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Abstract
The U.S. Exclusive Economic Zone (EEZ) encompasses approximately 3.4 million square
nautical miles of ocean and a coastline of over 12,300 miles. Along with the Great Lakes, this
vast area generates ~US 370 billion of U.S. gross domestic product, 617 billion in sales and 2.6
million jobs each year. These ocean and coastal ecosystems also provide many important non-
market services including subsistence food provisioning, health benefits, shoreline protection,
climate regulation, conservation of marine biodiversity, and preservation of cultural heritage.
As climatic changes occur, these benefits or ecosystem services may be significantly reduced
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or in some cases enhanced. These services are also under an array of pressures including over-
exploitation of natural resources, pollution, and land use changes that occur simultaneously in
synergistic, multiplicative, or antagonistic ways. This results in direct and indirect impacts that
are often unpredictable across spatial and temporal scales. Here, we discuss a set of indicators
designed in close collaborationwith theU.S. National Climate Indicators System. Tracking the
impacts via indicators will be essential to ensure long-term health of the marine environment
and sustain the benefits to stakeholders who depend on marine ecosystem services.

Keywords Ocean indicators . Coastal indicators . Climate change indicators . Global change .

Ecosystem services . Human communities . Conceptual models

1 Introduction

Changes in the planet’s climate system already affect the structure and function of oceans,
coasts, and the communities that depend on them, and these effects are expected to increase
substantially with continued climate change (Griffis and Howard 2012; IPCC 2018; Barange et
al. 2018; IPCC 2019). Ocean and coastal ecosystems provide a range of important services to
billions of people world-wide, playing essential roles in sustainability under nearly all of the
United Nations Sustainable Development Goals (SDGs). The effects of climate-related chang-
es such as ocean warming, deoxygenation, acidification, coastal flooding, droughts, rising
seas, and extreme weather can be far reaching and unpredictable given the complex relation-
ships between physical, chemical, biological, and human variables within ocean and coastal
ecosystems (Doney et al. 2011; Allison and Bassett 2015). There is growing demand for
indicators of climate impacts on these ecosystems to help track changes, provide early
warnings, reduce impacts, and increase resilience of these valuable systems and the many
people, communities, and economies that depend on them. Since 2000, the USA has produced
periodic US National Climate Assessments (NCAs) that assess current and future impacts of
climate change on the USA. The third NCA process launched development (Kenney and
Janetos 2014, Kenney et al. 2016) of a core set of specific indicators (called the National
Climate Indicator System (NCIS)) to help establish baselines for understanding how environ-
mental conditions are changing in response to changing climate, assess risks and vulnerabil-
ities, and to help inform resiliency and planning for climate impacts (Melillo et al. 2014;
USGCRP Climate Indicators,1 Kenney et al. 2018). This article describes indicators of ocean
and coastal ecosystems that were identified in that process to help track climate-related
processes and impacts in these important areas.

The US exclusive economic zone (EEZ) encompasses approximately 3.4 million square
nautical miles of ocean and a coastline of over 12,300 miles. Along with the Great Lakes, this
vast area generates ~US$370 billion of US gross domestic product, $617 billion in sales, and 2.6
million jobs each year (NOAA 2019). These ocean and coastal ecosystems also provide many
important non-market services including subsistence food provisioning, health benefits, shoreline
protection, climate regulation, conservation of marine biodiversity, and preservation of cultural
heritage. Ocean systems also provide important climate mitigation and adaptation services (Mil-
lennium Ecosystem Assessment (MEA) 2005). For example, the oceans have absorbed 25% of
anthropogenic carbon emissions and 84% of the heat since the Industrial Revolution (Levitus et al.

1 The NCIS information is available at USGCRP (https://www.globalchange.gov/browse/indicators/catalog).
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2009; Doney et al. 2020), to the benefit of society though the detriment of the ocean. Coastal
vegetation (e.g., mangroves, salt marsh, and seagrass) sequesters and stores more carbon on a per-
area basis than terrestrial forests, though it can be released when habitats are degraded or destroyed
(Mcleod et al. 2010; Pendleton et al. 2012; Himes-Cornell et al. 2018). Healthy coasts also provide
climate adaptation benefits through coastal protection, fisheries productivity for food security, and
protecting communities against chronic sea level rise (MEA 2005). However, these services are
under multiple pressures including over-exploitation of natural resources, pollution, and land-use
changes, with changes in climate patterns and extremeweather adding another layer of complexity.
These pressures occur simultaneously in synergistic, multiplicative, or antagonistic ways and result
in direct and indirect impacts that are often unpredictable across spatial (e.g., ocean basins to local
habitats) and temporal (e.g., centuries to hours) scales (Barbier et al. 2011).

