
Constraints
https://doi.org/10.1007/s10601-020-09317-y

Power of pre-processing: production scheduling
with variable energy pricing and power-saving states

Ondřej Benedikt1,2 · István Módos1,2 ·Zdeněk Hanzálek2

Accepted: 20 October 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
This paper addresses a single machine scheduling problemwith non-preemptive jobs to min-
imize the total electricity cost. Two latest trends in the area of the energy-aware scheduling
are considered, namely the variable energy pricing and the power-saving states of a machine.
Scheduling of the jobs and the machine states are considered jointly to achieve the high-
est possible savings. Although this problem has been previously addressed in the literature,
the reported results of the state-of-the-art method show that the optimal solutions can be
found only for instances with up to 35 jobs and 209 intervals within 3 hours of computation.
We propose an elegant pre-processing technique called SPACES for computing the optimal
switching of the machine states with respect to the energy costs. The optimal switchings are
associated with the shortest paths in an interval-state graph that describes all possible transi-
tions between the machine states in time. This idea allows us to implement efficient integer
linear programming and constraint programming models of the problem while preserving
the optimality. The efficiency of the models lies in the simplification of the optimal switch-
ing representation. The results of the experiments show that our approach outperforms the
existing state-of-the-art exact method. On a set of benchmark instances with varying sizes
and different state transition graphs, the proposed approach finds the optimal solutions even
for the large instances with up to 190 jobs and 1277 intervals within an hour of computation.

Keywords Single machine production scheduling · Machine states · Variable energy
costs · Total energy cost minimization

This article belongs to the Topical Collection: Special Issue on Constraint Programming, Artificial
Intelligence, and Operations Research
Guest Editors: Emmanuel Hebrard and Nysret Musliu

� Ondřej Benedikt
ondrej.benedikt@cvut.cz

István Módos
istvan.modos@cvut.cz

Zdeněk Hanzálek
zdenek.hanzalek@cvut.cz

1 Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
2 Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague,

Prague, Czech Republic

http://crossmark.crossref.org/dialog/?doi=10.1007/s10601-020-09317-y&domain=pdf
http://orcid.org/0000-0002-7365-844X
https://orcid.org/0000-0003-4692-1625
https://orcid.org/0000-0002-8135-1296
mailto: ondrej.benedikt@cvut.cz
mailto: istvan.modos@cvut.cz
mailto: zdenek.hanzalek@cvut.cz

Constraints

1 Introduction

Energy-efficient scheduling has been attracting a considerable amount of attention lately, as
reported by both Gahm et al. [6] and Gao et al. [7]. The trend is most likely to continue in the
future since the energy-efficient scheduling helps to achieve sustainability of the production
by both decreasing the production cost and minimizing its environmental impact. Gahm
et al. [6] identified promising approaches to the energy-aware scheduling, including, among
others, (i) the optimization of the energy demand by considering the power-saving states of
the machines, and (ii) the participation in demand response programs, which are used by
the electric utilities to reward the energy consumers for shifting their energy consumption
to off-peak intervals [14].

In this work, we study a single machine scheduling problem to minimize the total energy
cost (TEC) of the production. We consider both the power-saving states of the machine and
the time-of-use (TOU) pricing. The TOU pricing is one of the demand response programs,
in which the electricity price may differ every hour. The scheduling problems with TOU
pricing have been extensively addressed in the literature [5, 9, 10].

Considering the power-saving states of the machine, Mouzon et al. [15] identified that
a significant energy cost reduction could be attained. However, the switchings between the
machine states need to be planned carefully because of their non-negligible energy costs
and transition times.

The integration of the power-saving states and the TOU pricing was initially proposed by
Shrouf et al. [17], who designed an integer linear programming (ILP) model for the single
machine problem with the fixed order of the jobs. However, it was proven by Aghelinejad
et al. [2] that the problem with the fixed order of the jobs can be solved in polynomial
time. Aghelinejad et al. [1] improved and generalized the existing ILP model by removing
the restriction on the fixed order of the jobs, in which case the problem is NP-hard [2].
However, in both works of Aghelinejad et al. [1] and Shrouf et al. [17], only small instances
of the problem have been solved optimally.

In this paper, we study a single machine problem introduced by Shrouf et al. [17] and
further studied by Aghelinejad et al. [1], and describe a novel pre-processing technique
to solve it efficiently. Our pre-processing technique pre-computes the optimal switching
behavior in time w.r.t. the energy costs. The pre-computed costs of the optimal switchings
allow us to design exact ILP and constraint programming (CP) models. In contrast, the ILP
model proposed by Aghelinejad et al. [1] explicitly formulates the transition behavior of the
machine, which needs to be optimized jointly with the scheduling of the jobs. As shown
by the experiments, our approach outperforms the existing ILP model [1], which is, to the
best of our knowledge, the state-of-the-art among the exact methods for this problem. Our
ILP model can solve all benchmark instances with up to 190 jobs and 1277 pricing intervals
within the time limit. On the other hand, the state-of-the-art ILP model from the literature
scales only up to instances with 60 jobs and 316 intervals. This shows that our approach
can tackle production-size problems. For example, creating a schedule of one workweek (5
days) with start times granularity of 5 minutes requires 1440 intervals.

2 Problem statement

Let I = {I1, I2, . . . , Ih} be a set of intervals, which partition the scheduling horizon. The
energy costs for the intervals are given by the vector c = (c1, c2, . . . , ch), where ci ∈ Z≥0
is the energy (electricity) cost associated with interval Ii . It is assumed that every interval is

Constraints

one time unit long, i.e., I1 = [0, 1), I2 = [1, 2), . . . , Ih = [h − 1, h). Note that the physical
representation of the time unit length can be different depending on the required granularity
of the scheduling horizon.

Let J = {J1, J2, . . . , Jn} be a set of jobs, which must be scheduled on a single machine
that is available throughout the whole scheduling horizon; we assume that n ≥ 1. Each
job Jj is characterized by its processing time pj ∈ Z>0, given in the number of intervals.
Scheduling of the jobs is non-preemptive, and the machine can process at most one job at a
time. All the jobs are available at the beginning of the scheduling horizon.

During each interval, the machine is operating in one of its states s ∈ S or transits from
one state to another. Let us denote the transition time function by T : S ×S → Z≥0 ∪{∞},
and the transition power function by P : S × S → Z≥0 ∪ {∞}. The direct transition from
state s to state s′ �= s lasts T [s, s′] intervals and has power consumption P [s, s′], which is
the constant rate of the consumed energy at every time unit. The value ∞ means that the
direct transition does not exist. For ease of notation, we set T [s, s] = 1 for each s ∈ S ,
by which we represent that the machine is remaining in the state s for the duration of one
interval. Correspondingly, we assume that P [s, s] denotes the power consumption of the
machine while staying in state s for the duration of one interval.

