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Abstract
Purpose of review This review focuses on the foundational evidence from the last two decades of lipid genetics research and
describes the current status of data-driven approaches for transethnic GWAS, fine-mapping, transcriptome informed fine-map-
ping, and disease prediction.
Recent findings Current lipid genetics research aims to understand the association mechanisms and clinical relevance of lipid loci
as well as to capture population specific associations found in global ancestries. Recent genome-wide trans-ethnic association
meta-analyses have identified 118 novel lipid loci reaching genome-wide significance. Gene-based burden tests of whole exome
sequencing data have identified three genes—PCSK9, LDLR, and APOB—with significant rare variant burden associated with
familial dyslipidemia. Transcriptome-wide association studies discovered five previously unreported lipid-associated loci.
Additionally, the predictive power of genome-wide genetic risk scores amalgamating the polygenic determinants of lipid levels
can potentially be used to increase the accuracy of coronary artery disease prediction.
Conclusions Lipids are one of the most successful group of traits in the era of genome-wide genetic discovery for identification of
novel loci and plausible drug targets. However, a substantial fraction of lipid trait heritability remains unexplained. Further
analysis of diverse ancestries and state of the art methods for association locus refinement could potentially reveal some of this
missing heritability and increase the clinical application of the genomic association results.
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Introduction

Genome-wide association scans (GWAS) and meta-analyses
combining information from multiple GWAS datasets have
successfully identified common DNA sequence variants (sin-
gle nucleotide polymorphisms, SNPs) associated with dis-
eases, quantitative traits, and complex phenotypes [1–5].
The number of participants represented in meta-analyses have

increased at an exponential rate since their introduction [6],
with recent datasets in atrial fibrillation including >1,000,000
participants [7], although the largest meta-analysis in lipids is
among 300,000 multiethnic participants [8] and the largest
single cohort study exceeds 390,000 participants [9]. Meta-
analyses have expanded our knowledge of specific genes and
pathways influencing lipid levels due to the highly polygenic
heritability pattern of lipid levels shown by hundreds of asso-
ciated loci to date [10]. While most of the variation in lipid
levels within the general population is due to polygenic vari-
ation, single protein-altering variants in known lipid genes can
confer extreme lipid levels, generally referred to as
dyslipidemias when observed in patients [11].

Technological advances in DNA sequencing have made
the interrogation of protein-coding regions of the genome
(the exome) more broadly utilized. Exome sequencing has
been useful at identifying Mendelian forms of disease [12,
13], although its utility is limited with complex human phe-
notypes, including lipids, due to the expected low frequency
of high impact mutations in the general population and higher
costs with concomitant lower sample sizes in sequencing
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studies relative to other technologies. Several previous re-
views of lipid genomics have been published, including in
2015 [14] and 2018 [15] which highlight lipid gene identifi-
cation using GWAS, exome sequencing approaches, and em-
phasizing a data-driven approach to therapeutic drug target
development. This review focuses on the foundational evi-
dence from the last two decades of lipid genetics, while also
illustrating the current status of recent computational ap-
proaches for transethnic GWAS, fine-mapping, transcriptome
informed fine-mapping, and disease prediction (Fig. 1). Novel
genetic insights derived from these methods may provide new
plausible candidate genes for drug development, empower
disease prediction for earlier identification of high-risk indi-
viduals, inform clinical practice for preventative health care,
and suggest directions for future research of population level
lipid variation in diverse populations.

Single variant association discovery

GWAS meta-analyses in large sample sizes capture common
variants with small to moderate genetic effects due to en-
hanced statistical power [16]. In 2010, the Global Lipids
Genetics Consortium (GLGC) [2] meta-analyzed 46 lipid
GWASs compiling over 100,000 participants of European
ancestry. Findings revealed 59 previously unreported
genome-wide significant loci across four lipid traits of total
cholesterol (TC), low-density lipoprotein cholesterol (LDL-
C), high density lipoprotein cholesterol (HDL-C), and triglyc-
erides (TG). A follow-up association test of the meta-analysis
lead SNPs in Europeans with coronary artery disease (CAD, n
= 24,607) and without CAD (n = 66,197) identified four loci
(IRS1, C6orf106, KLF14, and NAT2) significantly associated
with CAD and decreased HDL-C and increased TG levels,

indicating potential targets for preventative therapies.
Quantitatively combining multiple GWAS cohorts can uncov-
er associated signals not detected by single cohort GWASs,
including variants with potential causal effects and candidate
loci for disease preventative drugs and therapies.