Indicators are frequently used as decision-support tools for monitoring or tracking large-
scale systemic changes (e.g., MEA 2005; Halpern et al. 2012; Atkins et al. 2015; Zador et al.
2017), particularly when the object of interest (e.g., ocean health) cannot be measured directly
or completely. Unfortunately, indicator systems for oceans and coasts are still nascent in many
regions, although significant progress has been made in recent years (for example, see Halpern
et al. 2019; NOAA National Marine Ecosystem Status 2020). This paper describes a system of
indicators designed to track changes in US ocean and coastal ecosystems that may be
correlated with climate change, as part of the larger NCIS. The goal of the NCIS is to
create a “system of physical, natural, and societal indicators that communicate and inform
decisions about key aspects of the physical climate, climate impacts, vulnerabilities, and
preparedness” (Kenney et al. 2016). Its primary purpose is to support the sustained US
NCA process (Buizer et al. 2013) by providing long-term, regularly updated information
about key impacts in US systems and sectors, including oceans and coasts, that are required
by the 1990 Global Change Research Act and are of broad concern to the US public (see
Kenney et al. 2018).

The system described here is not the first suite of indicators for ocean and coastal
conditions. Others include the MEA (2005), Ocean Health Index (Halpern et al. 2012),
Intergovernmental Panel on Climate Change Ocean Systems chapter in the Fifth Assessment
Report (Pörtner et al. 2014), US Environmental Protection Agency (EPA) Climate Indicators
( 2014), Marine Living Planet Index (WWF 2015), and United Nations World Ocean
Assessment (WOA 2016). In the USA, indicators of ocean ecosystem condition have been
developed for most marine ecosystems to help inform fisheries management and other sectors
(Slater et al. 2017). These are some of the much needed efforts to help track and assess the
conditions of ocean and coastal ecosystems. While they are useful in assessing changes in
ocean and coastal systems related to climate change and other stressors (Halpern et al. 2017,
2019), they were not specifically designed to track the impacts of climate on ocean and coastal
ecosystem services including regulatory, supporting, provisioning, and cultural services, as this
effort does.

The overall process and decision criteria for the NCIS framework, and the associated
guidance on scientific integrity and utility, were provided by the Indicator Working Group
established for the third NCA Advisory Committee (Kenney and Janetos 2014). Multiple
indicator technical teams were established, based on an ecosystem, region, or crossover topic.2

Each team was asked to develop a conceptual model, make recommendations for indicators

2 See list of teams at: http://www.globalchange.gov/engage/process-products/NCA3/technical-inputs.
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that could be implemented immediately, and identify research priorities for future indicator
development (Kenney and Janetos 2014). Here, we define a conceptual model for indicator
selection and recommend specific indicators of ocean and coastal ecosystem function that
support the NCIS vision.

The ocean and coastal indicators described here are not meant to be directly causative.
Rather, they are based on a new conceptual model of intrinsic connections between climate
processes, physical attributes of the ocean itself, living organisms that inhabit the ocean, and
people that depend on the ocean and coasts. The model describes, based on existing informa-
tion and hypotheses, how these indicators interactively support individuals and communities in
meeting their social, economic, subsistence, and cultural needs (Fig. 1). Throughout the
development process, the Oceans and Coasts Team (Team) emphasized identification of
potential indicators with robust science-based connections to anthropogenic climate change
and pre-existing time-series monitoring data. The goal was to identify a system that is flexible
and scalable such that individuals, communities, and the Nation can follow the indicators to
track ecological and societal changes. The indicator system described here can also be used to
recognize opportunities to mitigate against some long-term changes and adapt to others, thus
reducing impacts and increasing resilience.