Note that the transition time/power functions are general enough to represent many kinds
of machines used throughout the literature [1, 3, 15, 17]. Often, the machine states and
transitions are represented by a transition graph instead of the transition time/power func-
tion. Then, the graph nodes correspond to the machine states, while the edges represent the
allowed direct transitions between the states. The edges are labeled by the corresponding
values of the transition time/power functions. An example of a transition graph is shown in
Fig. 1.

During the first and the last interval, the machine is assumed to be in off state off ∈ S .
Besides, the machine has a single processing state, proc ∈ S , which must be active dur-
ing the processing of the jobs. Due to the transition from/to the initial/last off state, the
machine cannot be in proc state during the early/late intervals. Hence, we denote the ear-
liest and the latest interval during which the machine can be in proc state by Iearl and Ilate,
respectively.

A solution is a pair (σ , Ω), where σ = (σ1, σ2, . . . , σn) ∈ Z
n
≥0 is the vector denoting the

start time of the jobs, and Ω = (Ω1, Ω2, . . . , Ωh) ∈ (S ×S)h represents the active state or
transition in each interval.

The solution is feasible if the following four conditions are satisfied.

1. the machine processes at most one job at a time;

][][

Fig. 1 Parameters of the transition power function P [s, s′] and the transition time function T [s, s′], and the
corresponding transition graph, where every edge from s to s′ is labeled by T [s, s′]/P [s, s′]

Constraints

2. the jobs are processed when the machine is in proc state, i.e.,
∀Jj ∈ J ∀i ∈ {σj + 1, . . . , σj + pj } : Ωi = (proc,proc),
where {a, . . . , b} is {a, a + 1, . . . , b};

3. the machine is in off state during the first and the last interval, i.e.,
Ω1 = (off,off), and Ωh = (off,off);

4. all transitions are valid with respect to the transition time function, i.e.,
∀i ∈ {1, 2, . . . , h − 1} such that Ωi = (s, s′), Ωi+1 = (s′′, s′′′), it holds that

(a) Ωi and Ωi+1 encode only feasible states/transitions: 0 < T [s, s′] < ∞,
0 < T [s′′, s′′′] < ∞,

(b) only feasible zero-time transitions are allowed between Ωi and Ωi+1: either
s′ = s′′ or there exists a sequence of states (s′, s1, . . . , sk, s′′) such that
T [s′, s1] = T [s1, s2] = · · · = T [sk−1, sk] = T [sk, s′′] = 0,

(c) the non-zero-time transitions respect the transition time function: if s′′ �= s′′′ and
Ωi �= Ωi+1 then there exists Ω� with � being the smallest index larger than (i + 1)
such that Ω� �= Ωi+1, and it holds that � − i − 1 = T [s′′, s′′′].

The total energy cost (TEC) of solution (σ ,Ω) is
∑

Ii∈I
ci · P [Ωi], (1)

where P [Ωi] represents P [s, s′] for Ωi = (s, s′). The goal of the scheduling problem is to
find a feasible solution minimizing the total energy cost (1).

The above-defined problem was introduced by Shrouf et al. [17] and is denoted
in standard Graham’s notation as 1,TOU| states |TEC. The problem was shown to be
NP-hard [2].

Example Here, we present a small example to illustrate the proposed notation. Let us
consider a scheduling horizon consisting of 16 intervals, I = {I1, . . . , I16}, and the associ-
ated energy costs c = (2, 1, 2, 1, 6, 16, 14, 3, 2, 5, 3, 15, 3, 2, 1, 2). Let us have three jobs,
J = {J1, J2, J3} with processing times p1 = 2, p2 = 1, and p3 = 2. Considering the
machine states, we assume S = {proc,off,idle}. The values of the transition time
function and the transition power function are given in Fig. 1. For the given transition
time function, we have Iearl = I4 and Ilate = I14. Note that the same machine states and
transitions were originally proposed by Shrouf et al. [17].

The optimal solution to the given instance is depicted in Fig. 2, where

σ = (9, 3, 12), and

Ω = ((off,off), (off,proc), (off,proc), (proc,proc), (proc,off), (off,off),

(off,off), (off,proc), (off,proc), (proc,proc), (proc,proc), (idle,idle),

(proc,proc), (proc,proc), (proc,off), (off,off)).

The TEC of this optimal solution is equal to 133.

3 Solution approach

In this section, we first describe how to pre-compute the optimal switching behav-
ior of the machine and the corresponding costs. Afterward, we design efficient ILP

Constraints

Fig. 2 The optimal schedule for the example instance. Each cell, corresponding to interval Ii and a
state/transition, contains the value ci · P [Ωi]. The sum over all these values gives the TEC equal to 133

(called ILP-SPACES) and CP models that integrate the pre-computed optimal switching
costs.

3.1 Instance pre-processing: computation of the optimal switching

Given two states s, s′ in which the machine is during two intervals Ii, Ii′ such that i < i′,
the pre-processing computes the optimal transitions from (s, Ii) to (s′, Ii′) over all possible
states w.r.t. the energy cost. Formally, the pre-processing solves the following optimization
problem

min
Ωi+1,Ωi+2,...,Ωi′−1

i′−1∑

i′′=i+1

ci′′ · P [Ωi′′]. (2)

such that ((s, s),Ωi+1,Ωi+2, . . . , Ωi′−1, (s
′, s′)) are valid transitions w.r.t. to the transition

time function. We call this an optimal switching problem. As an illustration, the cost of the
optimal switching in Fig. 2 from (proc, I4) to (proc, I10) equals to 31. Interestingly, the
optimal switching problem can be solved in polynomial time by finding the shortest path in
an interval-state graph, which is explained in the rest of this section.

The interval-state graph is defined by a triplet (V ,E,w), where V is the set of vertices,
E is the set of edges and w : E → Z≥0 are the weights of the edges. The set of the vertices
and edges of this graph are defined as follows:

V = {v1,off} ∪ {vi,s : Ii ∈ I \ {I1}, s ∈ S} ∪ {vh+1,off}, (3)

E = {(v1,off, v2,off)}
∪ {(vi,s , vi+T [s,s′],s′) : s, s′ ∈ S, Ii ∈ I \ {I1},

T [s, s′] �= ∞, (i − 1) + T [s, s′] ≤ h − 1} (4)

∪ {(vh,off, vh+1,off)} .
Informally, each vertex vi,s ∈ V represents that at the beginning of interval Ii the machine
is in state s. Each edge (vi,s , vi′,s′) ∈ E corresponds to the direct transition from state s to
state s′ that lasts T [s, s′] = (i′ − i) intervals. The condition (i − 1) + T [s, s′] ≤ h − 1
ensures, that only transitions completing at most at the beginning of interval Ih are present
in the interval-state graph.

