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Abstract
We couple a tumor growthmodel embedded in a microenvironment, with a bio distributionmodel able to simulate a whole organ.
The growth model yields the evolution of tumor cell population, of the differential pressure between cell populations, of porosity
of ECM, of consumption of nutrients due to tumor growth, of angiogenesis, and related growth factors as function of the locally
available nutrient. The bio distribution model on the other hand operates on a frozen geometry but yields a much refined
distribution of nutrient and other molecules. The combination of both models will enable simulating the growth of a tumor in
a whole organ, including a realistic distribution of therapeutic agents and allow hence to evaluate the efficacy of these agents.
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1 Introduction

Cancer is an extraordinarily complex disease. It is now recog-
nized that methods commonly used in physics can help reduc-
ing the complexity of cancer to a manageable set of underly-
ing principles and phenomena (Michor et al. 2011; Moore
et al. 2011). Among the fields to which oncophysics can con-
tribute belong the evolution and evolutionary theory of cancer,
information coding and transfer in cancer, deconvolution of
cancer complexity, and transport oncophysics. Transport

oncophysics views cancer as a disease of multiscale mass
transport dysregulation involving biological barriers. In fact
each one of us is the sum of a multiplicity of transport differ-
entials (i.e., gradients of metabolites, chemotherapy, oxygen)
between cellular compartments (e.g., DNA, organelles, cyto-
sol, cellular membranes, extracellular matrix, and vasculature)
and these multiscale mass transport differentials distinguish
malignant from normal cells and tissues (Koay and Ferrari
2014). Understanding the disorganization of these differen-
tials in cancer opens a realm of possibilities in all aspects of
oncological research. Transport aspects further control deliv-
ery of therapeutic agents (e.g. chemotherapeutics or molecu-
larly targeted therapeutics such as T cells, antibodies, parti-
cles) which must pass through different and heterogeneous
tumor and healthy compartments (e.g. vascular, stroma) with
distinct physical properties (Ferrari 2013, 2010). Delivery of
drugs is an extremely complex procedure involving different
spatial and temporal scales and taking place over several
levels ranging from the organism to the intercellular environ-
ment. The underlying transport phenomena at individual tu-
mor compartments may act as transport barriers possibly con-
tributing to poor survival rates in cancer therapy (Ferrari 2013;
Freyer et al. 1997).

In this paper we address a computational tool necessary for
simulating simultaneously different aspects involved in trans-
port oncophysics: tumor growth within the local tumor envi-
ronment including angiogenesis, and bio distribution of nutri-
ents, interstitial fluid flow and blood flow in the vasculature.
This tool, together with imaging, analysis and quantification,
will help to understand and predict cancer development and
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the efficacy of therapy, with the aim to design patient specific
solutions for this complex disease.

Before presenting our tumor growth model we recall that
the most advanced computational models for tumor growth
prediction belong mainly to two types: multi-parameter and
multi-phase models. Multi-parameter models are based on
mixture theory (Cowin and Cardoso 2012) where the relevant
balance equations are written directly at the level of interest
and the thermodynamic consistency is satisfied at the same
level. The evolution of phases and species within multi-
parameter models is obtained either by use of phase field
approach (Hawkins-Daarud et al. 2013; Lima et al. 2015,
2016; Oden et al. 2010, 2013, 2016; Rahman et al. 2017;
Rocha et al. 2018; Vilanova et al. 2018) or of Volterra-Lotta
(predator/prey like) equations (Carotenuto et al. 2018; Fraldi
and Carotenuto 2018). Recent multiphasemodels (Kremheller
et al. 2018; Sciumè et al. 2013, 2014a) are based on the
Thermodynamically Constrained Averaging Theory (TCAT)
(Gray and Miller 2014) where the model derivation proceeds
systematically from known microscale relations to mathemat-
ically and physically consistent larger scale relations. This is
accomplished by the use of averaging theorems. The thermo-
dynamic analysis is consistent between scales, in the defini-
tions of variables at different scales and in satisfying the en-
tropy inequality. The closure relationships are obtained from a
Simplified Entropy Inequality (SEI). Interfaces between con-
stituents arise naturally from the solution of an initial-
boundary value problem that must comprise the mass balance
equations of all phases involved.

Our model is of the multiphase type with a deformable
solid matrix (ECM) pervaded by three fluid phases, tumor
cells (TCs), healthy cells (HCs) and interstitial fluid (IF),
(Santagiuliana et al. 2016; Sciumè et al. 2013, 2014a, b). In
this model the extracellular matrix is a porous solid whichmay
undergo remodeling and the fluid phases fill its pores. Tumor
cells partition into living cells and necrotic cells. Healthy cells
are in homeostasis. The IF transports chemical species such as
nutrients, oxygen, signaling molecules like Tumor
Angiogenic Factor (TAF), cytokines, etc.. Transport within
extravascular space takes place by convection and diffusion.
The model is able to simulate growth, hypoxia, necrosis and
lysis of the TCs, migration of cells through the ECM, invasion
and infiltration of the TCs into the healthy tissue, different
stiffness of cell population with respect to the ECM, deposi-
tion and remodeling of ECM, build-up of cortical tension
between HCs and TCs, adhesion of the cells to their ECM as
well as adhesion among cells, and possible detachment.
Angiogenesis is modeled as follows (Santagiuliana et al.
2016): when the oxygen mass fraction is lower than a critical
value the tumor living cells produce TAF in response to hyp-
oxia. TAF diffuses in the surrounding tissue and creates a
chemical gradient between the tumor and any existing vascu-
lature. Endothelial cells (ECs), lining the blood vessels,

respond to the TAF. In our model endothelial cells are a spe-
cies transported in the IF, which diffuse following their own
gradient and that of TAF. The density of endothelial cells
represents the concentration of capillary sprouts formed by
accumulation of endothelial cells which are recruited from
the parent vessel. This smeared representation of the
neovasculature is an ideal intersection with the bio distribution
model described next. The choice of a smeared representation
instead of a discrete one is justified by the fact that the
neovasculature is extremely chaotic and that there is no rela-
tionship between vessel diameter and flow velocity (Dewhirst
and Secomb 2017; Discher et al. 2005).