2 Development of a conceptual model for oceans and coasts

Ecosystem services are defined very broadly as “the benefits people obtain from ecosystems”
(MEA 2005). The conceptual model above (Fig. 1) illustrates the many regulatory services
(e.g., climate regulation), supporting services (e.g., primary productivity, habitat), provisioning
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services (e.g., extractive activities such as food fish or energy sources), and cultural services
(e.g., native peoples’ rituals, multi-generational fishing traditions, and nature tourism) provided
by oceans and coasts, as well as highlights economic and cultural livelihoods through ocean-
related jobs and activities.

Tracking shifts in ecosystem services related to climate change and the impact of specific
interventions is difficult. The benefits and services provided to humans by ocean and coastal
ecosystems, human impacts that drive changes to those services, and the measures put in place
to maintain benefits and services not only create positive and negative feedback loops, but they
also operate in tandem with outside stressors (Fig. 1). For example, human activities resulting
in greenhouse gas (GHG) emissions influence the global climate system and exert substantial
pressures on the ocean and coastal environment, including a rise in ocean temperatures. As a
result, warming oceans may drive poleward shifts in the geographic range of marine fish in
search of preferred temperatures (Spencer 2008; Doney et al. 2011; Hare et al. 2016).
Consequently, commercial, recreational, and subsistence fishermen who rely on species
undergoing range shifts may (1) make spatial adjustments to the areas where they harvest,
(2) invest more time and resources traveling farther to conduct fishing activities (using more
petroleum products and contributing to increased emissions), (3) switch to a new species
(possibly requiring new equipment), or (4) change professions (which goes against strong
cultural ties to fishing as not just an occupation, but a way of life) (Link et al. 2015). Thus,
climate change may require updating fishery management practices as well as initiating
activities designed to mitigate and/or adapt to climate stressors (Howard et al. 2013; Pinsky
and Mantua 2014; Selden and Pinsky 2019).

The goal of the NCIS is to identify key points along the ecosystem services pathway that
may be impacted by climate change and can provide an early warning of changes to come and,
critically, how those changes might reverberate through the other system components (Kenney
et al. 2016). Therefore, based on this conceptual model, the Team attempted to identify
representative indicators that not only showed changes to specific services and benefits but
also the linkages between regulating, supporting, provisioning, and cultural services. We
looked for those indicators that could be accurately measured and could function as the
“canary in the coal mine” for larger-scale climatic shifts and anticipated changes to ocean
ecosystem services.

3 Moving from a conceptual model to indicators

The process and decision criteria for the NCIS, as well as the scientific integrity and utility
aspects, were provided by the Indicator Working Group established for the third NCA
(Kenney and Janetos 2014). In addition, the Oceans and Coasts Technical Team, composed
of academic and government experts, developed 5 core criteria (below) for determining which
indicators to advance based on their alignment with the conceptual model and utility for
tracking specific services (Kenney et al. 2016):

1. Is the indicator representative of specific climate variable changes and their direct and
indirect impacts on the ocean and coastal system?

2. Are the links between the indicator and climate change strongly supported in the peer-
reviewed scientific literature? Generally, this evaluation was straightforward for the
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regulating services and increased in complexity for supporting services, followed by
provisioning and cultural services.

3. Is the indicator scalable (both spatially and temporally)? To generate a list of useful
indicators for the NCIS, it was important to consider sub-national, national, and global
scales as well as temporal scales ranging from climatic (centuries), to biotic (decades), and
to time frames for resource decision-making (1–2 years).

4. Does the proposed indicator system build on or augment existing indicator efforts? We
attempted to determine the stability and longevity of each indicator dataset as well as
institutional commitment to continue monitoring efforts into the foreseeable future.

5. Will the indicator system communicate climate impacts well to a variety of audiences, and
allow easy access to the data behind the indicator? For instance, are there web tools that
allow the public to view the data in graphic form? Is the link between each indicator and
climate change easy to understand or explain?