Constraints

The edges are weighted by the total energy cost of the corresponding transition w.r.t. the
costs of energy in intervals, i.e., weight of edge (vi,s , vi′,s′) ∈ E is defined as

w[vi,s , vi′,s′] =
i′−1∑

i′′=i

ci′′ · P [s, s′] . (5)

Note that by the definition, the interval-state graph encodes all the feasible transitions
between the machine states in time.

Returning to the optimal switching problem (2), the optimal transitions from (s, Ii) to
(s′, Ii′) w.r.t. the energy cost can be obtained by finding the shortest path from vi+1,s to
vi′,s′ in the interval-state graph. We denote the cost of the optimal switching by function
l : V × V → Z≥0.

Example continued Continuing with the Example, Fig. 3 shows the whole interval-state
graph for the given instance. The green dashed path shows the optimal transition of the
machine assuming that the machine is in proc state during intervals I4 and I10; at first the
machine is turned off (during I5), then it remains off (during intervals I6 and I7), and is
turned on afterward (intervals I8, I9). In this case, l[v5,proc, v10,proc] = 31.

Fig. 3 Interval-state graph for the Example instance from Fig. 2 with highlighted optimal switching behavior
from (proc, I4) to (proc, I10)

Constraints

The values of l can be computed using the Floyd-Warshall algorithm in O(h3 · |S|3)
time. However, for the scheduling decisions, only some of the switchings are interesting.
Since all the jobs need to be scheduled in the proc state, the optimal switchings have to be
resolved only in the ‘space’, i.e., the sequence of intervals: (i) between the two consecutive
intervals with proc; (ii) between the first off and the first proc; and (iii) the last proc
and the last off. The cost of the switchings between s, s′ ∈ {off,proc}2 are recorded by
function c∗ : I2 → Z≥0 defined as

c∗[i, i′] =

⎧
⎪⎨

⎪⎩

l[vi+1,proc, vi′,proc] i > 1, i′ < h case (i)

l[v2,off, vi′,proc] i = 1, i′ < h case (ii)

l[vi+1,proc, vh,off] i > 1, i′ = h case (iii)

(6)

for each i < i′. The vector of states corresponding to c∗[i, i′], i.e., the optimal switching
behavior of the machine between i and i′, is denoted by Ω∗(i, i′). As an example, see the
Fig. 2, where intervals {I5, I6, . . . , I9} represent the space between two consecutive jobs
J2, J1 with cost c∗(4, 10) = l[v5,proc, v10,proc] = 31. The optimal switching behavior is

Ω∗[4, 10] = ((proc,off), (off,off), (off,off), (off,proc), (off,proc)) ,

(7)
which is depicted by the green dashed path in Fig. 3.

Values of c∗ can be computed efficiently using an algorithm that we call the Shortest
Path Algorithm for Cost Efficient Switchings (SPACES). In every iteration Ii ∈ I \ {Ih},
SPACES computes all values c∗[i, i + 1], c∗[i, i + 2], . . . , c∗[i, h] by finding the shortest
paths from vi+1,proc (or v2,off if i = 1) to all other vertices in the interval-state graph.
The shortest paths are obtained with Dijkstra algorithm that runs inO(|E|+ |V | · log |V |) if
implemented using the priority queues. Since the Dijkstra algorithm is started h times, the
complexity of SPACES is

O(h · (|E| + |V | · log |V |)) = O(h2 · |S| · (|S| + logh · |S|)) . (8)

To increase the performance further, iterations i can be computed in parallel since they are
independent of each other. Moreover, the shortest paths between states could be cached,
and might be re-used between the iterations of the algorithm. However, for the size of the
benchmark instances considered in the experiments, the runtime of the SPACES without
caching is negligible in comparison to the total solving time. Hence, we did not implement
SPACES with the shortest paths’ caching.

3.2 Integer linear programmingmodel ILP-SPACES

In the ILP model proposed by Aghelinejad et al. [1], the state transition functions are
explicitly encoded. In contrast, our ILP-SPACESmodel works only with the optimal switch-
ing costs pre-computed by the SPACES algorithm, thus encoding the transitions implicitly
without sacrificing the optimality. The only task of the ILP solver is then to schedule the
jobs, and select appropriate spaces in between, such that the TEC is minimized. Thus, the
structure of our model is greatly simplified, with positive impact on its performance.

Formally, the variables used in the ILP-SPACES model are

– job start time sj,i ∈ {0, 1}: equals 1 if job Jj starts at the beginning of interval Ii ,
otherwise 0;

– space activation xi,i′ ∈ {0, 1}: equals 1 if the machine undergoes the optimal switching
defined by Ω∗(i, i′), otherwise 0.

Constraints

The complete model follows.

min
∑

Ii ,Ii′ ∈I
i<i′

xi,i′ · c∗[i, i′] +
∑

Jj ∈J
Ii∈I

sj,i · c
(job)
j,i , (9)

∑

Ii∈I
sj,i = 1, ∀Jj ∈ J , (10)

sj,i = 0, ∀Jj ∈ J ,∀i ∈ {1, . . . , earl − 1} ∪ {late − pj + 2, . . . , h}, (11)

∑

Jj ∈J

i∑

i′=max{2,i−pj +1}
sj,i′ +

i−1∑

i′=1

h∑

i′′=i+1

xi′,i′′ = 1, ∀Ii ∈ {I2, I3, . . . , Ih−1}. (12)

The objective (9) minimizes the total energy cost, consisting of the optimal switching cost
of the active spaces, and the cost of the jobs processing, where

c
(job)
j,i =

i+pj −1∑

i′=i

ci′ · P [proc,proc] (13)

for job Jj ∈ J and i ∈ {earl, . . . , late − pj + 1}.
Constraint (10) forces every job to be scheduled exactly once, and constraint (11) forbids

the job to be scheduled before Iearl and after Ilate. Finally, the last constraints (12) force the
machine to be processing a job or to be undergoing some transition during every interval
and forbid overlaps between them.

3.2.1 Search space reduction

Various methods can be employed to reduce the search space without sacrificing the opti-
mality. One of such methods is pruning of the spaces variables that lead to infeasible
solutions if activated.

The pruning works as follows. For each Ii , Ii′ such that i < i′, the available time for
processing the jobs is computed for both left (before Ii) and right (after Ii′) part of the
scheduling horizon, i.e., i − earl + 1 and late − i′ + 1, respectively. Then, activating the
switching behavior Ω∗[i, i′] leads to an infeasible solution if one of the following pruning
conditions holds

PC.1: The largest job can be fitted in neither part, i.e.,

max
Jj ∈J pj > i − earl + 1 ∧ max

Jj ∈J pj > late − i′ + 1 . (14)

PC.2: The total available time for processing is less than the sum of all the processing
times, i.e.,

(i − earl + 1) + (late − i′ + 1) <
∑

Jj ∈J
pj . (15)

If any of these conditions holds, the corresponding space variable xi,i′ is not created in
ILP-SPACES.