The model for the bio distribution introduced by the group
of Prof. Kojic, developed at the Houston Methodist Research
Institute and Bioengineering R&D Center Bioirc in Serbia,
simulates the diffusion of molecules, oxygen, and the smeared
capillary network in the tumor environment. The basic idea of
the smeared concept consists in: 1) transformation of the 1D
mass transport into the equivalent continuum form; 2) use of a
standard continuum representation with the pressure and con-
centration fields within the particular domains of the compos-
ite finite elements; and 3) formulation of connectivity finite
elements for membrane (capillary and cell walls) transport
(Kojic et al. 2017a, b, 2018; Milosevic et al. 2018). The com-
posite smeared finite element (CSFE) includes continuum do-
mains occupying the corresponding volume fraction and also
connectivity elements at each node. This concept simplifies
the model generation of complex biological media, including
tumors, and still provides satisfactory accuracy, particularly
investigated in (Milosevic et al. 2018).

In sections 2 we recall briefly the governing equations of
the tumor growth and in section 3 the basic relations of the
CSFE formulation. Section 4 deals with the coupling of both
models including operational aspects. The results are reported
in section 5 where two simulations are shown: the first one is a
2D example of a tumor growing within a square domain, and
the second one deals with melanoma growth in an axisymmet-
ric setting. Finally the conclusions highlight the capability of
the new code achieved by the connection of two original
models.

2 The tumor growth model: the governing
equations

The tumor growth model is a continuummodel where the TCs
and HCs are presented as^ adhesive^ fluids within a porous
matrix (ECM). TCs may become necrotic upon exposure to
low nutrient concentrations or excessive mechanical stresses.
The HCs are in homeostasis. The IF is an aqueous solution of
biological molecules, cell nutrients, oxygen and waste prod-
ucts and the Representative Elementary Volume (REV) is
schematically shown in Fig. 1.
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As already mentioned the model is built within the TCAT
framework which is used to transform known microscale re-
lations to mathematically and physically consistent macro-
scale relations by using averaging theorems (Gray and
Miller 2014; Gray et al. 2013). These relations are adequate
and sufficient to describe tumor development while filtering
out high frequency spatial variability. The governing equa-
tions of the model are closed by introducing constitutive rela-
tions in the macroscale equations.

The ECM is a deformable porous solid with porosity ε. The
volume fraction of the solid phase is εs = 1- ε. The other
phases, tumor cells (εt), healthy cells (εh) and interstitial fluid
(εl), occupy the rest of the volume. The volume fractions for
all phases add up to unity

εs þ εh þ εt þ εl ¼ 1 ð1Þ

The saturation degree of a fluid phase α is: Sα = εα/ε.
Using porosity, ε, and volume fraction, εα, (1) yields

Sh þ St þ Sl ¼ 1 ð2Þ

The macroscopic mass and momentum balance equations of
phases and species have been derived in (Sciumè et al. 2013)
and their transformation to take the differential pressures as
primary variables has been obtained in (Sciumè et al. 2014a).
The model has been enhanced in (Santagiuliana et al. 2015) to
include ECM deposition by the tumor cells through new mass

exchange terms, M
l→s

ECM
, and lysis, M

t→l

lysis
.

Below the general form of the governing equations for each
phase is shown. ρα is the density and vα is the velocity of the
phase α, see Appendix A of (Sciumè et al. 2014a), while the vs

is the velocity of the solid phase (ECM) that is the time deriv-
ative of the solid phase displacements us. The final form of the
governing equations is then obtained from the general forms by
introducing some simplifications and closure relationships such
as a generalized Darcy’s equation for flow of the fluid phases
(Santagiuliana et al. 2016; Sciumè et al. 2013).

The mass balance equation of the ECM is

∂ε
∂t

¼ ∇⋅vs þ 1−εð Þ
ρs

∂ρs

∂t
−∇⋅ εvs

� �
−

M
l→s

ECM

ρs
ð3Þ

The mass balance equation of TCs reads

∂ εtρtð Þ
∂t

þ ∇⋅ εtρtvtð Þ ¼ M
growth

l→t
− M

lysis

t→l ð4Þ

where M
l→t

growth
is an inter-phase exchange of mass between the

phases l and t, and represents the mass of IF consumed by
tumor cell growth.

The mass balance equation of HCs is

∂ εhρh
� �
∂t

þ ∇⋅ εhρhvh
� � ¼ 0 ð5Þ

There are no mass exchange terms in Eq. (5) because the
HCs are in homeostasis.

The mass balance equation of IF reads

∂ εlρl
� �
∂t

þ ∇⋅ εlρlvl
� � ¼ M

lysis

t→l
− M

growth

l→t
− M

ECM

l→s ð6Þ

where the mass exchange terms are the opposite of those seen
in previous equations.

