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Abstract Many germplasm collections aim to preserve most of the genetic diversity pre-
sent in a population so that the population could be regenerated, which provides genetic 
resources to ensure food security. This paper proposes a way to measure how well a germ-
plasm collection achieve this goal. In the most common scenario, one has little information 
regarding the number and statistical distribution of alleles at every locus, and it is thus very 
difficult to measure the representativeness of the accession. Here, we show how to use sam-
ples of allelic diversity at a sample of loci to estimate the representativeness of an acces-
sion based on the coverage of a sample with point and interval estimates. Our approach 
avoids making unrealistic assumptions regarding the number of loci, the bounds for the 
number of alleles or their frequency distributions. Depending on the sampling scheme of 
a collection, we differentiate between absolute or relative coverage. Here, we demonstrate 
this methodology using data from the germplasm collection at the Leibniz Institute of Plant 
Genetics and Crop Plant Research.

Keywords Coverage · Allele conservation · Seed accession

Introduction

A gene bank is a collection of seeds and other plant reproductive material, primarily includ-
ing cultivated plants and their wild relatives. These collections have become the gene pools 
for plants of agricultural importance. The main goals of these collections are to secure 
plant genetic resources and to provide access to them. Evaluating a gene bank requires to 
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evaluate how well the methods for collecting, preserving and distributing the genetic mate-
rial were designed. Although it is not difficult to establish measures of the performance 
of gene banks in preserving and distributing genetic materials, it is more challenging to 
evaluate the amount of genetic variation that the bank has captured. Trying to include most 
of the alleles in a whole genome would require prohibitive sample sizes and many biologi-
cal and mathematical assumptions that are not always valid but are sometimes used due to 
a lack of alternatives. Intensive sampling to capture a high proportion of the total genetic 
diversity of a species is a vague goal. This is because the concept of high diversity can 
be relative, especially if there is little information regarding the genetic composition of a 
population. So, for the most common scenario in which the sampled fraction is small com-
pared to the population size, the unsampled fraction could include many genotypes that are 
not included in the sample. In the setting of a gene bank, the answer to the question: what 
proportion of the alleles is included in the accession? is not possible to answer  without 
making assumptions regarding the number of loci, and the number of alleles per locus or 
their frequency distribution.

Because a large number of individuals can be represented by a few genotypes and few 
individuals can represent a large number of genotypes, sampling to guarantee that a par-
ticular proportion of possible genotypes has been preserved can lead to prohibitively large 
sample sizes. Nevertheless, many alleles could be slight variants of other alleles, and thus, 
a set of alleles S could be used to reconstruct a larger set of alleles.

Another related question for the preservation of diversity is: what proportion of the 
alleles present in a population is represented in the sample? This is known as the coverage 
of a sample (Good 1953). To better explain the concept of coverage of a sample, consider 
for instance the preface to The Origin of Species (Darwin 1866). The preface uses 628 dif-
ferent words and is a total of 1633 words in length. Let’s suppose we take a random sample 
of size 30 and this includes only the words the, of, and, to and I. Because 19% of the words 
in the preface belongs to this five words the coverage of the sample is 19%. In simpler 
terms, the coverage of a sample is the fraction of individuals in the population that is repre-
sented in the sample.

Put it in context of the present problem, if the worldwide coverage of an accession in 
terms of alleles is C, it means that if we sample one seed from the field at random and an 
allele at random from its genome, there is a probability C that the allele is included in the 
accession.

Clearly, the goal is to achieve high coverage at all loci and accurately estimate the pro-
portion of existing alleles in a genome that is included in an accession. Here, we introduce 
a methodology that requires no previous knowledge of the number of loci, allele frequency 
or its distribution at each locus. This methodology is effective under mild conditions such 
as random sampling. Further, we assume only that we can sample seeds from several acces-
sions at a gene bank and identify alleles at one or more loci (i.e., by using microsatellite 
markers). Here, we show that the key parameter for assessing the coverage of a sample is 
the number of singletons, that is, alleles that are detected only once in the sample. When 
the number of singletons for a locus is high in a sample, the variability of alleles at that 
locus is high and the coverage of that locus is low. We also show how to combine the 
estimate of coverage at different loci to construct point and interval estimates for coverage 
achieved at the genome level.
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The coverage of a sample