Constraints

3.3 Constraint programmingmodels

Thanks to the expressiveness of the CP, there are multiple possibilities on how to model
our scheduling problem. Since the performance of each model is not easily predictable
beforehand, we decided to try different combinations of the jobs’ and spaces’ modeling.

In the end, we selected the best model by performing a preliminary experiment, see
Section 4.2. The best model is called Element-Free-SumLengths and is denoted as CP-
SPACES.

In the following, we describe the CP-SPACES model formally. High-level description of
all the tested CP models is in Appendix A. Also, all the source codes are publicly available
at https://github.com/CTU-IIG/EnergyStatesAndCostsScheduling. In the text, we use the
IBM CP formalism [12] for describing the models.

3.3.1 CP-SPACESmodel

The idea of the CP-SPACES model is similar to the ILP-SPACES, with the exception that
the spaces are not fixed – they are allowed to ‘float’ within the scheduling horizon. In
consequence, the spaces do not have fixed costs because the cost depends on the position
of the space in the horizon and its length. In our CP-SPACES model, costs are formulated
with an Element expression, which is integrated in the objective.

Variables Two types of interval variables are used in the CP-SPACES model.
To represent each job Jj ∈ J and the intervals in which the job is allocated, we use inter-

val variable zj of fixed length pj . This interval variable represents the time interval in which
the corresponding job is processed, i.e, the job starts at time StartOf(zj) and completes at
time EndOf(zj).

The spaces in the schedule are modeled by using the optional interval variables,
where x�,k represents the ‘floating’ spaces of fixed length �. For each possible length

� ∈ {1, 2, . . . , h − 2 − ∑
Jj ∈J pj }, we create K(�) =

⌊
h−2−∑

Jj ∈J pj

�

⌋
variables that

are indexed by k ∈ {1, 2 . . . , K(�)}. Note that the number K(�) gives the upper bound
on the number of the spaces of length � that may appear in a feasible schedule, while
�max = h − 2 − ∑

Jj ∈J pj gives an upper bound on the space length.

Constraints Since the machine is assumed to be in off state during I1 and Ih, the earliest
and the latest interval during which a switching might occur is I2 and Ih−1, respectively.
Hence, starts (ends) of the spaces are restricted by

StartOf(x�,k) ≥ 1

EndOf(x�,k) ≤ h − 1

}
∀� ∈ {1, . . . , �max}, k ∈ {1, . . . , K(�)}. (16)

As mentioned previously, the spaces have fixed lengths, i.e.,

LengthOf(x�,k) = �, ∀� ∈ {1, . . . , �max}, k ∈ {1, . . . , K(�)}. (17)

To ensure that the jobs and the spaces are not overlapping, we use the NoOverlap
constraint,

NoOverlap({x�,k : � ∈ {1, . . . , �max}, k ∈ {1, . . . , K(�)}} ∪ {zj : Jj ∈ J }). (18)

https://github.com/CTU-IIG/EnergyStatesAndCostsScheduling

Constraints

The lengths of the spaces are constrained by

�max∑

�=1

K(�)∑

k=1

LengthOf(x�,k) = �max, (19)

to ensure that the whole scheduling horizon is filled.

Objective The objective is to minimize the TEC, here expressed as

�max∑
�=1

K(�)∑
k=1

Element(c(space)� , StartOf(x�,k)) + + ∑
Jj ∈J

Element(c(job)j ,StartOf(zj) + 1),

(20)
where the first part corresponds to the cost for optimal switchings between the job process-
ings, and the second part corresponds to the cost for job processing. To compute the cost of
the present spaces, vector

c
(space)
� = (c∗[1, 1 + � + 1], c∗[2, 2 + � + 1], . . . , c∗[h − � − 1, h]) (21)

is used to represent the optimal switching costs for the given length � addressed by the start
of space x�,k (indexed from 1). Similarly, to compute the cost of the jobs, vector

c
(job)
j = (c

(job)
j,1 , c

(job)
j,2 , . . . , c

(job)
j,h) (22)

is used.

3.3.2 Interval-state graph as a global constraint

Note that a structure like the interval-state graph could be used even for the filtering of the
variables domains, and could be embedded to a global constraint in CP. Imagine having
variables x1, . . . , xh with domains D1, . . . , Dh, representing the states of the machine in
each interval. Then whenever a value is filtered from a domain, we could remove the edges
in the interval-state graph that are leading to the state corresponding to the removed value.
Afterward, by forward and backward search in the graph, we could make the other domains
consistent. This is similar to the filtering techniques used for the grammar constraints [11,
16] or knapsack constraints [18]. We believe that efficient global propagation based on the
interval-state graph for this unrolled transition diagram can be designed. However, its formal
derivation is beyond the scope of this paper.

3.4 Symmetry breaking constraints

Symmetries in connection with the CP and ILP are widely studied [4, 8, 13]. Some of the
symmetries in combinatorial problems arise when multiple feasible solutions with the same
objective value, and which differ only in the values of the variables, correspond to the same
“canonical” feasible solution. For example, the jobs in our scheduling problem are identical,
thus replacing one job in a feasible solution with another one having the same processing
time will not influence the objective value.

The symmetries might negatively affect the performance of the models due to enlarged
search space. To break the symmetries without losing the optimality, symmetry breaking

Constraints

constraints are employed. In the CP models, we use the following symmetry breaking
constraints.

1. Fixed ordering on the jobs having the same processing time: Let Jj , Jj ′ ∈ J , such that
j < j ′, be two jobs having the same processing time. The symmetry breaking constraint
is EndBeforeStart(zj , zj ′).

To reduce the size of the models, the constraint is not created for every pair of
jobs; instead, the jobs having the same processing time are sorted by their indices and
the constraint is created only for every pair of two consecutive jobs along this sorted
sequence.

2. Fixed ordering on the spaces having the same length: Similarly as with break-
ing the symmetries on identical jobs, we can break symmetries on identical spaces
for FREE space modeling. That is, let � ∈ {1, . . . , h} be a space length and let
k, k′ ∈ {1, 2, . . . , K(�)} such that k < k′. Then we add the following two constraints

PresenceOf(x�,k′) ≤ PresenceOf(x�k) , (23)

BeforeStart(x�,k, x�k′) . (24)

We also tried to fix the ordering of the jobs with the same processing time in the ILP-
SPACES model using either constraint (25a) or (25b)

∑

Ii∈I
sj,i · i + pj ≤

∑

Ii∈I
sj ′,i · i, ∀Jj , Jj ′ ∈ J , pj = pj ′ , j < j ′ , (25a)

sj ′,i ≤
∑

Ii′ ∈I:i′<i

sj,i′ , ∀Jj , Jj ′ ∈ J , pj = pj ′ , j < j ′,∀Ii ∈ I . (25b)

However, the performance of the resulting model was inferior to the original model
without the constraints. Thus, the symmetry breaking constraints are omitted for the
ILP-SPACES.