Similar are the mass balance equations for the species, pre-
sented below. Remind that the tumor cells are a phase com-
posed of two species, the viable tumor cells and the necrotic
ones. The governing equation for necrotic cells is

∂ εtρtωNtð Þ
∂t

þ ∇⋅ εtρtωNtvt
� �

−εtrNt þ M
lysis

t→l ¼ 0 ð7Þ

where ωNt is the mass fraction of TCs, εtrNt is a reaction term,
that is the death rate of tumor cells or rate of generation of

necrotic cells. Mlysis
t→l takes into account of mass exchange

between the necrotic tumor cells and the IF phase due to lysis.
The mass balance equation of the nutrient, by including a

Fickian type equation for the diffusion of species, reads

∂ εlρlωnl
� �

∂t
þ ∇⋅ εlρlωnlvl

� �
−∇⋅ εlρlDnl

eff∇ω
nl� �þ M

nl→t ¼ 0 ð8Þ

where Dnl
eff is the effective diffusivity of the nutrient species in

the extracellular space, ωnl the mass fraction of nutrient spe-

cies n and Mnl→t is the mass of nutrient consumed by tumor
cells via metabolism and growth.

The other species considered are TAF and ECs. Since we
have only four phases at disposal in Castem (the code refer-
enced below), we model the endothelial cells as a transported
species in the IF (Santagiuliana et al. 2016). The respective
mass balance equations are

∂ εlρlωTAF
� �

∂t
þ ∇⋅ εlρlωTAFvl

� �
− εlρlDTAF

eff ∇ωTAF
� �

− M
TAF→t ¼ 0 ð9Þ

Fig. 1 Representative elementary volume (REV)
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and

∂ εlρlωEC
� �

∂t
þ ∇⋅ εlρlωECvl

� �
− εlρlDEC

eff ∇ωEC−∇ωTAF� �� �
− M

EC→t ¼ 0

ð10Þ

where DTAF
eff and DEC

eff are the effective diffusivity of the TAF

and ECs in the extracellular space, ωTAF and ωEC the mass
fractions of TAF and ECs.

The last governing equation is the linear momentum bal-
ance of the solid phase expressed in rate form as

∇⋅
∂t�seff
∂t

−α
∂ps

∂t
1

0
B@

1
CA ¼ 0 ð11Þ

where the interaction between the solid and the three fluid

phases is accounted for through the effective stress tseff in the

sense of porous media mechanics

t�seff ¼ t�s þ αps1 ð12Þ

1 is the unit tensor, ts is the total stress tensor in the solid
phase, α is the Biot’s coefficient α ¼ 1−K=Ks, with K the
compressibility of the empty ECM. In the modeled problem,
K/Ks tends to zero hence we can assume a Biot’s coefficient
equal to 1. The solid pressure ps is given as in (Gray and
Schrefler 2007)

ps ¼ Shph þ Stpt þ Slpl ¼ pl þ 1−Sl
� �

phl þ Stpth ð13Þ

where the Bishop parameter of each fluid phase (solid surface
fraction in contact with the phase) has been taken equal to its
own degree of saturation; pt, pt, pl are respectively the tumor
cells pressure, the host cells pressure and the interstitial fluid
pressure; phl and pth are the pressure differences between,
respectively, host cells and interstitial fluid, and tumor cells
and host cells. A large deformation regime is assumed for the
elasto-visco-plastic ECM (solid phase).

The governing equations have been introduced in the finite
elements code CAST3M or Castem (http://www-cast3m.cea.
fr) of the French Atomic Energy Commission.

Fig. 2 Diffusion from capillary to
tissue through elementary
capillary wall surface dAcap

which corresponds to the
capillary volume dVcap and total
volume dV; dVtissue is the volume
occupied by tissue
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given in the figure
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Fig. 5 Geometry of the problem with boundary conditions

Fig. 4 Sequence diagram of automated exchange between Castem and PAKT, with using CAD user interface



3 Coupling diffusion within capillary
and tissue

We summarize now the methodology, which will be further
used as the basis for the development of the composite
smeared finite element to model diffusion within capillary
network and tissue.

We write the balance equation for diffusion in a form used in
our smeared formulation. Hence, according to Eq. (8) we have

−
∂ωnl

∂t
−
∂ωnl

∂xi
vi þ ∂

∂xi
Dij

∂ωnl

∂x j

� �
þ 1

εlρl
M
nl→t

¼ 0; sum on i; j; i ¼ 1; 2; 3 ð14Þ

where Dij are diffusion tensor coefficients (Dnl
eff of a nutrient in

extracellular space in (8)).

Considering the diffusive transport through the wall, a 1D
linear approximation for radial diffusion will be used, since
the vessel wall thickness is small with respect to the vessel
radius. The mass balance equation has the following form,

−
∂ωnl

∂t
þ Dw

∂2ωnl

∂x2
¼ 0 ð15Þ

where Dwall is the capillary wall diffusive coefficient; convec-
tion through the wall is neglected which in reality is small.
Mass transport through capillary walls does not have a mass
exchange term because we assume that consumption is pres-
ent in the tissue domain but not in capillary walls. For sim-
plicity of writing, consistent with the references related to the
smeared concept, we will further use c ≡ ωnl as the nutrient
(oxygen) mass fraction called also concentration.

We further assume that concentration within capillaries is
uniform and given as the systemic concentration Csys(t) func-
tion of time. This assumption can be taken as a reasonable
approximation when considering a small tissue domain, e.g.
a tumor, because convection within capillaries is a much faster
process than the convection-diffusion within tissue.