4 Recommended indicators of climate-related changes to the ocean
and coast

Based on assessment of existing literature, 21 indicators were identified that met the defined
criteria, could provide valuable information for tracking large-scale changes to the marine
environment, and addressed at least one of the ecosystem service categories within the
conceptual model (see Online Resource 1 for basic information on the full set of 21
indicators). These indicators also had potential to provide context for important decisions
related to natural resource management, coastal development, tourism and recreation, and
human activities within indigenous and other coastal resource-dependent communities. Of the
21 identified indicators, nine (see Table 1) were classified by the Team as operational and
ready for inclusion in the pilot NCIS in 2014. The remaining 12 indicators required additional
research and/or assessment before they could be considered operational. Some of these
indicators have since been updated, expanded, strengthened, and fortified with additional
supporting material, such that they are now operational. Of the nine indicators recommended
by the Team, four were selected for inclusion in the pilot NCIS: sea surface temperature (SST),
arctic sea ice extent, ocean chlorophyll concentration, and sea level rise. For more information
on these 4 indicators, please refer to Online Resource 1 and the NCIS website.3 Here, we will
focus on the remaining five indicators that were recommended by the Team for the pilot NCIS.
These indicators were not adopted at that time because (1) they were operational but not in a
final form ready for inclusion in the pilot or (2) they needed further development and did not
then meet the full set of criteria, as described in Kenney et al. (2018).

4.1 Indicators of regulatory services

Oceans and coasts provide regulatory services through their interactions with other earth
systems (e.g., freshwater systems, terrestrial systems, climate systems); see Fig. 1. For
example, oceans and coasts help to regulate global temperatures and circulation patterns,
carbon capture and burial, storm severity, and heat absorption. Indicators of these services
were relatively well developed and available compared to other areas. Four of the nine

3 http://www.globalchange.gov/explore/indicators
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indicators recommended for inclusion in the pilot NCIS track regulatory services (sea surface
temperature, arctic sea ice extent, sea level rise, and aragonite saturation state). Of these, only
one (aragonite saturation state) was not included in the pilot NCIS based on the lack of a
consistent and more comprehensive monitoring system for tracking changes over time. It is
described below.

& Aragonite saturation state provides a measure of ocean acidification (OA), the CO2

absorption service provided by the oceans (Sabine et al. 2004; Astor et al. 2014). In the
open ocean, long-term declines in aragonite saturation state are directly caused by increases
in atmospheric CO2 (Doney et al. 2020). Parameters that determine aragonite saturation
values relate to the kinetics of aragonitic calcium carbonate accretion or dissolution;
dissolution of aragonite structures exposed to seawater is favored when saturation state
values dip below 1. This geological threshold is useful for understanding the implications of
changes in ocean carbonate chemistry for living and nonliving calcium carbonate struc-
tures, and can also be applied to aragonite saturation state thresholds above 1 for species
and/or species groups for which research has defined their sensitivity to changes in
carbonate chemistry (e.g., Waldbusser et al. 2015; Bednaršek et al. 2019). Information on
species sensitivity to OA conditions documented through laboratory experiments, modeling
exercises, and limited field observations indicates that exposure to acidified conditions can
increase coral bioerosion, change phytoplankton community composition, reduce recruit-
ment of calcifying organisms, alter development and neurobiology of some fish species,
and reorganize ecosystems (Kroeker et al. 2013; Busch andMcElhany 2016; Marshall et al.
2017; Doo et al. 2020). These impacts will cascade into the tourism industry (reef diving),
commercial fishery production (both bivalves and crustaceans), and subsistence use of reef
fish, bivalves, and crustaceans (Doney et al. 2020). Communities where commercial or
subsistence fishing depends largely on bivalves or crustaceans will be most heavily
impacted (Mathis et al. 2015; Ekstrom et al. 2015). But even smaller levels of dependence
on bivalves or crustaceans may be critical to overall economic viability for some fishing
communities (Colburn et al. 2016, Hodgson et al. 2018).

4.2 Indicators of supporting services

Oceans and coasts provide supporting services, such as maintenance of biodiversity
(at the levels of genes, species, and habitats), ocean and coastal productivity, food
web dynamics, and the foundation for healthy conditions in ocean habitats. Three of
the nine indicators recommended for inclusion in the NCIS track these supporting
services (fish distribution, coral thermal stress, and ocean chlorophyll concentration).
Of these, only one (ocean chlorophyll concentration) was included in the pilot NCIS.
Here, we describe the two supporting services indicators that were not included in the
pilot NCIS but were considered sufficiently operational to be included in subsequent
phases of the NCIS.