GWAS meta-analyses within cohorts of the same ances-
try have proven to be beneficial in the discovery of common
mutations with modest contributions to trait heritability.
However, GWAS restricted to single or closely related
ancestries only identifies a subset of causative variants.
GWAS meta-analyses that target a single ancestry often fail
to capture low frequency variants specific to other ancestry
groups, which may have significant contributions to com-
plex trait heritability [17], or may point to new therapeutic
targets. A recent trans-ethnic analysis of blood lipids and
associated traits was conducted on participants across three
distinct ancestries: non-Hispanic whites, (n ~ 216,000),
non-Hispanic blacks (n ~ 57,000), and Hispanics
(n ~ 24,000) from the Million Veterans Project (MVP) [8,
18]. GWAS was conducted within each ancestry cohort and
then combined through an inverse variance-weighted fixed
effects meta-analysis. The inverse variance-weighted fixed
effect approach assumes all studies in the meta-analysis
share the same true effect size and minimizes effect size
variance by calculating the mean effect size across the
GWASs weighted by the inverse variance of each single
cohort GWAS. The meta-analysis identified over 46,000
genome-wide significant variants across 188 loci [19].
Subsequent replication in GLGC followed by conditional
analysis combining both MVP and GLGC summary statis-
tics for each lipid trait revealed 118 novel loci meeting
genome-wide significance. These results demonstrate the
benefits of performing a transethnic meta-analysis to isolate
trait-specific loci [8].

Fig. 1 A workflow for drug
discovery. This diagram
demonstrates a general workflow
for progressing from variant-trait
associations to drugs and thera-
pies. Under (1) target discovery,
GWA loci are refined through
multiomics approaches, genetic
fine-mapping, and WES rare var-
iant analysis. The resulting loci
represent potential targets for (2)
drug development. Once devel-
oped, identifying at-risk individ-
uals for (3) disease prevention and
treatment through polygenic risk
scores ensures drugs and thera-
pies are administered to the indi-
viduals at highest disease risk
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Gene-based association discovery

Single cohort and GWASmeta-analysis are successful at iden-
tifying common variants with small to moderate effects on
disease risk or quantitative traits. However, these approaches
fail to capture moderate to large effect rare coding mutations
that are integral to explaining the heritability of both
Mendelian and complex traits [20]. Whole genome arrays
designed to capture common variation are unlikely to
include these rare mutations, and imputation from refer-
ence population samples rarely has enough occurrences
of these mutations for confident imputation of these
variants in the GWAS datasets.

Whole exome sequencing is a critical tool for discovering
rare trait-associated variants within coding regions of the ge-
nome otherwise missed by GWAS arrays and variant imputa-
tion. However, traditional single variant tests are generally
underpowered to accurately capture rare variant-trait associa-
tions. Either large sample sizes or large effect sizes are re-
quired for a single variant test to detect rare associations with
sufficient power [21]. The former can be difficult to achieve
for understudied traits and populations. The latter is typically
not observed in polygenic complex traits, where rare variants
carry a moderate burden of trait heritability. Unlike familial
studies ofMendelian traits where a single mutation is typically
implicated in disease inheritance, whole exome sequencing
studies of complex traits may find clusters of mutations within
a gene that are each associated with a phenotype. To circum-
vent the issue of insufficient statistical power for rare coding
variants, gene-based burden tests are employed to collapse
rare variant counts to a single gene across samples.
Combining allele counts of low frequency mutations within
a gene improves the power of associating trait within a given
gene than with single variant testing of rare variants.