Table 1 Parameters

Parameter Symbol Value Unit

Density of the three fluid phases (α = h, t and l) ρα 1000 kg/m3

Dynamic viscosity of IF (Sciumè et al. 2014b) μl 1·10−2 Pa·sec

Dynamic viscosity of TC (Sciumè et al. 2014b) μt 20 Pa·sec

Dynamic viscosity of HC (Sciumè et al. 2014b) μh 20 Pa·sec

Critical mass fraction of oxygen ωnl
crit

2.0·10−6 –

Growth coefficient of tumor cells (Sciumè et al. 2013, 2014a) γt
growth 4·10−2 kg/(m3·s)

Necrosis coefficient (Sciumè et al. 2013, 2014a) γt
necrosis 1·10−2 kg/(m3·s)

Consumption related to growth in eqn (Sciumè et al. 2013, 2014a) γnl
growth

2·10−4 kg/(m3·s)

Consumption related to metabolism in eqn (Sciumè et al. 2013, 2014a) γnl
0

3·10−4 kg/(m3·s)

HC-IF interfacial tension (Sciumè et al. 2014b) σhl 72 mN/m

TC-HC interfacial tension (Sciumè et al. 2014b) σth 36 mN/m

TC-IF interfacial tension (Sciumè et al. 2014b) σtl 108 mN/m

Table 2 Parameters related to oxygen diffusion, including those for the
smeared model

Parameter Symbol Value Unit

Diffusion coefficient of oxygen in
interstitial fluid (Sciumè et al.
2013, 2014a)

Dnl
0

3.2·10−9 m2/s

Coefficient δ (Sciumè et al. 2013,
2014a)

δ 2 –

Normal mass fraction of oxygen
in tissue (Sciumè et al. 2013,
2014a)

ωnl
env

4.2·10−6 –

Mean capillary diameter Dcap 10 μm

Thickness of the endothelial layer δEC 1 μm

Diffusion coefficient of oxygen
through endothelial layer

Dwall 8.73∙10−10 m2/s

Mass fraction of oxygen in
capillaries

ωsys 0.2451∙10−3 –

Table 3 Parameters depending for ECM taken from (Sciumè et al.
2014b)

Parameter Symbol Value Unit

Density of the solid phase ρs 1·103 kg/m3

Poisson’s ratio of the ECM ν 0.4 –

Young’s modulus of the ECM E 2.0·102 Pa

Volume fraction of ECM εs 0.2 –

Coefficient a a 590 Pa

Intrinsic permeability k 1.8·10−15 m2

Yield effective stress limit tseff ;y 0.5·101 Pa

Viscosity η 5 Pa·sec

Hardening modulus H 1.0·102 Pa
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Consider diffusion through a capillary wall as schematical-
ly shown in Fig. 2. First, the elementary area of the surface of
the internal wall dAcap can be related to the elementary vol-
ume dVcap and further to the elementary total volume dV, as
follows:

dAcap ¼ rAVdVcap ¼ rAVrVdV ð16Þ

where rAV is the capillary area-to volume ratio (called further
surface ratio), and rV is the capillary volumetric (mass) ratio
within tissue, or capillary density; the volume of tissue is (1-
rv)dV. Note that in case of a straight capillary, the surface ratio
is rAV = 4/DcapwhereDcap is the capillary internal diameter; in
case of complex geometries rAV can be different, and can be

Fig. 6 Oxygen concentration
(mass fraction) field obtained by
using Castem and Castem-PAK,
for t = 1, 5, 15 days

Fig. 7 Mean oxygen concentrations in whole domain as function of time,
Castem and Castem-PAK solutions

Fig. 8 Mean oxygen concentrations in tissue as function of time, Castem
and Castem-PAK solutions
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evaluated from imaging data. We emphasize that the capillary
density is the ratio between the volume occupied by the fluid
(blood) and total volume. The above ratios are parameters of
the capillary bed. The expression (16) can be considered as the
most fundamental one in our smeared models, where the dis-
crete wall surface is smeared over the volume of the
continuum.

Next, we assume that the mass concentration is linearly
distributed through the wall thickness (between points 1 and

2 in Fig. 2), which is acceptable for thin capillary walls; this is
in accordance with (15). Then, the flux through the wall at
point 2, corresponding to the elementary surface dAcap, in-
cluding partitioning P1 and P2 at the internal and external
capillary surface, can be expressed as

dQw

¼ Dwall P1Csys−P2Ctissue
� �

−
hP
6Δt

P1C−Ctð Þsys−
h

3Δt
P2C−Ctð Þtissue

� 	
rAVrVdV

ð17Þ

Fig. 9 Mean oxygen concentration in tumor as function of time, Castem
and Castem-PAK solutions

Fig. 11 Mean TAF concentration as function of time, Castem and
Castem-PAK solutions

Fig. 10 TAF concentrations using
CASTEM and CASTEM-PAK,
for t = 1, 5 and 15 days
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where Csys, Ct
sys, Ctissue, Ct

tissue are the concentration in the

lumen, and concentration within tissue at the end and start
of time step, respectively, and h is the wall thickness.
Note that Dwall represents the overall transport coefficient
of the wall (with pores, fenestrations, etc.); it can be re-
lated to the diffusion coefficient of the wall porous mate-
rial coefficient Dmaterial as Dwall = h Dmaterial. Partitioning
coefficient P is used as a measure of repelling or attraction
of molecules at the boundary between two media which
produces a discontinuity at the common surface (P=C1/C2

where C1 and C2 are concentrations at two sides of the
surface). As can be seen from Fig. 2, point 1 is in lumen
and point 2 in tissue domain, hence P1 is partitioning at
lumen/capillary wall interface, and P2 is partitioning at
capillary wall/tissue interface.