& Fish distribution tracks changes in the spatial distribution of major US commercial
fish stocks over time (Overholtz et al. 2011; Morrison et al. 2015; Hare et al.
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2016; OceanAdapt4). Using survey data, shifts can be measured as directional
changes in range centroids, which have been found to be strongly related to
changes in ocean temperature (sensu Pinsky et al. 2013; Thorson et al. 2017).
Additionally, life history attributes have been used to classify the potential for fish
distributions to shift due to changes in climate (Hare et al. 2016). As fish stock
distributions change, the composition of ocean ecosystem communities also chang-
es, thereby affecting predator/prey dynamics and competitive interactions. Impacts
on ecosystem communities at local scales will differ, as a range shift can represent
a species’ disappearance at one end of its range and introduction at the other end.
In addition, spatial distances between the new stock range and the fishing com-
munities who target those species may change, affecting the costs of fishing,
social networks, and subculture cohesion (Griffis and Howard 2012). Further,
many fisheries management efforts include spatial allocations; thus, indicators of
fish distribution are of great importance to fishery managers and those who
depend on living marine resources for their livelihoods (re. Pinsky and Mantua
2014; Pinsky et al. 2018). This indicator was considered operational and added to
the NCIS (renamed USGCRP Indicators Catalog5) in 2020.

& Coral thermal stress describes the occurrence, duration, and magnitude of high SST events
that can result in coral bleaching (Hoegh-Guldberg 2011; Heron et al. 2015; NOAA Coral
Reef Watch6). Severe bleaching events can cause impairment or death of organisms and
collapse of a charismatic, ecologically, and socioeconomically important ecosystem. Once
bleaching is underway, even if heat stress lessens, it can take decades for severely bleached
reefs to fully recover, if at all (Robinson et al. 2019). Coral reefs are areas of high
biodiversity; they provide significant economic benefits through tourism and recreational
and commercial fishing, protect coastlines from storm surges, and are focal points for
subsistence fishing. Due to corals’ sensitivity to climate change-related temperature
increases and ocean acidification (Hoegh-Guldberg et al. 2007; Gattuso et al. 2015,
2018), tracking this indicator may also provide advance warning of climate-related impacts
to come (Lough et al. 2018; Robinson et al. 2019). This indicator is considered operational
and slated for addition to subsequent iterations of the NCIS.

4.3 Indicators of provisioning and cultural services and related livelihoods

Oceans and coasts provide both provisioning and cultural services. They provide food, such as
fish, shellfish, and crustaceans that are also an important feature of ocean-dependent econo-
mies. And they provide cultural services in the specific cultural traditions of societies with long
fishing traditions, their sense of place, as well as the livelihoods derived from fishing. Fishing,
whether commercial or recreational and ocean ecotourism (such as whale watching or visiting
beaches) all provide important cultural services. Climate change that impacts fisheries and
shorelines will impact provisioning services, cultural services, and related livelihoods. Society
can both amplify and mitigate impacts of climate change on oceans and coasts. Two of the

4 https://toolkit.climate.gov/tool/oceanadapt#
5 https://www.globalchange.gov/browse/indicators/catalog
6 https://toolkit.climate.gov/tool/noaa-coral-reef-watch%E2%80%94satellite-monitoring-decision-support-
system
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nine indicators recommended for inclusion in the pilot NCIS track provisioning and cultural
services (community climate vulnerability, community social well-being), but not included.
They are described below.

Indicators of cultural services are generally not as well developed as indicators for the other
ecosystem services (Hernández-Morcillo et al. 2013) or require nationwide surveys (e.g.,
Bryce et al. 2016). Here we describe indicators that assess the climate vulnerability and social
well-being of coastal communities, especially in relation to fishing. These two indicators are
based on community-level data, as it is at the local level that most people directly engage on
climate issues (Howard et al. 2013). The social well-being indicators were not initially
included in the NCIS because they were not yet available nationally (though they were
available for the east coast and in development nationally) and because they did not have a
direct link to climate—though more socially vulnerable communities may be less resilient to
climate-related (and other) impacts. And the linked climate indicators described below were
not yet developed at the time of the first recommendations. Now, however, both the social
well-being indicators and two of the climate indicators are available nationally and so ready for
inclusion. Additional climate indicators are now available for the east coast, but not yet
available nationally. We mention them here, but reserve recommending them until they are
developed for the entire USA.

