
the additional property that, for i = 1,… ,m , |D[i]| = |||D̊[i]

||| , i.e., the seq-transaction at 
index i of D has the same itemlength as the seq-transaction at index i of D̊ , for every i.

Jenkins et  al. (2022) give efficient, exact algorithms for sampling from these 
and other ROE models for sequence datasets when � is the uniform distribu-
tion. Tonon and Vandin (2019) give an MCMC algorithm (a variant of the one 
described for the SISLP model for transactional datasets in Sect. 4.1) for the first 
null model, which can be modified to handle non-uniform distributions, and a 
similar one can also be devised for the second null model.

4 � Row‑order‑agnostic null models and ROhAN

Here we introduce ROA null models, which consider datasets as bags of rows, i.e., 
do not fix the order of the rows. We also describe ROhAN, our algorithmic frame-
work for sampling from ROA null models.

4.1 � ROA models for transactional datasets

In ROA models for transactional datasets, the 1:1 mapping between datasets and 
binary matrices is lost, since this equivalence only holds between ordered datasets 
and binary matrices. We argue that the loss of this elegant identity is completely 
offset by the advantage of having null models that are more representative of the set-
tings of KDD tasks on these datasets. Consider, for example, the task of mining the 
frequent patterns ��D(�) from (1): the definition of this collection does not depend 
on the order of the transactions in the dataset, and algorithms for finding this collec-
tion (e.g., A-Priori, FP-Growth, Eclat) do not rely on the order of the transactions 
being fixed or being anything but an arbitrary order that the algorithm can choose 
itself.8 In general, whenever the KDD task to be performed is insensitive to the order 

8  Some presentations of the algorithms mention a “transaction identifier” associated to each transaction, 
but this identifier is used only to uniquely label transactions, not for the purpose of ordering the rows, 
and it is in part a leftover of the idea that a transactional dataset is stored in a table in a relational data-
base.
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of the rows in the dataset, in the sense that the output of the task is the same for any 
permutation of the rows, a ROA model is likely more appropriate than a ROE one. 
The latter could instead be a better choice when the task output includes, even in a 
potentially implicit way, the identifiers of the rows. The difference could, at times, 
be subtle: consider for example the task of finding cluster centers for the rows (i.e., 
finding points in a space), and evaluating the significance of these centers, versus the 
task of finding a clustering of the rows (i.e., finding a partitioning of the rows) and 
evaluating the significance of such clustering or, e.g., the significance of groups of 
rows being in the same cluster. In the first case, a ROA model seems more appro-
priate than a ROE model. In the second case, it is necessary to know what rows 
belong to what cluster in order to perform statistical validation, and to analyze how 
the clusters, which are subsets of rows, differ across different datasets in the null set, 
thus making a ROE model more appropriate. We stress again that the choice of the 
null model is crucial, and the user needs to exercise extreme care in this regard. It is 
therefore hard to give generic advice about which between a ROE and a ROA model 
is to be preferred.

Properties of the observed dataset D̊ that can be preserved by ROE models, can 
also be preserved, with minor modifications in some cases, by ROA models. As an 
example, we define a ROA SISLP model (Z,�) for D̊ , where Z contains all and only 
the unordered datasets such that: 

1.	 |D| = |||D̊
||| = m , i.e., D has the same size, i.e., number m of transactions, as D̊ ; and

2.	 𝜎D({a}) = 𝜎
D̊
({a}) , for every item a ∈ I  , i.e., each item has the same support in 

D and D̊ ; and
3.	 if we let D = {t1,… , tm} and D̊ = {t̊1,… , t̊m} , there is a 1:1 mapping � from D̊ to 

D such that |�(t)| = |t| for every transaction t ∈ D̊ , i.e., D has the same distribu-
tion of transaction lengths as D̊;

The first two properties are the same as the first two in the ROE SISLP model from 
Sect. 4.1, and the third is a straightforward adaptation of the third one. The distribu-
tion � can be any distribution over Z . In Sect. 5.3 we show how to use ROhAN to 
sample from this model.

We now comment on the differences between ROE and ROA SISLP models. Let 
D̊ be an observed dataset, and let ���(D̊) be an ordered dataset obtained by fixing an 
arbitrary order of the transactions of D̊ . Consider the null set ZA of a ROA SISLP 
model for D̊ and the null set ZE of a ROE SISLP model for ���(D̊) . There is a surjec-
tive function ��() from ZE to ZA which maps an ordered dataset to the corresponding 
unordered one (e.g., ��(���(D̊)) = D̊ ). For any D ∈ ZA let �(D) be the number of 
ordered datasets in ZE that ��() maps to D (it holds �(D) ≥ 1 ). The following lemma 
shows that the ROE SISLP model (ZE,�) and the ROA SISLP model (ZA,�) are not 
equivalent, in the sense that one cannot sample an ordered dataset D from ZE w.r.t. 
� , and consider the unordered dataset ��(D) as a sample from ZA w.r.t. �.
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Lemma 1  There exists an observed dataset D̊ such that, if we let D be an ordered 
dataset drawn uniformly at random from ZE , then ��(D) is not chosen uniformly at 
random from ZA.