As mentioned previously, the coverage of a sample is defined as the proportion of the indi-
viduals in the population that are represented in the sample. If pi is the proportion of indi-
viduals of class i in the population, and xi is the observed number of individuals of class i 
in the sample, then C, the coverage of the sample is

where M is the number of classes in the population. Good (1953) was the first to provide an 
estimate for the coverage of a sample, although he attributes the main result of his work to 
personal communications with A. M. Turing. If qr is the population relative frequency of 
a species that is represented r times in the sample, and nr is the number of species (alleles 
in our case) in the sample that are represented exactly by r individuals, then, according to 
Good (1953):

An immediate consequence is that the expected total probability of all species (alleles) 
that are each represented r times ( r ≥ 1 ) in the sample is approximately

Thus, the expected total chance of all species represented at all in the sample is 
approximately

where n1 = s , the number of singletons in the sample, which is the well-known estimate of 
coverage.

Several authors have deal with issues related to the coverage of a sample: Good and 
Toulmin (1956) extended Good (1953) work and provided estimates of the number of spe-
cies (alleles) in a population, and analyzed the effect of an additional sample on an increase 
in coverage. Esty (1985) was the first to use the concept of sample coverage to estimate 
the number of classes in a population. Esty (1986) analyzed the efficiency of the Good 
(1953) estimate against the best estimate under the assumption that all classes are equally 
likely, and found both that Good’s estimate performed remarkably well, and that it is a 
lower bound for the true coverage, unless all classes have homogeneous frequencies. Chao 
and Lee (1993) generalized the definition of the coverage to the case in which there is 
dependence among classes. Chao and Lee (1992) and Lee and Chao (1994) provided esti-
mates of the number of alleles in a population constructed from Good (1953) coverage esti-
mate. Huang and Weir (2001) used Chao and Lee (1992) approach to estimate the number 
of alleles in a population. Zhang and Zhang (2009) showed the asymptotic normality of 
Good’s estimate, thus allowing interval estimation of the coverage of a sample.

Other authors (see Harris 1959; Knott 1967; Robbins 1968; Starr 1979; Chao 1981; 
Esty 1982, 1983; Lo 1992) discussed Good (1953) estimate, or used it to obtain estimates 
on the number of classes in a population.

C =

M∑

i=1

pi I(xi > 0),

E
[
qr
]
≈

(r + 1)nr+1

n nr

(r + 1) nr+1∕n
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E
[
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]
≈ (2n2 + 3n3 + 4n4 +…)∕n = 1 − n1∕n
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The most important drawback of the coverage is statistical in nature: coverage is not a 
parameter of the population, thus, cannot be estimated. This means that coverage is a prop-
erty of the sample and not of the population. In the following section, we first introduce a 
new, more intuitive construction to estimate the coverage of a sample that is based on urn 
models. The goal of this new construction based on urn models is for the researcher to 
apprehend the assumptions involved in estimating coverage when the number of different 
types of individuals in a population (and hence their frequencies) is unknown.

Urn models

An urn problem is a thought experiment in which one or more hypothetical urns are filled 
with balls of different colors that represent actual items of interest. Urn models, which 
describe the probability of events arising from sampling balls from the urns, are among 
the most common models currently used in biology, engineering, medicine, social sci-
ences and other fields. Estimating the composition of balls in an urn, i.e., the types of 
individuals it contains and their frequencies, and thereby predicting the outcome of sam-
pling balls from the urn, is the most common problem for which these models are used. 
Traditionally, the question is posed as: in a sample of size n, there are xi individuals of 
type i, i = 1, 2, 3,… , k . What is the maximum likelihood estimate (MLE) of the relative 
frequencies of the types? The likelihood function of the sample is written as:

that is maximized at pi = xi∕n.
The previous paragraph explains the usual rationale behind sampling a multinomial dis-

tribution, but there is an inherent misconception that turns out to be relevant when the 
number and frequencies of types in the urn is unknown. For instance, according to (2), if 
we take a sample of size n = 3 and this yields balls of three different colors (types), e.g., 
red, black and white, the urn that maximizes the likelihood of such a sample is an urn with 
1/3 red, 1/3 black and 1/3 white balls. However, this only holds true if we concede that 
only those three colors exist in the urn.