Burden tests are particularly powerful for genes with allelic
heterogeneity, where a greater proportion of alleles in a gene are
causative for the trait or disease [22]. The NHLBI Exome
Sequencing Project leveraged whole exome sequencing samples
from >2000 participants, including cohorts of extremely high (n
= 307) and extremely low (n = 247) LDL-C levels, to identify
rare variants within LDL-C-associated genes [23]. Gene-based
burden tests across various allele frequency thresholds—from
ultra-rare (MAF ≤ 0.1%) to more common (MAF ≤ 5%)—and
different groupings of mutations based on variant effect classifi-
cations including known and predicted missense and loss of
function mutations, revealed significant association between
three well known lipid genes—PCSK9, LDLR, and APOB—
and LDL-C levels. This is in comparison to single-variant tests
of common mutations under the same study revealing only sig-
nificant association with APOE. Collapsing rare and potential
damaging variants under one gene signal enables discovery of
associated genes otherwise missed by traditional single variant
tests. The identification ofPCSK9, LDLR, andAPOB from gene-

based burden tests is validation of dyslipidemia family studies,
serving as prime drug targets for lowering LDL-C levels in par-
ticipants with dyslipidemia traits [24]. PCSK9 is a target for
heterozygous familial hypercholesterolemia treatments [25],
whereas LDLR and APOB are targets for homozygous familial
hypercholesterolemia therapies [26–28]. PCSK9 also serves as a
target for lowering atherosclerotic cardiovascular disease risk.
This exemplifies how fine-tuned discovery of gene-trait associa-
tions can result in actionable drug targets for treatment and pre-
vention (Table 1).

Refining single variant associations

GWAS meta-analyses have identified 167 [33, 34] lipid loci
which however only count for approximately 20% [34, 35] of
trait variation in the populations studied (less than 50% of the
estimated trait heritability). It is hypothesized that the missing
heritability may be due to the polygenic heritability pattern of
lipid traits, suggesting there are still many genetic loci with
small effect sizes to be found by increasing the sample size of
the GWAS meta-analysis. Another hypothesis proposes that
some of the lipid loci have multiple independent associations
in close proximity, which are not considered by the standard
approach of defining an associated locus or genetic signal
based on physical distance [35]. Finally, some have hypothe-
sized that trait heritability has been overestimated [36].

Fine mapping is one way to find additional associations and
to pinpoint the causal genes in the established lipid loci. Fine
mapping involves taking the local linkage disequilibrium into
account and statistically estimating which variants are the most
probable causal variants for the studied trait [37]. In a single
cohort GWAS, the secondary signals can also be found using
formal conditional analysis where the association test in a locus
is adjusted for the lead-SNP association. There have been mul-
tiple studies testing different lipid loci showing secondary asso-
ciations [34, 38, 39] in the coding region of the genome provid-
ing a direct link to the biological mechanism of the observed
association, and therefore, illuminating potential drug targets.

Identifying relevant genes and pathways associated
with noncoding mutations can be achieved with tools
such as DEPICT [40] or the Polygenic Priority Score
[41]. DEPICT assigns likely causal genes and enriched
biological pathways for associated loci and highlights
tissues and cell types where causal genes are highly
expressed. Polygenic priority score identifies causal
genes through integration of GWAS summary statistics
with gene expression, biological pathway, and protein-
protein interaction prediction data. The latter was suc-
cessful in prioritizing over 8400 gene-trait associations
across 113 complex traits with greater than 75% preci-
sion, including correctly identifying a previously discov-
ered association between SORT1 and LDL-C.
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It has also been suggested that using samples from different
ancestries could identify the true causal variants underlying
the association. Trans-ethnic meta-analysis of GWASs ac-
counts for differences in linkage disequilibrium and heteroge-
neity of allelic effects and frequencies across diverse popula-
tions. Assuming a shared causal variant between ancestry
groups, the surrounding variants in linkage disequilibrium
with the causal variant may differ slightly between ancestries.
By taking these slight differences into account in the meta-
analysis with proper modeling, rather than excluding the mi-
nority ancestries in the analysis to avoid biases, scientists gain
statistical power to identify the underlying putative causal
variant. Utilization of diverse populations increases fine map-
ping resolution of the complex trait loci and further isolates
the true genetic architecture of the underlying trait [42].