Proof  Let D̊ = {{1, 2}, {1, 3}, {3}} , and assume, w.l.o.g., that 
���(D̊) = [{1, 2}, {1, 3}, {3}] , to which corresponds the binary matrix

The matrix

can be obtained from M with a single swap, and it corresponds to the ordered 
dataset D� = [{1, 3}, {1, 2}, {3}] , which, being ordered, is different from ���(D̊) , 
but it holds ��(D�) = D̊ = ��(���(D̊)) . ZE thus contains at least two ordered 
datasets corresponding to the unordered dataset D̊ . From the definition of ZE , 
it holds that it also contains the ordered dataset D�� = [{1, 3}, {1, 3}, {2}] , with 
��(D��) = {{1, 3}, {1, 3}, {2}} . It is easy to see that there is no other ordered data-
set D��� ∈ ZE such that ��(D���) = ��(D��) . Thus, if we sample an ordered dataset D 
uniformly at random from ZE , then there is a higher probability that ��(D) = D̊ than 
��(D) = ��(D��) , and our proof is complete. 	� ◻

Our algorithmic framework ROhAN (Sect. 5.3) returns samples from ZA accord-
ing to �A.

4.2 � ROA models for sequence datasets

The reasons for considering ROA models for sequence datasets are similar to those 
we discussed for transactional datasets, i.e., the order of the seq-transactions is 
not relevant for many KDD tasks on such data. Results similar to Lemma 1 can be 
obtained for sequential datasets.

The ROE models from Sect.  4.2 can be “converted” in ROA models in a way 
similar to what we discussed above for SISLP models for transactional datasets. 
The consequence of this “conversion” is deep: the correctness of the exact sam-
pling algorithms by Jenkins et al. (2022) for these null models depend on their ROE 
nature, thus they cannot be easily adapted to the ROA models. For example, the 
algorithm for the first null model considers the observed sequence dataset as a single 
long vector of itemsets, and samples from the null model by applying to this vector 
a permutation chosen uniformly at random using the Fisher-Yates algorithm. The 
key ingredient for the correctness is that the number of permutations resulting in 

M =

⎡
⎢⎢⎣

1 1 0

1 0 1

0 0 1

⎤
⎥⎥⎦
.

M� =

⎡
⎢⎢⎣

1 0 1

1 1 0

0 0 1

⎤
⎥⎥⎦
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an ordered dataset D ∈ Z is a constant for all datasets. This property is lost in ROA 
models, thus new algorithms are needed. In Sect. 5.3 we show that ROhAN is able 
to build on top of efficient algorithms for ROE models, such as those by Jenkins 
et al. (2022).

4.3 � ROhAN: sampling from ROA models

We now describe ROhAN, our algorithmic framework for sampling from ROA 
models. ROhAN uses, as subroutines, algorithms to sample from ROE models, thus 
allowing us not only to to build on the extensive library of such methods, but also 
to show that it will be possible to adapt to ROA models any algorithm that may be 
developed in the future for (possibly not-yet-defined) ROE models.

4.3.1 � ROhAN‑m: using MCMC algorithms for ROE models

We first show ROhAN-m, which essentially “converts” an MCMC algorithm AE for 
a ROE model (ZE,�E) to an MCMC algorithm AA for a ROA model (ZA,�A) which 
preserve the same properties, up to the distinction about the sequence of row lengths 
vs. the distribution of row lengths, as in the ROE vs. ROA SISLP models from 
Sect. 4.1 and 5.1 respectively, or similarly for the ROA versions of the null models 
for sequence datasets from Sect. 4.2. We impose no assumption on the distributions 
�E and �A nor on their relationship (e.g., they do not need to be both uniform).

The intuition behind ROhAN-m is that given a Markov chain on ZE with station-
ary distribution �E , we can use the Metropolis-Hasting (MH) approach (Mitzen-
macher and Upfal 2005, Ch. 10) to convert it to a Markov chain still defined on ZE 
but with stationary distribution � = �(�A) so that, if we sample an ordered dataset D 
from ZE w.r.t. � , then ��(D) is a sample from ZA w.r.t. �A . We later derive the appro-
priate � to use.