However, if we do not know the colors (types) that are present in the urn in advance, 
and we obtain a sample of one red, one black and one white ball even though the urn con-
tains at least one other color, then we have obtained a sample of only three of the different 
possible colors. In this situation, the urn composition that would maximize the probability 
of such a sample is one in which all balls are of different color. Take for example a sample 
of size 10 from an urn and suppose we obtain 4 black, 3 white, 1 red, 1 blue and 1 yellow 
ball. The classical estimate for these respective colors is:

The likelihood of the given sample is around 1.7 × 10−2 . Nevertheless, when we do not 
know anything about the composition, or numbers of types (colors) of balls in the urn, the 
correct question is not: what urn composition maximizes the probability of getting 4 black, 
3 white, 1 red, 1 blue and 1 yellow? but rather: what urn composition maximizes the prob-
ability of getting balls at the observed frequencies? Answering this requires some care, 
because if there are singletons in the sample (colors represented by a single individual) 

(2)P(� = � |�) =
(

n

x1 x2 … xk

)
p
x1
1
p
x2
2
p
x3
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… p
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k

�̄ = {4∕10, 3∕10, 1∕10, 1∕10, 1∕10}
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there is always another urn composition that has higher likelihood than using the tradi-
tional estimate pi = xi∕n.

For instance, in our sample case above, we will show that there is an urn composition 
whose likelihood is 27 times higher for maximizing the probability of obtaining a particu-
lar frequency than that obtained using the usual MLE. To show this, we start by assuming 
that our sample comes from an urn containing N balls divided into M classes (types), and 
that both N and M are unknown. Without loss of generality, assume that K classes contain 
more than one individual each, whereas the remaining S = M − K classes contain a single 
individual each. Clearly S ≥ 0 . Let � be the fraction of the population occupied by these S 
classes. It is important to remark that every multinomial distribution is a subset of this gen-
eral population. Now, suppose our sample of size n contains m different types or classes, 
of which s are singletons. A posteriori, we label the classes arbitrarily as 1, 2, 3,… ,m and 
let xi be the number of individuals in the sample belonging to class i. The likelihood of the 
sample is then:

where pi is the proportion in the population represented by the xi individuals in the sample. 
Observe that in the traditional MLE for multinomial distributions, the dimension of the 
parameter space is restricted to the observed number of classes. Nevertheless, if the dimen-
sion of the parameter space is not restricted to a known number of classes, the product of 
the last s of the pi ’s in (3), namely

is in fact the probability of getting s different individuals with a sample of size s. This prob-
ability is maximized when a sample of this size is taken out of the fraction � of the popula-
tion whose individuals each belong to a different class. Then, the likelihood of the sample 
can be rewritten as:

Thus, the MLE’s are:

which yields a likelihood of 4.7 × 10−1 That is, the chance of obtaining a sample matching 
the one observed are larger if the urn contains 4/10 black, 3/10 white, and the remaining 
3/10 is composed of balls that are each of different colors. Under the arguments leading to 
(3), the colors not detected in the sample must belong to the fraction � whose individuals 
each belong to a different class. Thus, an estimate of the fraction of the population that has 
not been represented in the population is precisely �̂� minus the fraction s/N corresponding 
to the population frequencies of the singletons detected in the sample, that is, �̂� = s∕N . 
Thus, the MLE of the lower bound for of the coverage of a sample is

which is precisely Good (1953) estimate.
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Properties of the coverage of several populations

We have established that the coverage of a sample is defined as the proportion of individu-
als in the population that is represented in the sample. This is the same as the probability 
that an individual selected at random from the population is represented in the sample. 
Some results would be needed to estimate the coverage of an accession at the genome level 
or to estimate the coverage of a group of accessions, i.e., a germplasm collection. We leave 
the proof of the following results to the Appendix.