Epigenetic features play an important role in lipid ge-
nomics and understanding tissue-specific expression of
lipid-associated genes. Recent efforts have been made
to elucidate the function of long noncoding RNAs
(lncRNAs). LncRNAs are transcribed RNA molecules
greater than 200 nucleotides in length that do not encode
for the protein. These serve a role in regulating gene
transcription and posttranscription modifications and are
largely tissue-specific in nature. In the case of lipid me-
tabolism, lncRNA-mediated regulation colocalize primar-
ily within liver and adipose tissues [43]. Previous re-
views characterize the role of lncRNAs in cholesterol
synthesis and metabolism [44] and diseases associated
with lncRNA-mediated cholesterol dysregulation [45], in-
cluding atherosclerosis, hypoalphalipoproteinemia (low
LDL-C), myocardial infarction, and nonalcoholic fatty
liver disease [46]. LncRNAs are prime drug and therapy
targets because of their role in tissue-specific gene regu-
lation. Other well-studied epigenetic features and their
role in lipid-associated gene expression, such as DNA
methylation, histone modification, and chromatin acces-
sibility, are highlighted in other published reviews
[47–49].

Machine learning and deep learning methods have indeed
been implemented in predicting both deleterious coding mu-
tations and prioritizing likely functional non-coding muta-
tions. Predictive models such as CADD [50], PolyPhen [51],
and SIFT [52] indicate a given mutation's impact on protein
function. These models compile ancestral conservation data,
epigenetic information, functional predictions (e.g., amino ac-
id changes), and genetic content to predict the likelihood of
deleterious mutations. Other models including RegulomeDB
[53] and DeepSEA [54] highlight functional mutations in non-
coding regions of the genome. These models compile
data from chromatin profiles, transcription factor bind-
ing sites, and DNase hypersensitivity sites to predict the
likelihood of functionally impactful mutations that affect
the expression of target genes.Ta
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Refining associations with transcriptomics

Single cohort or GWAS meta-analysis identifies trait-
causative loci; however, it is difficult to elucidate biological
pathway effects from GWAS associat ions alone.
Transcriptome-wide association studies (TWASs) provide in-
sight into variant effects on gene expression and uncover
gene-trait interactions within GWASs [55]. TWASs model
the associated effect of variant alleles on nearby gene expres-
sion from a reference panel of genotypes and associated ex-
pression levels (sourced from public repositories; e.g., the
GTEx project) [56]. This model then infers gene expression
for participants within the GWAS cohort. From this, we can
statistically associate certain expression patterns correlated
with the target GWAS trait. The resulting association iden-
tifies genes potentially relevant to the trait under investigation
(Fig. 2). A common method of modelling TWAs is by sum-
mary data-based Mendelian randomization (SMR), which in-
tegrates GWAS summary statistics with eQTL data to identify
differentially expressed loci associated with complex disease
[57]. This circumvents the common issue of unavailable full
genotype data for developing well-powered association tests.
GWAS2Genes serve as a public database compiling SMR
gene-phenotype associations for multiple traits, tissues, and
genes. However, this does not prove or disprove causality of
a given gene; rather, TWAS methods highlight sets of candi-
date causal genes that warrant further examination.

TWASs can both confirm and reveal novel gene-trait asso-
ciations. We revisit the multiethnic MVP cohort blood lipids
investigation to demonstrate the utility of TWAS in discovery
of novel associations. Four different gene expression refer-
ence panels were employed across relevant cell and tissue
types: peripheral blood, adipose tissue, liver, and tibial artery
tissues. The gene expression profiles derived from these

panels were then imputed to predict associated expression
within the combined GLGC and MVP GWAS meta-analysis
for each lipid trait. 665 gene-lipid associations achieved
genome-wide significance within 333 genes. To note, the
333 genes were contained within 122 genomic loci, of which
5 loci were previously unreported. These novel loci represent
genomic regions with potential causal impact on lipid traits
that were otherwise missed by traditional variant-trait associ-
ations [8]. More significant investigation of mutations in non-
coding regions of the genome combining different omics data
could reveal effects of gene regulation on phenotypic variance
where known coding mutations fail to adequately explain the
variation between individuals and ancestries.

Translating whole genome information
into disease prediction

There are several ways in which lipid genetics could impact
clinical practice, but most have not yet been realized.
Individuals carrying Mendelian dyslipidemia mutations can
be identified based on elevated lipids at a young age, or a
family history of premature coronary artery disease, which
would allow for earlier and stronger intervention to lower
blood lipids. Testing for Mendelian dyslipidemias is not typ-
ically used to screen the population. Some challenges with
Mendelian testing at scale include the cost of sequencing
Mendelian dyslipidemia genes and difficulty in determining
between protein-altering variants that cause disease (patho-
genic variants) and those that do not (benign).