ROhAN-m uses AE as a subroutine as follows. Let D be the ordered dataset that is 
the current state of the Markov chain on ZE used by algorithm AE , and let D′ be an 
ordered dataset obtained by simulating a step of the Markov chain of AE and �D(D

�) 
be the transition probability from D to D′ . The chain used by ROhAN-m will then 
move to D′ with probability

and otherwise stays in D (i.e., follows a self-loop). The resulting Markov chain has 
stationary distribution � (Mitzenmacher and Upfal 2005, Ex. 10.12). ROhAN-m runs 
this Markov chain starting from ���(D̊) . Once the chain has mixed, the algorithm 
returns ��(D) , where D is the ordered dataset corresponding to the final state of the 
chain. We remark that the Markov chain run by ROhAN-m is still defined on ZE , not 
on ZA.

We now move to derive � , and then show the correctness of ROhAN-m. The 
intuition is that the desired probability �A to sample D from ZA should be “spread” 

(3)min

(
�(D�)�D� (D)

�(D)�D(D
�)
, 1

)
,
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among the �(D) ordered datasets in ZE that ��() maps to D . The stationary distribu-
tion used by ROhAN-m is then

Theorem 2  ROhAN-m outputs a sample from ZA with distribution �A.

Proof  A unordered dataset D� ∈ ZA is output by ROhAN-m iff the algorithm sam-
ples an ordered dataset D such that ��(D) = D

� . There are �(D�) such ordered data-
sets in ZE , each sampled with probability �(D) as in  (4). Thus, the probability of 
returning D′ is exactly �A(D

�) . 	�  ◻

The only missing ingredient is an expression for �(D) , which will depend on the 
type of the data (sequence vs. transactional), and on the null model, but it does not 
depend on the fact that we are considering MCMC algorithms in this section: the 
same expressions we present in this section, can be used also when using rejec-
tion sampling, as we discuss in Sect. 5.3.2. For transactional datasets, we give an 
expression valid for essentially any null model, under a weak general assumption. 
For sequence datasets, the richer nature of the data, and therefore of the null mod-
els, makes deriving such a generic expression impossible, so we show it for the two 
null models from Sec. 4.2. Obtaining such an expression is really the only necessary 
additional step needed to use ROhAN-m for other null models.

�(D) for transactional datasets
We now discuss the computation of �(D) for transactional datasets. The follow-

ing result gives an expression for this quantity. It is valid as long as the ROE null 
set ZE contains all possible ordered datasets corresponding to an unordered dataset 
D ∈ ZA , which is a very weak assumption, as if that was not the case, it would mean 
that preserving the ordering of the transactions is important, i.e., a ROE model is 
appropriate, and a corresponding ROA model would likely not be. The following 
result has recently been used by Preti et al. (2022) for the same purpose.

Lemma 3  For any dataset D ∈ ZA , let zD be the maximum length of any transac-
tion in D . For each 1 ≤ i ≤ zD , let Ti be the bag of transactions of length i in D . Let 
T̄i = {𝜏i,1,… , 𝜏i,hi} be the set of transactions of length i in D , i.e., without duplicates. 
For each 1 ≤ j ≤ hi , let Wi,j ≐ {t� ∈ Ti ∶ t� = �i,j} be the bag of transactions in Ti 
(including �i,j ) identical to 𝜏i,j ∈ T̄i . Then, the number of ordered datasets in ZE that 
are mapped to D by ��() is

(4)�(D) ≐
�A(��(D))

�(��(D))
, for D ∈ ZE.

c(D) .=
zD∏

i=1

(
|Ti|∣∣Wi,1

∣∣, . . . ,
∣∣Wi,hi

∣∣

)

multinomial coefficient

=
zD∏

i=1

|Ti|!∏hi
j=1

∣∣Wi,j

∣∣!
. (5)

(5)
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Proof  Recall that ZE depends on the observed dataset D̊ and on the arbitrary order-
ing of its transactions in ���(D̊) , as the ordering fixes the row-sums rx , 1 ≤ x ≤ m . In 
other words, it fixes the row indices of rows corresponding to transactions of length 
i, 1 ≤ i ≤ zD , of D . Thus, the number of different ways in which the transactions of 
D can be assigned as the transactions of an ordered dataset in ZE is the product, over 
the transaction lengths, of the number qi of different ways in which the transactions 
in Ti can be assigned, i.e.,

Thus, we only have to argue that

which is true because the multinomial coefficient 
(

n

k1,… , kh

)
 is the number of dif-

ferent permutations of a bag containing n objects such that k1 objects are indistin-
guishable among themselves and of type 1, k2 objects are indistinguishable among 
themselves and of type 2, and so on (Stanley 2011, Eq. 1.22).9 	� ◻

Assume now that ROhAN-m is in state D , and that D′ is the proposed state, which 
is a neighbor of D . The only use of �(��(D)) and �(��(D�)) by ROhAN-m is in the 
computation of the acceptance probability from (3), as �(��(⋅)) appears in the defini-
tion of � from (4). Plugging the r.h.s. of (4) into (3), we obtain

The distribution �A is given in input, and both �D� (D) and �D(D
�) can be obtained 

from the AE MCMC algorithm used to simulate a step of the underlying Markov 
chain, so we only need to discuss the computation of the ratio �(��(D))∕�(��(D�)) . 
We now show that obtaining this ratio can be done without having access to either 
quantity, not even for the first state D = ���(D̊).