Properties of the coverage

1. If every individual in a population has two possible attributes, X and Y and X takes val-
ues from a set SX whereas Y takes values from a set SY , and these sets do not intersect, 
then, if a sample of size n has a coverage CX from set SX and CY from set SY , the overall 
coverage of attributes of the set SX ∪ SY is then (CX + CY )∕2.

2. If two populations of sizes N1 and N2 are sampled with respective sample sizes of 
n1 = n f  and n2 = n (1 − f ) where f = N1∕(N1 + N2) , then, the coverage of the mixture 
of both samples is the fraction of individuals in the mixture of populations that is rep-
resented in the sample. This will be defined as the absolute coverage.

3. For two populations of sizes N1 and N2 , N1 ≠ N2 , each sampled with a sample of fixed 
size n, the coverage of a mixture of the two samples can be interpreted as the likelihood 
that an individual who is equally likely to be selected from either population is repre-
sented in the sample. This will be defined as the relative coverage.

4. If a random sample of s accessions is selected from a germplasm collection with S 
accessions, the coverage estimated from the sample of s accessions is an estimate of 
the coverage of the collection. Equivalent results apply if the collection is divided into 
groups and random samples are selected from each group.

Property 1 implies that if the coverages at loci 1 and 2 are respectively C1 and C2 , then 
the coverage of alleles at both loci simultaneously is the average of C1 and C2 , as long as no 
allele can exist at both loci. This result will prove useful when estimating coverage at the 
genome level.

Property 2 implies that we can estimate the coverage of a mix of two populations as 
long as the sample size denotes the weighted proportion of each population.

Property 3 implies that when sample sizes from each population are not weighted 
according to their relative presence in the population, there is a slight change in the inter-
pretation of coverage. It is no longer absolute coverage, i.e., the likelihood that a random 
individual selected from the mixture of populations is represented in the sample. Rather it 
becomes relative coverage, or the likelihood that an individual selected at random from a 
population at random is represented in the sample. This result is particularly useful when 
accession sample sizes are equal and the accessions were not weighted according to their 
representation in the actual population in the field.

The difference between relative and absolute coverage will be provided with a simple 
example: suppose we have two populations of size N1 and N2 where N2 = 2N1 . Lets sup-
pose we take a sample of size n1 and n2 respectively from each population and mix both 
samples, and then we estimate the coverage of the sample mix using (3) yielding a cover-
age estimate Ĉ . Now, If n2 = 2 n1 , then, the probability that an individual taken at random 
from the mix of populations will be represented in the sample mix is Ĉ , which is absolute 
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coverage. On the other hand, if n2 ≠ 2 n1 then, we can only conclude that if we select at 
random an individual equally likely from either population, there is a probability Ĉ that is 
represented in the sample mix. This is relative coverage.

Estimating the coverage of an accession at the genome level

Before we can estimate the coverage of an entire germplasm collection, we must first intro-
duce how to estimate and interpret the coverage of a single accession at the genome level. 
Assume an accession has size N and that it is a random sample from a population. Let the 
true coverage at locus i be Ci . If there are M loci, the Ci values constitute a population with 
mean CG . By Property 1, the coverage of the accession at the genome level is precisely:

which has some variance �2

G
 . Suppose a sample of size n is taken from this accession and 

every DNA strand in the sample is characterized at the same K randomly selected loci 
(Fig. 1), obtaining si singletons at locus i, i = 1, 2, 3,…K . Let ĉi = 1 − si∕n be the estimate 
of coverage at locus i. Then,

follows a normal distribution with some expected value � and variance �2

G
∕K . Since ci is 

constructed by sampling n individuals from the accession, its expected value is at most 
equal to the coverage of the accession, that is E[ci] ≤ Ci for n ≤ N . Thus, (4) is a lower 
bound for the coverage at the genome level, CG.