4 Experiments

This section evaluates how ILP-SPACES and the CP models perform in comparison to the
ILP-REF model proposed by Aghelinejad et al. [1]. The comparison is made on a set of ran-
domly generated instances; see Section 4.1 for the description of the generated dataset. Due
to the space constraints, we only compare the best CP model which is selected according to
the results of the preliminary experiment; see Section 4.2. The final results are presented in
Section 4.3.

All the experiments were executed on 2x Intel(R) Xeon(R) Silver 4110 CPU 2.10 GHz
with 188 GB of RAM (16 cores in total). For solving the ILP and CP models, we used
Gurobi 8 and IBM CP Optimizer 12.9, respectively. Except for the time-limit and the search
phases in CP-SPACES, which branched on the jobs first, all the solver parameters were set
to the default values.

The source codes and the experimental data (instances and solutions) are publicly avail-
able at https://github.com/CTU-IIG/EnergyStatesAndCostsScheduling and https://github.
com/CTU-IIG/EnergyStatesAndCostsSchedulingData, respectively.

4.1 Instances

The instances in the dataset can be divided according to

https://github.com/CTU-IIG/EnergyStatesAndCostsScheduling
https://github.com/CTU-IIG/EnergyStatesAndCostsSchedulingData
https://github.com/CTU-IIG/EnergyStatesAndCostsSchedulingData

Constraints

Fig. 4 Example of a transition graph with multiple standby states; every edge from s to s′ is labeled by
T [s, s′]/P [s, s′]

1. a number of jobs:

(a) MEDIUM: medium instances with n ∈ {30, 60, 90};
(b) LARGE: large instances with n ∈ {150, 170, 190};

2. a machine transition graph:

(a) NOSBY: a simple graph with no standby state [1, 17], see Fig. 1 for its description;
(b) TWOSBY: a graph with two standby states shown in Fig. 4.

For fixed n and a machine transition graph, 12 random instances are generated in the
following way (48 instances in the whole dataset). The processing times of the jobs are
randomly sampled from discrete uniform distribution U{1, 5}. The number of intervals in
each instance is obtained as a multiple of the total processing time plus the required number
of intervals to turn the machine on and off, where this multiple Hmul is taken from set
{1.3, 1.6, 1.9, 2.2}. The energy cost in each interval is randomly sampled from U{1, 10}. For
instances differing only in the number of intervals, the energy costs are sampled gradually,
i.e., the energy costs of all the intervals in an instance with a shorter horizon are the same
as for the corresponding intervals in an instance with a longer horizon.

The dataset for the preliminary CP experiments is generated using a similar scheme as
described above with the following differences: n ∈ {30, 60}, Hmul = 1.2 and NOSBY
transition graph is used. For each fixed n, we generate 6 random instances. Thus, the dataset
for the preliminary experiments has 12 instances in total. We denote this dataset as PRELIM.

Note that the distributions for sampling the processing times and the energy costs of the
intervals for all the datasets are the same as proposed by Aghelinejad et al. [1] and Shrouf
et al. [17].

4.2 Preliminary CP experiments: results for PRELIM

The purpose of the preliminary experiments is to compare different CP modeling strategies
and to select the best-performing model that will be compared against ILP-SPACES and
ILP-REF.

The results aggregated over the instances are presented in Table 1, where gap stands
for the average optimality gap, time is the average runtime in seconds and #best represents
the number of times the model achieved the best upper bound among all the tested models
including the ILP-REF. The optimality gap on each instance is defined as

ub − lbbest

ub
· 100 [%] , (26)

Constraints

Table 1 Comparison of different CP modeling techniques on PRELIM dataset

Model gap [%] time [s] #best [-]

Element-Free-SumLengths 0.15 600.0 6
Optional-Free-Pulse 0.18 600.0 6
StepFunction-Free-SumLengths 0.22 600.0 6
Optional-Free-StartOfNext 0.25 600.0 4
Element-Free-StartOfNext 0.26 600.0 5
StepFunction-Free-Pulse 0.28 600.0 5
Element-Free-Pulse 0.33 600.0 6
Optional-No 0.33 600.0 5
Optional-Free-SumLengths 0.35 600.0 4
Logical-Free-SumLengths 0.37 600.0 6
Logical-Fixed-Pulse 0.42 600.0 4
Logical-Free-StartOfNext 0.43 600.0 5
StepFunction-Free-StartOfNext 0.43 600.0 4
Logical-Free-Pulse 0.47 600.0 4
Element-Fixed-Pulse 0.52 600.0 4
Overlap-Free-SumLengths 0.54 600.0 3
Element-Fixed-SumLengths 0.59 600.0 4
Overlap-Free-Pulse 0.61 600.0 4
Logical-Fixed-SumLengths 0.65 600.0 2
StepFunction-Fixed-Pulse 0.70 600.0 4
StepFunction-Fixed-SumLengths 0.73 600.0 3
Overlap-Free-StartOfNext 0.82 600.0 2
Optional-Fixed-SumLengths 0.82 600.0 3
Optional-Fixed-Pulse 0.83 600.0 3
StepFunction-Fixed-StartOfNext 0.98 600.0 4
Optional-Fixed-StartOfNext 0.98 600.0 4
StepFunction-No 1.02 600.0 2
Overlap-Fixed-Pulse 1.06 600.0 2
Overlap-Fixed-SumLengths 1.12 600.0 2
Overlap-Fixed-StartOfNext 1.17 600.0 3
Element-Fixed-StartOfNext 1.19 600.0 3
Logical-Fixed-StartOfNext 1.22 600.0 3
Overlap-No 1.66 600.0 2
Element-No 1.69 600.0 1
Logical-No 2.24 600.0 0

ILP-SPACES 0.00 4.6 12

where lbbest is the best lower bound obtained over all models (including the ILP-SPACES)
on that instance. The time limit is set to 600 s per instance.

For each instance of PRELIM dataset, none of the CP models is able to prove the
optimality of the found solution in the given time-limit. In Table 1, it can be observed
how the quality of the best found solution varies across the tested models. Based on the
lowest achieved gap, we choose the model Element-Free-SumLengths for the following
experiments, which we denote as CP-SPACES.

Since we are looking for the optimal solutions, we have also experimented with the set-
tings of FailureDirectedSearchEmphasis parameter for the CP-SPACES model.
We run one additional experiment with CP-SPACES model on PRELIM dataset, but with
FailureDirectedSearchEmphasis set to 16, i.e., 16 threads of the CP solver were

Constraints

dedicated to failure-directed search. However, we were not able to obtain better lower
bounds or upper bounds within the given time-limit, compared with the default setting of
the parameter. Hence, the default setting of FailureDirectedSearchEmphasis is
used for the rest of the experiments.