Using the notation from the statement of Lemma 3, given a transaction t ∈ ��(D) , 
suppose t ∈ Ti for length 1 ≤ i ≤ z��(D) . Further suppose t = 𝜏i,j ∈ T̄i , where 
1 ≤ j ≤ hi . Let ��� be a dictionary that maps each different transaction t ∈ ��(D) to |||Wi,j

||| , i.e., the size of the bag of transactions equal to t (including t). This data struc-
ture is easy to initialize at the start of ROhAN-m and to keep up to date as the chain 
evolves. We can then obtain �(��(D))∕�(��(D�)) as shown in Alg. 1, which leverages 
the fact that �(��(D)) = �(��(D�)) if ��(D) = ��(D�) (line 1), and the definition of 
the multinomial coefficient, to greatly simplify the computation (lines 4–7).

�(D) =

zD∏
i=1

qi.

qi =

( ||Ti||||Wi,1
||, ⋯ ,

|||Wi,hi

|||

)
,

min

(
�(��(D))

�(��(D�))

�A(��(D
�))

�A(��(D))

�D� (D)

�D(D
�)
, 1

)
.

9  We assume 
(

0

0,… , 0

)
= 1.
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Algorithm 1 Computing c(un(D))/c(un(D′))

Input: ordered dataset D, ordered dataset D′ dictionary net
Output: c(un(D))

c(un(D′))
1: if un(D) = un(D′) then return 1
2: {ta, tb} ← un(D) \ un(D′)
3: {t̄a, t̄b} ← un(D′) \ un(D), s.t. ∃{a, b} ⊆ I s.t. t̄a = (ta \ {a}) ∪ {b} and

t̄b = (tb \ {b}) ∪ {a}
4: for each i ∈ {a, b} do
5: if net has key t̄i then βi ← net[t̄i]
6: else βi ← 0
7: return (βa+1)(βb+1)

net[ta]net[tb]

�(D) for sequence datasets

We now show two results on �(D) for the two null models for sequence datasets 
from Sect.  5.2: Lemma  4 for the first null model, and Lemma  5 for the second. 
Algorithms similar to Alg. 1 can be devised for these cases. The ideas presented 
here should be useful to derive similar ones for other null models (Tonon and Van-
din 2019; Pinxteren and Calders 2021; Jenkins et al. 2022).

Lemma 4  For any sequence dataset D ∈ ZA , let zD , Ti , T̄i , and Wi,j be defined as in 
Lemma 3 (with “seq-transaction” in place of “transaction”). Then,

The fact that the expression is the same as the one in (5) should not be surprising, 
as the first null model is essentially a SILSP null model for sequence datasets. The 
proof is the same as Lemma 3, so we do not repeat it.

For the second null model, the following result holds.

Lemma 5  For any dataset D ∈ ZA , let zD be as in Lemma 4, and let yD be the maxi-
mum itemlength of any seq-transaction in D . For each 1 ≤ i ≤ zD , 1 ≤ j ≤ yD let Ti,j 
be the bag of seq transactions of length i and itemlength j in D . Let 
T̄i,j = {𝜏i,j,1,… , 𝜏i,j,hi,j} be the set of seq-transactions of length i and itemlength j in 
D , i.e., without duplicates. For each 1 ≤ k ≤ hi,j , let Wi,j,k ≐ {t� ∈ Ti,j ∶ t� = �i,j,k} be 
the bag of transactions in Ti,j (including �i,j,k ) identical to 𝜏i,j,k ∈ T̄i,j . Then,

(6)
c(D) =

zD�
i=1

� ��Ti����Wi,1
��, ⋯ ,

���Wi,hi

���

�
=

zD�
i=1

��Ti��!
hi∏
j=1

���Wi,j
���!
.
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The proof is similar to those for Lemma 3 and 4, with the necessary adaptation 
for the fact that we are considering sets/bags of seq-transactions that depend on both 
length and itemlength.

4.3.2 � ROhAN‑r: using rejection sampling

Not all algorithms for sampling from a ROE null model (ZE,�E) are based on 
MCMC. E.g., Jenkins et  al. (2022) show non-MCMC algorithms to sample from 
the first and the second null models for sequence datasets from Sect. 4.2 when �E 
is uniform. We now describe ROhAN-r, which uses rejection sampling  (Casella 
et al. 2004) and such an algorithm A , to sample from a ROA null model (ZA,�A) 
which preserves the same properties of the observed dataset as (ZE,�E) , up to the 
difference between preserving the sequence of row lengths vs. the distribution of 
row lengths. A could even be an MCMC algorithm, but we saw in Sect. 5.3.1 how to 
directly “upcycle” such methods with ROhAN-m.