Let �̂ be the standard deviation of the ĉi values, then a 1 − � confidence interval (CI) for 
the coverage of the accession would be:

where Z1 − � can be substituted with Student’s t distribution with the appropriate degrees 
of freedom when the number of sampled loci is small. For instance, using the example in 
Fig. 1, where n = 8 and K = 9 , the estimate of coverage using (4) is Ĉg = 0.833 . That is, at 
least 83 % of all alleles in the population are represented by the 32 different alleles in the 
sample. Using (5) with (t8, 0.95) we obtain a 95 % CI for the lower bound of the coverage 
as (0.797, 0.869)

Estimating the coverage of a group of accessions

We might sample each accession proportionally to the relative amount in the population 
that the accession represents. Then, from Property 2, after alleles are identified at K loci in 
the mixed sample, the estimated coverage of the germplasm collection is calculated using 
(4) and the estimates of the lower bound can be calculated as (5). This coverage would be 
absolute coverage.

However, such a sampling scheme is impractical mainly because the relative amount in 
the population is unknown. In practice, n seeds would be taken from each accession and 

CG = (C1 + C2 +…+ CM)∕M,

(4)�Cg =

K∑

i=1

ĉi∕K

(5)Ĉg ± Z1−�
�̂

K
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each individual analyzed to identify alleles at the same loci across individuals. Although 
the coverage estimate at the genome level (4) and its CIs (5) remain the same, according to 
Property 3, the interpretation of coverage changes: instead of absolute coverage, it would 
now be relative coverage. That is, if we chose a strain at random (equally likely among the 
strains contained in the germplasm collection) and an allele is selected at random from a 
single individual of that strain in the field, the probability is Ĉg that there is a copy of that 
allele in the collection. This is more stringent than absolute coverage, as it gives equal 
weight to each strain in the accession, instead of giving greater weight to strains that are 
more abundant in the field.

A sample of accessions could be taken to estimate the coverage of a germplasm collec-
tion. If a sample of s accessions is selected from S, Property 4 guarantees that the estimates 
are still valid. Although it might seem odd that the value of s does not play a role in cal-
culating the expression Ĉg , nevertheless, it is still included in the sample size n. This tends 
to reduce the number of singletons found and hence reduces both the variance of coverage 
estimated at each locus and that between loci.

Simulations

Here, we evaluate the performance of (4) and (5) for estimating the coverage of single 
accession when the true coverage is known. First, we generated a fictitious genome with 
1 × 105 loci, and from this we generated three accessions of size N = 50, 100 or 250 seeds. 
We then sampled each one of these accessions with several sample sizes n and identified 
alleles in each sample at K = 1, 5, 10, 20 or 30 loci. In each simulation, the n individuals 
and the K loci for allele identification where selected at random from the accession. We 
reiterated this latter step 10, 000 times for each sample combination of n and K to obtain 
point and interval estimates for the lower bound of the coverage of the accession and then 

Fig. 1  A sample of 8 DNA strands characterized at nine different loci showing the identified allele. Bot-
tom row indicates the number of singletons found in the sample in every locus. In this example, 32 different 
alleles were detected in the sample
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compared these against the true coverage of the same. For the simulated genome, the num-
ber and frequency of alleles per locus was randomly generated using a Poisson random var-
iable, with varying parameter, according to a Gamma distribution with parameters � = 4 
and � = 4 for an average of 16 alleles per locus (see Fig. 2).

Tables  1, 2 and 3 show the estimated coverage for each accession at different sam-
ple sizes, while varying the number of loci analyzed. The estimate of coverage improves 
with sample size, but increasing the number of loci has little effect on the point estimate, 
although clearly reducing its variance. It is important to recall that these are samples from 
the accessions, so these are lower bounds for their true coverage.