We have now the tissue continuumwithin which capillaries
are distributed and are producing the source of mass according
to (17). Therefore, the nodal fluxes of a continuum finite ele-
ment are

QwI ¼ ∫
V
NIdQw ¼ ∫

V
NI :::ð Þ 1−rVð ÞdV ð18Þ

where terms within the parenthesis (…) follow from (17),
and NI are the continuum interpolation functions of the
element with volume V. When evaluating the integral
(18), concentration Ctissue is the current concentration
within the tissue at an integration point. Note that the
factor (1-rV) is used since the volume of tissue is reduced
due to presence of capillaries.

Instead of using source terms at FE integration points,
connectivity elements can be assigned at each continuum
node. Then, the balance equation for the connectivity el-
ement at a continuum node I can be written as

1

Δt
M22 þ K22

� �
P2ΔCI ¼ − K21 þ 1

Δt
M21

� �
P1Csys

−
1

Δt
M 22 þ K22

� �
P2CI þ 1

Δt
M 21Ct

sys þ
1

Δt
M 22Ct

I

ð19Þ

where

M22 ¼ 1

3
P2AcapIhI ; M 21 ¼ 1

6
P2AcapIhI

K22 ¼ −K21 ¼ AcapIP2D wallð ÞI
ð20Þ

and CI and Ct
I are concentrations at node I at end and start

of time step, respectively. Also, P1 and P2 are partitioning
coefficients as in (17); D(wall)I is the wall diffusion coef-
ficient, hI is the wall thickness at node I; and AcapI is the
wall surface area belonging to the node I, which is

AcapI ¼ rAVrVð ÞIVI ð21Þ

with (rV)I, (rAV)I and VI the volumetric ratio, the area coef-
ficient and the volume of the continuum which belongs to the
node, respectively. The volume VI can numerically be evalu-
ated as

VI ¼ ∑
elements

∫
V
NIdV ð22Þ

where summation includes all elements containing the node I.
We found that convergence was improved by applying the
concept of these connectivity elements at nodes instead of
continuously distributed source terms.

Fig. 12 Endothelial cells mass fraction, after 5 days

Fig. 13 Mean mass fraction of endothelial cells as a function of time
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It can be concluded from the above that diffusive transport
between capillaries and tissue can be performed by
discretizing the continuum (tissue) only. The parameters of
the model, assigned to each continuum node I include geo-
metrical data (the volumetric ratio of capillaries (rV)I, the sur-
face ratio (rAV)I, the wall thickness (hI)) and material data of
capillaries consisting of wall diffusion coefficient (Dwall)Iand
partition coefficients P1I and P2I at the capillary surfaces.
Effects of partitioning are neglected in this study.

4 Coupling the models

4.1 Numerical solution and computational procedure
for the tumor growth model

The weak form of the governing equations is obtained by
means of the standard Galerkin procedure and is then
discretized in space by means of the finite element method.
Integration in the time domain is carried out by the Finite
Difference Method adopting a quasi-Crank–Nicolson scheme
(θWilson method with θ = 0.52). Within each time step the
equations are linearized by the Newton-Raphson method.

Five computational units are used in the staggered

scheme: the first is for the nutrient mass fractionωnl,

the second for the TAF mass fraction ωTAF , the third

is for the endothelial cells mass fraction ωEC, the fourth

to compute pth, phl and pl, the difference of pressure
between TCs and HCs, HCs and IF respectively and
the pressure of IF, and the fifth is used to obtain the
displacement vector us. Within each iteration the mass

fraction of NTC, ωNt, is updated using (7).
The final system of equations can be expressed in matrix

form as follows,

Cij xð Þ ∂x
∂t

þKij xð Þx ¼ f i xð Þ ð23Þ

with

Fig. 14 Tumor growth for t = 1,
5, 10 and 15 days. Results are
almost the same for Castem and
Castem-PAK model

Fig. 15 Mean volume fraction of tumor as function of time, for Castem
and Castem-PAK
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Table 4 Parameters depending
on ECM type taken from (Sciumè
et al. 2014b), redrawn with
permission from (Santagiuliana
et al. 2016)

Parameter Symbol Value Unit

Density of the solid phase ρs 1000 kg/m3

Poisson’ ratio of the ECM ν 0.4 –

EEZ 2·102

Young’s modulus of the ECM EMZ 3·102 Pa

EDZ 1·102

εsEZ 0.2 –

Volume fraction of ECM (initial) εsMZ 0.3 –

εsDZ 0.1 –

aEZ 590

Coefficient a in Eq. (23) aMZ 516 Pa

aDZ 664

kEZ 1.80·10−15

Intrinsic permeability kMZ 1.21·10−15 m2

kDZ 2.56·10−15

Yield effective stress limit tseff ;y 0.5·101 Pa

Viscosity η 5 Pa·sec

Hardening modulus H 1.0·102 Pa

Fig. 16 Skin structure and
geometry of the modeled case,
redrawn with permission from
(Santagiuliana et al. 2016)
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Boundary 2
Imposed values

Boundary 1
Imposed fluxes
There are no normal fluxes of phases and species nor applied forces

Imposed fluxes

There is no normal flux of oxygen
r

z

Imposed values

pth = 0.00 Pa (St = 0)   phl = 719 Pa (Sl = 0.48)   pl = 0.00 Pa 6
4.2 10

nl uz = 0  

1
4.00 10

END
0.00

TAF

Boundary 3

Fig. 17 Discretization of the
domain and boundary conditions,
redrawn with permission from
(Santagiuliana et al. 2016)