For any unordered dataset D ∈ ZA , let

be the probability that A returns an ordered dataset D′ such that ��(D�) = D . Let 
Q ∈ ℝ be a constant such that

ROhAN-r applies rejection sampling by first generating an ordered D� ∈ ZE using 
A , and then generating u ∼ U(0, 1) . If

then ��(D�) is returned as a sample from ZA distributed according to �A . Otherwise, 
a new D� ∈ ZE is generated using A , and the process continues. The correctness of 
ROhAN-r follows from the properties of rejection sampling and of the algorithm A.

The derivation of an expression for the constant Q, which depends on the ROA 
and ROE null models, but not on the algorithm A , is the only missing ingredient 
needed to apply ROhAN-r, thus it is left to the user or to the ROE/ROA algorithm 
designer.

There are even cases when the actual value of Q is not needed, as it partially can-
cels out in the ratio on the r.h.s. of (9). We now show how that is the case for the two 

c(D) =

zD�
i=1

yD�
j=1

���Tij
���!

hi,j∏
k=1

���Wi,j,k
���!

(7)
�(D) ≐

∑
D

� ∈ ZE s.t.

��(D�) = D

�E(D
�)

(8)Q�(D) ≥ �A(D), for any D ∈ ZA.

(9)u ≤
�A(��(D

�))

Q�(��(D�))
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null models for sequence datasets from Sect. 4.2 when �E and �A are the uniform 
distribution and the algorithms to sample from the ROE models are those by Jenkins 
et al. (2022).

Indeed, in these cases we have that �(D) = �(D)∕||ZE
|| , where �(D) is either from 

Lemma 4 or Lemma 5 depending on the null model we are considering. It also holds 
�A = 1∕||ZA

|| . We define Q ≐ ||ZE
||∕||ZA

||,10 which clearly is such that the requirement 
from (8) is satisfied. Then, we have that the condition from (9) can be rewritten as

which is readily computable from Lemma 4 or Lemma 5.

4.4 � Discussion

One may wonder whether “wrapping” existing algorithms for ROE models (whether 
MCMC or not) to obtain algorithms for ROA models, like ROhAN does, is the cor-
rect approach, versus creating methods that directly sample from a set of unordered 
datasets. We already argued that one of the advantages, and not a small one, of tak-
ing the approach we followed, is that one can reuse the large variety of algorithms 
available (e.g., for ROE SISLP models, i.e., for sampling binary matrices with fixed 
row- and column-sums, the literature is extensive (Fout 2022)), and even ones that 
will be developed in the future. Here we want to briefly discuss, through an exam-
ple, a non-immediately-apparent drawback of “direct sampling” methods for ROA 
models. Suppose that we want to develop an MCMC algorithm DirectROA for 
ROA SISLP models, using a Markov chain whose states are the unordered data-
sets in ZA (and not the ordered datasets in ZE , as in ROhAN-m). We can define 
the neighborhood structure of the Markov chain by introducing a ROA variant of 
the swap operation used by the MCMC algorithm for sampling from ROE SISLP 
models (described in Sect. 4.1): there is an edge from D′ to D′′ if the latter can be 
obtained from the former by swapping a pair of items between two transactions that 
are not one a subset (proper or improper) of the other, and each of which contains 
only one of the two items. The fact that such operation can be easily defined and 
implemented, and that it should be easy to draw one such swap uniformly at random 
to choose a neighbor of the current state to propose as the next step, may lead us 
to believe that we are on the right track. Additionally, it would seem that a smaller, 
well-connected, state space could lead to a faster mixing time of the chain. The issue 
is that, differently from what happens for ROE swaps, there may be multiple ROA 
swaps from D′ to D′′ , and that the number of ROA swaps from a dataset to any dif-
ferent dataset (i.e., the ROA swaps that would lead from D′ to a D′′

≠ D
′ ) may also 

be different for different unordered datasets, as it depends on quantities such as the 
number of identical transactions in D′ . The algorithm would need to compute these 

u ≤
1

�(��(D�))
,

10  Other definitions of Q are possible. Deriving, for example, a tight lower bound b ≤ minD∈ZA
�(D) can 

be used to define Q ≐ ||ZE
||∕(||ZA

||b) , which would lead to more samples being accepted. We leave this 
derivation to future work.
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two quantities at every step, for both the current state and the proposed next state, as 
their ratio is the neighbor sampling probability �D� (D��) , which is needed to obtain 
the acceptance probability as in  (3). While computing these quantities is possible, 
it requires maintaining additional data structures and additional computational time 
at every step, for no clear advantage. We implemented such algorithm DirectROA, 
and we compare ROhAN-m to it in Sect. 6, showing how ROhAN-m performs better 
in practice.