The indicators are complex and composed of multiple indices, based primarily on data from
the US Census Bureau and the National Marine Fisheries Service (NMFS). Some are
specifically climate-related (Himes-Cornell and Kasperski 2015; Colburn et al. 2016). Others
track the social well-being of communities as measured by social vulnerability, gentrification
pressure vulnerability, and fishing dependence (Jepson and Colburn 2013, as adapted from
Cutter et al. 2008, Jacob et al. 2010, 2012). In general, higher levels of any index may mean
lower ability to cope with climate or other impacts. Catch composition diversity is the
exception, with lower diversity connoting increased vulnerability. When multiple vulnerabil-
ities combine, communities may be less able to respond to and recover from impacts (Pinsky
and Mantua 2014; Thomas et al. 2019). When indicators show increasing vulnerability over
time, this is a signal for further investigation.

& Community climate vulnerability includes three sets of indicators. The first set is available
nationally (except for Alaska), the second is currently available for subsets of states
(though under development elsewhere), and the third is Alaska specific. The nationally
applicable indicator is sea level rise (SLR) risk for US coastal county communities (except
for Alaska), which can manifest as salt-water intrusion into water supplies, loss of habitat,
and loss or relocation of homes, fishing infrastructure, or fishing-related businesses The set
currently available for some states only includes sea level rise risk and affected seafood
businesses (available Maine through Texas) which specifically maps loss of fisheries
infrastructure and two indicators available for Maine through North Carolina. These two
are percent climate vulnerable species, which tracks the degree of economic risk to
communities based on the climate vulnerability of fish species landed, and catch compo-
sition diversity, which tracks changes in the diversity of species landed in a community—
and thus ability to easily switch species if one or more is highly climate vulnerable or
moves beyond the range of the local fleet (Colburn et al. 2016). The Alaska-specific
indicators are sea ice coverage, erosion risk, permafrost coverage, and proximity to
transition zones (Himes-Cornell and Kasperski 2015). Together these create an initial set
of indices that can predict the vulnerability of US communities to various components of
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climate change. These indicators are designed to be used in conjunction with the commu-
nity social vulnerability indicators to assess the vulnerability of communities more
broadly.

& Community social well-being indicators assess and track social factors that affect a
community’s ability to cope with climate or other types of change. Each of these indicators
is composed of a set of indices (see Table 1) which are themselves created from NMFS
landings data, NMFS recreational fishing effort data, and/or publicly available US Census
data. See Jepson and Colburn (2013) for details on construction of the social well-being
indicators. There are three sets of indicators: social vulnerability, gentrification pressure
vulnerability, and fishing dependence. Social vulnerability indicators characterize pre-
existing conditions that reflect states of susceptibility to harm, including differential access
to resources. For example, a community with high social vulnerability (e.g., high poverty
and/or a high cost of housing) could experience a decrease in affordable housing as sea
level rises. Gentrification pressure vulnerability indicators identify conditions that can
affect the viability of commercial and recreational working waterfronts. A community with
high gentrification pressure vulnerability (e.g., high number of retirees and/or second
homes along the waterfront) could experience lower resilience to sea-level rise and other
aspects of climate change. Fishing dependence indicators identify the scale of commercial
and/or recreational fishing in coastal communities. These indicators measure the impor-
tance of fishing in a community relative to all communities in the sample, as well as the
importance of fishing within each community. Communities with high dependence on
fishing and high social and/or high gentrification pressure vulnerability may be less
resilient to the effects of climate change. For example, a community with social well-
being vulnerabilities that is traditionally dependent on climate-vulnerable species may be
more affected by fishery species range shifts due to climate change (e.g., increasing sea
surface temperature, ocean acidification).

The community social well-being indicators identify vulnerable populations that may
be less able to withstand and recover from climate change and socioeconomic
impacts. These indicators are important because coastal communities and associated
coastal and ocean waters hold a vital sense of place (Clay and Olson 2007; Urquhart
and Acott 2014; Khakzad and Griffith 2016) and are linked to cultural identity (Clay
and Olson 2008; Poe et al. 2014; Donkersloot 2010; Donkersloot et al. 2020;
Satterfield et al. 2017) for many long-term residents, and provide food, employment,
minerals, shipping, recreation, and cultural and spiritual fulfillment to residents and
non-residents alike.