From a genome-wide perspective, initial discovery efforts
were aimed at identifying a large catalogue of lipid genes to
enable prioritization of lipid genes for development of new
drug therapies. The challenge with this approach is the time

Fig. 2 Applying fine mapping
and transcriptomics towards gene
prioritization. Significantly
associated GWAS loci are
identified visually from
Manhattan plots. Linkage
disequilibrium (LD) information
is integrated to identify lead
causal SNPs. Measurement of
gene expression change (eQTL
analysis) for each SNP genotype
indicates potential trait causative
role of a given allele. Combining
multiple candidate SNPs in a
transcriptome-wide association
study (TWAS) implicates sets of
causal SNPs and genes for the
target phenotype
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and enormous cost required to turn a gene target into a new
therapy available to patients. As such, the information pro-
duced by genome-wide association studies is not yet applied
to clinical practice. This is mainly due to the still ongoing fine
mapping efforts (we do not yet know which variants and
genes are truly causal), complex biology behind the associa-
tion (whole gene pathway versus a single gene), and
polygenicity (lipids are driven by hundreds or even thousands
of genetic loci).

However, an area of intense investigation in the last few
years has been on using someone's genetic profile to predict
their risk of disease, to again identify individuals who would
benefit from lipid-lowering medications or lifestyle modifica-
tions. The whole genome information for a susceptibility of a
disease/trait level can be summarized using polygenic risk
scores (PRS), where the estimated effects for each disease/
trait risk allele are summed over the whole genome for each
patient carrying those alleles. There are several widely used
methods [58–61] to select variants for the score and the dif-
ferent scores created by different research groups worldwide
are publicly available (https://www.pgscatalog.org).

The predictive power of these scores is promising, espe-
cially for CAD [62], as the highest 5% of the CAD PRS
appear to have as high a risk of heart disease as those people
who carry a Mendelian mutation that causes familial hyper-
cholesterolemia. Moreover, having a high PRS (5% of the
population) is more common than carrying a monogenic mu-
tation (less than 1% of the population), which is promising for
the advancement of preventive options. Well-developed PRSs
for quantitative risk factors (such as LDL-C) could improve
the prediction of disease endpoints. For example, prediction of
myocardial infarction was increased by combining the disease
PRS with the risk factor or biomarker PRSs [63]. Participants
in the high-risk group can be identified more accurately with
the increased predictive power. It should be noted that CAD is
a complex disease with genetic and environmental factors
(and possibly interactions between the two) contributing to
the overall risk. Hence, thorough evaluation of genetic, envi-
ronmental and epigenetic factors, together with possible inter-
actions between them, will need to be performed to account
for all possible risk factors in the prediction models.
This could potentially be accomplished by using ma-
chine learning methods that allow for more complex
interplay between risk factors [64]. However, to date,
machine learning models of this complexity have not
yet been applied to CAD risk prediction.

As genetic information is constant throughout lifetime, uti-
lizing genetic information would allow earlier prediction of
disease susceptibility, paving the way for prevention rather
than treatment after the disease has manifested. In regard to
CAD, including the genetic information in the prediction
model increases the predictive power to detect early onset
cases [65] that would benefit from targeted early adulthood

prevention (Fig. 3). However, this approach is still in early
stages, as extensive DNA testing would need to be deployed
to identify at-risk patients in clinic for preventive
interventions.

There are ongoing efforts to apply genetic risk information
to clinical practice. In a Finnish study by Widen et al. [66]
CAD risk estimates were returned to study participants, utiliz-
ing both traditional risk factors and whole genome genetic risk
information, followed by evaluating their lifestyle changes
after 6 months. Overall, the results showed positive changes,
especially in the high-risk group, suggesting that early preven-
tion with lifestyle changes could be possible with the right
tools and easy-to-read risk reports for patients. However, there
are well-known challenges in implementing these scores into
routine clinical practice, in addition to limitations in patient
uptake of recommended behavioral or medication changes.