Fig. 18 Oxygen field
concentrations obtained using
Castem and Castem-PAK, for t =
3 days, 1 week, 2 weeks and
20 days

Table 5 Parameters for TAF end Endothelial cells, redrawn with permission from (Santagiuliana et al. 2016)

Parameter Symbol Value Unit

Limit mass fraction of oxygen for hypoxia ωnl
hyp

4.0·10−6 –

Diffusion coefficient of TAF in interstitial fluid (Anderson and Chaplain 1998) DTAF
0

3.5·10−4 m2/s

Diffusion coefficient of endothelial cells in interstitial fluid (Eikenberry et al. 2009) Dend
0

1.29·10−12 m2/s

coefficient for uptake of TAF by endothelial cells νTAF 1.00·10−15 –
degradation rate coefficient for TAF demise βTAF 8.00·10−13 –
coefficient for TAF and EC production c 1.00·10−3 –
coefficient for new oxygen brought by the new capillary network ϕ 1.00·10−8 –
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Cij ¼

Cnn 0 0 0 0 0 0
0 CTT 0 0 0 0 0
0 0 CEE 0 0 0 0
0 0 0 Ctt Cth Ctl 0
0 0 0 Cht Chh Ctl 0
0 0 0 Clt Clh Cll 0
0 0 0 0 0 0 Cuu

0
BBBBBBBB@

1
CCCCCCCCA

Kij ¼

Knn 0 0 0 0 0 0
0 KTT 0 0 0 0 0
0 0 KEE 0 0 0 0
0 0 0 Ktt Kth Ktl 0
0 0 0 Kht Khh Khl 0
0 0 0 Klt Klh Kll 0
0 0 0 0 0 0 0

0
BBBBBBBB@

1
CCCCCCCCA
; f i ¼

fn
fT
fE
f t
fh
f l
fu

0
BBBBBBBB@

1
CCCCCCCCA

ð24Þ

where xT ¼ ωnl;ωTAF ;ωEC; pth; phl; pl; us
n o

. The nonlin-

ear coefficient matrices Cij(x), Kij(x) and fi(x) are given in
(Santagiuliana et al. 2016).

The endothelial cells diffusion dependence on TAF con-
centration has been taken into account in the code by adding

a coupling matrix for the endothelial cells and the TAF as a
condition on the diffusion of the endothelial cells.

4.2 Formulation of the smeared finite element
tomodel mass transport in the capillary-tissue system

Here we summarize the basic relations in formulating the
composite smeared finite element (CSFE), according to
(Kojic et al. 2017a). The basic requirement of the smeared
concept for modeling transport within the capillary-tissue
system, is that the transport characteristics of the system
should appropriately be preserved in the smeared model.

A schematic representation of this element is shown in
Fig. 3. The domains and the nodal variables used here are
those relevant for this tumor growth model – capillary and
tissue, while extension to include different cell groups and
intracellular transport with cytosol and organelles (Kojic
et al. 2018) is not considered.

The capillary network is represented by the fraction rV of
the FE volume (mass) and the nodal variables are pressure and
concentrations. The fundamental step now is to transform 1D
fluid flow and diffusion to the adequate continuum form. This
is achieved by introducing the corresponding Darcy and dif-
fusion tensors. The Darcy tensor can be derived in the form
(Kojic et al. 2017a)

kDij ¼ 1

Atot
∑
K
kpKℓKiℓKj ¼ π

128μAtot
∑
K
d4KℓKiℓKj ð25Þ

where dK are capillary diameters, ℓKi are directional cosines, μ
is the fluid viscosity, and Atot is the total cross-sectional area of

capillaries at a considered spatial point vicinity, Atot ¼ ∑
K
AK

¼ π
4
∑
K
d2K . Here, the Hagen-Poisseuile law is assumed for

Fig. 20 Mean oxygen concentrations in tissue as function of time, for
Castem and Castem-PAK coupled model

Fig. 19 Mean oxygen concentrations in tumor and tissue as function of
time, for Castem and Castem-PAK coupled model

Fig. 21 Mean oxygen concentrations in tumor as function of time, for
Castem and Castem-PAK
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flow within capillaries. Likewise, the diffusion tensor can be
expressed as

Dij ¼ 1

Atot
∑
K
DcapKAKℓKiℓKj ð26Þ

where DcapK are diffusion coefficients within capillaries and
AK are the cross-sectional areas. Therefore, we model the cap-
illary network by a continuum; for convenience and efficiency
we first evaluate the continuum volume VJ belonging to each
FE node, (22) and use the area-to-volume ratio rAV to evaluate
the capillary wall surface AJ needed for nodal connectivity
elements. The balance equations for connectivity elements
are given by (19). The CSFE is built into our FE code PAK
(Kojic et al. 2010).

4.3 Computational procedure for coupling the models

We will use three different modules to couple the models:
Castem, CAD, and PAKT. Castem is the FE software for
numerical simulation in structural mechanics and other
types of scientific problems. CAD is indoor user interface
for pre- and post-processing results for the package
PAKT, and PAKT (a module of the PAK software pack-
age) is the indoor FE solver for concentration field which
incorporates the smeared finite element.

The complete process of coupling the models is shown in
the sequence diagram of Fig. 4, and consist of the following
steps:

1. Run first time step in Castem and create outputs.
2. Import Castem’s mesh into CAD software.
3. Load data from Castem into CAD and run PAKT simula-

tion. Data loaded from Castem are: ε, εt,ωnl,ωTAF ,ωEC,

ωNt and pth.