5 Research priorities and next steps

The conceptual framework and indicators highlighted here provide some initial build-
ing blocks for a system to track and assess impacts of climate change on US ocean
and coastal ecosystems. However, much needs to be done to develop a fully opera-
tional system and make it useful (and used) in risk assessment and decision-making.
Based on the work of this Team and other efforts (e.g., Selig et al. 2015; DePiper
et al. 2017; Halpern et al. 2017), building the needed indicator system will require
investments in three key areas: (1) continued monitoring, (2) additional research to
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improve existing indicators (especially for social and habitat categories, and for data
overall at national to regional scales), and (3) research to develop additional indicators
to adequately track and communicate climate impacts, risks, vulnerabilities, and
preparedness in ocean and coastal systems.

Continue monitoring To be useful, indicators require consistent funding over the long-term
for monitoring and assessment. The ability to track trends over time and space is critical to our
understanding of rates and directions of change.

Improve existing indicators A useful indicator system for assessing climate change im-
pacts on oceans and coasts will require a number of key steps, including reducing lags
between data collection and indicator delivery, improving spatial and temporal represen-
tation of indicators, reducing the costs of indicator production (e.g., new analyses or
sampling methods), identifying directionality and thresholds, ensuring the indicators have
measurable targets (Samhouri et al. 2012), and ensuring that decision-makers have the tools
and ability to use the information. For example, the current species distribution indicator
tracks shifts in species distributions within fishery survey or governance areas. However,
decision-makers also need information on species that are shifting across these boundaries,
so incorporating this information into the indicator would increase its utility for manage-
ment decisions.

Develop new indicators For some desired indicators, data may be available from multiple
sources, necessitating research on analytical methods that enable links between climate
changes and their impacts, or to improve consistency over space and continuity over time.
For others, basic data may not exist at the appropriate spatial or temporal resolution and
frequency. For example, recent research has resulted in new ways to characterize and track
marine heat waves which could be a useful additional indicator of climate change impacts on
ocean ecosystems (Holbrook et al. 2019, 2020; Jacox et al. 2020). Additional research on
thresholds or tipping points is also critical to help decision-makers incorporate indicator
information into risk assessments and management strategies. Research may be needed to
develop efficient and accurate methods for data collection or derivation or synthesis. We
recommend continued support for data collection for current indicators, coupled with priority
research funding directed toward developing new indicators. Further, it is key to have
indicators with strongly supported data streams that are designed to be integrated into existing
and planned future management efforts.

The following are some of the prime candidates for new indicators the Team identified
based on their linkages to climate-impacts in ocean and coastal systems. They were
considered previously, but not included in our list of 21 due to the lack of nation-wide
information, and/or monitoring. With additional research, these could be developed into
robust indicators.

Subsistence fisheries Subsistence fisheries provide food security and cultural value to
coastal communities, and generate revenue for local economies via purchases to
support fishing activities and for government agencies via permit fees. Climate change
has the potential to alter the abundance and distribution of living marine resources
harvested in subsistence fisheries. Currently, data on subsistence fishing are lacking
from nearly every region.
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Coral reef-related tourism and recreation Healthy coral reef ecosystems support econom-
ically and culturally valuable tourism industries. Climate change and ocean acidification will
likely reduce the distribution and species diversity of most coral reef ecosystems. Data on
social and economic indicators related to coral reef health are needed, as are methods to link
social and economic indicators related to tourism and recreation to climate change impacts on
coral reefs.

Incidence of Vibrio outbreaks in coastal ecosystems Vibrio is a genus of bacteria that
includes species that cause severe illnesses in humans when infected through ingestion
(e.g., shellfish consumption) or direct contact. Because Vibrio abundance is strongly
linked to coastal water temperatures and salinity, a Vibrio indicator would have
implications for the Clean Water Act’s “fishable, swimmable” mandate and the value
of ecosystem services provided by coastal ecosystems. Research and monitoring
efforts are needed to directly measure or calculate Vibrio abundance in US coastal
waters.

Harmful algal blooms Harmful algal blooms (HAB) are becoming more prevalent in coastal
areas in their extent and distribution. These blooms are directly influenced by environmental
conditions and have implications for human and wildlife health. The variety of HAB species
with different environmental characteristics and health impacts mean that multiple strategies
for developing indicators are needed. There are a few methods that have been developed, but
they have not been comprehensively tested. A program is needed to evaluate and establish
robust, reliable, and systematic methods for monitoring changes in the frequency and spatial
extent of HABs, and to design an indicator from these data. After determining the appropriate
focus, the program would need to collect data from the many state and academic monitoring
programs, develop improved sensors for HAB cell and toxin detection, and fill in gaps in
existing monitoring programs by including HAB monitoring in the Integrated Ocean Observ-
ing System.