4.3 Results for MEDIUM and LARGE instances with different machine transition
graphs

Both the presented Tables 2 and 3 have the same structure: each row represents one instance
characterized by the number of jobs n and the number of intervals h. The objective value ub

Table 2 Comparison of upper bound ub, lower bound lb and runtime t between the models on MEDIUM
dataset

Instance ILP-REF [1] CP-SPACES ILP-SPACES

n h ub [-] lb [-] t [s] ub [-] lb [-] t [s] ub [-] lb [-] t [s]

MEDIUM + NOSBY

30 104 1426 1426 3.7 1435 496 TLR 1426 1426 1.3
30 127 1394 1394 4.9 1396 488 TLR 1394 1394 1.7
30 150 1394 1394 5.7 1396 484 TLR 1394 1394 2.4
30 173 1394 1394 7.0 1408 484 TLR 1394 1394 3.1
60 258 4290 4290 88.5 4339 1724 TLR 4290 4290 7.7
60 316 3994 3994 344.7 4048 1584 TLR 3994 3994 29.0
60 374 3836 3826 TLR 3925 1424 TLR 3836 3836 29.0
60 432 3956 3800 TLR 3986 1380 TLR 3833 3833 46.9
90 363 6044 5839 TLR 5963 2328 TLR 5920 5920 7.0
90 445 5778 5567 TLR 5769 2232 TLR 5686 5686 166.0
90 528 5916 4695 TLR 5670 2168 TLR 5431 5431 64.5
90 610 5901 4514 TLR 5590 1832 TLR 5373 5373 147.1

Average time [s]: 337.9 > 600 42.1

Average optimality gap [%]: 1.99 1.73 0.00

MEDIUM+TWOSBY

30 106 3815 3815 29.4 3815 1240 TLR 3815 3815 1.4
30 129 3804 3804 30.7 3815 1220 TLR 3804 3804 2.3
30 152 3804 3804 42.0 3815 1210 TLR 3804 3804 7.0
30 175 3804 3804 61.4 3815 1210 TLR 3804 3804 9.5
60 254 10863 10863 588.1 10863 4190 TLR 10863 10863 2.0
60 311 10289 10087 TLR 10401 3860 TLR 10248 10248 43.3
60 368 9917 9696 TLR 10104 3470 TLR 9917 9917 82.1
60 426 20346 9133 TLR 9954 3340 TLR 9874 9874 233.9
90 370 17179 14818 TLR 15401 5900 TLR 15379 15379 140.2
90 454 22808 12951 TLR 14973 5680 TLR 14923 14923 138.6
90 538 25992 11868 TLR 14729 5500 TLR 14548 14548 403.8
90 621 29558 11406 TLR 14900 4620 TLR 14392 14392 225.8

Average time [s]: 412.6 > 600 107.5

Average optimality gap [%]: 16.02 0.84 0.00

Time-limit is 600 s and TLR stands for time-limit reached

Constraints

of the best found feasible solution, lower bound lb and the running time t are reported for
each tested model. If the objective value or the lower bound is in bold font, the correspond-
ing value is known to be optimal. Therefore, if both objective and the lower bound are in
bold, the solver was able to prove the solution optimality within the time-limit. If the solver

Table 3 Comparison of upper bound ub, lower bound lb and runtime t between the models on LARGE
dataset

Instance ILP-REF [1] ILP-SPACES P-P

n h ub [-] lb [-] t [s] ub [-] lb [-] t [s] t [s]

LARGE+NOSBY

150 527 8582 8567 TLR 8582 8582 187 1.0

150 647 8726 8240 TLR 8409 8409 277 2.9

150 767 8557 7787 TLR 8132 8132 624 5.5

150 888 8976 6780 TLR 8078 8078 511 9.1

170 650 10596 9628 TLR 10068 10068 290 2.3

170 799 10794 8832 TLR 9820 9820 1087 4.6

170 948 10940 8343 TLR 9637 9637 806 9.3

170 1097 11189 8124 TLR 9620 9620 1345 13.4

190 757 12555 11206 TLR 12008 12008 246 3.9

190 930 12882 10521 TLR 11758 11758 942 6.9

190 1104 12791 9949 TLR 11611 11611 3147 13.3

190 1277 12757 0 TLR 11465 11465 1348 22.7

Average time [s]: > 3600 901 7.9

Average optimality gap [%]: 7.58 0.00

LARGE+TWOSBY

150 529 21910 21562 TLR 21910 21910 130 1.1

150 649 29425 20685 TLR 21821 21821 702 3.1

150 769 37764 18140 TLR 21353 21353 949 5.2

150 890 43929 16799 TLR 21266 21266 701 8.5

170 651 28425 24983 TLR 25807 25807 809 2.6

170 799 39095 21981 TLR 25518 25518 1244 5.0

170 948 46083 20709 TLR 25279 25279 2922 8.5

170 1096 53177 20091 TLR 25279 25279 2162 14.1

190 756 38471 27984 TLR 30563 30563 797 4.2

190 929 46319 26166 TLR 30224 30224 1069 7.5

190 1102 53751 24630 TLR 30224 30224 2069 13.6

190 1275 61547 0 TLR 30071 30071 2572 23.7

Average time [s]: >3600 1344 8.1

Average gap [%]: 34.39 0.00

Time-limit is 3600s and TLR stands for time-limit reached

Constraints

Fig. 5 Comparison between the running times of the pre-processing and ILP-SPACES model for MEDIUM
dataset

reached its given time-limit on an instance without proving the optimality of a solution, the
value in the corresponding cell in t column is TLR.

The last rows in each table show the average running time of each model and the average
optimality gap, defined by (26). The average time is computed over all instances; if the
solver timed-out on some instance, the specified time-limit is taken as the running time on
that instance.

Additionally, we report the pre-processing time P-P for the large instances. For the
medium-size instances, the comparison between the pre-processing time and the solving
time of ILP-SPACES is shown in Fig. 5. The pre-processing takes in average only 2.8% of
the the total solving time (pre-processing plus the solving of the ILP-SPACES model) for
NOSBY and 1.8% for TWOSBY. Overall medium-size instances, the average and maximum
pre-processing times were 0.69 s and 2.93 s, respectively.

4.3.1 Results for medium instances

The results of this experiment are shown in Table 2. In this table we can see that ILP-
SPACES solves all the instances within the time-limit (600 s). On the other hand, the model
ILP-REF proposed by Aghelinejad et al. [1] finds the optimal solution and proves the
optimality only for 11 instances out of 24 within the time-limit. Moreover, some of the non-
optimal solutions found by ILP-REF are far from the optimum, for example, the objective
of the solution found for n = 90, h = 621 on TWOSBY is more than twice the objective of
the optimal one found by ILP-SPACES.