Extending our approach to null models that preserve constraints (including the 
row order) in expectation  (De Bie 2010), whether using maximum entropy or not, 
seems challenging, as it requires to derive the probability from (7), which does not 
seem straightforward in many cases. This is a very interesting direction for future 
work.

One limitation of this work is that we do not show an upper bound to the mix-
ing time of the Markov chain run by ROhAN-m, i.e., the number of steps needed 
for the distribution of the current state to be (approximately) the stationary distribu-
tion (Mitzenmacher and Upfal 2005, Ch. 10 ). Using the MH approach makes such 
a derivation particularly challenging (e.g., is not available for SwapRand either), and 
in any case it would depend on the nature of the Markov chain used by the ROE 
sampling algorithm that ROhAN-m uses as a subroutine. We measure the mixing 
time empirically in Sect. 6.

5 � Experimental evaluation

Our experimental evaluation focuses on three aspects. First, assessing the difference 
between ROE and ROA models, showing also how it can impact the validation of 
results from datasets. Second, measuring the speed and scalability of ROhAN-m by 
measuring its step time, i.e., the time to take a step on the Markov chain, and how it 
changes as the number |||D̊

||| of transactions in the datasets grows. Third, empirically 
estimating the mixing time of ROhAN-m, i.e., the number of swaps for the distribu-
tion of the chain state to be close to the stationary distribution. We do not report on 
the empirical performance of ROhAN-r because it would mostly be an assessment 
of that of the underlying algorithm used before the rejection sampling step.

5.1 � Implementation, environment, datasets

All the algorithms and experiments are implemented in Java 8, and available from 
https://​github.​com/​acdma​mmoths/​ROhAN-​code, together with instructions and a 
script to reproduce all our results and figures. We run our experiments on an x86–64 
AWS EC2 instance with the Amazon Linux 2 OS, 128GB of RAM, and 32 vCPUs. 

https://github.com/acdmammoths/ROhAN-code
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We use the following five publicly available11 binary transactional datasets, whose 
relevant statistics are in Table 1:

•	 Foodmart: customer transactions from a retail store.
•	 Chess: a conversion of the UCI chess (King-Rook vs. King-Pawn) dataset, whose 

transactions represent chess board configurations.
•	 Mushroom: a conversion of the UCI mushroom dataset, whose transactions 

describe different mushrooms using binary features.
•	 BMS WebView 1 (BMS 1): click-stream data from a webstore used in KDD-Cup 

2000, which has been prepared for itemset mining.
•	 BMS WebView 2 (BMS 2): click-stream data from a webstore used in KDD-Cup 

2000, which has been prepared for itemset mining.

5.2 � Difference between ROE and ROA null models

Consider the ROE SISLP null model (ZE,�E) for transactional datasets from 
Sect.  4.1, with �E being the uniform distribution over ZE , and consider the ROA 
SISLP model (ZA,�A) from Sect.  5.1, with �A being the uniform over ZA . In 
Lemma 1 we showed an example of an observed dataset D̊ for which sampling a 
dataset D from ZE uniformly at random does not imply that ��(D) is a uniform sam-
ple from ZA . The example was artificial, so we want to evaluate the situation on real 
datasets. Indeed, if there was a constant C such that �(��(D)) = C for every D ∈ ZE , 
then sampling D from (ZE,�E) and then considering the unordered dataset ��(D) 
would be equivalent to sampling from (ZA,�) , implying that the two null models 
are effectively the same, and perhaps suggesting that the definition of ROA models 
is not very interesting. The results of our experimental evaluation show instead that, 
even in this very simple case, ROE and ROA models are very different.

Table 1   Dataset statistics: number of transactions |D| , number of items |I| , density avg|t|∕|I| , where 
avg|t| is the average transaction length, sum w ≐

∑m

i=1
��ti�� of transaction lengths, support threshold � used 

in some experiments, and number of frequent itemsets w.r.t. �

Dataset D̊ |D| |I| avg|t|
|I|

w � ||FPD(�)
||

Foodmart 4,141 1,559 0.0028 18,319 2 4,247
Chess 3,196 75 0.4933 118,252 2,557 8,227
Mushroom 8,416 119 0.1933 193,568 2,525 2,587
BMS 1 59,602 497 0.0051 149,639 60 3,991
BMS 2 77,512 3,340 0.0014 358,278 156 3,683