Marine mammal morbidity and mortality Recent rise in reports of diseases in marine
organisms has raised concerns among scientists, politicians, managers, and the public that
ocean health is deteriorating. Since many marine mammal species share the coastal environ-
ment with humans, consume the same food, and morbidity and mortality events usually
command considerable public attention, marine mammals can serve as effective sentinels for
ecosystem change and emerging diseases. Data from existing networks, such as the NOAA
National Marine Mammal Stranding Network, can be integrated with other ocean observing
systems to understand the impacts of climate disruption on ocean health, reduce public health
risks, and ensure sustainable development of coastal and ocean resources.

Shorebird phenology and abundance Many shorebird species use and migrate through a
variety of habitats that are likely to be impacted by climate change, from coastal shores and
wetlands to arctic tundra. Because these species are dependent on so many different types of
habitat, their abundance and phenology are good integrators of global change.

Bottom temperature and/or mixed layer depth Tracking the temperature of the ocean’s
bottom is necessary for understanding the ocean’s heat storage, which in turn is important data
for parameterizing and testing climate change models. Collecting these data also will elucidate
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the depth of the ocean’s mixed layer, which influences biological communities and the
absorption of carbon dioxide and, thus, ocean acidification. Observing programs need to be
expanded to include regular measures of bottom temperature.

6 Conclusions

Developing and tracking indicators of climate change impacts in ocean and coastal ecosystems
across the range of ecosystem services are needed to better understand, prepare for, and
respond to these changes (see, for example, Link (2005), Levin et al. (2016), Gaichas et al.
(2018), Karp et al. 2019, Magel et al. (2020), Doney et al. (2020)). This is an important need in
the USA and internationally (e.g., per the U.N. SDGs, the Aitchi Targets7 and the Paris
Agreement8), given the global interconnectivity of the oceans. This advanced understanding
can help decision-makers at international to local levels assess risks and options to reduce
impacts and foster adaptation. For indicator systems such as those proposed for the NCIS to
succeed, there must be increased commitment to long-term collection, synthesis, and delivery
of physical, chemical, biological, social, economic that is the foundation of indicator systems.
Long-term monitoring efforts are critical to tracking impacts, providing early warning of
impending changes, and making effective decisions in a changing world.

In the USA and worldwide, there is high and growing demand for information on past,
current, and expected future impacts of climate change on human life, food security, liveli-
hoods, and communities. Information on climate impacts in ocean and coastal ecosystems lags
many other areas despite the significant ecosystem services provided by these systems. To help
advance the NCIS, this paper identifies a conceptual framework and initial suite of indicators
that could be used to track impacts of climate change in US ocean and coastal ecosystems,
from the physical to the biological to the social and economic. Already, some of the indicators
described here are being used to inform fisheries management. For example, the Mid-Atlantic
Fishery Management Council (MAFMC) is using some of the biological and social indicators
as part of a stakeholder-driven risk assessment to help guide fishery management strategies for
current and future conditions (Gaichas et al. 2018). And NMFS scientists are beginning to
incorporate some of the biological indicators into the stock assessment advice they provide to
Fishery Management Councils (e.g., Karp et al. 2019).

The fact that only a small set of indicators were considered to be at an operational level and
ready for inclusion in the pilot NCIS is indicative of the clear need for much more work to be
done to develop the full suite of indicators needed to track climate impacts on ecosystem
services in these systems. Advances in ocean and coastal indicator systems such as the Ocean
Health Index (Halpern et al. 2019) present useful opportunities to help build the NCIS ocean
and coastal indicator system. We also recognize the pressing need to improve the synthesis,
delivery, and integration of indicator information into decision-making at local to national (and
international) scales, beyond simple monitoring and generation of time-series datasets (e.g.,
Link et al. 2015; Busch et al. 2016). Finally, we recommend continued support for tracking
existing indicators and increased funding for developing the new indicators needed to effec-
tively track and respond to climate change impacts on US ocean and coastal systems and the
many people, businesses, communities, and economies that depend on them.

7 https://www.cbd.int/sp/targets/
8 https://unfccc.int/process-and-meetings/the-paris-agreement/what-is-the-paris-agreement
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