Unfortunately, CP-SPACES is not able to prove the optimality of any instance within
the time-limit. However, the average optimality gaps (1.73% for NOSBY and 0.84% for
TWOSBY) reveals that it can find near-optimal solutions. The performance of both CP-
SPACES and ILP-SPACES is slightly influenced by a more complex transition graph,
whereas the performance of ILP-REF deteriorates significantly (average optimality gap
1.99% for NOSBY increased to 16.02% for TWOSBY).

4.3.2 Results for large instances

The results of this experiment are shown in Table 3. The results for CP-SPACES are not
included, since we were unable to obtain solutions to all the instances from the IBM CP
Optimizer. We observed that the solver used all the available RAM and started swapping,
which negatively affected the runtime. Thus, we excluded CP-SPACES from the comparison
on the LARGE dataset.

Constraints

Looking at the results of ILP-SPACES, we can see that it solved all 24 instances within
the time-limit (3600 s). On the other hand, ILP-REF was able to find the optimal solutions
for only two smallest instances. Comparing the average optimality gaps, ILP-REF achieved
7.58% on NOSBY transition graph and 34.39% on TWOSBY, whereas ILP-SPACES
achieved 0% optimality gap on both transition graphs.

5 Conclusions

Continuing on the recent research of the single-machine scheduling problem with the vari-
able energy costs and power-saving machine states, we propose a pre-processing algorithm
SPACES, which pre-computes the optimal switching behavior of the machine for all possi-
ble spaces in the schedule. The pre-processing runs in polynomial time and works well even
for large instances of the problem, e.g., it takes 23 s to pre-process our largest benchmark
instance with 190 jobs and 1277 intervals. The pre-computed switching costs are success-
fully integrated into novel ILP and CP models, which are compared to the state-of-the-art
exact ILP model on a set of benchmark instances. Results show that our approach outper-
forms the existing methods considering all aspects – the runtime, the provided lower bounds,
and the upper bounds. Using our models, we obtain the optimal solutions even for the large
instances with up to 190 jobs and 1277 intervals, which have been previously tackled only
heuristically [1].

Acknowledgements This work was funded by EU Structural funds and Ministry of Education, Youth
and Sport of the Czech Republic within the project Cluster 4.0 number CZ.02.1.01/0.0/0.0/16 026/0008432.
Moreover, we would like to thank the anonymous reviewers for their suggestions that improved the paper
and the solution methods.

Compliance with Ethical Standards

Conflict of interests The authors declare that they have no conflict of interest.

Appendix A : Evaluated CPmodels

In this appendix, we describe the variations of the CP-SPACES model, which were imple-
mented and evaluated in the preliminary experiment. The description is divided into three
parts, namely the modeling of the jobs, the modeling of the spaces, and the linking
constraints.

Modeling of the jobs:

All the models contain an interval variable zj with a fixed length of pj for each job
Jj ∈ J . This interval variable represents the time interval in which the corresponding job
is processed, i.e, the job starts at time StartOf(zj) and completes at time EndOf(zj). The
models for the jobs differ primarily in how the cost of scheduling the jobs is formulated in
the objective.

– OPTIONAL: For each job Jj ∈ J and interval Ii ∈ I , create an optional interval
variable zj,i having fixed length pj and fixed start meaning that the job Jj starts to be
processed at the beginning of interval Ii . By enforcing Alternative(zj , {zj,i : ∀I ∈ I})

Constraints

on every job Jj ∈ J , we constraint that only one such variable will be present
in the schedule. Then, every pair of job Jj ∈ J and interval Ii ∈ I adds term

PresenceOf(zj,i) · c
(job)
j,i into the objective.

– LOGICAL: Every pair of job Jj ∈ J and interval Ii ∈ I adds term

(StartOf(zj) = i − 1) · c
(job)
j,i into the objective, i.e., if Jj starts at the beginning of Ii ,

the contribution of Jj into objective is c
(job)
j,i .

– ELEMENT: Each Jj ∈ J adds term c
(job)
j,StartOf(zj)+1 into the objective. The indexing by

a variable can be done using Element expression.
– OVERLAP: Every pair of job Jj ∈ J and interval Ii ∈ I adds term

Overlap(zj , Ii) · ci · P [proc,proc] into the objective.
– STEPFN: For every unique processing time p ∈ {pj : Jj ∈ J }, create a step function

Fp representing the cost of starting a job with processing time pNoJob at the begin-
ning of an interval. Each job Jj ∈ J adds term Start(EvalStartOf(zj), Fpj

) into the
objective.

Modeling of the spaces:

Similarly as with the jobs, the modeling techniques for the spaces differ in how they
contribute into the objective.

– FIXED: For each pair of intervals Ii, Ii′ ∈ I such that i < i′, create an optional interval
variable xi,i′ having fixed start to i and having fixed end to i′ − 1. Each such pair of
intervals adds term PresenceOf(xi, i

′) · c∗[i, i′] into the objective.
– FREE: For each possible space length � ∈ {1, . . . , h}, we create K(�) = ⌊

h
�

⌋

optional interval variables x�k that are indexed by k ∈ {1, 2, . . . , K(�)} and have
fixed length �. Each pair of length � ∈ {1 . . . , h} and k ∈ {1, 2, . . . , K(�)} adds term
c∗[StartOf(),� k,EndOf()(x�, k) + 1] into the objective.

The difference between FIXED and FREE is that in FREE the start times of the
space variables are not fixed.

– NOVARS: In this case, the spaces are not modeled by variables at all. Instead, we create
a sequence variable π over all jobs variables zj . Each position � ∈ {1, . . . , n − 1} in
π adds term c∗(EndOf(π�),StartOf(π�+1) + 1) into the objective (for brevity of the
description, the cost of the switching from the first off and to the last off is omitted).

Linking constraints: The formulations of the jobs and spaces must be linked together
with a linking constraint ensuring that every time instant of the scheduling horizon is occu-
pied by either a job or a space interval variable. Moreover, we use NoOverlap on the jobs
and spaces variables so that they do not overlap each other. Note that since NOVARS does
not use variables for modeling the spaces, the linking constraint is not necessary in this case.

– SUM: Here we simply constraint that the sum of the lengths of all present jobs and
spaces variables equals to the length of the scheduling horizon.

– PULSE: For each job and space variable, we create a pulse function having height of
1. Then, all the pulse functions are summed together into a cumul expression, which is
forced to be 1 in every time instant of the scheduling horizon.

– STARTOFNEXT: We create a sequence variable π over all jobs and spaces variables.
Then we constraint that each variable on position π� ends at the start of variable π�+1.

Constraints

References

1. Aghelinejad, M., Ouazene, Y., Yalaoui, A. (2018). Production scheduling optimisation with machine
state and time-dependent energy costs. International Journal of Production Research, 56(16), 5558–
5575. https://doi.org/10.1080/00207543.2017.1414969.