Fig. 2  The distribution of the number of alleles per locus in the simulated genome. For every locus, we 
used a Gamma (4, 4) to simulate the parameter of a Poisson distribution which in turn was used to simulate 
the alleles at that locus for every individual in the accession. The maximum number of simulated alleles in 
a locus was 94 with an average of 16

Table 1  Coverage estimated in accession 1

Size of accession: 50 seeds. True Coverage of accession is: 0.916
Mean coverage over 10,000 simulations
Numbers in parenthesis are SD

Seeds 
sampled
(n)

Sampled loci (K)

1 5 10 20 30

25 0.788 0.783 (0.046) 0.784 (0.032) 0.784 (0.023) 0.785 (0.019)
50 0.914 0.914 (0.021) 0.913 (0.015) 0.913 (0.011) 0.913 (0.009)
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Example data

This example is an analysis of data previously reported in Huang et  al. (2002) from the 
germplasm collection at the Leibniz Institute of Plant Genetics and Crop Plant Research at 
Gatersleben, Germany. The collection contains more than 10,000 accessions of hexaploid 
bread wheat (Triticum aestivum). The study used a sample of 998 accessions that originated 
from 66 countries on five continents. Total genomic DNA was extracted from five grains of 
each accession and 24 microsatellite markers for 26 loci were used to evaluate the genetic 
diversity of the accessions, with at least one marker for each of the 21 chromosomes.

Table 4 shows some statistics previously reported in Huang et al. (2002) for several loci, 
together with the number of singletons and the coverage estimated at those loci. In Figs. 3 
and 4 the number of alleles and Nei’s diversity index (Nei 1973) are plotted against the 
coverage values. The lower bound for the estimated coverage of the collection at Gatersle-
ben is 0.999

We grouped the samples by continent (Table 5) and region (Table 6) and obtained the 
estimates of the coverage for these groups. Some regions were underrepresented, so it was 
not possible to estimate CIs for their lower bounds. As for any sample, conclusions can be 
generalized to the population from which the sample came. Here, if 998 accessions were 
sampled at random from the 10,000 accessions at Gatersleben, the coverages here would be 
the estimated lower bounds of the coverage of the collection at Gatersleben. The fact that 
they were sampled to cover several continents and several regions within those continents 
does not affect the coverage estimates.

Table 2  Coverage estimated in accession 2

Size of accession: 100 seeds. True Coverage of accession is: 0.966
Mean coverage over 10,000 simulations
Numbers in parenthesis are SD

Seeds 
sampled
(n)

Sampled loci (K)

1 5 10 20 30

25 0.786 0.785 (0.047) 0.784 (0.033) 0.786 (0.023) 0.785 (0.019)
50 0.915 0.915 (0.021) 0.913 (0.015) 0.914 (0.010) 0.914 (0.009)
75 0.950 0.950 (0.012) 0.950 (0.009) 0.950 (0.006) 0.950 (0.005)
100 0.966 0.965 (0.009) 0.966 (0.006) 0.966 (0.004) 0.965 (0.004)

Table 3  Coverage estimated in accession 3

Size of accession: 250 seeds. True Coverage of accession is: 0.988
Mean coverage over 10,000 simulations
Numbers in parenthesis are SD

Seeds 
sampled
(n)

Sampled loci (K)

1 5 10 20 30

25 0.784 0.784 (0.046) 0.784 (0.033) 0.784 (0.023) 0.785 (0.019)
50 0.913 0.914 (0.021) 0.914 (0.015) 0.914 (0.011) 0.914 (0.009)
75 0.951 0.950 (0.012) 0.951 (0.009) 0.950 (0.006) 0.951 (0.005)
100 0.966 0.965 (0.009) 0.966 (0.006) 0.965 (0.004) 0.966 (0.004)
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Table 4  Locus name, number 
of alleles, gene diversity, number 
of singletons and coverage 
estimated at each locus