11  https://​www.​phili​ppe-​fourn​ier-​viger.​com/​spmf/​index.​php?​link=​datas​ets.​php

https://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php
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Our experiment performs a (non-covering) random walk over ZE , and computes the 
value �(��(D)) for each visited state D . While a random walk may visit a state more 
than once, it never happened in our experiments. The random walk bias towards 
higher-degree states has no impact on whether �(��(D)) is a constant. We report in 
Table 2 the distribution over 10,000 steps of ln(�(��(D))) (we report the logarithms 
because the raw quantities are truly “astronomical”). Clearly, �(��(D)) is all but a 
constant: there are datasets in ZA which have ≈ e5000 ≈ 102470 times more equivalent 
ordered datasets in ZE than other datasets in ZA , as can be seen by considering the 
difference between the maximum and minimum entries for BMS 1 or BMS2, and 
noting that this difference is the natural logarithm of the ratio between the minimum 
and maximum raw values. Even in the smallest case (Chess), the raw ratio between 
the minimum and maximum is more than e10 . Thus ROE and ROA null models are 
quite different, i.e., ROA models are a new addition to the library of available null 
models for statistically-sound KDD.

5.3 � Impact of null model choice on statistical validation of results

Using a ROA vs. a ROE model may lead to different outcomes in the validation of 
results obtained from a transactional dataset. We used ROhAN-m (with SwapRand 
as subroutine) and SwapRand to respectively compute the significant frequent item-
sets (Hämäläinen and Webb 2019; Pellegrina et al. 2019) under a ROA and a ROE 
model. The two returned sets of significant patterns in Chess, with FWER � = 0.05 , 
were extremely different, with a Jaccard index of 0.12. This fact should not be sur-
prising, as from the difference highlighted in the previous experiment, one should 
expect that the (empirical) distributions of the test statistics under the two null 
models would be very different, and therefore so would be the empirical p-values 
which are used for the tests. Once more, this result is evidence that the user must 
be extremely cautious in choosing the assumed null model: the meaning of sig-
nificance depends on the null model, and it is not meaningful to compare results 
obtained under different null models (e.g., to compare the statistical power of two 
procedures).

Table 2   Difference between models: Minimum, 1st quartile, median, 3rd quartile, and maximum of 
ln(�(��(D))) across 10,000 states D ∈ ZE

Distribution of ln(�(��(D)))

 Dataset min Q1 med Q3 max

Foodmart 21,848.016 21,851.48 21,852.99 21,855.47 21,861.94
Chess 22,589.17 22,596.11 22,598.19 22,598.88 22,599.57
Mushroom 67,449.92 67,580.11 67,628.06 67,639.15 67,649.55
BMS 1 343,570.54 345,695.65 347,551.60 349,260.07 350,721.50
BMS 2 541,598.73 542,301.19 542,926.81 543,515.51 544,058.76
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5.4 � Step times

The step time is the time needed to obtain a valid swap, compute the MH accept-
ance probability, and transition to the next state if it is accepted. In Table 3 we report 
the distribution, over 10,000 steps, of this quantity for three algorithms: ROhAN-m, 
SwapRand, and the “direct” sampling algorithm DirectROA described in Sect. 5.4. 
We show the results for SwapRand only for comparison purposes: SwapRand is not 
to be preferred just because it appears faster, as it samples from a ROE model while 
the other two algorithms sample from a ROA model.

The distribution for ROhAN-m is comparable to that of SwapRand, while 
DirectROA is slightly slower. This is expected since the execution of SwapRand 
and ROhAN-m are very similar, where the only additional work for ROhAN-m is 
to compute the ratio of �(��(D)) to �(��(D�)) using Alg. 1. DirectROA is slower, 
which may seem a bit surprising because one may think that sampling “directly” 
from the desired space of non-ordered datasets may be more efficient. On the con-
trary, as discussed in Sect.  5.4, “moving” over this space, as the Markov chain 
of DirectROA does, requires additional computation, which becomes relatively 
expensive when many transactions have the same length, as in Chess and Mush-
room. We find this fact to be an non-intuitive algorithmic observation, which 
reinforces the appropriateness of the approach taken by ROhAN-m, i.e., reusing 
existing algorithms for ROE models.

Table 3   Step time (in ms): 
minimum, 1st quartile, median, 
3rd quartile, and maximum over 
10,000 steps

Step time (ms)

 Dataset Algorithm Min Q1 Med Q3 Max

Foodmart ROhAN-m < 1 1 2 2 16
DirectROA 1 2 2 2 32
SwapRand 1 1 2 2 24

Chess ROhAN-m 4 5 5 5 24
DirectROA 11 13 14 14 49
SwapRand 3 5 5 5 16

Mushroom ROhAN-m 8 12 13 13 56
DirectROA 22 28 30 33 82
SwapRand 7 9 9 10 47

BMS 1 ROhAN-m 19 25 27 29 63
DirectROA 27 31 32 38 73
SwapRand 19 24 25 27 63

BMS 2 ROhAN-m 33 44 47 50 98
DirectROA 50 55 56 57 103
SwapRand 38 47 49 51 97
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5.5 � Scalability

We use the IBM Quest generator to create synthetic datasets with |||D̊
||| ∈ {5,000, 

10,000, 15,000, 20,000} , on |I| = 100 and average transaction length |t| = 25.12 We 
run all algorithms for 10,000 swaps on each dataset, and report the results in Fig. 1. 
There is a linear relationship between the distribution of step times and the number 
of transactions, as all algorithms need to compute the number of neighbors for the 
proposed next state, which takes time linear in |||D̊

||| . The interquartile range ( Q3 − Q1 ) 
grows in absolute terms because the individual step times grow, but it is essentially 
constant in relative terms.