4. Pick up PAKT oxygen nodal mass frac t ions
(concentrations) and send them to Castem.

5. If there are no more time steps to calculate go to step 6,
otherwise go back to step 3.

6. Load results into CAD for post-processing.

5 Results

In the next paragraphs two examples of simulations are
shown. The first one is a 2D example with an initial circular
tumor growing within a squared domain with a blood vessel
on a side. The second one is an example of the cutaneous
melanoma growth in axial-symmetric conditions. Both simu-
lations are performed with the coupled codes above described
CAST3M and PAKT, and are compared with results of the

Fig. 22 TAF concentrations
obtained using Castem and
Castem-PAK models, for t =
3 days, 1 week, 2 weeks and
20 days

Fig. 23 Mean TAF concentrations as function of time, Castem and
Castem-PAK models
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simulations achieved with the code CAST3M only, i.e. just
with the tumor growth model.

5.1 Simulation of a 2D example

A circular tumor with diameter 50 μm is situated in a square
domain 1000 × 1000 μm2 with a blood vessel on the right
side, see Fig. 5. HCs, ECM and IF are present in the whole
domain. The oxygen diffuses in the IF. As initial conditions
the oxygen mass fraction is fixed at 4.2 10−6 in the whole
domain, the ECM volume fraction is 0.2, the TCs volume

fraction is 0.02, the HCs volume fraction is 0.45. The endo-
thelial cells are present on the blood vessel on the right side of
the domain, with initial mass fraction 3 10−5. The boundary
conditions are imposed on all the sides of the square for oxy-
gen and TAF; for the endothelial cells zero concentration is
prescribed in the upper, bottom and left sides. The parameters
for the growth of tumor cells, for the ECM, for the HCs and for
the diffusion of oxygen are listed in Tables 1, 2, 3 (Sciumè
et al. 2014b). The whole domain is discretized with triangular
elements.

The fields for the oxygen mass fraction, obtained by
the Castem and Castem-PAK solvers are shown in Fig. 6.
A higher consumption of oxygen appears in the first
analysis (Castem). In the coupled analysis (Castem-
PAK) the oxygen mass is larger because the supply from
the capillary network is taken into account. The capillary
domain in the smeared model is only present at FE nodes
where the endothelial cell mass fraction (determined by
the Castem) is different from zero. The nodal mass frac-
tion of capillaries ωcap (capillary density) is determined
as

ωcap ¼ Dcapω
EC
= 4δECð Þ ð27Þ

where Dcap and δEC are capillary diameter and thickness
of the endothelial layer (see Table 2).

Fig. 25 Mean mass fraction of endothelial cells as function of time,
Castem model

Fig. 24 Endothelial cells mass
fraction for t = 3 days, 1 week,
2 weeks and 20 days, Castem
model
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The graphs in Figs. 7, 8, and 9 show differences in oxygen
concentration over time for the total oxygen mass fraction, in
the tissue, and in tumor, respectively, obtained by using
Castem and Castem-PAK software. It can be seen from Figs.
7 and 8 that the difference between the oxygen mass fraction
of the two analyses remains almost constant in time, but the
coupled solution curve is above that obtained by the Castem
only. In the zone of the tumor (Fig. 9) this difference tends to
zero as time progresses because the oxygen consumption in-
creases with the tumor growth. By comparing Figs. 7 and 8 it
appears that most of the oxygen is in the tissue.

When the oxygen concentration is lower than a fixed
threshold, the living tumor cells produce the tumor angio-
genic factor (TAF) that diffuses from the tumor into the
IF. Solutions for the TAF concentration obtained by
Castem and Castem-PAK, for three different time stations,
are shown in Figs. 10 and 11. It can be seen that lower
concentration in the Castem solution produces larger TAF
concentrations.

As response to the TAF the endothelial cells start moving
from the vessel based on the right side of the domain towards
the tumor as shown in Fig. 12 after 5 days for the coupled
analysis Castem-PAK. Note that PAK doesn’t change endo-
thelial cells mass fraction, hence in fact only Castem results
are shown.

In Fig. 13 the graph for the endothelial cells mass fraction
over time is depicted. After the initial response to the TAF
where endothelial cells concentration remains constant, there
is an almost linear increase as time progresses.

Figure 14 shows tumor growth after 1 day, 5, 10 and
15 days. Note how the tumor rim becomes irregular as the
tumor grows. For this example, Castem and Castem-PAK pro-
duce very similar results of the tumor size and shape (this also
can be seen in Fig. 15). Hence only Castem results are shown.

Figure 15 shows the tumor growth according to the two
analyses. With the coupled codes the final tumor growth is
larger because of the higher oxygen concentration due to sup-
ply. The difference between the two models is not significant
because angiogenesis is low (small endothelial mass fraction,
Fig. 13).

5.2 Simulation of melanoma growth

Cutaneous melanoma growth with angiogenesis has been sim-
ulated in (Santagiuliana et al. 2016). Here the simulation is
repeated by using the coupled models and results are com-
pared. A detailed description of the physical problem can be
found in (Santagiuliana et al. 2016) together with the geome-
try, boundary and initial conditions. We recall that the mela-
noma first expands radially, then a penetration through the
basement membrane occurs and angiogenesis begins as de-
scribed above.