a As reported in Huang et al. (2002)
b Nei’s diversity index

Locus Number of
allelesa

Gene
diversitya,b

Singletons Coverage

Xgwm357 12 0.69 5 0.995
Xgwm95 13 0.78 1 0.999
Xgwm155 15 0.79 1 0.999
Xgwm160 12 0.70 1 0.999
Xgwm192c 4 0.43 0 1.000
Xgwm186 25 0.90 2 0.998
Xgwm459 46 0.94 2 0.998
Xgwm631 12 0.76 1 0.999
Xgwm18 13 0.77 3 0.997
Xtaglgap 26 0.82 5 0.996
Xgwm619 21 0.86 1 0.999
Xgwm389 19 0.88 1 0.999
Xgwm513 8 0.65 1 0.999
Xgwm192a 18 0.84 2 0.998
Xgwm408 20 0.84 1 0.999
Xgwm680 14 0.66 1 0.999
Xgwm46 24 0.88 0 1.000
Xgwm577 36 0.90 2 0.998
Xgwm337 24 0.83 1 0.999
Xgwm458 7 0.62 0 1.000
Xgwm261 22 0.56 4 0.997
Xgwm3 10 0.67 0 1.000
Xgwm192b 8 0.63 0 1.000
Xgwm190 23 0.82 5 0.995
Xgwm325 15 0.82 1 0.999
Xgwm437 23 0.90 0 1.000

Table 5  Relative coverages of 
the collection at the continent 
level

a Sample size too small to estimate lower bound

Continent Coverage Lower 
bound 
(0.95)

Africa 0.984 0.962
America 0.920 0.781
Asia 0.995 0.987
Europa 0.996 0.991
Oceania 0.038 a

Unknown 0.58 0.022
Total collection 0.999 0.996
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Discussion

It would be most desirable to measure representativeness of a collection in terms of the 
variability captured, so that one could estimate the number and distribution of the alleles 
not captured. This task is impossible unless we are willing to concede some assumptions 
about the frequency distribution of alleles. Such assumptions tend to make mathematicians 
lives simpler, but they can hide negative properties that might generally be unknown to 
biologists. Moreover, an awareness of the assumptions behind a method does not mean that 
the effects of deviations from those assumptions would be apprehended. In the worst-case 

Table 6  Relative coverages of 
the collection at the regional 
level

a Sample size too small to estimate lower bound

Region Coverage Lower 
bound 
(0.95)

Africa East 0.947 0.865
Africa Northwest 0.969 0.929
America Middle 0.633 0.083
America North 0.763 0.431
America South 0.896 0.702
Asia Middle East 0.902 0.733
Asia Far East 0.991 0.979
Asia Near East 0.984 0.964
Europe North 0.985 0.965
Europe Southeast 0.989 0.972
Europe Southwest 0.983 0.954
Oceania 0.038 a

Unknown 0.580 0.022

Fig. 3  Plot of the number of alleles found versus Coverage at each of 26 loci in Gatersleben collection
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scenario, one might not distinguish whether some assumptions would result in overly con-
servative or optimistic estimates of the variability captured. The purpose of section "Urn 
models" was to provide a new construction of this problem that not only illustrates the 
importance of the singletons in estimating coverage, but also reveals the basic assumption 
that all singletons come from a fraction of the population not included in the sample in 
which all individuals are different and therefore not represented, which leads to a conserva-
tive estimate of coverage.

In practice, there is no way to guarantee that a collection has captured all of the genetic 
variability of a species even at a single-locus level. Nevertheless, if we assume that some 
alleles are variants of other alleles, then the alleles that occur at low frequency in nature 
might have been generated from other alleles that occur at higher frequency. In such a situ-
ation, the coverage of a sample would be a useful indicator of the potential for a collection 
not only to preserve the alleles it contains, but also to regenerate other alleles that might 
exist outside the collection.

For an individual genebank, a core collection consists of a limited number of the acces-
sions in an existing collection, chosen to represent the genetic spectrum in the whole col-
lection. It should include as much as possible of its genetic diversity but is not intended to 
replace a genebank (Brown 1995; van Hintum et al. 2000). By sampling the core collection 
and estimating the coverage we can estimate the proportion of alleles in the genebank that 
is represented in the core collection.

In Huang et al. (2002) a fixed sample of size five was taken from each of the 998 acces-
sions sampled, thus, the coverage achieved must be interpreted as a relative coverage, that 
is, if we choose an accession at random from the collection and then we select (in the field) 
an allele at random belonging to the strain represented in the accession, there is a 0.99 
chance that the allele is included in the collection.