2. Aghelinejad, M., Ouazene, Y., Yalaoui, A. (2019). Complexity analysis of energy-efficient single
machine scheduling problems. Operations Research Perspectives, 6, 100105. https://doi.org/10.1016/j.
orp.2019.100105.

3. Benedikt, O., Šu̇cha, P., Módos, I., Vlk, M., Hanzálek, Z. (2018). Energy-aware production scheduling
with power-saving modes. In van Hoeve, W.J. (Ed.) Integration of constraint programming, arti-
ficial intelligence, and operations research (pp. 72–81). Cham: Springer International Publishing,
https://doi.org/10.1007/978-3-319-93031-2 6.

4. Cohen, D., Jeavons, P., Jefferson, C., Petrie, K., Smith, B. (2006). Symmetry definitions for constraint
satisfaction problems. Constraints, 11, 115–137. https://doi.org/10.1007/s10601-006-8059-8.

5. Fang, K., Uhan, N.A., Zhao, F., Sutherland, J.W. (2016). Scheduling on a single machine under time-of-
use electricity tariffs. Annals of Operations Research, 238(1), 199–227. https://doi.org/10.1007/s10479-
015-2003-5.

6. Gahm, C., Denz, F., Dirr, M., Tuma, A. (2016). Energy-efficient scheduling in manufacturing compa-
nies: a review and research framework. European Journal of Operational Research, 248(3), 744–757.
https://doi.org/10.1016/j.ejor.2015.07.017.

7. Gao, K., Huang, Y., Sadollah, A., Wang, L. (2019). A review of energy-efficient scheduling in intelligent
production systems Complex & Intelligent Systems.

8. Gent, I.P., Petrie, K.E., Puget, J.F. (2006). Chapter 10 - symmetry in constraint programming. In Rossi,
F., van Beek, P., Walsh, T. (Eds.) Handbook of Constraint Programming, Foundations of Artificial
Intelligence, (Vol. 2 pp. 329–376): Elsevier, https://doi.org/10.1016/S1574-6526(06)80014-3.

9. Gong, X., Pessemier, T.D., Martens, L., Joseph, W. (2019). Energy- and labor-aware flexible job shop
scheduling under dynamic electricity pricing: a many-objective optimization investigation. Journal of
Cleaner Production, 209, 1078–1094. https://doi.org/10.1016/j.jclepro.2018.10.289.

10. Hadera, H., Harjunkoski, I., Sand, G., Grossmann, I.E., Engell, S. (2015). Optimization of steel produc-
tion scheduling with complex time-sensitive electricity cost. Computers & Chemical Engineering, 76,
117–136. https://doi.org/10.1016/j.compchemeng.2015.02.004.

11. Kadioglu, S., & Sellmann, M. (2010). Grammar constraints. Constraints, 15(1), 117–144. https://doi.org/
10.1007/s10601-009-9073-4.

12. Laborie, P., Rogerie, J., Shaw, P., Vilı́m, P. (2018). IBM ILOG CP Optimizer for scheduling. Constraints,
23(2), 210–250. https://doi.org/10.1007/s10601-018-9281-x.

13. Margot, F. (2010). Symmetry in integer linear programming. In Jünger, M., Liebling, T.M., Naddef, D.,
Nemhauser, G.L., Pulleyblank, W.R., Reinelt, G., Rinaldi, G., Wolsey, L.A. (Eds.) 50 Years of integer
programming 1958-2008: from the early years to the state-of-the-art (pp. 647–686). Berlin: Springer,
https://doi.org/10.1007/978-3-540-68279-0 17.

14. Merkert, L., Harjunkoski, I., Isaksson, A., Säynevirta, S., Saarela, A., Sand, G. (2015). Scheduling and
energy – industrial challenges and opportunities. Computers & Chemical Engineering, 72, 183–198.
https://doi.org/10.1016/j.compchemeng.2014.05.024.

15. Mouzon, G., Yildirim, M.B., Twomey, J. (2007). Operational methods for minimization of energy
consumption of manufacturing equipment. International Journal of Production Research, 45(18–19),
4247–4271. https://doi.org/10.1080/00207540701450013.

16. Pesant, G. (2004). A regular language membership constraint for finite sequences of variables. In Wal-
lace, M. (Ed.) Principles and practice of constraint programming – CP 2004 (pp. 482–495). Berlin:
Springer, https://doi.org/10.1007/978-3-540-30201-8 36.

17. Shrouf, F., Ordieres-Meré, J., Garcı́a-Sánchez, A., Ortega-Mier, M. (2014). Optimizing the produc-
tion scheduling of a single machine to minimize total energy consumption costs. Journal of Cleaner
Production, 67, 197–207. https://doi.org/10.1016/j.jclepro.2013.12.024.

18. Trick, M. (2001). A dynamic programming approach for consistency and propagation for knapsack
constraint. Annals of Operations Research, 118, 73–84. https://doi.org/10.1023/A:1021801522545.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1080/00207543.2017.1414969
https://doi.org/10.1016/j.orp.2019.100105
https://doi.org/10.1016/j.orp.2019.100105
https://doi.org/10.1007/978-3-319-93031-2_6
https://doi.org/10.1007/s10601-006-8059-8
https://doi.org/10.1007/s10479-015-2003-5
https://doi.org/10.1007/s10479-015-2003-5
https://doi.org/10.1016/j.ejor.2015.07.017
https://doi.org/10.1016/S1574-6526(06)80014-3
https://doi.org/10.1016/j.jclepro.2018.10.289
https://doi.org/10.1016/j.compchemeng.2015.02.004
https://doi.org/10.1007/s10601-009-9073-4
https://doi.org/10.1007/s10601-009-9073-4
https://doi.org/10.1007/s10601-018-9281-x
https://doi.org/10.1007/978-3-540-68279-0_17
https://doi.org/10.1016/j.compchemeng.2014.05.024
https://doi.org/10.1080/00207540701450013
https://doi.org/10.1007/978-3-540-30201-8_36
https://doi.org/10.1016/j.jclepro.2013.12.024
https://doi.org/10.1023/A:1021801522545

	Scheduling with energy costs and machine states
	Abstract
	Introduction
	Problem statement
	Solution approach
	Instance pre-processing: computation of the optimal switching
	Integer linear programming model ILP-SPACES
	Search space reduction

	Constraint programming models
	CP-SPACES model
	Variables
	Constraints
	Objective

	Interval-state graph as a global constraint

	Symmetry breaking constraints

	Experiments
	Instances
	Preliminary CP experiments: results for PRELIM
	Results for MEDIUM and LARGE instances with different machine transition graphs
	Results for medium instances
	Results for large instances

	Conclusions
	Appendix A A : Evaluated CP models
	Modeling of the jobs:
	Modeling of the spaces:
	References