Fig. 26 Tumor growth according
to Castem and Castem-PAK
models, for t = 3 days, 1 week,
2 weeks and 20 days

Fig. 27 Mean volume fraction of tumor as function of time, for Castem
and Castem-PAK
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The geometry of the skin is drawn in Fig. 16.
The parameters used are indicated in Table 4.
The parameters in for the four phases and the oxygen are

those of Tables 1 and 2. For the ECM, the parameters are in
Table 4 (Sciumè et al. 2014b). The parameters for TAF and
Endothelial cells in Table 5 stem from literature, (Anderson
and Chaplain 1998; Breward et al. 2003; Eikenberry et al.
2009) and from sensitivity analysis.

The problem of Fig. 16 is simulated in axial symmetry and
the domain is discretized by 3720 plane four node elements.
The boundary conditions are described in Fig. 17.

In the whole domain the initial interstitial fluid pres-
sure (IFP), pl, is set equal to 0 Pa, while the HC-IF pres-
sure difference, phl, is set equal to 719 Pa, which corre-
spond to a saturation degree of IF, in EP, MZ and DZ
respectively equal to 0.44, 0.40, and 0.48. At time t =
0 h, all four phases coexist in the purple region of Fig.
17 (it has a radius of 40 μm), while in the remaining
regions of the domain no TCs are present. Within the
purple region, the initial saturation degree of the tumor
cells (TC) is set to 0.125, corresponding to pth ≈ 59 Pa.
Oxygen is here the sole nutrient species, and in the whole
domain its mass fraction is initially set equal to 4.2.10−6,
which corresponds to the average of the dissolved oxygen
in the plasma of a healthy individual. Initial TAF concen-
tration is zero. When the oxygen is less than a critical
value, fixed for this simulation as 3.0.10−6, i.e. when there
is hypoxia, the living tumor cells produce TAFs that dif-
fuse. The boundary condition for TAF is zero concentra-
tion at the base of dermis. The endothelial cells are ini-
tially present at the base of the dermis, in the blood vessel
with mass fraction equal to 4.0.10−1. At the upper bound-
ary (B1), there are no fluxes of phases and species nor
applied forces. At the right boundary (B2) the primary
variables pl, phl, pth and ur are fixed in time (Dirichlet
boundary conditions) and zero flux is imposed for oxy-
gen. At the lower boundary (B3), the primary variables pl,
phl, pth and uz are fixed in time (see Fig. 17). The bound-
ary conditions at the z axis are assumed respecting cylin-
drical symmetry.

The results of this simulation are now shown. Figure 18
depicts the oxygen concentration fields at four time instants,
according to the tumor growth model alone and the coupled
model. It can be seen that oxygen concentrations are larger
when the capillary network is included within the smeared
model.

In Figs. 19 and 20 mean oxygen concentrations are shown,
respectively for the total oxygen concentration in tumor and
tissue, and the oxygen concentration in tissue alone. After an
initial short period the evolution is quite similar and it can be
seen that most of oxygen is in the tissue.

Tumor oxygen concentrations are shown in Fig. 21. As
time goes on there is a bit less oxygen in the tumor when the

coupled model Castem-PAK is used as compared to the
Castem solution. Tumor consumes oxygen and this seems to
be the predominant behavior.

TAF concentrations from Castem and Castem-PAK are
shown in Fig. 22 for four different time instants. It appears,
see also Fig. 23, that lower oxygen concentration in the
Castem model produces larger TAF.

The endothelial cells mass fraction determined by the
Castem model is shown in Fig. 24. Over time concentration
of endothelial cells grows. It can be seen that after 2 weeks
endothelial cells migrate towards tumor because of the gradi-
ent of the TAF. Mean mass fraction of ECs is depicted in
Fig. 25. The increase of ECs is almost linear. Tumor growth,
with the tumor domains progressing with time, is shown in
Fig. 26 for both models and for four different time instants.

The mean volume fraction of tumor, which represents the
tumor growth, is drawn against time in Fig. 27. The tumor
volume is larger when using the coupled models (Castem-
PAK) instead of just the tumor growth model alone
(Castem). There is more oxygen available with the presence
of capillaries, see Figs. 19 and 20. Comparing the tumor
growth in the two examples, Figs. 15 and 27, it also appears
that the effect of oxygen supply from capillaries on tumor
growth is larger in the melanoma tumor; this is due to differ-
ence in the evolution rate of endothelial cells (around two
order of magnitude larger in melanoma tumor, see Figs. 13
and 25) and therefore of the rate of angiogenesis.

6 Conclusions

A very general multiphase porous media model for tumor
growth has been coupled with a bio distribution model. This
coupled code allows to simulate a more realistic dynamics of
molecules involved in proliferating tumors. The tumor growth
model yields as a function of the available nutrient, evolution
of tumor cell population, both viable and necrotic, of the dif-
ferential pressure between cell populations, of porosity of
ECM, of consumption of nutrients due to tumor growth, of
angiogenesis and related growth factors. On the other hand the
bio distribution model integrates the tumor growth model with
the diffusion of molecules, oxygen and the smeared capillary
network in the tumor environment. The two models and their
connection have been presented in detail. The code coupling is
the new aspect of this paper. Two examples have been shown:
a 2D example of tumor growth in a square domain and an
axisymmetric example of melanoma growth. In both cases
comparison has been carried out between the new results from
the coupled codes and the result from the tumor growth code
alone. The model connection offers a better insight into regu-
lation of the oxygen diffusion and of possible other molecules
including therapeutic agents e.g. chemotherapeutics or molec-
ularly targeted therapeutics such as T cells, antibodies for
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immunotherapy, and of nanoparticles and multistage plat-
forms. The combined models appear as an appropriate tool
for simulating the growth of a tumor in a whole organ
allowing at the same time to evaluate the efficacy of the ther-
apeutic agents.
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