Currently, PRSs are mainly derived from meta-analysis
summary statistics that are typically derived from cohorts with
a substantial fraction of subjects fromEuropean ancestry, which
currently limits the utility to predict disease in individuals with
other ancestries [67]. There are already multiple haplotype
structure and/or genetic variation reference datasets of diverse
ancestries available (e.g., HapMap Project [68, 69], 1000
Genomes Project [70], and Haplotype Reference Consortium
[71]), but the diversity in datasets with phenotypic data avail-
able for association testing or disease prediction remains limit-
ed. Additional efforts to build genetic study cohorts with better
representation of global ancestries and methodology to better
translate results into other ancestry groups may decrease the
inequity of disease prediction in the coming years.

Another area of development is to develop best practices
and evaluate the overall impact of communicating genetic
risks to the patients. Communicating genetic risk requires
health care specialists to be able to explain the implications
and preventative possibilities to patients in a comprehensible
manner. Additionally, the overall predictive power of these
scores is still limited. Currently, the biggest challenge in ge-
nome analysis and genome-based prediction is the lack of
ancestral diversity in the existing study cohort datasets. A
proportion of the missing heritability, and therefore lack of
predictive power, will most likely be explained by the popu-
lation specific variants of non-European ancestries currently
underrepresented in the GWAS datasets. In addition, we need
to be able to create and test disease prediction models for
diverse ancestries to equally apply genomic information for
participants across the globe.

Future possibilities with large biobanks

There are some suggestive results from phenome wide
GWASs to identify drug targets that are less likely to have
unanticipated adverse effects by extensively testing
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associations between the identified drug target gene or variant
across multiple diseases and traits to predict these side-effects
that may otherwise be undiscovered until expensive clinical
trials are conducted, and human lives may be impacted [72].
In a phenome-wide GWAS, thousands of traits and diseases
are tested for association—instead of only one trait of
interest—giving clues on all the biological impacts of a single
genetic change. These analyses are made possible by the large
biobank datasets currently being collected across the world
(Biobank Japan, Million Veterans Program, Finngen, UK
Biobank) that combine hospital registries, laboratorymeasure-
ments, and whole genome information from hundreds of thou-
sands of participants. Integration of transcriptome data and
other multiomics approaches can help identify relevant bio-
logical pathways and potential targets for new disease thera-
peutics, as well as avoid creating new medicines that may
have unintended negative effects [73]. Large biobank datasets
will also allow for testing associations for rarer and population
specific genome variations which may quickly highlight

genes as new drug targets. These large datasets with hospital
registry data available, some with diverse populations, will
also be a powerful tool for creating and testing optimal disease
prediction models combining environmental and genetic
information.

Discussion

We summarize the currently applied methods used for moving
from GWAS summary statistics towards likely drug targets
and identification of high-risk individuals for early prevention.
While the past two decades have shown an incredible amount
of progress, from identifying the first lipid-associated loci
using GWAS to uncovering biological mechanisms and drug
targets, and more recently translating these discoveries into
clinically-meaningful predictions, the gap between observing
an association and developing safe drugs for preventing ath-
erosclerotic disease is vast. This gap can be partly narrowed

Fig. 3 The aim of complex
disease risk prediction. This
figure demonstrates how to apply
genetic risk to clinical practice.
Patients complete a routine DNA
test during an annual health exam
as well as other laboratory-based
tests and basic health question-
naires which are linked to the
electronic health record. The risk
for multiple complex diseases is
calculated and reported through
an interface using a secured com-
puting environment. Physicians
and/or other health care providers
communicate results and recom-
mend tailored preventive actions
for the patient
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by using the available methods for fine mapping, aggregating
high impact rare variant associations to gene level associations
or by combining transcriptomic data on top of the genomic
information. As the number of exome sequenced samples is
still somewhat limited for burden tests [74], hence having low
number of rare variant carriers in the datasets, geneticists are
currently capturing genes that have already been found to be
plausible candidate genes for drug development in dyslipid-
emia family-based studies. However, capturing these genes
using the current methodology proves that the methods are
working, and the lack of novel candidate genes may be due
to limited statistical power. In the meantime, prediction may
be the key to identifying high risk individuals in the general
population, implementing preventive approaches to reduce
risk, which will hopefully lead to lower health care costs
and, more importantly, reducing the overall number of cardio-
vascular disease related deaths.
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