Efforts to estimate the coverage of all germplasm collections of the most important 
crops worldwide should be combined, because some accessions might be duplicated 
between collections. This would provide a global overview of germplasm preservation 
efforts. It will be important to realize that results for two sets of strains could be combined 
even if they were not sampled at the same loci. For instance, if a study included M1 strains 

Fig. 4  Plot of Nei’s gene diversity index versus coverage at each of 26 loci in Gatersleben collection
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identifying alleles at a set of loci L1 , and another study identified alleles in M2 different 
strains at another set of loci L2 (possibly intersecting with set L1 ), the estimated coverages 
of both collections could be combined with appropriate weighting of the coverage esti-
mates according to the relative representations of M1 and M2 in the combined collections 
and populations.

An important assumption in the present method is that the loci sampled are randomly 
selected from the genome. Nevertheless, this is not a stringent assumption, because the 
sampled region could be narrowed to, for instance, particular genomic regions of impor-
tance for crop performance. Sampling in genomic regions of high variability could lead 
to an even more conservative approach as any attempt to maintain high coverage of these 
regions would also maintain high coverage of other regions with less variability, In this 
instance, it would not be possible to sustain basic assumptions based on random sampling 
and the conclusion on the coverage are restricted to the sampled region.

It is important to point out that the degree of linkage between loci does not affect the 
estimates of the coverage because the average of coverages, as introduced in Property 1, 
is not affected by correlations between alleles detected at two loci in the same individual.

In the particular case of the Gatersleben collection, these results indicate that there is no 
correlation between estimated coverage and other measures of diversity such as the num-
ber of alleles or Nei’s index. The coverage attained at the locus level was high, yet there 
was still high variability in both the number of alleles and Nei’s diversity index. This sug-
gests that coverage express a distinct measure of diversity. The number of alleles and Nei’s 
index measure attributes of the sample, whereas coverage attempts to provide information 
regarding what is left out of the sample.

Coverage, either absolute or relative, is a lower bound estimate for true coverage. Even 
with this limitation, it could be used for comparison purposes or as a measure of the pro-
gression or performance of a germplasm collection towards including maximum variability 
without duplicating accessions.
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Appendix: Proof of properties of the coverage of several populations

1. If we select an individual at random from the population and then select one of its attrib-
utes X or Y, this attribute will be included in the sample with respective probabilities CX 
and CY . Because the selected attribute is equally likely to be X or Y, the probability that 
the attribute selected is in the sample is (CX + CY )∕2.

2. If two populations of sizes N1 and N2 are mixed and a sample of size n is taken from 
the mix, the probability that an individual selected at random from the mixed popu-
lation is represented in the sample is defined as the coverage of the sample, this fol-
lows from the fact that a randomly selected individual from the mix of populations 
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belongs to each initial population with respective probabilities f = N1∕(N1 + N2) and 
1 − f = N2∕(N1 + N2) . It follows that there is no need to mix both populations as long as 
each population is sampled with sample sizes n1 = N1∕(N1 + N2) and n2 , respectively.

3. Suppose we have two populations 1 and 2 of sizes N1 and N2 , respectively, where 
N1 = N2 . Suppose we take a sample of size n from each population and let C represent 
the coverage of the mixed sample of size 2n. By property 2, C can be interpreted as 
the probability that a random individual selected from the mix of both populations is 
represented in the sample, i.e., the absolute coverage. Now suppose that the size of 
population 2 is increased by a factor of k, where k > 1 , keeping the relative frequency of 
alleles fixed. Clearly, the previous interpretation of the coverage (absolute coverage) no 
longer holds because an individual selected randomly from the mixture of populations 1 
and 2 is k times more likely to come from population 2. But if we can guarantee that the 
individual selected is equally likely to come from either population, then the probability 
that this individual is already represented in the sample is still C. The restriction imposed 
by requiring that it must be equally likely that the individual comes from either popula-
tion defines the relative coverage. It follows that if we have two populations of general 
sizes N1 and N2 , N1 ≠ N2 , and take a sample of the same size n from each population, 
the coverage of the sample mix follows the definition of relative coverage.

4. This property follows from properties of random sampling.
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