5.6 � Convergence to the stationary distribution

Since we cannot prove an upper bound to the mixing time of the Markov chain used 
by ROhAN-m (see Sect.  5.4), we empirically estimate it. Following other 
works (Tonon and Vandin 2019), we track the Average Relative Support Difference 
(ARSD), defined as follows, as a proxy for the mixing time: it is assumed that when 
this quantity stabilizes, the chain has mixed. Given the observed dataset D̊ , let 
𝜃 ∈ [1,

|||D̊
|||] be a minimum support threshold, and Ds be the dataset corresponding to 

the state of the chain after s ∈ ℕ swaps. Then,

12  The other parameters of the generator were left to their default values.

Fig. 1   Scalability results: The step time distribution (in milliseconds) over 10,000 swaps for increasing 
values of |||D̊

||| . The line in each box corresponds to the median, the bottom and top of each box correspond 
to the first and third quartiles, and the lower and upper whiskers correspond to the minimum and maxi-
mum
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Fig. 2 shows ����(Ds) for s ≐ ⌊kw⌋ swaps, where k ∈ {0, 0.25, 0.50,… , 2, 3, 4, 5} 
and w ≐

∑m

i=1
��ti�� , for ti ∈ D̊ . We use the values of � from Table 1: the qualitative 

results do not change with other values.
We remark that comparing the mixing times of Markov chains with different sta-

tionary distributions (as SwapRand and ROhAN-m) is meaningless, as they allow to 
sample different objects from different sets according to different distributions. Nei-
ther are the values of the ARSD comparable, as only the stabilization of the ARSD 
is a proxy for the mixing time, but its value is not a proxy for the distance between 
the state distribution and the stationary distribution. Therefore, we do not make such 
comparisons and only include the results from SwapRand for completeness (the 
mixing time for SwapRand is the same observed by Gionis et al. (2007), Sect. 5.1). 
On BMS 1, the ARSD converges to a different value for SwapRand, which we take 
as another indication that ROE and ROA models are different.

Figure 2 shows that in all cases, the ARSD stabilizes by s = 2w swaps or earlier 
(by s = w ), i.e., the mixing time appears to be linear in w . For Chess, the fluctuations 

����(Ds) ≐
1

||��D̊(𝜃)||
∑

A∈��
D̊
(𝜃)

|||𝜎D̊(A) − 𝜎Ds
(A)

|||
𝜎
D̊
(A)

.

Fig. 2   Convergence results: ����(D̊) as the swap number multiplier k grows, where k is s.t. the number 
of swaps is s ≐ ⌊k∑m

i=1
��ti��⌋
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in the ARSD may seem large due to the scale of the y-axis, which is much smaller 
in Fig. 2b than in the other subfigures. The fact that DirectROA requires approxi-
mately the same number of steps as ROhAN-m to converge, combined with the fact 
that each step of DirectROA takes longer (Table 3 and 1), support the design deci-
sions behind ROhAN-m, as we argued in Sect. 5.4.

6 � Conclusion

We introduce a novel type of null models for transactional and sequence datasets, 
which is Row-order Agnostic (ROA), i.e., does not consider the order of the rows as 
fixed in the original dataset. These null models expand the collection of null models 
available to the users to test the significance of results obtained from the datasets, 
i.e., to perform statistically-sound KDD. We present ROhAN, an algorithmic frame-
work for drawing samples from ROA models according to a user-specified distri-
bution, which is a necessary step to assess the significance using resampling-based 
statistical hypothesis tests. ROhAN employs algorithms for sampling from Row-
Order Enforcing (ROE) null models as subroutines: it uses the Metropolis-Hastings 
approach to adapt Markov-Chain-Monte-Carlo algorithms, and rejection sampling 
for the others. ROhAN is “future-proof” in the sense that even future algorithms for 
future ROE models can be easily adapted to be used by ROhAN.

Our experimental evaluation shows that ROA and ROE models are quite differ-
ent, and this difference impacts the outcomes of the statistical validation of results. 
We also show that ROhAN is fast, and scales well.

Interesting directions for future work include the definition of ROA null mod-
els for other kind of data (e.g., real-valued datasets) and of maximum-entropy ROA 
models, and efficient algorithms to sample from these null models.
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